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Abstract

In a stage of more and more complex and high-frequency financial markets, the volatility
analysis is a cornerstone of modern financial econometrics with practical applications in
portfolio optimization, derivative pricing, and systematic risk assessment. This paper
introduces a novel Bayesian Time-varying Generalized Autoregressive Conditional Het-
eroskedasticity (BtvGARCH-Itô) model designed to improve the precision and flexibility of
volatility modeling in financial markets. Original GARCH-Itô models, while effective in
capturing realized volatility and intraday patterns, rely on fixed or constant parameters;
thus, it is limited to studying structural changes. Our proposed model addresses this
restraint by integrating the continuous-time Ito process with a time-varying Bayesian infer-
ence to allow parameters to vary over time based on prior beliefs to quantify uncertainty
and minimize overfitting, especially in small-sample or high-dimensional settings. Through
simulation studies, using sample sizes of N = 100 and N = 200, we find that BtvGARCH-Itô
outperformed original GARCH-Itô in-sample fit and out-of-sample forecast accuracy based
on posterior estimates comparison with true parameter values and forecasting error metrics.
For the empirical validation, this model is applied to analyze the volatility of S&P 500 and
Bitcoin (BTC) using one-minute length data for S&P 500 (from 3 January 2023 to 31 Decem-
ber 2024) and BTC (from 1 January 2023 to 1 January 2025). This model has potential as a
robust tool and a new direction in volatility modeling for financial risk management.

Keywords: volatility analysis; S&P 500; BTC; BtvGARCH-Itô

1. Introduction
Modeling financial asset volatility is very important for option pricing, managing

risk, and building investment portfolios (Opschoor & Lucas, 2023; Engle & Gallo, 2006).
GARCH models, introduced by Engle (1982) and Bollerslev (1986), are commonly used to
track how volatility changes over time. These models use daily squared returns to estimate
volatility. However, they rely on limited information, which makes them less effective in
catching market behavior. Fan and Wang (2007) argued that high-frequency financial data
has improved how we measure volatility and forecasting performance. New measures
like realized variance, bipower variation, realized kernel, intraday range, and multipower
variation that use detailed intraday returns are found in the existing literature, including
Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen et al. (2008), Todorov (2009),
Carr and Wu (2003), and Huang and Tauchen (2005). These measures produce less biased
estimates of volatility under the right conditions (Andersen et al., 2007).

Realized Generalized Autoregressive Conditional Heteroskedasticity (GARCH) mod-
els (Song et al., 2020; Kim & Wang, 2016) have built on these improvements. They model
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both returns and realized volatility together. One key part of these models is the mea-
surement equation, which links realized volatility directly to the model’s estimate of true
volatility. This setup improves performance compared to traditional GARCH models, for
example, Song et al. (2020) account for both price jumps and volatilities. Realized GARCH-
Itô models include more detailed data like integrated volatility and jump variation, and
they help the models capture unexpected changes in prices. Realized GARCH-Itô models
predict volatility better than earlier models (Kim & Wang, 2016), accounting for intraday
U-shape volatility.

While significant progress has been made, these models assume constant and fixed
parameters. This is a problem because financial markets are dynamic and change signifi-
cantly over time. The concept of time-varying coefficients has been increasingly accepted
in econometric models to help deal with this sort of issue. They let parameters adjust to
varying market conditions and improve predictions during uncertain periods of structural
changes, economic shocks, or even policy shifts. In fact, financial markets are constantly
changing. Time-varying models also identify shifts in market dynamics and correlations
(Andersen & Bollerslev, 1997; Andersen et al., 2019; Opschoor & Lucas, 2023). For example,
time-varying GARCH coefficients show how the second-order dynamics of the U.S. stock
market changed sharply after 2001 the internet bubble burst, while the Chinese market
remained isolated (Gao et al., 2024). These models are effective in volatility predictions of
future return distributions and risk measures. Moreover, they can handle non-stationarity,
which is common in financial data.

In addition to time-varying models, Bayesian models treat all uncertainty as proba-
bility based on prior beliefs about how parameters might change over time. Furthermore,
Bayesian inference estimates are all unknown parameters, while also showing how they
might relate to each other. They are also beneficial when dealing with small datasets
and even prevent overparameterization in high-dimensional settings. The combination of
Bayesian inference to time-varying parameter models resulted in efficient posterior and
improved forecasting accuracy (Koop & Korobilis, 2022; Taspinar et al., 2021; Kalli & Griffin,
2014; Jacquier et al., 2004). Using Bayesian methods together with time-varying parameters
provides the effectiveness of modeling and volatility forecasting.

Given the importance and the need to adapt to continuously changing financial
markets, this paper introduces a Bayesian Time-varying Realized GARCH-Itô (BtvGARCH-
Itô) model. This model lets parameters vary over time, fits high-frequency data more
effectively, and reduces uncertainty by using prior knowledge to improve the accuracy of
volatility analysis in financial markets. For the empirical study, we apply the model to two
contrasting assets: the S&P 500 index, representing a liquid and diversified equity market,
and Bitcoin (BTC), a speculative digital asset with heavy tails and frequent jumps. These
applications demonstrate the model’s practical relevance and its superior performance
compared to conventional GARCH-type models in modeling financial market volatility.

2. Realized GARCH-Itô Model
The realized GARCH-Itô model, first introduced by Song et al. (2020), presents

a significant advancement in volatility analysis by integrating high-frequency financial
data with continuous-time jump-diffusion processes. This hybrid model extends the
united GARCH-Itô framework of Kim and Wang (2016) by incorporating realized volatility
(RV) and jump variation (JV) as innovations. Thereby, Song et al. (2020) filled the gap
between discrete-time econometric models and continuous-time stochastic processes. It
is particularly effective to account for dynamic changes of volatility in financial markets,
including high-frequency data analysis, whereas market noises, price jumps, and intraday
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volatility patterns exist. The realized GARCH-Itô model is formulated as a stochastic
differential equation. The log stock price process Xt for t ϵ R+ is as follows:

dXt = µtdt + σt(θ)dBt + LtdΛt (1)

where µt is the drift, σt(θ) is the instantaneous volatility, Bt is a Brownian motion, Lt is
jump sizes, and Λt is a counting process for jumps. At integer times n, the conditional
variance is:

σ2
n(θ) = ω + γσ2

n−1(θ) + α
∫ n

n−1
σ2

s (θ)ds + β
∫ n

n−1
L2

s dΛs (2)

where θ = (ω, α, β, γ),
∫ n

n−1 σ2
s (θ)ds ≈ RVn,

∫ n
n−1 L2

s dΛs ≈ JVn, and the integrated volatil-
ity over [n − 1, n] is: ∫ n

[n−1]
σ2

t (θ)dt = hn(θ) + Dn (3)

With
ht(θ) = ωg + γht−1(θ) + αg.RVt−1 + βg JVt−1 (4)

where ht is the latent conditional variance at time t, ωg is the baseline volatility, αg is
lagged realized volatility (RVt−1), βg is lagged jump variation (JVt−1), γ is lagged variance
of latent volatility, and θ = (ωg, αg, βg, γ) parameters are assumed constant over time
following a normal distribution.

The quasi-likelihood function used for the static parameters in this model is stated as:

L̂GH
n,m(θ) = −∑n

i=1

[
log
(

ĥi(θ)
)
+

RVi

ĥi(θ)

]
(5)

where ĥi(θ) = ∑i=1
l=1 γi−1ωg + αgRVi−l + βg JVi−l + γi−1h1(θ), and h1(θ) =

ωg+βg+λω,L
1−αg−γ

subject to αg + γ < 1.

3. Bayesian Time-Varying GARCH-Itô Model
The Bayesian Time-varying GARCH-Itô (BtvGARCH-Itô) model extends the General-

ized unified GARCH-Itô model by incorporating time-varying parameters and Bayesian
inference to study dynamic volatility in high-frequency financial markets. This section
delivers the BtvGARCH-Itô model specification, which is used to effectively estimate the
latent volatility and its time-varying components using observed realized volatility, jump
variation impact, and lagged variance within a Bayesian inference framework. This model
is suitable for financial applications of high-frequency data analysis where volatility dy-
namics swing continuously. Thus, the BtvGARCH-Itô model is designed to account for
the dynamic nature of financial market volatility. High-frequency returns reflect intraday
price movements and rapid responses to market information. Time-varying coefficients
allow the model to adjust to changing conditions, including structural shifts, monetary
policy interventions, and speculative cycles. The latent volatility component (ht) represents
market risk, while the jump variation accounts for sudden price shocks, heavy tails, and
extreme events common in both regulated equity markets like the S&P 500 and decentral-
ized speculative markets like Bitcoin. The parameters ω (baseline volatility), α (realized
volatility), β (jumps variation), and γ (latent volatility) are specified to reflect these features.
The BtvGARCH-Itô model defines the latent volatility process {ht}N

t=1 as follows:
For t = 1

h1 =
ω1 + β1λω, L

max(e, 1 − α1 − γ1)
, f or small e > 0 (6)
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where e > 0 is a small constant ensuring positivity, and λω, L is a constant derived from the
empirical distribution of jump variation JVt.

For t = 2, . . ., N

h1 = ωt + αtRVt−1 + βt JVt−1 + γtht−1, f or t = 2, . . . , N (7)

where RVt is the realized volatility, JVt is the jump variation, and ω
g
t , α

g
t , β

g
t , γt ∈ (0, 1)

are time-varying parameters satisfying αt + γt < 1..
The time-varying parameters shift via a Gaussian random walk in logit space:

θraw
t = θraw

t−1 + σθ θ́t, θt = invlogit(θraw
t ) =

1
1 + exp(−θraw

t )
(8)

where θ ∈ {ω, α, β, γ}, and
∼
θ t ∼ N(0, 1). The measurement equation is:

RVt ∼ N
(

ht, σ2
RV

)
, σRV > 0 (9)

To complete the Bayesian specification, we assign prior distributions as follows:
Initial coefficients:

ω0 ∼ N
(
0.3, 0.12), α0 ∼ N

(
0.1, 0.052), β0 ∼ N

(
0.05, 0.022), γ0 ∼ N

(
0.6, 0.052)

θ0 ∼ N
(
µθ , τ2

θ

)
σθ ∼ C+(0, b)

σRV ∼ C+(0, c)
∼
θ t ∼ N(0, 1), t = 1, . . . , N

(10)
where C+(0, b) is the half-Cauchy distribution adjusted at 0 with scale b, and ( µθ , τθ) are
prior mean and standard deviation hyperparameters.

Innovation standard deviations:

σθ ∼ Hal f − Cauchy(0, 0.1), σRV ∼ Hal f − Cauchy(0, 0.2) (11)

Random walk innovations:

∼
θ t ∼ N(0, 1), t = 1, . . . , N, θ ∈ {ω, α, β, γ} (12)

The Bayesian posterior of this model can be written as:

p(θ1:N , h1:N , σRV |RV1:N , JV1:N) ∝ ∏N
t=1 N

(
RVt

∣∣∣ht, σ2
RV

)
.p(h1:N |θ1:N , RV1:N).p(θ1:N).p(σRV) (13)

The mathematical properties of the BtvGARCH-Itô model are formally established
in Appendix B, where we present the positivity and boundedness of ht (Theorem A1),
the properness of the Bayesian posterior (Theorem A2), the identifiability of time-varying
parameters (Theorem A3), and posterior consistency under the true data-generating process
(Theorem A4). These results ensure that this model is well-defined, interpretable, and
capable of producing reliable inference in dynamic financial markets. Implementation
details in R (version 4.5.1) are provided in the supplementary material.

4. Simulation Study
4.1. Data Generation Process

We simulated synthetic data for N = 100 and N = 200 time points to evaluate the
model’s finite sample performance. The jump variation process JV was generated as
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independent draws from a uniform distribution on [0, 0.2] with the median value denoted
by λω, L. The time-varying parameters ωg,t, αg,t, βg,t, and γt were defined to vary smoothly
over time, according to sinusoidal functions, to mimic realistic dynamics. The latent
volatility ht was computed recursively as follows:

ωg,t = 0.3 + 0.1sin
(

2πt
N

)
, αg,t = 0.1 + 0.05sin

(
4πt
N

)
(14)

βg,t = 0.05 + 0.03sin
(

6πt
N

)
, γt = 0.6 + 0.05cos

(
2πt
N

)
(15)

With JVt ∼ N(0, 0.2), λω,L = median(JVt) and

h1 =
ωg,1 + βg,1.λωL .

max
(
10−6, 1 − αg,1 − γ1

) (16)

ht = ωg,t + γtht−1 + αg,tRVt−1 + βg,t JVt−1, RVt ∼ N
(

ht, 0.12
)

(17)

4.2. Simulation Results

This section presents the performance of the BtvGARCH-Itô model compared to the
original GARCH-Itô specification for two simulated data sample sizes. Table 1 presents
the posterior mean estimates of the static parameters and their associated diagnostics,
including posterior intervals, R hat values, and effective sample sizes. The posterior means
for ωg indicate the baseline level of volatility, αg captures the impact of realized volatility, βg

measures the contribution of jumps, and γ reflects the persistence of latent volatility. Table 2
compares the estimated parameters from GARCH-Itô and BtvGARCH-Itô against the true
parameter values. The results clearly show that the BtvGARCH-Itô posterior means are
closer to the true values across all parameters and sample sizes, highlighting the model’s
improved estimation accuracy. Table 3 further confirmed this through prediction accuracy
metrics (MAE, MSE, RMSE) in which the BtvGARCH-Itô model consistently achieves lower
errors for both static coefficients and latent volatility ht. Figures 1–10 present the posterior
time-varying estimates of means and 95 percent credible intervals of parameters. In sum,
these simulation results demonstrated that the BtvGARCH-Itô is capable of more accurately
estimating volatilities under a realistic synthetic dataset. Furthermore, this model can be
used to estimate both static and time-varying coefficients. Thus, it supports the practical
application to volatility analysis in empirical financial markets.

Table 1. Posterior means, standard deviations, credible intervals, R̂ values, and effective sample sizes.

Data Parameter Mean Std. Dev. q5 q95 R̂ Bulk-ESS Tail-ESS

logp(θ|Y) −44.4 14.7 −69 −20.5 1.00 1608 2191
ωg 0.353 0.0667 0.243 0.462 1.00 2932 2605
αg 0.106 0.0419 0.0375 0.177 1.00 2752 2037
βg 0.0479 0.0197 0.0163 0.0805 1.00 3811 1606
γ 0.622 0.0430 0.552 0.692 1.00 4132 2806

N = 100 σωg,t 0.0517 0.0335 0.00449 0.111 1.01 872 1424
σαg,t 0.100 0.154 0.00626 0.260 1.00 1538 1820
σβg,t 0.297 2.17 0.00662 0.754 1.00 3653 2416
σγt 0.0535 0.0328 0.00575 0.112 1.02 572 1300
σRV 0.0994 0.00823 0.0866 0.114 1.00 4589 2661
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Table 1. Cont.

Data Parameter Mean Std. Dev. q5 q95 R̂ Bulk-ESS Tail-ESS

logp(θ|Y) −63.3 20.7 −95.5 −28.2 1.00 1737 2308
ωg 0.348 0.0651 0.238 0.452 1.00 1735 2117
αg 0.0854 0.0394 0.0220 0.153 1.00 1478 1472
βg 0.0492 0.0199 0.0164 0.0825 1.00 3298 1393
γ 0.628 0.0448 0.556 0.703 1.00 2697 2556

N = 200 σωg,t 0.0308 0.0189 0.00286 0.0639 1.00 533 1361
σαg,t 0.0693 0.0652 0.00613 0.172 1.00 1904 2205
σβg,t 0.166 0.591 0.00612 0.511 1.00 3297 2468
σγt 0.0369 0.0195 0.00496 0.0688 1.01 374 668
σRV 0.0992 0.00549 0.0906 0.108 1.00 3642 3119

Notes: Table 1 provides the posterior estimates of static parameters (ωg, αg, βg, γ) from the BtvGARCH-Itô
model for simulated datasets (N = 100 and N = 200). Posterior sampling was performed using four parallel
Markov chains with 1000 iterations and each chain with 500 warm-ups. Computations were carried out using
the cmdstanr interface to the Stan R package (The model code was implemented in R 4.5.1 and the supporting
material is available online at https://www.preprints.org/manuscript/202507.1745/v1, accessed on 17 July 2015).
The models converge well, as indicated by the convergence diagnostic test, in which the R̂ values are less than
1.02 and the effective sample sizes are sufficient. logp(θ|Y) indicates the log posterior density evaluated at the
posterior mean of the parameter vector θ, and σkg,t presents standards deviations of weakly informative priors
for the posterior time-varying means estimated in this model. The time-varying posterior means estimates of
BtvGARCH-Itô and their corresponding true parameter values are presented in Figures 1–10.

Table 2. Simulation study results: GARCH-Itô vs. Bayesian Time-varying GARCH-Itô models.

Parameter True
N = 100 N = 200

GARCH-Itô BtvGARCH-Itô GARCH-Itô BtvGARCH-Itô

ω 0.3 0.18661 0.353 0.16149 0.348
α 0.1 0.16321 0.106 0.05573 0.0854
β 0.05 0.0000004 0.0479 0.00000002 0.0492
γ 0.6 0.59281 0.622 0.74135 0.628

Notes: Table 2 shows both estimated and true parameter values to compare the performance of GARCH-Itô and
BtvGARCH-Itô for simulated sample sizes N = 100 & N = 200. In both cases, BtvGARCH-Itô model estimates are
closer to true parameter values.

Table 3. Model accuracy metrics: GARCH-Itô vs. Bayesian Time-varying GARCH-Itô.

Parameter

N = 100 N = 200

GARCH-Itô BtvGARCH-Itô GARCH-Itô BtvGARCH-Itô

MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE

ω 0.1133 0.0128 0.1133 0.0432 0.00242 0.0492 0.1385 0.0191 0.1385 0.0469 0.0028 0.0529
α 0.0632 0.0039 0.0632 0.0289 0.0011 0.0339 0.0442 0.0019 0.0442 0.0346 0.0019 0.0440
β 0.0499 0.0024 0.0499 0.0198 0.0004 0.0218 0.0499 0.0024 0.0499 0.0188 0.0004 0.0212
γ 0.0072 0.0000 0.0071 0.0440 0.0033 0.0575 0.1413 0.0199 0.1413 0.0419 0.0023 0.0489
ht 0.0568 0.0085 0.0922 0.0299 0.0012 0.0348 0.0535 0.0072 0.0848 0.0192 0.006 0.0253

Notes: Table 3 provides the forecast accuracy of both original GARCH-Itô and BtvGARCH-Itô models based
on three error metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error
(RMSE). Accuracy is assessed for each key parameter and for the latent volatility using simulated samples N = 100
and N = 200. These results revealed that the BtvGARCH-Itô model achieves lower errors compared to the original
GARCH-Itô.

https://www.preprints.org/manuscript/202507.1745/v1
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Figure 1. The time-varying posterior means of omega ( ωg,t
)

estimated by the BtvGARCH-Itô model.
Notes: The solid lines present true parameter values that are being used to generate the data (t = 100),
and the dashed lines represent the time-varying posterior mean estimates.

Figure 2. The time-varying posterior means of alpha (αg,t) estimated by the BtvGARCH-Itô model.
Notes: The solid lines present true parameter values that are being used to generate the data (t = 100),
and the dashed lines represent the time-varying posterior mean estimates.

Figure 3. The time-varying posterior means of Beta (βg,t) estimated by the BtvGARCH-Itô model.
Notes: The solid lines present true parameter values that are being used to generate the data (t = 100),
and the dashed lines represent the time-varying posterior mean estimates.
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Figure 4. The time-varying posterior means of Gamma ( γt) estimated by the BtvGARCH-Itô model.
Notes: The solid lines present true parameter values that are being used to generate the data (t = 100),
and the dashed lines represent the time-varying posterior mean estimates.

Figure 5. The time-varying posterior means of latent variance or factor (ht) estimated by the
BtvGARCH-Itô model. Notes: The solid lines present true parameter values that are being used to
generate the data (t = 100), and the dashed lines represent the time-varying posterior mean estimates.

Figure 6. The time-varying posterior means of omega ( ωg,t
)

estimated by the BtvGARCH-Itô model.
Notes: The solid lines present true parameter values that are being used to generate the data (t = 200),
and the dashed lines represent the time-varying posterior mean estimates.
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Figure 7. The time-varying posterior means of alpha (αg,t) estimated by the BtvGARCH-Itô model.
Notes: The solid lines present true parameter values that are being used to generate the data (t = 200),
and the dashed lines represent the time-varying posterior mean estimates.

Figure 8. The time-varying posterior means of Beta (βg,t) estimated by the BtvGARCH-Itô model.
Notes: The solid lines present true parameter values that are being used to generate the data (t = 200),
and the dashed lines represent the time-varying posterior mean estimates.

Figure 9. The time-varying posterior means of Gamma ( γt) estimated by the BtvGARCH-Itô model.
Notes: The solid lines present true parameter values that are being used to generate the data (t = 200),
and the dashed lines represent the time-varying posterior mean estimates.
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Figure 10. The time-varying posterior means of latent variance or factor (ht) estimated by the
BtvGARCH-Itô model. Notes: The solid lines present true parameter values that are being used to
generate the data (t = 200), and the dashed lines represent the time-varying posterior mean estimates.

5. Empirical Study
This section presents the empirical application of the Bayesian Time-varying GARCH-

Itô (BtvGARCH-Itô) model to two financial assets: the S&P 500 index and Bitcoin (BTC).
The data consist of one-minute intraday returns. The S&P 500 sample spans 3 January
2023 to 31 December 2024 while the Bitcoin sample covers 1 January 2023, to 1 January
2025. The S&P 500 is a liquid and diversified equity benchmark in a regulated market.
The chosen period reflects post-pandemic monetary tightening, inflation volatility, and
the technology-driven equity rally in 2023–2024. Bitcoin is a decentralized and specula-
tive digital asset, characterized by heavy tails and frequent jumps. The longer Bitcoin
sample allows the capture of crypto-specific events, including the April 2024 halving and
U.S. spot ETF approvals. The periods overlap but are not identical, reflecting different
research aims: macroeconomic stabilization for equities and the full speculative cycle for
Bitcoin. These choices provide economic and financial context. S&P 500 volatility responds
to monetary policy announcements, inflation releases, and global shocks, while Bitcoin
volatility reacts to regulatory news, market crashes, and speculative surges. The time-
varying Bayesian framework detects these regime shifts and quantifies uncertainty around
parameter changes.

For the case of S&P 500 (Table 4), it shows a strong empirical support for the model’s
effectiveness in studying the main features of volatility dynamics in a stable financial
market. The static posterior intercept (ωg), which sets the baseline level of conditional
volatility, is estimated at 4.17 × 10−5. The estimated average volatility level is low, which is
consistent with the relatively stable U.S. equity market during the study period. The static
posterior coefficient of realized volatility (αg) is 0.0479. This value indicates a moderate
impact of realized measures on volatility dynamics in the well-regulated market. The
static posterior means of jump variation (βg) is 0.0324, which assesses the influence of
discontinuous price jumps on current volatility. The small positive value revealed that price
jumps in the S&P 500 have a small effect on the overall volatility. The static posterior means
estimated for lagged variance (γ) is 0.598, which measures the persistence of latent volatility.
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Table 4. Posterior means, standard deviations, posterior intervals, R̂ values, and effective sample sizes.

Parameter Mean Std. Dev. q5 q95 R̂ Bulk-ESS Tail-ESS

logp(θ|Y) 3288 33 3235 3343 1.00 1216 427
ωg 0.0000417 0.0000156 0.0000214 0.0000714 1.00 1193 426
αg 0.0479 0.0336 0.00473 0.111 1.00 2878 4204
βg 0.0324 0.0227 0.00118 0.0713 1.00 1867 2415
γ 0.598 0.0515 0.512 0.681 1.00 3211 4578

σωg,t 0.0607 0.0457 0.00621 0.138 1.01 625 304
σαg,t 0.0399 0.0298 0.00315 0.0977 1.00 5547 3836
σβg,t 0.0792 0.0356 0.0157 0.137 1.00 2179 1686
σγt 0.0467 0.0368 0.00397 0.118 1.00 2080 4168
σRV 0.000104 0.00000406 0.0000982 0.000110 1.00 782 282

Notes: Table 4 provides the posterior estimates of static parameters (ωg, αg, βg, γ) from the BtvGARCH-Itô model
for S&P 500 intraday returns between 3 January 2023 and 31 December 2024. Posterior sampling was performed
using four parallel Markov chains with 2000 iterations and each chain with 1000 warm-ups. Computations were
carried out using the cmdstanr interface to the Stan R package. The models converge well, as indicated by the
convergence diagnostic test, in which the R̂ values are less than 1.01, and the effective sample sizes are satisfactory.
logp(θ|Y) indicates the log posterior density evaluated at the posterior mean of the parameter vector θ, and σkg,t

presents standard deviations of weakly informative priors for the posterior time-varying means estimated in this
model. The time-varying posterior means and 95 percent posterior intervals are presented in Figures 11–15.

Figure 11. Time-varying posterior means of baseline volatility (S&P 500). Notes: It presents the
time-varying posterior means (solid lines) and 95% credible intervals (shaded areas) for all parameters
estimated from the BtvGARCH-Itô model using 1-min close prices of the S&P 500 from 3 January
2023 to 31 December 2024.

For the case of Bitcoin (Table 5), the static intercept posterior means for parameter (ωg)
is 2.11 × 10−4. The estimated average volatility level is much larger than the S&P 500 index
during the study period. This indicates how Bitcoin remains a speculative and risk-sensitive
asset. The static posterior coefficient of realized volatility (αg) is 0.0642, which also exceeds
that of the S&P 500. This finding highlights Bitcoin’s high volatility reactivity to incoming
market information. The static posterior means of jump variation (βg) is 0.00245, which is
substantially lower than S&P 500 estimates. This result suggests that persistent price jumps
contribute least to latent volatility. One possible reason is that the baseline and RV already
absorb most of the high-frequency variation. The static posterior means estimate for lagged
variance (γ) is 0.573, which is slightly less than in the equity market S&P 500. However, the
larger baseline volatility in BTC highlights the adaptability of the model to differentiate the
nature of high-risk and stable financial markets.
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Figure 12. Time-varying posterior means of realized volatility (S&P 500). Notes: It presents the
time-varying posterior means (solid lines) and 95% credible intervals (shaded areas) for all parameters
estimated from the BtvGARCH-Itô model using 1-min close prices of the S&P 500 from 3 January
2023 to 31 December 2024.

Figure 13. Time-varying posterior means of jump variation (S&P 500). Notes: It presents the time-
varying posterior means (solid lines) and 95% credible intervals (shaded areas) for all parameters
estimated from the BtvGARCH-Itô model using 1-min close prices of the S&P 500 from 3 January
2023 to 31 December 2024.

Figure 14. Time-varying posterior means of lagged variance (S&P 500). Notes: It presents the time-
varying posterior means (solid lines) and 95% credible intervals (shaded areas) for all parameters
estimated from the BtvGARCH-Itô model using 1-min close prices of the S&P 500 from 3 January
2023 to 31 December 2024.
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Figure 15. Time-varying posterior means of latent variance or factor (S&P 500). Notes: It presents the
time-varying posterior means (solid lines) and 95% credible intervals (shaded areas) for all parameters
estimated from the BtvGARCH-Itô model using 1-min close prices of the S&P 500 from 3 January
2023 to 31 December 2024.

Table 5. Posterior means, standard deviations, posterior intervals, R̂ values, and effective sample sizes.

Parameter Mean Std. Dev. q5 q95 R̂ Bulk-ESS Tail-ESS

logp(θ|Y) 3215 37.3 3153 3276 1.00 3114 4280
ωg 0.000211 0.0000660 0.000116 0.000329 1.00 8057 5696
αg 0.0642 0.0364 0.0112 0.131 1.00 5148 3616
βg 0.00245 0.00397 0.0000656 0.00917 1.00 4538 4545
γ 0.573 0.0477 0.495 0.652 1.00 13,966 6050

σωg,t 0.0265 0.0167 0.00308 0.0564 1.00 2445 3339
σαg,t 0.0417 0.0300 0.00341 0.0993 1.00 5523 4083
σβg,t 0.04747 0.0344 0.00377 0.114 1.00 5144 3689
σγt 0.0397 0.0296 0.00351 0.0975 1.00 3763 4089
σRV 0.000944 0.0000252 0.000903 0.000987 1.00 18,236 5187

Notes: Table 5 provides the posterior estimates of static parameters (ωg, αg, βg, γ) from the BtvGARCH-Itô model
for Bitcoin (BTC) intraday returns between 1 January 2023 and 1 January 2025. Posterior sampling was performed
using four parallel Markov chains with 2000 iterations and each chain with 1000 warm-ups. Computations
were carried out using the cmdstanr interface to the Stan R package. The models converge well, as indicated
by the convergence diagnostic test, in which R̂ values are not greater than 1.00, and the effective sample sizes
are satisfactory. logp(θ|Y) indicates the log posterior density evaluated at the posterior mean of the parameter
vector θ, and σkg,t presents standard deviations of weakly informative priors for the posterior time-varying means
estimated in this model. The time-varying posterior means and 95 percent posterior intervals are presented in
Figures 16–20.

Figure 16. Time-varying posterior means of Baseline Volatility (Bitcoin). Notes: It presents the time-
varying posterior means (solid lines) and 95% credible intervals (shaded areas) for all parameters
estimated from the BtvGARCH-Itô model using 1-min close prices of Bitcoin (BTC) from 1 January
2023 to 1 January 2025.
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Figure 17. Time-varying posterior means of Realized Volatility (Bitcoin). Notes: It presents the time-
varying posterior means (solid lines) and 95% credible intervals (shaded areas) for all parameters
estimated from the BtvGARCH-Itô model using 1-min close prices of Bitcoin (BTC) from 1 January
2023 to 1 January 2025.

Figure 18. Time-varying posterior means of Jump Variation (Bitcoin). Notes: It presents the time-
varying posterior means (solid lines) and 95% credible intervals (shaded areas) for all parameters
estimated from the BtvGARCH-Itô model using 1-min close prices of Bitcoin (BTC) from 1 January
2023 to 1 January 2025.
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Figure 19. Time-varying posterior means of Lagged Variance (Bitcoin). Notes: It presents the time-
varying posterior means (solid lines) and 95% credible intervals (shaded areas) for all parameters
estimated from the BtvGARCH-Itô model using 1-min close prices of Bitcoin (BTC) from 1 January
2023 to 1 January 2025.

Figure 20. Time-varying posterior means of Latent Volatility or Factor (Bitcoin). Notes: It presents the
time-varying posterior means (solid lines) and 95% credible intervals (shaded areas) for all parameters
estimated from the BtvGARCH-Itô model using 1-min close prices of Bitcoin (BTC) from 1 January
2023 to 1 January 2025.

While the estimated static posterior means of the parameters present fixed volatility of
the market, it proves overly restrictive in high-frequency data and continuously changing
financial environments. This model addresses this by allowing parameters to vary over
time to more accurately examine the dynamic nature of investor behavior, risk perceptions,
and volatility transmission mechanisms. The time-varying estimates of the parameters,
including latent volatility, are provided in Figures 11–15 for the S&P 500 and Figures 16–20
for Bitcoin. Those figures reveal intraday shifts in volatility, showing how realized volatility
and latent components fluctuate over time. The time-varying estimates provide insights
into regime changes and help capture short-term market responses to macroeconomic
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announcements or shocks. With this method for modeling volatility persistence and shifts,
investors can benefit from value-at-risk estimation and derivative pricing. The evidence
from both assets supports the conclusion that while static models reveal the overall market
behavior, time-varying models report unexpected shifts in volatility drivers that affect
market risk. In sum, the empirical evidence validates the efficacy of the BtvGARCH-
Itô model in analyzing dynamic volatility structures across both traditional and digital
financial assets.

The empirical findings support the theoretical rationale of the BtvGARCH-Itô model.
Static posterior estimates reflect baseline market characteristics: low average volatility in
S&P 500 versus higher baseline volatility in Bitcoin, moderate influence of realized volatility,
persistence captured by γ, and the relative contribution of jumps. Time-varying posterior
estimates capture dynamic shifts in volatility. It revealed how latent variance, realized
volatility, and jump effects vary over intraday intervals. These results validate that the
model effectively operationalizes the time-varying latent volatility structure specified in the
theoretical framework, accommodates high-frequency market features, and differentiates
between stable (S&P 500) and speculative (Bitcoin) market behaviors. The empirical
evidence, thus, confirms that the BtvGARCH-Itô model provides interpretable and reliable
inference, consistent with its econometric specification.

6. Conclusions
This paper newly developed and empirically validated a Bayesian Time-varying Real-

ized GARCH-Itô model, a novel framework that integrates discrete-time GARCH dynamics
with continuous-time Itô processes and time-varying coefficients within Bayesian inference.
This model advances volatility modeling because it allows model parameters to vary over
time. Unlike original GARCH-Itô models that assume static coefficients, this BtvGARCH-
Itô model enables joint inference on both static and time-varying posterior distributions.
Additionally, this model offers a more flexible and accurate classification of volatility shifts
through the use of latent stochastic components estimated for financial markets. This new
model adds a significant contribution to the field of financial econometrics and financial
volatility analysis.

Simulation studies conducted for sample sizes N = 100 and N = 200 determine how
well this model recovered both static and time-varying parameters. In particular, the
Bayesian posterior estimates closely track the true latent volatility path. The estimated
simulation results confirmed that the BtvGARCH-Itô model achieves greater in-sample
fit and out-of-sample forecast accuracy. This is evident in its closer alignment with true
parameter values and lower error metrics (MAE, MSE, RMSE) compared to the original
GARCH-Itô specification (Song et al., 2020). This model is also capable of tracking volatility
shifts and identifying distinct volatility spikes linked to market shocks in the empirical
application of volatility analysis of S&P 500 intraday returns. Furthermore, its application
with Bitcoin returns demonstrates that the BtvGARCH-Itô can be applied to markets with
heavy tails and frequent jumps.

Overall, this model offers a statistical tool for risk management and portfolio allocation
in modern financial markets. It unifies time-varying parameters of realized volatility and
jump variation within a full Bayesian posterior framework. While the BtvGARCH-Itô
demonstrates strong performance in modeling volatility dynamics of high-frequency fi-
nancial market returns, this study has several limitations. It focuses on only two assets,
assumes time-invariant parameters for some components, and uses fixed bandwidths.
Forecasts and risk measures rely on posterior estimates, which may be sensitive to data
quality, priors, or structural breaks. Practical implementation of the model for multivariate
or high-frequency applications involves substantial computational cost. Moreover, gen-
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eralization to other markets or asset classes should be undertaken cautiously, as market
microstructures, regulatory regimes, or extreme events may affect model performance. Fu-
ture research could extend the model to multivariate settings to explore volatility spillovers
and co-jumps, incorporate heavy-tailed distributions to better capture extreme events, or
include macro-financial covariates to enhance forecasting accuracy.

The BtvGARCH-Itô is just the first step, and several directions remain open. In
financial markets, assets move together, so extending this model to a multivariate setting
would benefit further volatility spillovers and co-jumps, which are essential for portfolio
risk assessment and cross-asset dynamics for investors. In practical applications, a fixed
bandwidth might limit flexibility. Thus, allowing data-driven bandwidths could improve
the accuracy of time-varying coefficient estimates. As fat tails exist in financial returns,
incorporating heavy-tailed or skewed distributions, for example, Student-t distribution,
may better catch extreme events or price jumps.
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Appendix A

Figure A1. S&P 500 close prices (1-min frequency data) from 3 January 2023 to 31 December 2024.
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Figure A2. Bitcoin close prices (1-min frequency data) from 3 January 2023 to 1 January 2025.

Appendix B. Theorems and Proofs

Theorem A1. Positivity and Boundedness of the Latent Volatility Process.
Assume ωt, αt, βt, γt ∈ (0, 1), ωt + γt < 1, RVt, JVt ∈ [0, M] for some M < ∞, and

h1 > 0. Then, the latent volatility process
{

ht}N
t=1 satisfies:

0 < ht ≤
maxt(ωt + M(αt + βt))

1 − maxt.γt
≤ H < ∞

Proof of Theorem A1. We prove positivity and boundedness by induction.
Base case (t = 1): The initial volatility is:

h1 =
ω1 + β1λω, L

max(e, 1 − α1 − γ1)

Since ω1 + β1λω,L > 0 and max(e, 1− α1 − γ1) > 0, we have h1 > 0. For boundedness:

h1 ≤ ω1 + β1λω, L

1 − α1 − γ1)
≤ 1 + λω, L

e
= h1

where h1 < ∞ since e > 0 and λω, L is a finite constant.
Assume ht−1 > 0 and ht−1 < ht−1. For t ≥ 2

h1 = ωt + αtRVt−1 + βt JVt−1 + γtht−1

Since ωt, αt, βt, γt ∈ (0, 1), RVt−1, JVt−1 ≥ 0 and ht−1 > 0, it follows that ht ≥ ωt > 0.
For boundedness:

ht ≤ ωt + αt M + βt M + γtht−1 ≤ 1 + M(αt−1 + βt−1) + γtht−1

Iterate the inequality:

ht ≤ ωt + M(αt + βt) + γt[ωt−1 + M(αt−1 + βt−1) + γt−1ht−2]

Continuing to t = 1, we obtain:

ht ≤
t−2

∑
k=0

(
k

∏
j=1

γt−j

)
[ωt−k + M(αt−k + βt−k)] +

(
t−1

∏
j=1

γt−j

)
h1

Since γt < 1, the series converges. Bounding each term:

ωt + M(αt + βt) ≤ 1 + 2M, h1 ≤ h1,
t−1

∏
j=1

γt−j ≤
(

max
t γt )

kht
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Then, we obtain:

ht ≤
t−2

∑
k=0

(
max
t γt )

k (1 + 2M) +
(

max
t γt )

t−1ht

The geometric series converges since max
t γt < 1:

∞

∑
k=0

(
max
t γt )

k =
1

1 − max
t γt

Thus:

ht ≤
1 + 2M

1 − max
t γt

+
h1

(1 − max
t γt )t−1 ≤

max
t (ωt + M(αt + βt))

1 − max
t γt

+ h1 ≤ h

where h < ∞. Hence, ht is positive and bounded. □

Theorem A2. Properness of the Bayesian Posterior Distribution.
Given priors ω0 ∼ N

(
0.3, 0.12), α0 ∼ N

(
0.1, 0.052), β0 ∼ N

(
0.05, 0.022), γ0 ∼

N
(
0.6, 0.052), σθ ∼ Hal f − Cauchy(0, 0.1), f or θ ∈ {ω, α, β, γ} and σRV ∼ Hal f −

Cauchy(0, 0.2), and the posterior:

p(θ1:N , h1:N , σRV |RV1:N , JV1:N)

is proper, i.e.,
∫

p(θ1:N , h1:N , σRV |RV1:N , JV1:N).dθ1:N , dh1:N , dσRV <∞.

Proof of Theorem A2. The joint posterior is:

p(θ1:N , h1:N , σRV |RV1:N , JV1:N) ∝

 N

∏
t=1

1√
2πσ2

RV

exp

(
−
(

RVt − ht)2

2πσ2
RV

).δ(h1:N |θ1:N , RV1:N , JV1:N).p(θ1:N).p(σRV)

Likelihood: The Gaussian likelihood is continuous and bounded for σRV > 0, and
ht ∈

(
0, h
)

is finite by Theorem A1. Thus, it is integrable over any compact interval
RVt ∈ [0, M].

Volatility Process: The Dirac delta δ(h1:N |.) imposes deterministic recursion.

ht =
ω1 + β1λω, L

max(e, 1 − α1 − γ1)
, h1 = ωt + αtRVt−1 + βt JVt−1 + γtht−1

Thus, integrating out h1:N contributes to 1. □

Priors: Initial parameters θ0 ∼ N(., .) are proper, the logit transformation ensures
θt ∈ (0, 1) and time-varying function follows a Gaussian random walk (θraw

t = θraw
t−1 + σθ θ́t)

which defines a proper transition density.

Theorem A3. Identifiability of Time-Varying Parameters. The mapping θ1:N → h1:N → RV1:N

is injective almost surely. That is, if θ1:N ̸= θ́1:N , then p
(

RV1:N |θ1:N) ̸= p
(

RV1:N
∣∣θ́1:N

)
with

probability 1.

Proof of Theorem A3. Let θ1:N(ω1:N , α1:N , β1:N , γ1:N) ̸= θ́1:N(ω1:N , α1:N , β1:N , γ1:N). Let t0

be the smallest index where θt0 ̸= θ́t0 .
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Case t0 = 1;

h1 ≤ ω1 + β1λω, L

max(e, 1 − α1 − γ1)
, h́1 ≤ ώ1 + β́1λ́ω, L

max(e, 1 − ά1 − γ́1)

This function f(ω1, α1, β1, γ1) is continuously differentiable with non-zero partial
derivatives (since λω, L > 0 and the denominator is positive). Hence, θ1 ̸= θ́1 implies
h1 ̸= h́1.

Case t0 ≥ 2: for t < t0, assume h1 = h́1 at t = t0.

ht0 = ωt0 + αt0 RVt0−1 + βt0 JVt0−1 + γt0 ht0−1h́t0 = ώt0 + άt0
´RVt0−1 + β́t0

´JVt0−1 + γ́t0
´ht0−1

Since ht0 = h́t0 and θt0 = ´θt0 , the linear combination differs for almost all RVt0−1,
JVt0−1 that implies ht0 ̸= h́t0 . Since RVt ∼ N

(
ht, σ2

RV
)
, ht0 ̸= h́t0 implies N (ht, σ2

RV) ̸= N
(h́t, σ́2

RV), so p
(

RV1:N |θ1:N) ̸= p
(

RV1:N
∣∣θ́1:N

)
almost surely. □.

Theorem A4. Posterior Consistency under True Data Generation Process. (Let
{

RVt, JVt}N
t=1 be

generated from the true BtvGARCH-Itô process: RVt ∼
(

h̆t, σ̆2
RV

)
, ω̆t + ᾰtR̆Vt + β̆t ˘JVt + γ̆t h̆t−1

with true latent parameters θ̆1:N
(
ω̆t, ᾰt, β̆t, γ̆t)N

t=1, σ̆1:N > 0 . Suppose the prior Π: over
θ1:N , σRV assign positive density in every open neighborhood of ( θ̆1:N , σ̆RV

)
, the likelihood

p( RV1:N |θ1:N , σRV) is continuous in ( θ1:N , σRV), the parameter space is compact and the model
is identifiable as shown in Theorem A3. Then, the posterior distribution satisfies:

p(θ1:N , σ1:N |RV1:N , JV1:N)
d
→

δθ̆,σ̆RV

i.e., the posterior weakly converges to a Dirac delta at the true parameters.

Proof of Theorem A4. We apply the posterior consistency result from Theorem 2.1 of
Ghosal et al. (2000), which provides sufficient conditions under which Bayesian posterior
lies on the true parameter values. Let Θ denote the parameter space for ( θ1:N , σRV), and let
Π(.) be the prior. Let the posterior be defined as:

p(θ1:N , σ1:N |RV1:N , JV1:N) ∝ p(RV1:N |θ1:N , σ1:N).Π
(
θ̆1:N , σ̆RV

)
Under the following conditions:

(i) The true parameter values (θ̆1:N , σ̆RV) lie in the support of the prior Π;
(ii) The likelihood is continuous in ( θ1:N , σRV);
(iii) The parameter space is compact θt ∈

(
0, 1)4 via logit transform and σRV > 0;

(iv) The model is identifiable (Theorem A3).

Then, the posterior distribution satisfies weak consistency:

p(θ1:N , σ1:N |RV1:N , JV1:N)
d
→

δθ̆,σ̆RV
, as N → ∞

□
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