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Abstract: The aim of this paper to give a multidimensional version of the classical one-dimensional
case of smooth spectral density. A spectral density with smooth eigenvalues and H∞ eigenvectors
gives an explicit method to factorize the spectral density and compute the Wold representation of a
weakly stationary time series. A formula, similar to the Kolmogorov–Szegő formula, is given for the
covariance matrix of the innovations. These results are important to give the best linear predictions of
the time series. The results are applicable when the rank of the process is smaller than the dimension
of the process, which occurs frequently in many current applications, including econometrics.
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1. Introduction

Let Xt = (X1
t , . . . , Xd

t ), t ∈ Z, be a d-dimensional weakly stationary time series, where
each X j

t is a complex-valued random variable on the same probability space (Ω,F ,P). It is
a second-order, and in this sense, translation-invariant process:

EXt = µ ∈ Cd, E((Xt+h − µ)(X∗t − µ∗)) = C(h) ∈ Cd×d, ∀t, h ∈ Z,

where C(h), h ∈ Z, is the non-negative definite covariance matrix function of the process.
(Here and below, if A is a matrix then A∗ denotes its adjoint matrix, i.e., its complex
conjugate transpose. Vectors like Xt are written as column matrices, so X∗t is a row matrix.
All the results are valid for real-valued time series as well with no change; then A∗ denotes
matrix transpose.) Without loss of generality, from now on it is assumed that µ = 0.

Thus, the considered random variables will be d-dimensional, square integrable,
zero expectation random complex vectors whose components belong to the Hilbert space
L2(Ω,F ,P). The orthogonality of the random vectors X and Y is defined by the relationship
X ⊥ Y⇔ Cov(X, Y) = E(XY∗) = O.

The past of {Xt} until time n ∈ Z is the closed linear span in L2(Ω,F ,P) of the past and
present values of the components of the process:

H−n = H−n (X) := span{X`
t : ` = 1, . . . , d; t ≤ n}.

The remote past of {Xt} is H−∞ :=
⋂

n∈Z H−n . The process {Xt} is called regular if
H−∞ = {0} and it is called singular if H−∞ = H(X) := span{Xt : t ∈ Z}. Of course, there
is a range of cases between these two extremes.

Singular processes are also called deterministic (see, e.g., Brockwell et al. 1991) because
based on the past H−0 , future values X1, X2, . . . , can be predicted with zero mean square
error. On the other hand, regular processes are also called purely non-deterministic, since
their behavior is completely influenced by random innovations. Consequently, knowing
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H−0 , future values X1, X2, . . . , can be predicted only with positive mean square errors σ2
1 ,

σ2
2 , . . . , and limt→∞ σ2

t = ‖X0‖2 := E(X0X∗0). This shows why studying regular time series is
a primary target both in the theory and applications. The Wold decomposition proves that
any non-singular process can be decomposed into an orthogonal sum of a nonzero regular
and singular process. This also supports why it is important to study regular processes.

The Wold decomposition implies (see, e.g., the classical references Rozanov 1967 and
Wiener and Masani 1957) that {Xt} is regular if and only if {Xt} can be written as a causal
infinite moving average (a Wold representation)

Xt =
∞

∑
j=0

b(j)ξt−j, t ∈ Z, b(j) ∈ Cd×r, (1)

where {ξt}t∈Z is an r-dimensional (r ≤ d) orthonormal white noise sequence Eξt = 0,
E(ξsξ∗t ) = δst Ir, Ir is the r× r identity matrix. If the white noise process {ξt} in (1) is given
by the Wold representation, then it is unique up to a multiplication by a constant unitary
matrix; therefore, it is called a fundamental process of the regular time series. In this case the
pasts of {Xt} and {ξt} are identical: H−n (X) = H−n (ξ) for any n ∈ Z.

An important use of Wold representation is that the best linear h-step ahead prediction
X̂h can be given in terms of that. If the present time is 0, then the orthogonal projection of
a future random vector Xh (h > 0) to the Hilbert subspace H−0 (X) representing past and
present is

X̂h =
∞

∑
j=h

b(j)ξh−j =
0

∑
k=−∞

b(h− k)ξk. (2)

Then X̂h gives the best linear prediction of Xh with minimal least square error.
An alternative way to write Wold representation is

Xt =
∞

∑
j=0

a(j)ηt−j, t ∈ Z, a(j) ∈ Cd×d, a(0) = Id, (3)

where {ηt}t∈Z is the d-dimensional white noise process of innovations:

ηt := Xt − ProjH−t−1
Xt, t ∈ Z, (4)

where ProjH−t−1
Xt denotes the orthogonal projection of the random vector Xt to the Hilbert

subspace H−t−1. Furthermore, Eηt = 0, E(ηsη∗t ) = δstΣ, Σ is a d× d non-negative definite
matrix of rank r, 1 ≤ r ≤ d, the covariance matrix of the best linear one-step ahead
prediction error.

It is also classical that any weakly stationary process has a non-negative definite
spectral measure matrix dF on [−π, π] such that

C(h) =
∫ π

−π
eihωdF(ω), h ∈ Z.

Then {Xt} is regular (see again, e.g., Rozanov 1967 and Wiener and Masani 1957) if
and only if dF = f , the spectral density f has a.e. constant rank r, and can be factored in
a form

f (ω) =
1

2π
φ(ω)φ∗(ω), φ(ω) = [φk`(ω)]d×r, for a.e. ω ∈ [−π, π], (5)

where

φ(ω) =
∞

∑
j=0

b̃(j)e−ijω, ‖φ‖2 =
∞

∑
j=0
‖b̃(j)‖2 < ∞, (6)
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‖ · ‖ denotes spectral norm. Here the sequence of coefficients {b̃(j)} is not necessarily the
same as in the Wold decomposition. Furthermore,

φ(ω) = Φ(e−iω), ω ∈ (−π, π], Φ(z) =
∞

∑
j=0

b̃(j)zj, z ∈ D, (7)

so the entries of the analytic matrix function Φ(z) = [Φjk(z)]d×r are analytic functions in
the open unit disc D and belong to the class L2(T) on the unit circle T; consequently, they
belong to the Hardy space H2. It is written as Φ ∈ H2

d×r or briefly Φ ∈ H2.
Recall that the Hardy space Hp, 0 < p ≤ ∞, denotes the space of all functions g

analytic in D whose Lp norms over all circles {z ∈ C : |z| = r}, 0 < r < 1, are bounded;
see, e.g., (Rudin 2006, Definition 17.7). If p ≥ 1, then equivalently, Hp is the Banach space
of all functions g ∈ Lp(T) such that

g(eiω) =
∞

∑
n=0

aneinω, ω ∈ [−π, π],

so the Fourier series of g(eiω) is one-sided, an = 0 when n < 0; see, e.g., (Fuhrmann 2014,
sct. II.12). Notice that in formulas (6) and (7) there is a negative sign in the exponent; this is
a matter of convention that I am going to use in the sequel too.

An especially important special case of Hardy spaces is H2, which is a Hilbert space,
and which by Fourier transform is isometrically isomorphic with the `2 space of sequences
{a0, a1, a2, . . . } with norm square

1
2π

∫ π

−π
|g(eiω)|2dω =

∞

∑
n=0
|an|2.

For a one-dimensional time series {Xt} (d = 1) there exists a rather simple sufficient
and necessary condition of regularity given by (Kolmogorov 1941):

(1) {Xt} has an absolutely continuous spectral measure with density f ;
(2) log f ∈ L1, that is,

∫ π
−π log f (ω)dω > −∞.

Then the Kolmogorov–Szegő formula also holds:

σ2 = 2π exp
∫ π

−π
log f (ω)

dω

2π
,

where σ2 is the variance of the innovations ηt := Xt − ProjH−t−1
Xt, that is, the variance of

the one-step ahead prediction.
For a multidimensional time series {Xt} which has full rank, that is, when f has a.e.

full rank: r = d, and so the innovations ηt defined by (4) have full rank d, there exists a
similar simple sufficient and necessary condition of regularity; see Rozanov (1967) and
Wiener and Masani (1957):

(1) {Xt} has an absolutely continuous spectral measure matrix dF with density matrix f ;
(2) log det f ∈ L1, that is,

∫ π
−π log det f (ω)dω > −∞.

Then the d-dimensional Kolmogorov–Szegő formula also holds:

det Σ = (2π)d exp
∫ π

−π
log det f (ω)

dω

2π
, (8)

where Σ is the covariance matrix of the innovations ηt defined by (4).
Many current research works investigate high-dimensional time series with low

rank; see, e.g., (Anderson et al. 2022; Basu et al. 2019; Cao et al. 2023; Lippi et al. 2023;
Wang et al. 2022). Applications can be found, e.g., in macroeconomic models, finance, and
biological and social networks.
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Unfortunately, the generic case of regular time series when the rank of the process can
be smaller than the dimension is rather complicated. To the best of my knowledge, in that
case, (Rozanov 1967, Theorem 8.1) gives a necessary and sufficient condition of regularity.
Namely, a d-dimensional stationary time series {Xt} is regular and of rank r, 1 ≤ r ≤ d, if
and only if each of the following conditions holds:

(1) It has an absolutely continuous spectral measure matrix dF with density matrix f (ω)
which has rank r for a.e. ω ∈ [−π, π].

(2) The density matrix f (ω) has a principal minor M(ω) = det[ fip jq(ω)]rp,q=1, which is
nonzero a.e. and ∫ π

−π
log M(ω)dω > −∞.

(3) Let Mk`(ω) denote the determinant obtained from M(ω) by replacing its `th row by
the row [ fkip(ω)]rp=1. Then the functions γk`(e−iω) = Mk`(ω)/M(ω) are boundary
values of functions of the Nevanlinna class N.

It is immediately remarked in the cited reference that “unfortunately, there is no
general method determining, from the boundary value γ(e−iω) of a function γ(z), whether
it belongs to the class N”.

Recall that the Nevanlinna class N consists of all functions g analytic in the open unit
ball D that can be written as a ratio g = g1/g2, g1 ∈ Hp, g2 ∈ Hq, p, q > 0, where Hp and
Hq denote Hardy spaces; see, e.g., (Nikolski 2019, Definition 3.3.1).

The aim of this paper is to extend from the one-dimensional case to the multidimen-
sional case a well-known sufficient condition for the regularity and a method of finding an
H2 spectral factor and the covariance matrix Σ in the case of smooth spectral density.

2. Generic Regular Processes

To find an H2 spectral factor if possible, a simple idea is to use a spectral decomposition
of the spectral density matrix. (Take care that here we use the word ‘spectral’ in two different
meanings. On one hand, we use the spectral density of a time series in terms of a Fourier
spectrum, and on the other hand we take the spectral decomposition of a matrix in terms
of eigenvalues and eigenvectors.)

So let {Xt} be a d-dimensional stationary time series and assume that its spectral
measure matrix dF is absolutely continuous with density matrix f (ω) which has rank r,
1 ≤ r ≤ d, for a.e. ω ∈ [−π, π]. Take the parsimonious spectral decomposition of the
self-adjoint, non-negative definite matrix f (ω):

f (ω) =
r

∑
j=1

λj(ω)uj(ω)u∗j (ω) = Ũ(ω)Λr(ω)Ũ∗(ω), (9)

where
Λr(ω) = diag[λ1(ω), . . . , λr(ω)], λ1(ω) ≥ · · · ≥ λr(ω) > 0, (10)

for a.e. ω ∈ [−π, π], is the diagonal matrix of nonzero eigenvalues of f (ω) and

Ũ(ω) = [u1(ω), . . . , ur(ω)] ∈ Cd×r

is a sub-unitary matrix of corresponding right eigenvectors, not unique even if all eigenval-
ues are distinct. Then, still, we have

Λr(ω) = Ũ∗(ω) f (ω)Ũ(ω). (11)

The matrix function Λr(ω) is a self-adjoint, positive definite function, and

tr(Λr(ω)) = tr( f (ω)),
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where f (ω) is the density function of a finite spectral measure. This shows that the integral
of tr(Λr(ω)) over [−π, π] is finite. Thus Λr(ω) can be considered the spectral density
function of a full rank regular process. So it can be factored, and in fact, we may take a
miniphase H2 spectral factor Dr(ω) of it:

Λr(ω) =
1

2π
Dr(ω)D∗r (ω), (12)

where Dr(ω) is a diagonal matrix.
Then a simple way to factorize f is to choose

φ(ω) = Ũ(ω)Dr(ω)A(ω) = Ũ(ω)A(ω)Dr(ω) = ŨA(ω)Dr(ω), (13)

where A(ω) = diag[a1(ω), . . . , ar(ω)], each ak(ω) being a measurable function on [−π, π]
such that |ak(ω)| = 1 for any ω, but otherwise arbitrary and ŨA(ω) still denotes a sub-
unitary matrix of eigenvectors of f in the same order as the one of the eigenvalues.

To the best of my knowledge, it is not known if for any regular time series {Xt} there
exists such a matrix-valued function A(ω) such that φ(ω) defined by (13) has a Fourier
series with only non-negative powers of e−iω . Equivalently, does there exist an H2 analytic
matrix function Φ(z) whose boundary value is the above spectral factor φ(ω) with some
A(ω), according to Formulas (5)–(7)?

Thus, the role of each ak(ω) (k = 1, . . . , r) is to modify the corresponding eigenvector
uk(ω) so that ak(ω)uk(ω) has a Fourier series with only non-negative powers of e−iω,
this way achieving that uk(ω) ∈ H∞ ⊂ H2. Equivalently, if uk(ω) is the boundary value
of a complex function wk(z) defined in the unit disc, uk(ω) = wk(e−ikω), and w(z) has
singularities for |z| ≤ 1, then we would like to find a complex function αk(z) in the unit
disc so that αk(e−ikω) = ak(ω) and αk(z)wk(z) is analytic in the open unit disc D and
continuous in the closed unit disc |z| ≤ 1,

αk(z)wk(z) =
∞

∑
j=0

ψk(j)zj, z ∈ D. (14)

Carrying out this procedure for k = 1, . . . , r, one would obtain an H∞ sub-unitary
matrix function.

Example 2.2.4 in (Szabados 2022) shows that—at least theoretically—this task can be
carried out in certain cases. Furthermore, as a very similar problem, in the case of a rational
spectral density, one can always find an inner matrix multiplier so that it gives a rational
analytic matrix function Φ(z) whose boundary value is an H2 spectral factor φ(z); see, e.g.,
(Rozanov 1967, chp. I, Theorem 10.1).

Theorem 1. See (Szabados 2022, Theorem 2.1).

(a) Assume that a d-dimensional stationary time series {Xt} is regular of rank r, 1 ≤ r ≤ d. Then
for Λr(ω) defined by (10) one has log det Λr ∈ L1 = L1([−π, π],B, dω), equivalently,∫ π

−π
log λr(ω) dω > −∞. (15)

(b) If, moreover, one assumes that the regular time series {Xt} is such that it has an H2 spectral
factor of the form (13), then the following statement holds as well:
The sub-unitary matrix function Ũ(ω) appearing in the spectral decomposition of f (ω) in (9)
can be chosen so that it belongs to the Hardy space H∞ ⊂ H2, and thus

Ũ(ω) =
∞

∑
j=0

ψ(j)e−ijω, ψ(j) ∈ Cd×r,
∞

∑
j=0
‖ψ(j)‖2 < ∞. (16)
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In this case one may call Ũ(ω) an inner matrix function.

The next theorem gives a sufficient condition for the regularity of a generic weakly
stationary time series; compare with the statements of Theorem 1 above. Observe that
assumptions (1) and (2) in the next theorem are necessary conditions of regularity as well.
Only assumption (3) is not known to be necessary. We think that these assumptions are
simpler to check in practice than those of Rozanov’s theorem cited above. By formula (13),
checking assumption (3) means that for each eigenvector uk(ω) of f (ω) we are searching for
a complex function multiplier ak(ω) of unit absolute value that gives an H∞ function result.

Theorem 2. See (Szabados 2022, Theorems 2.1 and 2.2).
Let {Xt} be a d-dimensional time series. It is regular of rank r ≤ d if the following three

conditions hold.

(1) It has an absolutely continuous spectral measure matrix dF with density matrix f (ω) which
has rank r for a.e. ω ∈ [−π, π].

(2) For Λr(ω) defined by (10) one has log det Λr ∈ L1 = L1([−π, π],B, dω); equivalently,
(15) holds.

(3) The sub-unitary matrix function Ũ(ω) appearing in the spectral decomposition of f (ω) in (9)
can be chosen so that it belongs to the Hardy space H∞ ⊂ H2; thus, (16) holds.

Next we discuss a multivariable version of a well-known one-dimensional theorem;
see, e.g., (Lamperti 1977, sct. 4.4). This theorem gives the Wold representation of a regular
time series {Xt}. First let us recall some facts we are going to use. A sufficient and necessary
condition of regularity is given by the factorization (5) and (6) of the spectral density f ,
where the d× r spectral factor φ is in H2. Using Singular Value Decomposition (SVD), we
can write that

φ(ω) = V(ω)S(ω)U∗(ω),

where V(ω) is a d × r sub-unitary matrix, U(ω) is an r × r unitary matrix, S(ω) =
diag[s1, s2, . . . , sr] is an r× r diagonal matrix of positive singular values s1 ≥ s2 ≥ · · · ≥ sr,
for a.e. ω ∈ [−π, π]. Clearly, sj =

√
λj, for j = 1, . . . , r.

The (generalized) inverse of φ(ω) is not unique when d > r. Let ψ(ω) be the Moore–
Penrose inverse of φ(ω):

ψ(ω) := U(ω)S−1(ω)V∗(ω), ψ(ω)φ(ω) = Ir, a.e. ω ∈ [−π, π]. (17)

We also need the spectral (Cramér) representation of the stationary time series

Xt =
∫ π

−π
eitωdZω, t ∈ Z,

where {Zω} is a stochastic process with orthogonal increments, obtained by the isometry
between the Hilbert spaces H(X) ⊂ L2(Ω,F ,P) and L2(dF) := L2([−π, π],B, tr(dF)); see,
e.g., (Bolla and Szabados 2021, sct. 1.3). Namely, if Yj =

∫ π
−π ψj(ω)dZω (j = 1, 2), then

E(Y1Y∗2) =
[
〈Yk

1 , Y`
2 〉H(X)

]
d×d

=
[
〈ψk

1, ψ`
2〉L2(dFk`)

]
d×d

=
∫ π

−π
ψ1(ω)dF(ω)ψ∗2 (ω). (18)

Theorem 3. Assume that the spectral measure of a d-dimensional weakly stationary time series
{Xt} is absolutely continuous with density f which has constant rank r, 1 ≤ r ≤ d. Moreover,
assume that there is a finite constant M such that ‖ f (ω)‖ ≤ M for all ω ∈ [−π, π], and f has a
factorization f = 1

2π φφ∗, where φ ∈ H2 and its Moore–Penrose inverse ψ ∈ H2 as well.
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Then the time series is regular and its fundamental white noise process can be obtained as

ξt =
∫ π

−π
eitωψ(ω)dZω (19)

=
∞

∑
k=0

γ(k)Xt−k (t ∈ Z), (20)

where

ψ(ω) =
∞

∑
k=0

γ(k)e−ikω, γ(k) =
1

2π

∫ π

−π
eikωψ(ω)dω (21)

is the Fourier series of ψ, convergent in L2 sense.
The sequence of coefficients {b(j)} of the Wold representation is given by the L2 convergent

Fourier series

φ(ω) =
∞

∑
j=0

b(j)e−ijω, b(j) =
1

2π

∫ π

−π
eijωφ(ω)dω. (22)

Proof. The regularity of {Xt} obviously follows from the assumptions by (5) and (6).
First let us verify that the stochastic integral (19) is correct, that is, the components of

ψ belong to L2([−π, π],B, tr(dF)):∫ π

−π
ψ(ω) f (ω)ψ∗(ω)dω =

1
2π

∫ π

−π
ψ(ω)φ(ω)φ∗(ω)ψ∗(ω)dω = Ir.

This also justifies that

ξt =
∫ π

−π
eitωψ(ω)dZω =

∫ π

−π
eitω

∞

∑
k=0

γ(k)e−ikωdZω =
∞

∑
k=0

γ(k)Xt−k.

Second, let us check that the sequence defined by (19) is orthonormal, using the
isometry (18):

E(ξnξ∗m) =
∫ π

−π
einωψ(ω) f (ω)e−imωψ∗(ω)dω

=
1

2π

∫ π

−π
ei(n−m)ωψ(ω)φ(ω)φ∗(ω)ψ∗(ω)dω = δn,m Ir.

Third, let us show that ξn is orthogonal to the past H−n−k(X) for any k > 0:

E(Xn−kξ∗n) =
∫ π

−π
ei(n−k)ω f (ω)e−inωψ∗(ω)dω

=
1

2π

∫ π

−π
e−ikωφ(ω)φ∗(ω)ψ∗(ω)dω =

1
2π

∫ π

−π
e−ikωφ(ω)dω = 0d×r

for any k > 0, since φ ∈ H2, so its Fourier coefficients with negative indices are zero.
Fourth, let us see that ξn ∈ H−n (X) for n ∈ Z. Because of stationarity, it is enough to

show that ξ0 ∈ H−0 (X). Since H−0 (X) is the closure in L2(Ω,F ,P) of the components of all
finite linear combinations of the form ∑N

k=0 γkX−k, by the isometry it is equivalent to the
fact that ψ belongs to the closure in L2([−π, π],B, tr(dF)) of all finite linear combinations
of the form ∑N

k=0 γke−ikω.
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Using the assumed boundedness of ‖ f‖, we obtain that

∫ π

−π

∥∥∥∥∥
(

N

∑
k=0

γke−ikω −ψ(ω)

)
f (ω)

(
N

∑
k=0

γ∗k eikω −ψ∗(ω)

)∥∥∥∥∥dω

≤
∫ π

−π

∥∥∥∥∥ N

∑
k=0

γke−ikω −ψ(ω)

∥∥∥∥∥‖ f (ω)‖
∥∥∥∥∥ N

∑
k=0

γ∗k eikω −ψ∗(ω)

∥∥∥∥∥dω

≤M
∫ π

−π

∥∥∥∥∥ N

∑
k=0

γke−ikω −ψ(ω)

∥∥∥∥∥
2

dω. (23)

We assumed that ψ ∈ H2, which means that ψ has a one-sided Fourier series (21)
which converges in L2([−π, π],B, dω), where dω denotes Lebesgue measure:

lim
N→∞

1
2π

∫ π

−π

∣∣∣∣∣ N

∑
k=0

γ
j`
k e−ikω −ψj`(ω)

∣∣∣∣∣
2

dω = 0 (j, ` = 1, . . . , d)

Since the spectral norm squared of a matrix is bounded by the sum of the absolute
values squared of the entries of the matrix, these imply that the last term in (23) tends to 0
as N → ∞. This shows that ξ0 ∈ H−0 (X).

Fifth, by (17), we see that

(φψ− Id) f (ψ∗φ∗ − Id) = (φψ− Id)
1

2π
φφ∗(ψ∗φ∗ − Id) = 0d×d, (24)

a.e. in [−π, π]. Consequently, the difference

∆t :=
∫ π

−π
eitωφ(ω)ψ(ω)dZω −

∫ π

−π
eitωdZω

is orthogonal to itself in H(X), so it is a zero vector. Then by (19) and (22),

Xt =
∫ π

−π
eitωdZω =

∫ π

−π
eitωφ(ω)ψ(ω)dZω

=
∫ π

−π
eitω

∞

∑
j=0

b(j)e−ijωψ(ω)dZω =
∞

∑
j=0

b(j)ξt−j. (25)

Equation (24) shows that each entry of φψ belongs to L2([−π, π],B, tr(dF)), so the
isometry between this space and H(X) justifies (25).

Finally, the previous steps show that the innovation spaces of the sequences {Xt} and
{ξt} are the same for any time n ∈ Z, so the pasts H−n (X) and H−n (ξ) agree as well for any
n ∈ Z. Thus (25) gives the Wold representation of {Xt}.

3. Smooth Eigenvalues of the Spectral Density

In the one-dimensional case there is a well-known sufficient condition of regularity,
which at the same time gives a formula for an H2 spectral factor and also for the white noise
sequence and the coefficients in the Wold decomposition (1). This is the assumption that the
process has a continuously differentiable spectral density f (ω) > 0 for any ω ∈ [−π, π];
see, e.g., (Lamperti 1977, p. 76) or (Bolla and Szabados 2021, sct. 2.8.2).

This sufficient condition can be partially generalized to the multidimensional case.
When a regular d-dimensional time series {Xt} has an H2 spectral factor of the form (13),
equivalently, it has a sub-unitary matrix function Ũ(ω) appearing in the spectral decompo-
sition of f (ω) in (9) that can be chosen so that it belongs to the Hardy space H∞ ⊂ H2, and
therefore the smoothness of the nonzero eigenvalues of the spectral density f gives a for-
mula for an H2 spectral factor. The argument above in the paragraph around Equation (14)
shows that in certain cases one can find such a sub-unitary matrix function Ũ(ω).
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Theorem 4. Let {Xt} be a d-dimensional time series. It is regular of rank r ≤ d if the following
three conditions hold.

(1) It has an absolutely continuous spectral measure matrix dF with density matrix f (ω) which
has rank r for a.e. ω ∈ [−π, π].

(2) Each nonzero eigenvalue λj(ω) (j = 1, . . . , r) of f (ω) is a continuously differentiable positive
function on [−π, π].

(3) The sub-unitary matrix function Ũ(ω) appearing in the spectral decomposition of f (ω) in (9)
can be chosen so that it belongs to the Hardy space H∞ ⊂ H2, and thus (16) holds.

Moreover, {Xt} satisfies the conditions of Theorem 3 too, so formulas (19)–(22) give the Wold
representation of {Xt}.

Proof. Condition (2) implies that each log λj(ω) (j = 1, . . . , r) is also a continuously
differentiable function on [−π, π] and so it can be expanded into a uniformly convergent
Fourier series

log λj(ω) =
∞

∑
n=−∞

β j,neinω, β j,−n = β̄ j,n. (26)

Write it as

log λj(ω) = Qj(ω) + Q̄j(ω)

:=

(
1
2

β j,0 +
∞

∑
n=1

β̄ j,ne−inω

)
+

(
1
2

β j,0 +
∞

∑
n=1

β j,neinω

)
.

Define

γj(ω) := exp(Qj(ω)) =
∞

∑
k=0

1
k!

(
1
2

β j,0 +
∞

∑
n=1

β̄ j,ne−inω

)k

. (27)

Then

λj(ω) = γj(ω)γ̄j(ω) = exp(Qj(ω)) exp(Q̄j(ω)), j = 1, . . . , r. (28)

Observe that each Qj(ω) and consequently each γj(ω) (j = 1, . . . , r) is a continuous
function on [−π, π], so it is in L2(T). Moreover, each Qj(ω) and consequently each γj(ω)

has only positive powers of e−iω in its Fourier series. So each γj belongs to the Hardy
space H2.

Substitute (28) into (9):

f (ω) = Ũ(ω)Γ(ω)Γ∗(ω)Ũ∗(ω), Γ(ω) := diag[γ1(ω), . . . , γr(ω)].

Thus we can take a spectral factor

φ(ω) :=
√

2πŨ(ω)Γ(ω). (29)

Since each γj(ω) ∈ H2 and by condition (3) each entry of Ũ(ω) is in H∞, each entry of
φ(ω) is in H2. It means that φ is an H2 spectral factor as in (5) and (6), and consequently
{Xt} is regular.

Take the Moore–Penrose inverse of φ:

ψ(ω) := φ+(ω) = (2π)−
1
2 Γ−1(ω)Ũ∗(ω), Γ−1(ω) := diag[γ−1

1 (ω), . . . , γ−1
r (ω)],

where by (27) each

γ−1
j (ω) = exp(−Qj(ω)) =

∞

∑
k=0

1
k!

(
−1

2
β j,0 −

∞

∑
n=1

β̄ j,ne−inω

)k

,
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so it is also continuous and its Fourier series has only positive powers of e−iω too. It implies
that ψ ∈ H2.

Finally, since each λj(ω) is a continuous function on [−π, π], and thus bounded, and
the components of Ũ(ω) are bounded functions because Ũ(ω) is sub-unitary, it follows
that ‖ f‖ is bounded.

The d-dimensional Kolmogorov–Szegő Formula (8) gives only the determinant of the
covariance matrix Σ of the innovations in the full rank regular time series. Similar is the
case when the rank r of the process is less than d:

det Σr = (2π)d exp
∫ π

−π
log det Λr(ω)

dω

2π
,

where Λr is the diagonal matrix of the r nonzero eigenvalues of f and Σr is the covariance
matrix of the innovation of an r-dimensional subprocess of rank r of the original time series;
see (Bolla and Szabados 2021, Corollary 4.5) or (Szabados 2022, Corollary 2.5)

Fortunately, under the conditions of Theorem 4, one can obtain the covariance matrix
Σ itself by a similar formula, as the next theorem shows.

Theorem 5. Assume that a weakly stationary d-dimensional time series satisfies the conditions of
Theorem 4. Then the covariance matrix Σ of the innovations of the process can be obtained as

Σ = 2πψ(0) diag
[

exp
∫ π

−π
log λj(ω)

dω

2π

]
j=1,...,r

ψ∗(0),

where λj, j = 1, . . . , r, are the nonzero eigenvalues of the spectral density matrix f of the process,
Ũ(ω) is the d× r matrix of corresponding orthonormal eigenvectors, and

ψ(0) =
1

2π

∫ π

−π
Ũ(ω)dω. (30)

Proof. The error of the best 1-step linear prediction by (2), and the same time, the innova-
tion is

X1 − X̂1 = b(0)ξ1,

using the Wold decomposition of {Xt}. Thus the covariance of the innovation is

Σ = E((X1 − X̂1)(X1 − X̂1)
∗) = b(0)b∗(0).

With the analytic function Φ(z) corresponding to the Wold decomposition by (7),
b(0) = Φ(0). Taking the Fourier series (16), let

Û(z) :=
∞

∑
j=0

ψ(j)zj, |z| ≤ 1.

In addition, denote by (27)

Γ̂(z) := diag

 ∞

∑
k=0

1
k!

(
1
2

β j,0 +
∞

∑
n=1

β̄ j,nzn

)k


j=1,...,r

, |z| ≤ 1.

Now using (29), it follows that

Φ(z) =
√

2πÛ(z)Γ̂(z), |z| ≤ 1,

and
Φ(0) =

√
2πÛ(0)Γ̂(0) = ψ(0) diag

[
exp(β j,0/2)

]
j=1,...,r.
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Combining the previous results,

Σ = 2πψ(0) diag
[
exp(β j,0)

]
j=1,...,rψ∗(0),

where ψ(0) is given by (30) and by (26),

β j,0 =
1

2π

∫ π

−π
log λj(ω)dω, j = 1, . . . , r.

This completes the proof of the theorem.
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