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Abstract: In a recent study, it was demonstrated that the maximum simulated likelihood (MSL)
estimator produces significant biases when applied to the bivariate normal and bivariate Poisson-
lognormal models. The study’s conclusion suggests that similar biases could be present in other
models generated by correlated bivariate normal structures, which include several commonly used
specifications of the mixed logit (MIXL) models. This paper conducts a simulation study analyzing
the MSL estimation of the error components (EC) MIXL. We find that the MSL estimator produces
significant biases in the estimated parameters. The problem becomes worse when the true value of
the variance parameter is small and the correlation parameter is large in magnitude. In some cases,
the biases in the estimated marginal effects are as large as 12% of the true values. These biases are
largely invariant to increases in the number of Halton draws.

Keywords: maximum simulated likelihood; mixed logit; discrete choice models

1. Introduction

This paper examines the maximum simulated likelihood (MSL) estimator of the error
components (EC) mixed logit (MIXL) model. The MIXL has been preferred by applied
economists due to its flexible latent structure, which allows for various specifications of
behavioral patterns. Since the model does not have a closed form, its estimation relies on
simulation-based methods, specifically the MSL estimator, which has been the dominant
estimation strategy for more than 20 years. However, Jumamyradov and Munkin (2021)
showed that the MSL estimator produces significant biases when applied to the bivariate
normal and bivariate Poisson-lognormal models. Their conclusion is that similar biases
could be present in other models generated by correlated bivariate normal structures, which
include the most commonly used specifications of the MIXL models. Therefore, further
analysis of the MSL estimator in the context of the MIXL model is necessary.

The multinomial logit (MNL) model was introduced by McFadden (1974). It has a
closed-form solution due to two convenient, however, restrictive, assumptions. First, the
MNL model assumes that the error terms are independently and identically distributed
(i.i.d.) as a type 1 extreme value (EV1) across the individuals and alternatives. As a
result, the MNL model suffers from the independence from irrelevant alternatives (IIA)
property (Debreu 1960), which in the literature has been illustrated by the “red-bus, blue-
bus” example (Quandt 1970). Second, the MNL model does not allow for the unobserved
variation in individual tastes (i.e., taste heterogeneity) in the population, meaning that
the coefficients, associated with alternative-specific variables and observable alternative
attributes that vary among individuals, are fixed. Although the MNL model has become
the ”workhorse” in discrete choice analysis (Hensher and Greene 2003), its inconsistencies
with realistic behavioral patterns have led researchers to look for more flexible alternative
models. The MIXL model was derived by relaxing these restrictive assumptions (see
McFadden 2001).
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The first contribution to the development of the MIXL model came with relaxing
the assumption of homogeneous parameters. Specifically, Boyd and Mellman (1980) and
Cardell and Dunbar (1980) analyzed market demand for automobiles by allowing the
consumer taste coefficients associated with the attributes of the alternatives to vary among
individuals, in the form of random variables representing random taste heterogeneity (i.e.,
taste patterns). This specification of the MIXL model is also known as random coefficients,
with application examples including Revelt and Train (1998) and Bhat (2000). Revelt and
Train (1998) analyzed households’ choices of efficiency levels for refrigerators based on
rebates and loans using the panel data MIXL model. Bhat (2000) studied urban work travel
mode choices by incorporating observed and unobserved individual characteristics into
the panel data MIXL model. Similar to random coefficients, alternative-specific constants
(ASCs) may not be homogeneous within a sample, potentially leading to substitution
patterns (e.g., red bus–blue bus Quandt 1970). The challenges of accommodating such
heterogeneity are well-known in choice modeling (see Hensher et al. 2005).

Next, the i.i.d. assumption of the MNL model was relaxed, allowing for non-independent
and non-identical errors, leading to the EC MIXL and generalized mixed logit (GMIXL). The
EC specification of the MIXL model assumes that the stochastic portion of the utility consists
of two parts, the i.i.d. errors with an EV1 distribution and additional components varying
among the alternatives and individuals. This specification induces various correlation
structures (i.e., taste and substitution patterns) as well as heteroskedasticity through the
nests or cross nests created among the alternatives as a result of shared error components.
Brownstone and Train (1998) used this approach to forecast new product penetration
rates by allowing for flexible substitution patterns among the alternative sources of fuel
for vehicles.

Recent studies related to discrete choice modeling have recognized the necessity of
the heterogeneity of the scale parameter (see Louviere et al. 1999, 2002, 2008), which led
to another specification of the MIXL model that relaxed the i.i.d. assumption. The scale
parameter is directly related to the variance of the EV1 error terms, and is usually restricted
to one because it cannot be identified separately from the slope coefficients. However,
Fiebig et al. (2010) as well as Greene and Hensher (2010) proposed the generalized mixed
logit (GMIXL) model that allows for individual variation in the variance of the EV1 error
terms (i.e., scale heterogeneity) along with the unobserved individual heterogeneity of the
slope coefficients. Although it has been shown that the GMIXL model performed better
than the standard MIXL model (Fiebig et al. 2010; Keane and Wasi 2013), Hess and Train
(2017), as well as Hess and Rose (2012), raised concerns about the identifiability of the
GMIXL model. It is an open research question as to what additional assumptions need to
be imposed to make the GMIXL model estimable.

The flexibility of the MIXL model is achieved by introducing latent variables into the
model. However, this leads to the intractability of the choice probabilities, which cannot
be evaluated analytically since they do not have a closed form. Therefore, the estima-
tion of the MIXL model relies on a numerical approximation of the choice probabilities
through simulation. The MSL estimator was introduced by Lerman and Manski (1980) to
replace the intractable choice probabilities of the multinomial probit (MNP) model with
simulated probabilities.

A well-known limitation of the MSL estimator is that it is biased when the number of
simulations is limited, as is always the case in applications (see Gourieroux and Monfort
1996; Lee 1995; Hajivassiliou et al. 1996; Train 2009). Nevertheless, the estimation of the
MIXL model in the literature is based on the MSL estimator, including in studies by Ben-
Akiva et al. (1993), Revelt and Train (1998), Bhat (1998), Brownstone and Train (1998),
McFadden and Train (2000), and Hess et al. (2005). The usual practice is to use the MSL in
combination with Halton draws to reduce the simulation bias. Bhat (2001) showed that
100 Halton draws provide better approximation results than 1000 pseudo-random draws
for the mixed logit model. According to Palma et al. (2020), around 93% of over 150 papers
indexed in the Research Papers in Economics (RePEc) produced during 2008–2018 used less
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than 1000 Halton draws in their estimations of the mixed logit model. Furthermore, 72%
and 40% of these papers used less than 500 and 250 Halton draws, respectively. Czajkowski
and Budziński (2019) found that more than 3000 Halton draws are necessary to achieve a
Minimum Tolerance Level of 5%. However, in the RePEc database, only 5.6% of papers
used more than 2000 Halton draws (Palma et al. 2020).

Jumamyradov and Munkin (2021) primarily focused their analysis on the estimation of
the correlation parameter in the bivariate normal and bivariate Poisson-lognormal models.
In this paper, we closely follow their strategy and allow for correlation across the utilities
of different alternatives. We also utilize Halton draws and analyze two error components
specifications of the MIXL model. The first specification is the MIXL model with correlated
slope coefficients and fixed alternative-specific coefficients (ASCs). The second example is
the MIXL model with correlated ASCs and fixed slope coefficients. Moreover, for simplicity,
we assume that there is only one attribute that varies among the alternatives and individuals.
It should be noted that in most specifications of the MIXL model used by practitioners,
the correlation parameter is assumed to be zero for simplicity, compromising robustness
to the IIA property. However, practitioners are mostly interested in the estimated mean
and variance of the random parameters. In this paper, we simulate the data according to
the MIXL model and assess the MSL performance based on the difference between the
true and estimated parameters. Our findings confirm simulation biases even in cases with
zero correlation.

There have been several studies that have compared the MIXL results produced by
estimators and software packages. Huber and Train (2001), Regier et al. (2009), Haan et al.
(2015), Bastin and Cirillo (2010), and Elshiewy et al. (2017) compared the MSL and Bayesian
estimation of the MIXL model. The first three of these studies were based on a single panel
dataset. Bastin and Cirillo (2010) estimated the simulation biases in the MSL with respect
to the number of draws and sample sizes, without comparing the MSL with the Bayesian
estimation. Elshiewy et al. (2017) used cross-sectional and panel data with three empirical
and four simulated datasets. Although Elshiewy et al. (2017) found MSL biases in the
correlation parameter of the cross-sectional MIXL model, they only tested two values (0.75
and 0.25). We analyze the MSL estimator with respect to an extensive range of values of
the correlation parameter and standard deviation, as well as different numbers of Halton
draws. To the best of our knowledge, an extensive Monte Carlo simulation study like this
has not been conducted before.

The rest of the paper is organized as follows. Section 2 introduces the MSL estimator.
Section 3 presents different logit model specifications. Section 4 presents numerical exam-
ples using MIXL data simulation and produces MSL estimation results. Section 5 discusses
the results.

2. Maximum Simulated Likelihood Estimator

The maximum likelihood (ML) estimator of parameter vector θ can be utilized when
f (yi|xi, θ), where the density of dependent variable yi conditional on the vector of indepen-
dent variables xi, has a closed form, such that

θ̂N = argmax
θ

∑N
i=1 log f (yi|xi, θ),

where (yi.xi) is a set of independent observations for i = 1, . . . , N. However, the ML is not
feasible when f (yi|xi, θ) does not have a tractable closed form. This could be because the
density is specified only conditionally on latent variables, which cannot be integrated out.
Then, the MSL estimator is a possible alternative, which we define following Gourieroux

and Monfort (1990, 1996). Suppose
∼
f (yi, xi, u, θ) is an unbiased simulator of the conditional

density f (yi|xi, θ), such that

f (yi|xi, θ) = Eu[
∼
f (yi, xi, u, θ)|yi, xi]
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where the distribution of u is known and independent of yi and xi. Then, the MSL estimator
of θ is defined as

θ̂SN = argmax
θ

N

∑
i=1

log
[

1
S

∼
f (yi, xi, us

i , θ)

]
where us

i (s = 1, . . . , S) are drawn independently for each individual i from the distribution
ui. The MSL estimator is obtained by replacing the intractable conditional p.d.f. f (yi|xi, θ)

with its unbiased approximation based on the simulator
∼
f (yi, xi, u, θ). However, although

∼
f (yi, xi, u, θ) is an unbiased simulator of f (yi|xi, θ), its log transformation log

∼
f (yi, xi, u, θ)

is not an unbiased simulator of log f (yi|xi, θ), which results in simulation biases in the
MSL estimator.

The asymptotic properties of the MSL estimator are determined by the relationship
between S and N. For instance, the MSL estimator is biased when S is fixed and N
tends to infinity (Property 1 in Gourieroux and Monfort 1990). If S increases with N,
then the MSL estimator is consistent (Property 2 in Gourieroux and Monfort 1990). If
S increases faster than

√
N(

√
N/S → 0) , then the MSL estimator is also efficient and,

therefore, asymptotically equivalent to the ML estimator (Property 7 in Gourieroux and
Monfort 1990). In practice, neither N or S might be close enough to infinity. However,
the expectation is that there are achievable levels large enough for the biases to become
acceptably small.

3. Materials and Methods

In this section, we define the MNL model and two specifications of the EC MIXL model.
We also provide detailed information on how to simulate the corresponding likelihood
functions.

3.1. Random Utility Maximization

Discrete choice models are usually introduced based on the random utility maxi-
mization (RUM) theory (see McFadden 1974), which states that the utility of individual
i = 1, . . . , N from the chosen alternative j = 1, . . . , J can be presented as Uij = Vij + εij,
where Vij is the observed part of the utility and εij is the stochastic portion, unobserved
by the researcher. Individual i will choose alternative j if and only if the level of utility
associated with alternative j is higher than the levels associated with the other alternatives:

Pij = P
(
Uij > Uik , ∀ k ̸= j

)
Pij = P(Vij + εij > Vik + εik , ∀ k ̸= j)
Pij = P(εik − εij < Vij − Vik , ∀ k ̸= j)

(1)

Since the utilities are latent, the choice probabilities are evaluated at relative measures,
where the utility of one of the alternatives is taken as the reference. In order to calculate
the choice probabilities, the distributional assumptions of the stochastic utility must be
made. In the logit family of models, εij is assumed to be independently and identically
distributed (i.i.d.) across individuals and alternatives with an extreme value type 1 (EV1)
distribution. As a result, the difference between two i.i.d. EV1 error terms (εik − εij) has a
logistic distribution with the cumulative distribution function

Pij =
1

1 + ∑J
k=1 exp[(Vik − Vij)]

, ∀ k ̸= j, (2)

The observed utility Vij is a function of individual characteristics and alternative
attributes, and usually assumed to be linear for the parameters.

3.2. Multinomial Logit (MNL) Model

The MNL model is derived under the assumption that all the coefficients are fixed,
implying that all the individuals in the population have homogeneous tastes. In this paper,
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we consider the case of three alternatives, in which the third alternative is restricted as the
referent category. Therefore, we work with two utility differences, Zi1 = Ui1 − Ui3 and
Zi2 = Ui2 − Ui3, defined as

Zi1 = α1 + β1xi1 + εi1
Zi2 = α2 + β2xi2 + εi2

(3)

where εi1 ∼ Logistic(0, 1) and εi2 ∼ Logistic(0, 1) are i.i.d. logistically distributed, xi1 and
xi2 are alternative attributes, α1 and α2 are alternative-specific coefficients (ASC), and β1 and
β2 are coefficients of the alternative attributes. In some specifications, these coefficients are
restricted to be equal, β1 = β2 = β. In the numerical examples, we choose the distribution
of the covariates to be standard normal, such that xi1 ∼ N(0, 1) and xi2 ∼ N(0, 1). The
observability conditions for the outcome variables yi1, yi2 and yi3 are defined as

yi1 = 1 i f and only i f Zi1 ≥ Zi2, Zi1 ≥ 0
yi2 = 1 i f and only i f Zi2 > Zi1, Zi2 ≥ 0
yi3 = 1 i f and only i f Zi1 < 0, Zi2 < 0

(4)

In other words, individual i chooses the alternative with the highest utility.

3.3. Mixed Logit (MIXL) Model

The assumption of homogeneous preferences leads to computationally convenient
functional forms for the choice probabilities. However, preference homogeneity is not
consistent with realistic behavioral patterns. Next, we present two specifications of the EC
MIXL model that allow for various taste and substitution patterns through a correlation
among the utilities of the different alternatives. The first specification is the MIXL model,
with correlated slope coefficients and fixed ASCs. The second example is the MIXL model,
with correlated ASCs and fixed slope coefficients. We refer to these two examples as EC1
and EC2, respectively. Under the EC1 specification taste patterns, we assume that

Zi1 = α1 + (β1 + ui1)xi1 + εi1
Zi2 = α2 + (β2 + ui2)xi2 + εi2

(5)

where ui1 and ui2 are jointly normally distributed (ui1, ui2) ∼ N((0, 0), Σ) with covariance
matrix Σ. Similarly, under the EC2 specification substitution patterns, we assume

Zi1 = (α1 + ui1) + βxi1 + εi1
Zi2 = (α2 + ui2) + βxi2 + εi2

(6)

where, once again, (ui1, ui2) ∼ N((0, 0), Σ). The covariance matrix in both cases is
parametrized as

Σ =

[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

]
where restriction σ1 = 1 is imposed for identification, such that

Σ =

[
1 ρσ2

ρσ2 σ2
2

]
. (7)

We define the lower triangular matrix

A =

[
1 0

σ2ρ σ2
√

1 − ρ2

]
. (8)
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to be the Choleski decomposition of the covariance matrix, such that Σ = AA′. Then, the
bivariate normal ui1 and ui2 can be written as[

ui1
ui2

]
= A

[
vi1
vi2

]
(9)

where vi1 ∼ N(0, 1) and vi2 ∼ N(0, 1), which helps us to approximate the simulated
likelihood function drawn from the known density.

Both the EC1 and EC2 specifications induce correlation in the utilities of the different
alternatives. The EC1 specification allows for correlation through the coefficients associated
with alternative attributes xi1 and xi2. This correlation is known as taste patterns, because
the weights for an attribute are associated with the weights of another attribute. The EC2
specification allows for correlations through the ASCs, similar to the classic red bus–blue
bus example. This is also known as the substitution patterns, because the weights of
an alternative are associated with those of another (e.g., red and blue bus). Each MIXL
specification relaxes the preference homogeneity assumption in a slightly different way,
and may be warranted depending on the decision context.

3.4. Simulated Likelihood Function of MIXL

The MIXL choice probabilities, unconditional of the unobserved latent variables vi1
and vi2, can be written as integrals over the density f (vi1, vi2), such that

P(yi1 = 1) =
∫

vi1

∫
vi2

[
exp(Vi1)

1+exp (Vi1)+exp(Vi2)

]
f (vi1, vi2)dvi2dvi1

P(yi2 = 1) =
∫

vi1

∫
vi2

[
exp(Vi2)

1+exp (Vi1)+exp(Vi2)

]
f (vi1, vi2)dvi2dvi1

P(yi3 = 1) =
∫

vi1

∫
vi2

[
1

1+exp (Vi1)+exp(Vi2)

]
f (vi1, vi2)dvi2dvi1

(10)

where the form of Vi1 and Vi2 depends on the EC model. In the EC1 specification,

Vi1 = α1 + (β1 + vi1)xi1
Vi2 = α2 + (β2 + σ2ρvi1 + σ2vi2

√
1 − ρ2)xi2

(11)

and in the EC2 specification,

Vi1 = (α1 + vi1) + βxi1

Vi2 =
(

α2 + σ2ρvi1 + σ2vi2
√

1 − ρ2
)
+ βxi2

(12)

The log-likelihood function to be maximized can be written as

LL =
N

∑
i=1

(
3

∑
j=1

I
{

yij = 1
}

ln P(yij = 1)

)
(13)

However, the choice probabilities in Equation (10) do not have a closed form, and
the log-likelihood function cannot be calculated analytically. Therefore, we approximate
the choice probabilities through simulation, and maximize the simulated log-likelihood
function

SLL =
N

∑
i=1

(
3

∑
j=1

I
{

yij = 1
}

ln P̂(yij = 1)

)
(14)
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where the simulated choice probabilities are

P̂(yi1 = 1) = 1
S

S
∑

s=1

[
exp(Vs

i1)
1+exp (Vs

i1)+exp(Vs
i2)

]
P̂(yi2 = 1) = 1

S

S
∑

s=1

[
exp(Vs

i2)
1+exp (Vs

i1)+exp(Vs
i2)

]
P̂(yi3 = 1) = 1

S

S
∑

s=1

[
1

1+exp (Vs
i1)+exp(Vs

i2)

] (15)

and s = 1, . . . , S represents the draw for vs
i1 and vs

i2 used to evaluate Vs
i1 and Vs

i2.

4. Results

We generate data according to the EC1 and EC2 models. For each data generation
process, the following specifications are used: α1 = α2 = −0.25, β = β1 = β2 = 1,
xi1 ∼ N(0, 1), xi2 ∼ N(0, 1), (ui1, ui2) ∼ N((0, 0), (1, ρσ2, σ2

2 )), i = 1, . . . , N, and N = 1000.
We test three different values for σ2 = (0.25, 0.5, 1) and generate data sets for all val-
ues of the correlation parameter ρ, ranging from −0.95 to 0.95 with increments of 0.05,
ρ = {−0.95 : 0.05 : 0.95}. Hence, a total of 3 × 39 = 117 covariance matrices for each
specification is analyzed.

To examine the performance of the MSL estimator, we estimate the MIXL model under
three different sets of restrictions imposed on the covariance matrix (M0, M1, and M2).
Under M0, we do not impose any restrictions on the covariance matrix and estimate all the
parameters. Under M1, we restrict the correlation parameter to zero, ρ = 0, and estimate
the remaining parameters. Finally, under M2, we restrict the correlation parameter to its
true value (ρ = TV) and estimate the remaining parameters. In each example, the number
of Halton draws are chosen to be H = (250, 500, 1000), which is consistent with the levels
used in leading MSL applications.

In summary, new MIXL data sets are generated for all 117 values of the covariance
matrices for both the EC1 and EC2 specifications. For each data set, three specifications
(M0, M1, and M2) are estimated, each with three different numbers of Halton draws
(250, 500, and 1000). We repeat each simulation 100 times, R = 100, generating a new data
set and collecting the MSL estimates. The reported results are based on the means and
standard errors calculated for these 100 simulations (i.e., Wald test).

4.1. Taste Patterns: EC1 Simulation Evidence

Table 1 presents the MSL results (M0, M1, M2) for the EC1 simulations with a high
and negative correlation value of ρ = −0.95. This extreme case produces a few results
that deserve attention. First, there are biases in all the coefficient estimates under the M0
specification. For instance, when the true values are σ2 = 0.25, ρ = −0.95, and H = 250, the
estimated values for α1, α2, β1, and β2 are −0.307 (0.008), −0.349 (0.010), 1.131 (0.011), and
1.248 (0.013), respectively. In other words, α̂1, α̂2, β̂1, and β̂2 are separated from their true
values by 7, 10, 12, and 19 standard errors, respectively, and, therefore, the null hypotheses
that Ho : α1 = α2 = −0.25 and Ho : β1 = β2 = 1 are overwhelmingly rejected. Notice
also that there are no apparent reductions in the biases for α1, α2, β1, and β2, regardless of
whether we increase the true variance σ2 or the number of Halton draws.

Second, the MSL produces biased results for σ2 with small true values, regardless
of the chosen number of Halton draws. For example, when σ2 = 0.25 and H = 250, the
estimated value of σ2 is 0.413 (0.026), which is separated from its true value by 6.27 standard
errors; therefore, the null hypothesis Ho : σ2 = 0.25 is rejected. However, the estimated σ2
comes closer to its true value when we increase the variance. For example, when σ2 = 0.5,
the estimated σ2 is 0.569 (0.023). The case when σ2 = 1 produces a similar result. However,
the biased results for small variances do not change with the number of Halton draws.
For instance, when H = 500 and H = 1000, the estimated values for the true σ2 = 0.25
are 0.439 (0.030) and 0.405 (0.025), respectively. In both of these cases, the null hypothesis
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Ho : σ2 = 0.25 is rejected. It is also interesting to notice that when the true standard
deviation is σ2 = 1, the estimated σ2 is much smaller for M0 than for M1 and M2.

Table 1. MSL estimates for EC1 (taste patterns).

ρ=−0.95

250 Draws 500 Draws 1000 Draws
σ2=0.25 σ2=0.5 σ2=1 σ2=0.25 σ2=0.5 σ2=1 σ2=0.25 σ2=0.5 σ2=1

M0

α̂1 −0.307 −0.299 −0.299 −0.299 −0.301 −0.303 −0.308 −0.298 −0.308
(0.008) (0.009) (0.009) (0.008) (0.009) (0.009) (0.008) (0.009) (0.009)

α̂2 −0.349 −0.342 −0.273 −0.349 −0.342 −0.296 −0.348 −0.344 −0.289
(0.010) (0.009) (0.011) (0.009) (0.010) (0.012) (0.010) (0.010) (0.011)

β̂1 1.131 1.122 1.163 1.133 1.141 1.154 1.132 1.137 1.159
(0.011) (0.011) (0.012) (0.012) (0.012) (0.012) (0.011) (0.011) (0.012)

β̂2 1.248 1.197 1.070 1.265 1.241 1.136 1.245 1.220 1.120
(0.013) (0.013) (0.017) (0.013) (0.019) (0.027) (0.013) (0.014) (0.025)

σ̂2 0.413 0.569 0.885 0.439 0.662 0.930 0.405 0.566 0.897
(0.026) (0.023) (0.038) (0.030) (0.033) (0.054) (0.025) (0.022) (0.050)

ρ̂ −0.877 −0.938 −0.975 −0.875 −0.899 −0.970 −0.887 −0.904 −0.973
(0.026) (0.017) (0.008) (0.025) (0.023) (0.009) (0.025) (0.021) (0.009)

M1

α̂1 −0.308 −0.297 −0.294 −0.300 −0.302 −0.302 −0.308 −0.298 −0.302
(0.008) (0.009) (0.009) (0.009) (0.009) (0.009) (0.008) (0.009) (0.009)

α̂2 −0.342 −0.342 −0.295 −0.342 −0.337 −0.323 −0.342 −0.341 −0.323
(0.010) (0.010) (0.011) (0.010) (0.010) (0.012) (0.010) (0.010) (0.012)

β̂1 1.151 1.147 1.196 1.151 1.167 1.190 1.151 1.162 1.190
(0.011) (0.011) (0.011) (0.012) (0.012) (0.012) (0.011) (0.010) (0.012)

β̂2 1.250 1.227 1.179 1.261 1.254 1.264 1.249 1.239 1.263
(0.014) (0.015) (0.020) (0.016) (0.019) (0.025) (0.014) (0.016) (0.025)

σ̂2 0.305 0.522 1.013 0.322 0.563 1.107 0.320 0.508 1.108
(0.033) (0.036) (0.042) (0.035) (0.039) (0.049) (0.031) (0.032) (0.048)

M2

α̂1 −0.307 −0.295 −0.291 −0.299 −0.299 −0.299 −0.307 −0.297 −0.299
(0.008) (0.009) (0.009) (0.008) (0.009) (0.009) (0.008) (0.009) (0.009)

α̂2 −0.348 −0.354 −0.315 −0.348 −0.349 −0.341 −0.348 −0.352 −0.340
(0.010) (0.010) (0.011) (0.010) (0.009) (0.011) (0.010) (0.010) (0.011)

β̂1 1.127 1.114 1.148 1.126 1.132 1.140 1.127 1.129 1.140
(0.011) (0.011) (0.011) (0.012) (0.012) (0.012) (0.011) (0.010) (0.012)

β̂2 1.249 1.239 1.193 1.262 1.266 1.272 1.249 1.250 1.272
(0.012) (0.014) (0.017) (0.013) (0.016) (0.024) (0.012) (0.014) (0.024)

σ̂2 0.430 0.677 1.200 0.446 0.722 1.271 0.430 0.649 1.271
(0.025) (0.030) (0.034) (0.028) (0.030) (0.045) (0.025) (0.025) (0.045)

Third, for almost all the parameter sets presented in Table 1, the estimated ρ is within
three standard errors from its true value. The only case where the null hypothesis, that
Ho : ρ = −0.95, may be rejected is when H = 250 and σ2 = 1. The EC1 simulation results
for all the other 38 correlation values are provided in the Supplementary Materials.

Figure 1 plots the estimated ρ̂ against its true values, which ranges from −0.95 to 0.95
with increments of 0.05, where ρ̂ is calculated as the averages of ρ MSL estimates under
M0 specification, obtained based on 100 samples (R = 100) generated for the same set
of true values and estimated with 1000 Halton draws (H = 1000). The diagonal black
line represents the true value of ρ. The blue, red and green lines correspond to σ2 = 0.25,
σ2 = 0.5 and σ2 = 1, respectively. Figure 1 shows that ρ̂ is mostly biased downward for
H = 1000.

Finally, when the researcher erroneously assumes that the true correlation is zero (M1),
there is no substantial worsening in the performance of the MSL estimates. Similarly, when
ρ is restricted at the true values (M2), there is no substantial improvement in the estimation
of the parameters. A potential explanation for this is that the biases in the MSL estimation
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of taste patterns are mostly caused by difficulties in estimating the correlation parameter,
with the efficiency of the ρ estimates declining for smaller values of σ2.
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4.2. Substitution Patterns: EC2 Simulation Evidence

Table 2 presents the M0, M1, and M2 results for the EC2 simulations when the true
correlation is ρ = −0.95. First, notice that increasing the true value of variance σ2 in M0
reduces the bias in α1, α2, and β. For example, given the estimated α1, α2, and β as −0.274
(0.012), −0.314 (0.011), and 1.16 (0.009), respectively, we may reject the null hypotheses that
Ho : α2 = −0.25 and Ho : β = 1. However, when we increase σ2 to one, the estimated α1,
α2, and β are within 3 standard errors of their respective true values. This conclusion is
irrespective of the number of Halton draws.

Second, the standard errors for the estimated σ2 are substantially larger than those for
α1, α2, and β. As a result, the estimated σ2 is within 3 standard errors of its true value across
almost all the parameter sets presented in Table 2. Therefore, the null hypothesis that σ2 is
equal to the true value cannot be rejected for almost all the cases. The only exception is the
case when σ2 = 1 and H = 1000, and σ̂2 is 0.853 (0.043) and it is separated from the true
value by 3.4 standard errors. The standard errors decrease slightly when the correlation is
restricted in the specifications M1 and M2.

Third, the correlation parameter ρ is estimated with substantial biases in all the M0
specifications. The estimated ρ̂ is separated from the true value by 4 (H = 1000, σ2 = 1) to
6 standard errors (H = 500, σ2 = 0.25), and the null hypothesis Ho : ρ = −0.95 is rejected
in all the cases. The EC2 results for the other 38 correlation values are provided in the
Supplementary Materials.

Figure 2 plots the estimated ρ̂ against the true values, once again ranging from −0.95
to 0.95 with increments of 0.05. Although ρ̂ is close to ρ for some values, the estimated
correlation parameter mostly displays biases. The biases are smaller for σ2 = 1 relative
to when σ2 = 0.25 or σ2 = 0.5. This finding is consistent with that of Jumamyradov and
Munkin (2021) for the bivariate normal and bivariate Poisson-lognormal models. They
report larger biases for smaller standard deviations. Overall, the M0 results show biases for
all five parameters α1, α2, β, σ2, and ρ.

It is also interesting to notice that the MSL estimates of α1 and α2 in M1 have larger
biases than in M0 for larger variances, and this is regardless of the number of Halton
draws. For example, when H = 250 and σ2 = 1, the estimated α1 and α2 are −0.095 (0.009)
and −0.161 (0.013), and are separated from their true value α1 = α2 = −0.25 by 17 and
7 standard errors, respectively. This does not change much for larger numbers of Halton
draws. Thus, misspecifying the model setting correlation to ρ = 0 results in very large
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biases in α1 and α2. Moreover, M1 produces larger positive biases for σ2 compared to M0.
For example, when H = 1000, the estimated σ2 are 0.365 (0.041), 0.558 (0.050), and 1.211
(0.055), while the true σ2 = 0.25, σ2 = 0.5 and σ2 = 1, respectively. Moreover, the estimates
of α1, α2, and β improve with larger variances in M0; however, we do not observe similar
patterns in the M2 estimation, although there is an improvement in the estimation of σ2.

Table 2. MSL estimates for EC2 (substitution patterns).

ρ=−0.95

250 Draws 500 Draws 1000 Draws
σ2=0.25 σ2=0.5 σ2=1 σ2=0.25 σ2=0.5 σ2=1 σ2=0.25 σ2=0.5 σ2=1

M0

α̂1 −0.274 −0.271 −0.241 −0.278 −0.246 −0.243 −0.285 −0.266 −0.238
(0.012) (0.012) (0.012) (0.011) (0.012) (0.012) (0.012) (0.011) (0.012)

α̂2 −0.341 −0.299 −0.227 −0.321 −0.289 −0.233 −0.349 −0.301 −0.216
(0.011) (0.013) (0.012) (0.014) (0.015) (0.014) (0.014) (0.013) (0.012)

β̂ 1.160 1.127 1.078 1.165 1.126 1.071 1.146 1.127 1.069
(0.009) (0.009) (0.010) (0.009) (0.010) (0.009) (0.008) (0.008) (0.009)

σ̂2 0.258 0.469 0.892 0.284 0.484 0.874 0.252 0.442 0.853
(0.055) (0.050) (0.044) (0.058) (0.060) (0.044) (0.053) (0.050) (0.043)

ρ̂ −0.781 −0.810 −0.799 −0.826 −0.740 −0.819 −0.805 −0.768 −0.803
(0.040) (0.034) (0.036) (0.037) (0.039) (0.033) (0.034) (0.035) (0.036)

M1

α̂1 −0.243 −0.200 −0.095 −0.247 −0.188 −0.093 −0.255 −0.199 −0.095
(0.009) (0.009) (0.009) (0.009) (0.009) (0.010) (0.010) (0.010) (0.009)

α̂2 −0.285 −0.241 −0.161 −0.292 −0.244 −0.171 −0.312 −0.247 −0.161
(0.010) (0.011) (0.013) (0.013) (0.013) (0.016) (0.011) (0.013) (0.013)

β̂ 1.153 1.111 1.085 1.157 1.117 1.080 1.132 1.113 1.084
(0.010) (0.009) (0.011) (0.009) (0.011) (0.012) (0.008) (0.010) (0.011)

σ̂2 0.335 0.534 1.199 0.452 0.660 1.199 0.365 0.558 1.211
(0.052) (0.053) (0.058) (0.049) (0.053) (0.060) (0.041) (0.050) (0.055)

M2

α̂1 −0.283 −0.280 −0.278 −0.283 −0.265 −0.281 −0.291 −0.278 −0.278
(0.012) (0.012) (0.013) (0.012) (0.013) (0.010) (0.013) (0.011) (0.013)

α̂2 −0.319 −0.312 −0.308 −0.319 −0.303 −0.319 −0.347 −0.316 −0.308
(0.013) (0.015) (0.016) (0.016) (0.017) (0.019) (0.015) (0.016) (0.016)

β̂ 1.160 1.134 1.123 1.160 1.129 1.117 1.144 1.135 1.123
(0.010) (0.010) (0.011) (0.010) (0.011) (0.011) (0.009) (0.010) (0.011)

σ̂2 0.235 0.452 1.027 0.223 0.449 1.058 0.222 0.451 1.028
(0.048) (0.047) (0.055) (0.052) (0.053) (0.044) (0.045) (0.045) (0.055)
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4.3. Choice Probabilities and Marginal Effects

Next, we examine how these reported biases affect the estimated choice probabilities
and marginal effects (see Appendix A for the formulas of the marginal effects). Figure 3
plots the true and estimated P(y = 1) calculated based on the M0 estimates of the EC1
specification with 500 Halton draws. The true probability means are calculated for the true
values of all the parameters. The straight lines represent the true choice probabilities and
the dashed lines represent the estimated choice probabilities. Figure 4 plots the true and
estimated P(y = 1) based on the M0 estimates of the EC2 specification with 500 Halton
draws. Even though there are significant biases in the estimated parameters, as expected,
the choice probabilities are close to their true values for both the EC1 and EC2 specifications
(i.e., taste and substitution patterns).
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However, when comparing the true and estimated marginal effects, the differences are
considerable. Figure 5 plots the true and estimated ∂P(y = 1)/∂x1 for EC1 (M0, 500 Halton
draws). For example, when σ2 = 1 and ρ = 0.95, the true ∂P(y = 1)/∂x1 is 0.1509 and the
estimated ∂P(y = 1)/∂x1 is 0.1679. Thus, the marginal effect in this case is overestimated
by 11%. Figure 6 plots the true and estimated ∂P(y = 1)/∂x1 for EC2 (M0, 500 Halton
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draws). For example, when σ2 = 1 and ρ = −0.95, the true ∂P(y = 1)/∂x1 is 0.164 and the
estimated ∂P(y = 1)/∂x1 is 0.1839, which is overestimated by 12%.
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5. Discussion

In this paper, we examine the properties of the MSL estimator in the context of two
MIXL model specifications, EC1 and EC2 (i.e., taste and substitution patterns), where
random parameters are generated by a correlated bivariate normal structure. We find
that the MSL estimator produces significant biases in the estimated parameters. The
problem becomes worse when the true value of the variance parameter is small and the
correlation parameter is large in magnitude. Furthermore, we find that the biases in the
estimated marginal effects can be as large as 12% of the true values. These biases are largely
invariant to increases in the number of Halton draws. Since the existing literature has relied
heavily on the MSL estimator in the analysis of the MIXL model, our findings should be an
important additional warning to researchers about potential sizable biases in the results.

We also discover that the performance of the MSL depends on other factors, such as
the model specification (i.e., EC1 or EC2), distributional assumptions, exogenous variation,
as well as the true values of variance and correlation parameters. Therefore, we believe
that biases in empirical applications (e.g., discrete choice experiments in health preference
research) are likely to be worse due to real-world complexity; however, more research is
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needed to address such questions. Future simulation studies may examine biases in more
complex specifications, such as the generalized MIXL or EC MIXL with more than two
random parameters.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/econometrics12020008/s1. Table S1: Results for all parameter
combinations.
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Appendix A

The marginal effects taken with respect to x1 for EC1 are presented below. The
marginal effects with respect to x2 can be derived in the same way.
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where the conditional mean β̂i1 is estimated by simulation methods

β̂i1 = E
(

β̂
q
i1

∣∣∣|y, X
)
=

1
Q ∑Q

q=1 β̂
q
i1

(
exp(V̂q

i1)
1+exp(V̂q

i1)+exp(V̂q
i2)

)
1
Q ∑Q

q=1

(
exp(V̂q

i1)
1+exp(V̂q

i1)+exp(V̂q
i2)

)

V̂q
i1 = α̂1 + β̂

q
i1xi1

V̂q
i2 = α̂2 + β̂

q
i2xi2

β̂
q
i1 = β̂1 + vq

i1

β̂
q
i2 = β̂2 + σ̂2ρ̂vq

i1 + σ̂2vq
i2

√
1 − ρ̂2

where vq
i1 and vq

i2 are independent standard normal random variables for individual
i = 1, . . . , N and random draws q = 1, . . . , Q.
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