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Abstract: This paper proposes a new method for financial portfolio optimization based on reducing
simultaneous asset shocks across a collection of assets. This may be understood as an alternative
approach to risk reduction in a portfolio based on a new mathematical quantity. First, we apply
recently introduced semi-metrics between finite sets to determine the distance between time series’
structural breaks. Then, we build on the classical portfolio optimization theory of Markowitz and use
this distance between asset structural breaks for our penalty function, rather than portfolio variance.
Our experiments are promising: on synthetic data, we show that our proposed method does indeed
diversify among time series with highly similar structural breaks and enjoys advantages over existing
metrics between sets. On real data, experiments illustrate that our proposed optimization method
performs well relative to nine other commonly used options, producing the second-highest returns,
the lowest volatility, and second-lowest drawdown. The main implication for this method in portfolio
management is reducing simultaneous asset shocks and potentially sharp associated drawdowns
during periods of highly similar structural breaks, such as a market crisis. Our method adds to a
considerable literature of portfolio optimization techniques in econometrics and could complement
these via portfolio averaging.

Keywords: portfolio optimization; time series analysis; change point detection; nonlinear dynamics;
market crises

1. Introduction

One of the oldest and most important tasks in the field of econometrics is the analysis,
forecasting, and optimization of financial risk. This may be conducted at the level of an
individual stock, an entire sector, or a judiciously chosen portfolio. The most common
measure of risk is portfolio variance, popularized by Markowitz (1952) in his seminal
work. Markowitz’ mathematical derivations assumed the Gaussianity of financial returns.
Subsequently, returns of financial assets were shown to be non-Gaussian and fat-tailed
in several works (Fama 1965; Mandelbrot 1963), prompting analysts to seek alternative
measures of risk. Notably, tail risk measures such as value-at-risk (Braione and Scholtes
2016; Duffie and Pan 1997; Khraibani et al. 2018) or conditional value-at-risk/expected
shortfall (Krause and Paolella 2014; Long et al. 2020; Tsay 2010; Ullah et al. 2022) have
proven useful to guard against the greatest possible losses amid a financial crisis. In this
paper, we propose an alternative approach to and measure of risk reduction, especially
during a crisis, focusing on the diversification of assets away from simultaneous asset
shocks, specifically in the form of coincident structural breaks.

Modern portfolio theory provides a framework for determining an allocation of
weights in an investment portfolio by optimizing a specific objective function. The idea
was first introduced by Markowitz (1952) and has progressed considerably since then.
Markowitz’ fundamental contribution was the concept of diversification among stock
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portfolios, rather than analyzing risk and return on an individual security basis, one of the
most seminal breakthroughs in econometrics. One of the most notable advancements was
the work of Sharpe (1966), who proposed a measure of risk-adjusted returns in financial
portfolios, the Sharpe ratio. This ratio is an indication of the potential reward in any
candidate investment relative to its risk. The standard mathematical representation of
the Sharpe ratio is the following optimization problem: given a collection of n assets, let
Ri be the historical returns for the ith asset in a collection, Σ be the matrix of historical
covariances between stocks, R f the risk-free rate, and wi the weights of the portfolio. One
maximizes the Sharpe ratio, which we define by the following optimization problem:

Maximize:
∑n

i=1 wiRi − R f√
wTΣw

, (1)

subject to: 0 ≤ wi ≤ 1, i = 1, . . . , n, (2)
n

∑
i=1

wi = 1. (3)

This objective function (1) selects an allocation of weights based on a trade-off between
portfolio returns and variance. Returns are estimated from historical returns as E(Rp) =

∑n
i=1 wiRi, while variance is estimated via σ2

p = wTΣw.
One may also impose certain conditions, depending on the context, which manifest as

constraints, to accompany the objective function. The most common constraints, which we
impose above and throughout the paper, are 0 ≤ wi ≤ 1, i = 1, . . . , n (2) and ∑n

i=1 wi = 1
(3). We also assume R f = 0 throughout. These conditions require all portfolio assets to be
invested and prohibit short selling, respectively. Weights are chosen by maximizing the
objective function subject to such conditions. There is a wealth of other conditions that may
be imposed, which is discussed further in the paper.

1.1. Overview of Portfolio Optimization

There has been significant research within the applied mathematics, computer sci-
ence, and econometrics communities building upon Markowitz’s mean-variance model
(Markowitz 1952; Sharpe 1966). A variety of portfolio optimization frameworks have ex-
plored alternative objective functions utilizing risk measures other than standard volatility
(Almahdi and Yang 2017; Bongini et al. 2002; Calvo et al. 2014; Soleimani et al. 2009; Vercher
et al. 2007). Many authors in the field have taken existing theory and methodologies for the
problem of portfolio selection and optimization (Bhansali 2007; Magdon-Ismail et al. 2003;
Moody and Saffell 2001), including statistical mechanics (Li and Zhang 2021; Zhao and
Xiao 2016), clustering (Iorio et al. 2018; León et al. 2017), fuzzy sets (Ammar and Khalifa
2003; Kocadağlı and Keskin 2015; Tanaka et al. 2000), graph theory (James et al. 2022), regu-
larization (Fastrich et al. 2014; Li 2015; Pun and Wong 2019) regression trees (Cappelli et al.
2021), and multiobjective optimization (Lam et al. 2021; Mansour et al. 2019). For further
details, a review of such techniques for portfolio optimization was conducted by Milhomem
and Dantas (2020). Most importantly, for this paper, we must especially acknowledge the
influence of statistical physics and econophysics. Many modern analyses of traditional
financial markets (Alves et al. 2020; Eisler and Kertész 2006; James et al. 2022; Laloux et al.
1999), cryptocurrency markets (Drożdż et al. 2018, 2020, 2019, 2020; Pessa et al. 2023; Sigaki
et al. 2019; Wątorek et al. 2021), and portfolio optimization (James et al. 2022; Prakash et al.
2021) have built upon methods developed in econometrics or inspired by physics (Basalto
et al. 2007, 2008; Dose and Cincotti 2005; Drożdż et al. 2021; Fister et al. 2021; Gopikrishnan
et al. 1998; James and Menzies 20212021a, c, 2022a, 2022b, 2022c, 2022d, 2022f, 2023a, 2023b;
James et al. 2021, 2022, 2023; Liu et al. 1999; Mantegna et al. 2000; Podobnik et al. 2009;
Valenti et al. 2018; Wang et al. 2006, 2020).

In particular, there has been a wealth of work that has modified the Sharpe ratio to
penalize downside risk specifically. Sortino and van der Meer (1991) were pioneers in this,
modifying the Sharpe ratio directly to only penalize downside variance. Since then, various



Econometrics 2023, 11, 8 3 of 34

frameworks have been developed to directly target loss reduction, including value at risk
models (Alexander and Baptista 2002; Campbell et al. 2001) and the mean–semivariance
framework (Ballestero 2005; Boasson et al. 2011; Salah et al. 2018).

Finally, a substantial body of work has examined the difficulties provided by more
complex investment constraints. Jin et al. (2016) provided a review of typical constraints
in an asset allocation problem, as well as advances in algorithmic procedures (Liagkouras
and Metaxiotis 2015, 2018; Lwin et al. 2014; Meghwani and Thakur 2017). In particu-
lar, cardinality constraints (Anagnostopoulos and Mamanis 2011) yield nonconvex sets
(unions of lower-dimensional simplices) over which to perform optimization, providing a
challenge to standard methods of convex optimization and producing NP-hard problems
(Shaw et al. 2008).

In our paper, we compare our methodology primarily with those defined over long
periods of training data. The primary reason we do this is to provide the algorithm adequate
time to learn the systemic similarity in various asset’s change point propagation. Given that
change points indicate major shifts in underlying return dynamics, one can appreciate that
these changes do not occur frequently. In fact, asset classes with especially low levels of
beta (market risk) may only produce change points in the most extreme market conditions.
Given that we wish to compute distances between change point propagation, which should
include a sufficient number of change points, it is necessary that the training period is
of significant length. That being said, our algorithmic approach may not need to be
updated (and require the model being retrained) as frequently as other methods—as we
are concerned with optimizing over very low frequency signals, which are unlikely to
change quickly.

1.2. Overview of Change Point Detection Methods

Many domains in the physical and social sciences are interested in the identification
of structural breaks in various data sets. Ranshous et al. (2015) and Akoglu et al. (2014)
recently provided an overview of anomaly detection methods within the context of network
analysis, which can be used to identify relations among entities in high-dimensional data.
Koutra et al. (2016) determined change points (structural breaks) in dynamic networks
via graph-based similarity measures, while James et al. (2021) analyzed change points in
cryptocurrencies.

In the more econometric and statistical literature, focused on time series data, re-
searchers have developed change point models driven by hypothesis tests, where p-values
allow scientists to quantify the confidence in their algorithm (Bridges et al. 2015; Moreno
and Neville 2013; Peel and Clauset 2015). Change point algorithms generally fall within
statistical inference (namely Bayesian) or hypothesis testing frameworks. Bayesian change
point algorithms (Adams and MacKay 2007; Barry and Hartigan 1993; James and Menzies
2022e; Xuan and Murphy 2007) identify change points in a probabilistic manner and allow
for subjectivity through the use of prior distributions, but they suffer from hyperparameter
sensitivity and do not provide statistical error bounds (p-values), often leading to a lack
of reliability.

Within hypothesis testing, Ross (2015) outlined algorithmic developments in various
change point models initially proposed by Hawkins (1977). Some of the more important
developments in recent years include the work of Hawkins et al. (2003) and Ross (2014);
Ross and Adams (2012); Ross et al. (2013). Ross (2015) recently created the CPM package,
which allows for flexible implementation of various change point models on time series
data. Given the package’s ease of use, flexibility, and efficient implementation, we build
our methodology on this suite of algorithms.

1.3. Overview of Semi-Metrics

The application of metric spaces has provided the groundwork for research advance-
ment in various areas of machine learning. In addition to more traditional metrics, such as
the Hausdorffand Wasserstein, semi-metrics, which may not satisfy the triangle inequality
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property of a metric, have been used successfully in various machine learning applications.
An overview of such (semi-)metrics and applications was recently provided by Conci and
Kubrusly (2017). The three primary applications include image analysis (Baddeley 1992;
Dubuisson and Jain 1994; Gardner et al. 2014), distance between fuzzy sets (Brass 2002;
Fujita 2013; Gardner et al. 2014; Rosenfeld 1985), and computational methods (Atallah 1983;
Atallah et al. 1991; Eiter and Mannila 1997; Shonkwiler 1989).

More recently, a review and computational analysis of various (semi-)metrics was
undertaken by James et al. (2020) in measuring distance between time series’ sets of
structural breaks.

1.4. Motivation and Structure of This Paper

This paper aims to draw upon the aforementioned fields to yield a new approach to
portfolio optimization with several benefits. While other existing methods aim to reduce
downside risk directly (Boasson et al. 2011; Salah et al. 2018), we consider the significant
shifts in asset behavior around structural breaks as a kind of “root cause” for simultane-
ous drawdown and paramount to avoid as the highest priority. Thus, we introduce the
framework of using distances between structural breaks in our objective function; this
necessitates distance measures between finite sets. In addition, we claim novelty in the
precise methodology to measure discrepancy between finite sets. While previous research
typically uses the Hausdorff or Wasserstein (Basalto et al. 2007, 2008) metric between sets,
we use our own semi-metric, with favorable theoretical and empirical properties. Thus, our
primary contributions in this paper are a novel framework of using structural breaks in
portfolio optimization and a “proof of concept” via our specific implementation, as well as
its validation. Validation is performed via simulated and real data, as well as a sequence of
new propositions contrasting our chosen distance with previous options.

Our motivation in this paper is both theoretical and experimental. Theoretically, we
investigate the use of distances between structural breaks in a broad attempt to highlight
their potential utility in portfolio optimization applications, which we are unaware exists
in the literature. We prove numerous properties of our particular choice of discrepancy
between finite sets relative to existing alternatives. Additionally, experimentally, we offer a
particular technique of portfolio optimization with promising results relative to existing
options. The contribution of this paper goes beyond the specific methodology proposed;
utilizing structural breaks may have numerous research directions. First, our specific
methodology could be used within an ensemble framework, where our model could be one
of several portfolio optimization procedures used to determine optimal portfolio weights
(akin to model stacking and other ensemble-based methods). Second, our work could
encourage researchers outside of econometrics and investment management specifically,
but there is a general interest in allocating weights to various features, where each feature
exhibits some sort of penalty in a time-varying fashion. This would be of particular interest
in settings where the panel of data is especially stationary.

Thus, our paper is structured as follows. In Section 2, we outline our framework
for optimization using structural breaks, including a detailed explanation of the general
benefits of the framework. In Section 3, we explain the specific theoretical properties of
our precise semi-metric compared with the existing Hausdorff or Wasserstein options to
measure discrepancy between finite sets to explain the benefits of our precise choice. In
Section 4.1, we use synthetic time series to show these benefits over other metrics more
concretely in illustrated examples. Section 4.2 then performs a sample allocation of capital
within a typical constrained optimization problem, featuring constraints frequently required
by financial practitioners. In Section 5, we apply our method to real data across judiciously
chosen training and testing periods, where we compare our methodology against nine
others from the optimization literature. We conclude in Sections 6 and 7, summarizing the
utility of our framework in the context of a typical asset allocation scenario.
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2. Proposed Semi-Metric Change Point Optimization Framework

Our main contribution is to adapt the classical penalty function involving variance
with one related to structural breaks. In many circumstances, variance is a suitable measure
in a financial securities context. However, it is not without its limitations, and there are
several reasons why a penalty function related to structural breaks may be a suitable
alternative or complement to the covariance measure between two time series:

1. Covariance is computed as an expectation Cov(X, Y) = E(X−E X)(Y−EY), which
is an average (integral) over an entire probability space. In a financial context, this
computes an average over time; in modern financial markets, especially since the
global financial crisis, most time periods are bull markets, with most assets performing
quite well together. As such, assets that rise together in a bull market but actually
exhibit distinct dynamics may be erroneously identified as similar.

2. Covariance fails to capture dissimilarity between time series during periods of mar-
ket crisis and erratic behavior. Investors are often particularly concerned with the
robustness of their portfolio during such times. Portfolios that are optimized using
covariance as a risk measure fail to determine the impact of various asset combinations
during times of market crisis. For instance, if two assets are simultaneously acting
erratically, they may actually be negatively correlated during this time. If they are
both included in a portfolio, this would increase rather than reduce erratic behavior.
Structural breaks herald erratic behavior, so using distances between breaks in the
objective function may better separate out erratic behavior in a portfolio.

3. Investors are also interested in peak-to-trough measures of asset performance, that is,
the size of a drop in returns from a local maximum to a local minimum. Optimization
algorithms using covariance measures fail to identify and minimize peak-to-trough
behavior. However, distances between sets of structural breaks (in the mean, variance,
and other stochastic quantities) are better equipped to identify how similar two time
series are with respect to peak-to-trough measures. Thus, they may suitably allocate
weights to minimize these precipitous drops.

4. While various methods of portfolio optimization target downside risk directly, we
believe that structural breaks may be a kind of “root cause” of the greatest erratic
behavior and simultaneous downside risk, and thus are of the greatest priority to
diversify away from.

We formulate our new objective function to penalize structural breaks and their
associated erratic behavior. We use the MJp family of semi-metrics of James et al. (2020).
Given p > 0 and two nonempty finite sets A, B ⊂ R (or an arbitrary metric space), this is
defined as

dp
MJ(A, B) =

(
∑b∈B d(b, A)p

2|B| +
∑a∈A d(a, B)p

2|A|

) 1
p

. (4)

where d(a, B) is the minimal distance from a point a ∈ A to the finite set B. We note
dp

MJ(A, B) = 0 if and only if A, B. As discussed by James et al. (2020), varying p > 0
produces a family of semi-metrics, where larger values of p exhibit greater adherence to the
triangle inequality property, but worse sensitivity to outliers. In our implementation, we
select p = 0.5 due to its good performance with outlier sensitivity and the strong possibility
of outliers in this context. Indeed, it is likely that some assets are impacted by market
dynamics to which others are immune, which will yield outlier assets. We discuss distances
between finite sets, their properties, and how we arrive at our family of semi-metrics in
Appendix B.

We compute a distance matrix Dij as follows: following a suitable change point
algorithm (ours is described in Appendix A), let asset i have set of structural breaks
Si, i = 1, . . . , n. Then, we form

Dij = d0.5
MJ(Si, Sj). (5)
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In this paper, every set of structural breaks, simulated or real, is nonempty, so this compu-
tation is possible. Next, we transform our distance matrix into an affinity matrix, which
mimics the properties of a covariance matrix:

Aij = 1−
Dij

max D
, ∀i, j. (6)

Two assets have correlation equal to 1 if and only if they are perfectly correlated; anal-
ogously, Aij = 1 if and only if d(Si, Sj) = 0, meaning the two assets have identical
structural breaks.

Remark 1. We note that the denominator max D may be influenced by a single outlier time series.
Thus, it is particularly important to choose our semi-metric (particularly the value of p) to handle
outlier elements with care. We justify the benefits of choosing a smaller value of p, in this case
p = 1

2 , in Proposition 3, Corollary 1, and Appendix B.

In the context of Markowitz portfolio optimization, weights are chosen to maximize
return while reducing total variance; this introduces more stocks with lower correlation,
increases diversification, and reduces systematic risk in the portfolio. We modify this
insight, allocating weights that maximize return while reducing affinity between sets of
structural breaks, hence maximizing the spread between erratic behavior. To do so, we
substitute our adjusted affinity matrix A for the original covariance matrix Σ and optimize
a new risk-adjusted return measure with respect to portfolio weights. We term this the MJ
ratio objective function (7), which we define in the following optimization problem:

Maximize:
∑n

i=1 wiRi − R f√
wT Aw

, (7)

subject to: 0 ≤ wi ≤ 1, i = 1, . . . , n, (8)
n

∑
i=1

wi = 1. (9)

Essentially, this method retains the estimation of returns exactly as in the Sharpe ratio,
E(Rp) = ∑n

i=1 wiRi and substitutes variance σ2
p = wTΣw with a new denominator Ω2

p =

wT Aw, whose purpose is to “spread out” various assets’ structural breaks.
Throughout the paper, we always retain at least the same constraints as Section 1,

0 ≤ wi ≤ 1, i = 1, . . . , n (8) and ∑n
i=1 wi = 1 (9). In subsequent sections, we also impose

additional real-world constraints, such as upper and lower bounds on weights, and discuss
how our method would work with other constraints frequently used in investment policy
statements. Our method is flexible enough to vary such constraints, with no increase in
complexity, provided such constraints result in a convex set of optimization. For more
difficult constraints such as cardinality and preassignment constraints, our method could
be combined with advances in the literature for efficient optimization over such spaces
(Liagkouras and Metaxiotis 2018).
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Remark 2. One could also use this approach (substituting variance for affinity between structural
breaks) to modify alternative existing portfolio selection methods, such as minimum variance
optimization. Traditionally, this is defined as the following optimization problem:

Minimize: wTΣw, (10)

subject to
n

∑
i=1

wiRi = P, (11)

0 ≤ wi ≤ 1, i = 1, . . . , n, (12)
n

∑
i=1

wi = 1. (13)

Typically, the desired level of returns P is selected according to the risk appetite of the investor. One
can also incorporate a risk-free asset by including it as one of the permissible asset classes, with a
term R0 = R f .

One could then write an equivalent of minimum variance optimization in our new context of
structural breaks by formulating an optimization problem as follows:

Minimize: wT Aw, (14)

subject to
n

∑
i=1

wiRi = P, (15)

0 ≤ wi ≤ 1, i = 1, . . . , n, (16)
n

∑
i=1

wi = 1. (17)

Alternatively, one could formulate an analogy to the global minimum variance problem. This would
be formulated simply by removing condition (15) as follows:

Minimize: wT Aw, (18)

subject to 0 ≤ wi ≤ 1, i = 1, . . . , n, (19)
n

∑
i=1

wi = 1. (20)

3. Theoretical Properties

In this section, we examine the mathematical properties of our proposed objective
function and procedure and explain our choice of distance function between sets, including
an analysis of alternatives.

Proposition 1. The MJ ratio, as presented in (7), can be maximized on the chosen domain of
weights, and the maximum can be determined analytically.

Proof. First, we note that the matrix A is not necessarily positive semidefinite, so standard
arguments regarding the optimization of the Sharpe ratio do not apply mutatis muntandis to
the MJ ratio. Instead, we require a continuity and compactness argument. Due to the condi-
tions on the weights, the ratio is optimized over a space S = {wi : 0 ≤ wi ≤ 1, ∑n

i=1 wi = 1}.
This is a compact space, specifically a (n− 1)−simplex. By the definition of (6), all entries
of A are non-negative, with diagonal elements equal to 1. Thus, wT Aw is a continuous
function on S that attains only positive values, and so the denominator of (7) is positive on
the whole space S. This implies the MJ ratio is a well-defined continuous function on S.
Since S is compact, it must achieve a global maximum on S.

Finally, since S is a (n − 1)−simplex, one can examine and test the critical points
within the simplex and use Lagrange multipliers on the boundary to find all possible
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maxima and test them. In our implementation, we determine the optimal weights with a
simple grid search.

Proposition 2 (Method complexity). Suppose we have n assets indexed i = 1, ..., n over a time
period of length T. Assume the weights have only the minimal constraints 0 ≤ wi ≤ 1, ∑n

i=1 wi = 1.
Then, the computational cost of the weight selection methodology described in Section 2 is O(n2T +
nT2).

Proof. As explained in Appendix A, the selection of change points for a single asset has a
running time of O(T2) due to the two-phase procedure. Thus, the selection of change points
S1, ..., Sn for all assets has cost O(nT2). For each i, j, the computation of dp

MJ(Si, Sj) involves
at most O(|Si| + |Sj|) comparisons between elements. Let m = maxi |Si|. This means
the computation of each pairwise distance dp

MJ(Si, Sj) is of complexity O(m). Thus, the
construction of the full distance matrix D and associated affinity matrix A is of complexity
O(mn2). To select the weights, only the historical returns Ri and the matrix A are needed.
We use sequential quadratic programming, which has a complexity cost of O(n2) when
performed over a convex set with a fixed tolerance bound.

Overall, the total cost of our procedure is O(nT2 + mn2 + n2); the three steps are
each implemented in C++. We can use the simple bound m ≤ T to gain the final bound
O(n2T + nT2).

Remark 3. In our implementation, we consistently train our algorithm over long periods to
appropriately learn relationships in structural breaks. Thus, it is usually the case that n << T.
For example, a typical portfolio manager would have at most n = 1000 assets to choose from, while
we train over T = 2051 days. Thus, the computational cost simplifies to O(nT2), with the T2

operations implemented efficiently in C++. Thus, we can deduce that our method scales well with
large numbers of stocks to choose from, with just a linear increase in complexity with the number
of assets.

Furthermore, our complexity is unchanged with real-world upper and lower bounds on the
weights ci ≤ wi ≤ Ci. These constraints, common in investment policy statements, still produce a
convex and compact set over which we select the weights wi, so the complexity is unchanged. As
discussed in Section 5, these are the only additional constraints we impose in our experimentation,
a common feature of real-world policy statements (Coffey 2016). When additional constraints are
imposed, our optimization domain may be nonconvex. However, it will always be compact, so
Proposition 1 holds. Efficient optimization of our objective function would require a combination
with recent work in optimizing over domains with numerous nonconvex constraints imposed
(Liagkouras and Metaxiotis 2015, 2018; Lwin et al. 2014; Meghwani and Thakur 2017; Shaw et al.
2008).

In the following two propositions, we justify our selection of distance measure between
finite sets, specifically two advantages it has over the popular Hausdorff and Wasserstein
metrics between sets.

Definition 1 (Hausdorff metric). Let S, T be closed bounded subsets of R (or an arbitrary metric
space). Their Hausdorff distance is defined by

dH(S, T) =max

(
sup
s∈S

d(s, T), sup
t∈T

d(t, S)

)
, (21)

= sup{d(s, T), s ∈ S; d(t, S), t ∈ T}, (22)

where d(s, T) = inft∈T d(s, t) is the infimum distance from s to T.

One could conceivably use this metric to measure distance between structural breaks,
rather than our semi-metric. However, the Hausdorff metric suffers from substantial
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sensitivity to outliers, as observed by Baddeley (1992). We formalize this in the following
proposition:

Proposition 3. Let T = {t1, . . . , tn} and S be fixed. Fixing all but one element, if tn → ∞ acts as
an outlier, then the asymptotic behavior of the Hausdorff and MJp distances are as follows:

dH(S, T) ∼ |tn|, dp
MJ(S, T) ∼ |tn|

(2|T|)
1
p

, (23)

i.e. lim
|tn |→∞

dH(S, T)
|tn|

= 1, lim
|tn |→∞

dp
MJ(S, T)

|tn|
=

1

(2|T|)
1
p

. (24)

Proof. For both dH(S, T) and dp
MJ(S, T), the only term that increases as |tn| → ∞ is d(tn, S),

which increases asymptotically with |tn|. The result follows immediately for dH and follows
for dp

MJ by inspecting the coefficient 1
2|T| that accompanies the term d(tn, S).

Corollary 1. Let 0 < p < q and adopt the assumptions of Proposition 3. Then, dH(S, T) exhibits
worse asymptotic outlier sensitivity than dq

MJ , which itself is worse than dp
MJ .

Proof. If p < q, then 1 < (2|T|)p < (2|T|)q. It follows that

1

(2|T|)
1
p
<

1

(2|T|)
1
q
< 1. (25)

Thus, the asymptotic coefficient of |tn| is the least for dp
MJ , then dq

MJ , and then dH , as shown
in (23) and (24). That is, a single element has the least influence on the increasing values of
dp

MJ than on dq
MJ , and less so than dH .

As a consequence of this outlier sensitivity property, the Hausdorff metric dH may
grant an excessively high distance, and hence a low affinity, based on a single outlier
structural break. In particular, two time series that have quite similar structural breaks
(and hence erratic behavior profiles) may be granted low affinity and both be included
in a portfolio based on just one structural break. On the other hand, the MJp semi-metric
handles outliers well, and increasingly well with small values p, such as our choice in
implementation p = 0.5. We illustrate an example of this in Section 4.1 and explain this
further in Appendix B.

The other metric occasionally used to measure distance between finite sets is the
Wasserstein metric. To be precise, it is most frequently employed between probability
measures on a metric space, such as R, as follows: let µ, ν be probability measures on R,
and q ≥ 1, then

Wq(µ, ν) = inf
γ

( ∫
R×R
|x− y|qdγ

) 1
q

. (26)

This infimum is taken over all joint probability measures γ on R×R with marginal proba-
bility measures µ and ν. The Formula (26) is difficult to compute in general, but in the case
where µ, ν have cumulative distribution functions F, G on R, there is a simple representation
(del Barrio et al. 1999):

Wq(µ, ν) =

(∫ 1

0
|F−1 − G−1|qdx

) 1
q
, (27)

where F−1 is the inverse cumulative distribution function, or more precisely, quantile
function, associated to F (Gilchrist 2000). One can then use this to define a metric between
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finite sets S, T. One associates to each set a probability measure defined as a weighted sum
of Dirac delta measures

µS =
1
|S| ∑

s∈S
δs. (28)

Then, the Wasserstein metric between sets S, T can be defined as dq
W(S, T) := Wq(µS, µT)

and computed with (27). One could conceivably use this metric to measure distance
between structural breaks instead of the Hausdorff metric. However, the Wasserstein metric
has a property that makes it unsuitable in our context. Using the definition (28) and the
Equation (27), the Wasserstein metric has a geometric property with respect to translation,
dq

W(S, S + a) = |a|. However, this is unsuitable for measuring the distance between sets
with high intersection. We formalize these remarks in the following proposition:

Proposition 4. If |S ∩ T| = r, the following inequality holds:

dp
MJ(S, T) ≤

[
1− r

2

( 1
|S| +

1
|T|

)] 1
p
dH(S, T). (29)

No such inequality holds for Wasserstein metric. Given a set S and its translation S + a for some
a ∈ R, the Wasserstein metric has the property that dq

W(S, S + a) = |a|. As a consequence, even
with |S ∩ T| = |S| − 1 = |T| − 1, it is possible for dq

W(S, T) to coincide with dH(S, T).

Proof. Examining the definition (4), any d(s, T) or d(t, S) term with s ∈ S ∩ T or t ∈ S ∩ T,
respectively, vanishes. Any other d(s, T), d(t, S) term is at most dH(S, T). So,

dp
MJ(S, T) ≤

[
1

2|S| (|S| − r) +
1

2|T| (|T| − r)
]

dH(S, T), (30)

which gives the inequality after simplifying. Turning to the Wasserstein metric, let S =
{s1, . . . , sn} ⊂ R be a set with s1 < s2 < . . . < sn and a ∈ R a translate. Then, S + a =
{s1 + a, . . . , sn + a}. By (27) and (28), dq

W(S, S + a) can be computed as

(∫ 1

0
|F−1 − G−1|qdx

) 1
q
, (31)

where F−1, G−1 are the quantile functions associated to µS and µS+a. By integrating µS and
µS+a, we can see that F, G are piecewise constant increasing step functions:

F =
n−1

∑
j=1

j
n
1[sj ,sj+1)

+ 1[sn ,∞), G =
n−1

∑
j=1

j
n
1[sj+a,sj+1+a) + 1[sn+a,∞). (32)

It follows that their respective quantile functions are determined almost everywhere as

F−1 =
n

∑
j=1

sj1( j−1
n , j

n )
, G−1 =

n

∑
j=1

(sj + a)1
(

j−1
n , j

n )
. (33)

It follows quickly that G−1− F−1 is simply a constant function on (0, 1) with value a, so the
expression (31) simplifies to |a|. This concludes the second statement of the proposition.

Finally, let S = {0, 1, ..., n− 1} and T = {1, 2, ..., n}. As T = S + 1 is a translate of S, we
have shown that dq

W(S, T) = 1 = dH(S, T). However, |T| = |S| = n, while |S ∩ T| = n− 1,
showing that no such inequality as (29) holds for the Wasserstein metric.

As a consequence of this translation property, the Wasserstein metric dq
W may exces-

sively grant an excessively high distance, and hence a low affinity, to two sets with a very
high intersection. For example, if two sets of structural breaks are A = {100, 200, . . . , 900}
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and B = {200, 300, . . . , 1000}, then dp
MJ will reflect the high intersection and similarity

between the sets A and B, while dq
W will not. Indeed, for this example, dq

W(A, B) = 100,

while dp
MJ(A, B) = 100

( 1
9
) 1

p . That is, only the latter semi-metric assigns these remarkably
similar sets of structural breaks with a low distance, hence a high affinity.

The Wasserstein metric would grant two time series that have quite similar structural
breaks (and hence erratic behavior profiles) low affinity, and hence could include both in a
portfolio. This would be a mistake, as such structural breaks as given by A and B in fact
have almost all elements in common and should be assigned high affinity, so the portfolio
will not choose them both. We illustrate an example of this in Section 4.1.

4. Simulation Study

In this section, we perform two experiments involving simulated time series with
specified structural breaks. The first experiment illustrates the computation of the similarity
between sets of structural breaks, comparing our MJp distance with the Hausdorff and
Wasserstein metrics. The primary purpose of this experiment is to illustrate the benefits
of our chosen discrepancy measure over alternative and existing metrics. Our examples
are chosen to exemplify, via a small number of time series, how the properties proven in
Section 3 matter for real data. The second experiment illustrates the allocation of assets
in a sample optimization problem, together with constraints typical of an investment
policy statement.

4.1. Synthetic Data Simulation

First, we simulate a collection of time series x1, . . . , xn from a GARCH model (Lam-
oureux and Lastrapes 1990) with m structural breaks determined by jumps at the points
τ1, . . . , τm. Each time series xi follows a Student-t distribution with certain specified mean
and variance functions. The mean function µt contains an autoregressive AR(1) process and
a jump component; the latter is a product of a jump direction and magnitude with Bernoulli
and gamma distributions, respectively. The variance function σ2

t contains several terms:
an order one short-term component, a long-term persistence component, and a leverage
effect component. We display four simulated simulated time series xi with specified sets of
structural breaks τj in Figure 1.

Next, we compute the distance matrix and associated affinity matrix between the four
synthetic time series, relative to the Hausdorff metric, Wasserstein metric, and MJ0.5 and
MJ1 semi-metrics, respectively, and display them in Tables 1–4. These tables collectively
illustrate the advantages of the MJp semi-metrics compared with the Hausdorff and Wasser-
stein metrics first discussed in Section 3. First, the Wasserstein metric gives the lowest
affinity score between the Time Series 1 and 2, which have 8 out of 9 of their structural
breaks in common. These remarkably similar sets of structural breaks are given much
lower distance and hence higher affinity under the MJ0.5 and MJ1 distances, illustrating
Proposition 4. Next, the Hausdorff metric is far too sensitive to outliers; while TS1 and TS3
have 8 out of 9 points in common, these two time series are given the highest Hausdorff
distance among the collection, hence an affinity equal to 0. Similarly, TS2 and TS3 have 7
of 9 points in common, but their assigned affinity is 0.1. The Wasserstein, MJ0.5, and MJ1
distances all recognize the similarity between TS1 and TS3 (as well as TS2 and TS3), with
high affinity scores. Once again the MJ0.5 and MJ1 perform better than the Wasserstein in
discerning the strong similarity between these time series. We provide the time series TS4
as a reference time series that is quite distinct in its structural breaks from TS1, TS2, and
TS3. Only the MJ0.5 and MJ1 assign TS1, TS2, and TS3 mutually high affinity scores, and
only an algorithm using them to measure distances between sets of structural breaks would
diversify away from including an unsuitably high quantity of TS1, TS2, and TS3 in one
asset portfolio. Thus, this simple example of just four synthetic time series highlights the
advantages of the MJp semi-metric over the Hausdorff and Wasserstein metrics, illustrating
the theoretical properties proven in Propositions 3 and 4.
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(a) (b)

(c) (d)
Figure 1. Four synthetic time series (a–d) exhibiting dependence and correlation in jump behavior. The
red annotated lines represent specified structural breaks. The structural breaks are chosen carefully to
relate to Corollary 1 and Proposition 4, where we discuss some undesirable properties of the Hausdorff
and Wasserstein metrics, respectively. (a,b) are chosen to have all but one break in common; the
Wasserstein metric allocates an excessive distance. (c) is chosen to feature a single outlier break
compared with (a,b); the Hausdorff metric is excessively sensitive to the outlier element. As we
discuss in Section 4.1 and show in Tables 1–4, only the MJp family of semi-metrics properly identifies
(a–c) as highly similar, with (d) the one set of structural breaks meaningfully different to the others.

Table 1. Hausdorff distance matrix and affinity matrices between four synthetic time series structural
breaks. This allocates an unsuitably excessive distance between time series (a,c) of Figure 1, illustrating
the Hausdorff metric’s sensitivity to outliers.

D =


0 100 1000 900

100 0 900 800
1000 900 0 900
900 800 900 0

; A =


1 0.9 0 0.1

0.9 1 0.1 0.2
0 0.1 1 0.1

0.1 0.2 0.1 1


Table 2. Wasserstein distance matrix and affinity matrices between four synthetic time series structural
breaks. This allocates an unsuitably excessive distance between time series (a,b) of Figure 1, despite
their high intersection, showing an undesirable property when measuring discrepancy between sets.

D =


0 100 111 933

100 0 189 833
111 189 0 844
933 833 844 0

; A =


1 0.89 0.88 0

0.89 1 0.78 0.11
0.88 0.78 1 0.10

0 0.11 0.10 1
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Table 3. MJ0.5 distance matrix and affinity matrices between four synthetic time series structural
breaks. This appropriately identifies (a,b) as highly similar, (c) a little bit further away, and (d) the
clear outlier element.

D =


0 1 5 461
1 0 13 306
5 13 0 327

461 306 327 0

; A =


1 0.998 0.989 0

0.998 1 0.972 0.336
0.989 0.972 1 0.291

0 0.336 0.291 1


Table 4. MJ1 distance matrix and affinity matrices between four synthetic time series’ structural
breaks. This appropriately identifies (a,b) as highly similar, (c) a little bit further away, and (d) the
clear outlier element.

D =


0 11 61 517

11 0 72 417
61 72 0 367
517 417 367 0

; A =


1 0.98 0.88 0

0.98 1 0.86 0.19
0.88 0.86 1 0.29

0 0.19 0.29 1



4.2. Synthetic Data: Portfolio Optimization Experiments

In this section, we apply our portfolio optimization methodology to synthetic data
and illustrate the resulting allocation of assets. We generate eight synthetic time series with
specified structural breaks. For simplicity, Assets 1–3 have identical numbers of change
points with identical locations, as do Assets 4–6; Assets 7 and 8 are outliers. In addition, we
set all time series to have the exact same historical return ERi, so that the numerator of (7) is
a positive constant, regardless of the selection of weights. Thus, maximizing the MJ ratio (7)
is equivalent to minimizing its denominator wT Aw. We display the synthetic time series,
together with structural breaks, in Figure 2. We allocate our portfolio subject to a typical
constraint 5% ≤ wi ≤ 40%, ∀i = 1, ..., 8. Such upper and lower bounds are frequently used
in real-world investment policy statements (Coffey 2016), and may be tightened if desired.

Figure 2. Synthetic time series with fixed historical returns and specified structural breaks, identifying
distributional changes. As the historical returns are kept constant, only the sets of structural breaks
are used in the objective function (7). These time series form the basis of the synthetic experiment in
Section 4.2.
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Table 5 records the weights subject to the aforementioned constraints and conditions.
The results demonstrate that our optimization framework is able to produce a more even
distribution of change points across the portfolio. Assets 7 and 8, with significantly different
breaks from the rest of the collection, are allocated more weight: 33.5% and 30.7%, respec-
tively. Much less weight, 6.9%, is allocated to Assets 1, 2, and 3, and just 5% is allocated to
Assets 4, 5, and 6. This experiment demonstrates that the algorithm provides diversification
with regards to highly correlated structural breaks. Traditional mean variance portfolio
optimization would be unable to do so.

Table 5. Portfolio allocation results for synthetic data experiment in Section 4.2. Our method chooses
high weights in Assets 7 and 8 to diversify away from the high similarity in structural breaks among
Assets 1–6.

Asset Number of Change Points Weights

Asset1 8 6.9%
Asset2 8 6.9%
Asset3 8 6.9%
Asset4 3 5%
Asset5 3 5%
Asset6 3 5%
Asset7 1 33.49%
Asset8 1 30.7%

5. Real Data Results

In this section, we apply our methodology to real financial data. We envisage this
method being suitable in an asset allocation context, so we use indices and commodities
as our underlying candidate investments. We are essentially simulating the role of an
asset allocator, such as a pension fund or endowment, interested in macroeconomic asset
allocation decisions. There are eight assets we allocate between to illustrate our method:
the S&P 500, Dow Jones Index, Nikkei 225 Index, BOVESPA Index, Stoxx 50 Index, ASX 200,
oil spot price, and gold spot price, all between January 2009 and November 2019. There are
several important details and assumptions in our experiments on real data:

1. We train our algorithm over a relatively long period to estimate the true dynamics
between various assets’ structural breaks as precisely as possible. Training the algo-
rithm on longer periods provides a more accurate assessment of similarity in varying
market dynamics.

2. However, there is a balance between going back far enough to learn appropriate
dynamics between asset classes and using too much history that relationships between
assets no longer behave the way in which they were estimated. The behavior of
individual asset classes and their relationships may change over time.

3. The period from January 2018–June 2019 is a suitable out-of-sample period to test
the algorithm, due to the varied market conditions. Most of 2018 provided relatively
buoyant equity market returns, with a sharp drop in December 2018, followed by a
prolonged recovery until June 2019. We wish to examine how candidate portfolios will
perform in various market conditions, particularly in the presence of large drawdowns.
In addition, we do not wish to test our algorithm during a period that is too similar
to the training interval, as performance could be artificially strong. Thus, this is a
suitable period to compare the optimization algorithms’ performance.

4. We did not include the COVID-19 market crisis in our test data to ensure that our
training data have broadly similar dynamics to the out-of-sample data set. We include
a targeted analysis of the COVID-19 crisis in Section 5.3.

5. The role of asset allocation is often guided by an investment policy statement that
provides upper and lower bounds for capital allocation decisions. This is captured
in the candidate weights’ constraints. During pronounced bull and bear markets,
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institutional asset allocators may not have the flexibility to implement global opti-
mization solutions. For example, if two asset classes had significantly higher returns
and lower volatility than the remainder of candidate investments, the unconstrained
solution would allocate all portfolio weight into these two assets. Investment weight-
ing constraints prevent these contrived scenarios from occurring. For our constraints,
we place a minimum 5% and maximum 25% of portfolio assets in any candidate
investment. This is one of several typical constraints imposed in real-world policy
statements—indeed, investment policy statements may include this as their only
constraint (Coffey 2016). As mentioned in Section 3, we may impose additional con-
straints by combining with other optimization methods cited in Section 1.

6. Our method provides an advantage over the simple correlation measure by addressing
all three limitations in Section 2. One possible drawback to our proposed method,
however, is that to learn meaningful relationships between assets’ structural breaks, a
long time series history is needed, preferably with many structural breaks observed.

7. When considering portfolio risk in an optimization framework, investors have a vari-
ety of measures they may choose to optimize over. Standard deviation, β, downside
deviation, and tracking error are just several of these. Our CPO model introduces
a mathematical framework that addresses peak-to-trough (drawdown) losses and
erratic behavior as a measure of risk. Specifically, the model captures simultaneous
asset shocks and aims to minimize the size of drawdowns by creating a uniform
spread of change points across all portfolio holdings. We are unaware of any existing
measure with these properties.

5.1. Training and Validation Procedure

We train the algorithm between January 2009–December 2017 and test its performance
on data from January 2018–June 2019. The training procedure learns the weights allocated
to each candidate investment using the aforementioned objective function and constraints.
We compare our change point optimization method (CPO) with nine other methods. These
methods have been chosen as the best representation of comparative methods in the
portfolio optimization literature. Given the breadth of research undertaken within the
massive field of econometric portfolio optimization, no comparison with other methods
can be completely exhaustive. This list is appropriate, as we judiciously chose methods
that cover the most fundamental, best-known, and widely understood objective functions.
They also include measures such as conditional value at risk, one of the fundamental
measurements of tail risk in the field of econometrics. Our method has value in consciously
pursuing an alternative mathematical attribute of diversification, which could also be
incorporated with existing methods by portfolio averaging.

First, we apply the Mann–Whitney change point detection algorithm to the training
data (log returns between January 2009–December 2017), identifying the locations of
structural breaks in the mean for each possible asset. This yields eight sets of change
points, where each point is indexed by time. Following Section 2, we apply the MJ0.5
semi-metric to determine the distance between candidate sets of breaks. We optimize the
MJ ratio objective function in (7) with respect to the weights, determining candidate weight
allocations. Finally, we run an out-of-sample forecasting procedure using the weights
estimated in our training data. We compare the predictive performance of the ten candidate
methodologies between January 2018–June 2019. In addition, we apply agglomerative
hierarchical clustering (Müllner 2013) to the resulting distance matrix between assets as
exploratory analysis of their similarity with respect to structural breaks.

This identifies a cluster of four highly similar assets (S&P 500, Dow Jones, Stoxx 50,
and oil), a cluster of three moderately similar assets (BOVESPA, Nikkei 225, and ASX 200),
and an outlier in gold, displayed in Figure 3. These results confirm financial intuition
and documented relationships between asset classes, in particular gold’s properties as a
safe-haven asset. Both the S&P 500 and Dow Jones Index are determined to be in the same
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cluster and are accordingly quite similar. Given that there is significant overlap in the
constituents of both indices, this is a logical finding.

Figure 3. Hierarchical clustering applied to the distance matrix Dij between eight real assets’ struc-
tural breaks, as defined in Section 2. Results indicate the structural breaks are most similar among
the Dow Jones, S&P 500, Stoxx 50, and oil. Gold is the most anomalous asset regarding structural
break propagation.

5.2. Out-of-Sample Performance and Distributional Properties

Now, we compare all ten methods’ out-of-sample performance, displaying cumulative
returns over time in Figure 4 and documenting key metrics in Table 6. With respect
to cumulative returns, we see two clear outliers: the entropic value at risk (EVAR) and
the conditional value at risk (CVAR) methods, which outperform and underperform,
respectively.

Table 6. Results of our change point optimization (CPO) and nine other commonly used portfolio
optimization methodologies applied to real data on the test period January 2018–June 2019. Utilized
methods are mean-variance optimization (MVO), mean-semivariance (MSV), mean absolute deviation
(MAD), first and second lower partial moment (FLPM and SLPM), conditional value at risk (CVAR),
entropic value at risk (EVAR), conditional drawdown at risk (CDAR), and Ulcer index (UCI). CPO
and EVAR are the two best performing methods. CPO yields the lowest standard deviation, second-
lowest drawdown and second-best return. Negative Sharpe ratios convey no useful information,
so are omitted. For investors hoping to reduce portfolio volatility, the proposed CPO method is a
suitable choice.

Method Cumulative
Returns

Standard
Deviation

Sharpe
Ratio Drawdown Kurtosis

CPO 107.04 0.0045 0.99 8.83 1.06
MVO 98.64 0.0060 - 17.08 1.54
MSV 105.76 0.0055 0.66 6.61 1.61
MAD 102.28 0.0068 0.21 13.03 2.38
FLPM 101.82 0.0063 0.18 11.05 0.90
SLPM 102.26 0.0062 0.23 10.59 0.90
CVAR 72.32 0.0061 - 29.23 0.90
EVAR 148.55 0.0053 5.77 27.17 1.57
CDAR 100.66 0.0066 0.063 14.22 2.25
UCI 100.60 0.0055 0.069 12.47 1.61
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For this purpose, Figure 4a displays just EVAR, CVAR, and our proposed change point
optimization method (CPO). We see that CPO produces more stable return trajectories than
each outlier method, albeit less total returns than EVAR. Subsequently, we exclude EVAR
and CVAR and compare the remaining eight methods in Figure 4b. Among these methods,
the CPO method generates the greatest cumulative returns and the lowest standard devia-
tion. For a candidate investor most focused on generating significant returns with minimal
volatility, CPO exhibits the most favorable risk–return profile.

In Figure 4c, we contrast the density of daily returns for CPO and three commonly
applied portfolio optimization methodologies: mean–variance optimization (MVO), mean–
semivariance (MSV), and CVAR. The thinner tails exhibited by CPO show that this method
provides consistently reduced volatility in returns. Together with the fact that CPO provides
the highest cumulative returns of these methods, we see CPO provides a superior risk-
adjusted return compared with these comparable competitive measures. This makes it the
most desirable portfolio among all non-outlier candidate methods.

All methods’ cumulative returns are documented precisely in Table 6. CPO produces
the second-highest cumulative returns (and second-highest Sharpe ratio) when examined
on our test data, with a final value of 107.04. The best-performing method is EVAR,
which generates a final value of 148.55. Interestingly, the EVAR method also exhibits the
highest volatility (standard deviation) and one of the highest drawdowns. This suggests
that although CPO did not produce the highest returns, it may have still been the most
preferred methodology for investors concerned with volatility.

Next, we examine the out-of-sample standard deviation performance among all com-
parative methods. CPO produces the lowest standard deviation, with a score of 0.0045. The
second-best-performing method is the MSV, with a standard deviation of 0.0055, and the
worst-performing methods are the mean absolute deviation method (MAD) and EVAR.
That is, despite the outlier method’s performance in returns, it exhibits significant volatility.

CPO also performs very strongly with respect to portfolio drawdown. CPO produces
the second-lowest drawdown, with a total score of 8.83. The best-performing comparative
method is MSV, with a drawdown of 6.61, while CVAR and EVAR have the most significant
drawdowns of 29.23 and 27.17, respectively. Again, for investors concerned with strong
performance and minimal risk—the CPO and MSV methods produce the most favorable
profiles. High levels of drawdown can be particularly concerning for portfolio managers,
as respective clients actively tracking their investments may panic during drawdowns and
request a withdrawal of funds. For active managers, this is particularly concerning, as there
is a heightened chance of funds dropping below the high watermark.

Finally, we turn to kurtosis, where CPO exhibits a level that is approximately average
among all the examined methodologies. Compared with other methods that generate
strong returns profiles such as EVAR and MSV, CPO has a kurtosis of 1.06, while EVAR
and MSV produce scores of 1.57 and 1.61, respectively. Given the positive skew in the CPO
distribution, the suppressed kurtosis value is likely indicative of less tail risk in the CPO
predictive distribution. The best-performing methods are CVAR and the first and second
lower partial moment methods (Omega and Sortino ratios, respectively), all producing
scores of 0.9. Although this is indicative of less tail risk, the kurtosis scores of the predictive
distribution are likely lower due to reduced average daily returns.
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(a)

(b)

(c)
Figure 4. Out-of-sample performance during the January 2018–June 2019 period comparing
(a) returns of CPO with outliers CVAR and EVAR, (b) returns of all methods excluding CVAR
and EVAR, and (c) distributions of MVO and CPO with commonly used methods MVO, MSV, and
CVAR. Our methodology, CPO, generates the second-greatest returns, second-greatest Sharpe ratio,
lowest volatility, and second-lowest drawdown of all methods.
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5.3. Performance during COVID-19

We devote this section specifically to an analysis of the performance of our methodol-
ogy (and several others) during the market crash associated with the onset of the COVID-19
pandemic in early 2020 (Akhtaruzzaman et al. 2020; James and Menzies 2021b; Okorie
and Lin 2020). We focus on the period of January–June 2020, which was associated with a
significant market decline and then correction, including some of the worst one-day market
drops in history (Imbert and Franck 2020). We use the same methods as in the previous
Section 5.2 and investigate the performance of the corresponding portfolios, renormalized
to begin at 100% as of the beginning of January 2020. We display cumulative returns over
time in Figure 5 and document the same metrics as before in Table 7.

Similar to Section 5.2, we see again that CPO produces more stable return trajectories
than any other method (albeit with CDAR ultimately producing higher returns at the
end of the period). CPO produces the second-highest cumulative returns when examined
on our COVID-19 data, with a final value of 99.76. Only CDAR produces ultimately
higher returns (101.43), at the cost of higher volatility, drawdown, and kurtosis. Again,
for a candidate investor focused on weathering a market crisis, CPO exhibits the most
favorable risk–return profile. We remark that all optimization methods under investigation
share a broadly similar cumulative returns trajectory. This suggests that, regardless of the
weight allocations (which vary meaningfully across methods), completely avoiding the
market crash is virtually impossible in a long-only setting. One can see that our proposed
methodology does an excellent job at mitigating downside risk during a crisis, while
maintaining solid positive returns during the subsequent market recovery.

In particular, CPO produces the best (minimal) volatility, drawdown, and kurtosis
among all methods, as seen in Table 7. Indeed, CPO carries the lowest standard deviation of
0.018, while the second-lowest standard deviation is 0.025. As in Section 5.2, the suppressed
kurtosis of CPO is likely indicative of less tail risk in returns distribution. Combined
with the minimal drawdown, this is an especially welcome feature for investors seeking a
portfolio to best weather a market crisis, where excessive drawdowns can cause panic and
bank runs.

Figure 5. Out-of-sample performance during the height of the COVID-19 market crisis: January–
August 2020. We compare the returns of CPO with all methods. Our methodology, CPO, generates
the second-greatest returns, lowest volatility, lowest kurtosis, and lowest drawdown of all methods.
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Table 7. Results of our change point optimization (CPO) and nine other commonly used portfolio
optimization methodologies applied to real data during the height of the COVID-19 market crisis:
January–August 2020. Utilized methods are mean–variance optimization (MVO), mean–semivariance
(MSV), mean absolute deviation (MAD), first and second lower partial moment (FLPM and SLPM),
conditional value at risk (CVAR), entropic value at risk (EVAR), conditional drawdown at risk
(CDAR), and Ulcer index (UCI). CPO and CDAR are the two best-performing methods. CPO yields
the lowest volatility, drawdown, and kurtosis, and the second best return. For investors hoping to
reduce portfolio volatility, the proposed CPO method is a suitable choice. As almost all returns are
negative, the Sharpe ratio is uninformative and has been omitted.

Method Cumulative Returns Standard Deviation Drawdown Kurtosis

CPO 99.76 0.018 33.55 8.55
MVO 88.82 0.036 65.13 15.48
MSV 88.69 0.036 65.54 15.60
MAD 88.06 0.038 67.71 15.99
FLPM 88.08 0.038 68.39 16.11
SLPM 88.69 0.036 65.51 15.60
CVAR 88.45 0.035 64.41 15.54
EVAR 89.12 0.033 60.99 14.90
CDAR 101.43 0.025 38.38 9.49
UCI 88.40 0.045 75.58 17.15

5.4. Sampling Study of Structural Breaks between Countries’ Financial Indices

In this section, we conduct a sampling study to investigate patterns in the collective
distance between financial assets. For robustness, we draw data from a completely inde-
pendent selection of assets as the prior sections, analyzing log returns data of the national
financial indices of 19 countries. Our chosen countries are Australia, Brazil, Canada, China,
France, Germany, India, Indonesia, Italy, Japan, Korea, the Netherlands, Russia, Saudi
Arabia, Spain, Switzerland, Turkey, the United Kingdom (UK), and the United States (US),
with data ranging from 2001–2020. We begin by applying our change point algorithm
(described in Appendix A) to obtain sets of structural breaks Si, i = 1, . . . , 19 for each
country.

Next, we perform a variety of repeated sample experiments. We vary n = 4, 6, 8, 10, 12, 14, 16
and for each value of n, sample K = 2000 draws of n countries (without replacement) from
the collection. A draw of n countries produces an n× n distance matrix D (using the MJ0.5
semi-metric as elsewhere in the paper) between the countries. We compute the following
normalized L1 norm of the matrix D to measure the collective magnitude of all distances
between countries:

‖D‖ = 1
n(n− 1)

n

∑
i,j=1
|Dij|. (34)

We normalize by the number of nonzero elements in this distance matrix, n(n− 1). Thus,
the sampling procedure produces K = 2000 values of ‖D‖ for each size n. In Figure 6, we
show the distributions of values for each n. We also record a 90% interval consisting of the
5th and 95th quantile in Table 8. As n increases, we observe an increase in the overall mean
of the distribution—this effect is relatively rapid at first but slows after n = 8. We also
observe a relatively quick increase in the lower limit and a slower decrease in the upper
limit. This is to be somewhat expected. In small samples (such as n = 4), it is possible to
repeatedly by chance select just four countries that are relatively similar to each other in
terms of structural breaks. However, selecting 8 or 10 countries that are all similar to each
other (and hence yielding a small value of ‖D‖) is much less likely, producing a greater
value of the lower limit.
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Figure 6. Distributions for the normalized distance matrix norm ‖D‖ when repeatedly drawing
K = 2000 samples of size n from our collection of 19 countries and computing the distances between
structural breaks. The range of values increases but tightens in variance as n increases, reflecting that
the normal benefits of diversification when increasing portfolio size also apply to the quantitative
measure of distances between structural breaks.

Table 8. Ninety percent confidence intervals for the normalized distance matrix norm ‖D‖ when
repeatedly drawing K = 2000 samples of size n from our collection of 19 countries and computing
the distances between structural breaks. The range of values increases but tightens in variance as n
increases, reflecting that the normal benefits of diversification when increasing portfolio size also
apply to the quantitative measure of distances between structural breaks.

Sample Size Lower Limit Upper Limit

4 72.99 213.17
6 100.70 210.92
8 113.35 208.32
10 127.02 201.08
12 135.86 196.36
14 143.81 191.59
16 151.42 186.31

The next key finding in this experiment is the significant reduction in the spread
of the distribution of matrix norms, as a larger number of countries are sampled. The
light blue coloring, which is a relatively diffuse distribution, corresponds to when only
four country indices are sequentially sampled. This distribution is centered ∼150, with a
total range of approximately 250. As the number of stocks sampled increases, we see the
distribution of norm values become successively narrower (exhibiting less variance). This
culminates in the pink distribution (n = 16), centered around ∼175, with a total range of
approximately 50.
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6. Discussion

We proposed a novel optimization method, which utilizes semi-metrics between sets
of structural breaks, to reduce simultaneous asset shocks across an investment portfolio.
This should be understood as an alternative approach to avoid simultaneous losses that
can gravely threaten an investor’s holdings. Experiments on synthetic data confirm that we
are able to detect similar time series in terms of structural breaks and accordingly allocate
highly similar assets less portfolio weight. In addition, synthetic experiments illustrate
concretely the proven theoretical properties of our particular choice of semi-metric and its
benefits over other existing metrics between finite sets. Experiments on real data suggest
that our method may significantly reduce both portfolio volatility and drawdown when
compared with numerous existing methodologies.

This novel optimization framework may have significant implications for asset alloca-
tion and portfolio management professionals who are interested in alternative measures
of risk. Our method diversifies well away from portfolio drawdown and seeks to avoid
the erratic behavior of highly clustered change points. Our method is flexible, and differ-
ent change point algorithms may be married with other distance measures or objective
functions for alternative approaches. Finally, our method’s efficient implementation and
reasonable complexity mean it easily generalizes to large instances of the portfolio opti-
mization problem, especially when convex real-world constraints are applied. In the event
of more difficult constraints, the calculation of our distances between sets of change points
could be combined with efficient optimization approaches in the econometrics literature.

There are several limitations in our optimization framework. Change point detection
methodologies vary widely, and there is substantial literature on their advantages and
disadvantages (Gustafsson 2001; Hawkins and Zamba 2005). One potential limitation of
our chosen change point detection algorithm is its deterministic selection (via hypothesis
testing and maximization of test parameters) of change point locations. Alternative ap-
proaches, such as Bayesian methods, may provide a probabilistic approach incorporating
the uncertainty around change points’ existence. Next, our methodology requires a long
training period to learn meaningful relationships between assets’ structural breaks, and
it is conceivable that such relationships from asset histories no longer hold in the present.
Furthermore, any distance measure between finite sets will have its limitations, such as the
Hausdorff metric’s sensitivity to outliers, the semi-metrics’ failure in the triangle inequality,
or the potentially excessive averaging in the MJp family. To ameliorate these limitations,
we believe model averaging with other methods that require a smaller training time and
other mathematical quantities other than distances between finite sets could be beneficial.
Furthermore, it is our hypothesis that structural breaks are more likely to have an under-
lying persistence that is more consistent than their returns. Each asset’s structural break
propagation most likely has a strong link to the asset’s existence within the very complex
system of the global economy. Structural change in this manner is likely to occur at a much
lower frequency than drivers which dictate changes in market returns and volatility (such
as market sentiment).

Future research could work to ameliorate such limitations by building on the proposed
framework. Different change point detection algorithms could be used for other stochastic
properties, such as the variance in the returns, or to reflect uncertainty in the breaks’
existence. One could explore how results change when the order of p changes within the
MJp semi-metric, or when entirely different distance measures are used between sets. One
could conceivably calibrate the value of p, such as selecting a portfolio based on the optimal
MJ ratio for various ratios of p, and then using another optimization function such as the
Sharpe ratio to tune p as a hyperparameter. More broadly, it is conceivable that one could
diversify between sets through other means than reducing their discrepancy to a single
scalar value. Even with the judicious choice of p, the outlier sensitivity in the denominator
max D of (6) is a limitation of our framework, acknowledged in Remark 1, so alternative
constructions other than this affinity matrix could be explored. Furthermore, one could
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combine our methodology, which requires a long history of training data, with alternative
methods that give more weight to the recent behavior of a financial asset.

This work not only has broad theoretical value, offering for the first time how struc-
tural breaks may be used in portfolio optimization and proving numerous properties of
our implementation relative to other discrepancy measures between structural breaks,
but it also has experimental value beyond our specific application. Model stacking and
averaging, also known as ensemble learning (Sagi and Rokach 2018), has proven to have
great utility in portfolio optimization (Shen et al. 2019; Ünlü and Xanthopoulos 2021),
even combining rather unrelated methods. As we are unaware of portfolio techniques
that study structural breaks, we believe model stacking with other methods (focused on
variance, tail risk, conditional correlations, and others) could benefit by bringing in another
mathematical property of financial time series to assist in diversification and econometric-
derived reduction in risk. Alternatively, our method could be combined with numerous
methods to clean noise in financial time series prior to analysis. Indeed, for the standard
Markowitz model of covariance and correlations, numerous authors have argued that
correlation matrices approximate random matrices and should be cleaned (Laloux et al.
1999; Wątorek et al. 2021), with numerous approaches proposed for this purpose (Bun
et al. 2017). Conceivably, such preprocessing could be applied in our setting to the sets of
structural breaks of different assets.

7. Conclusions

We proposed a new concept of using distances between structural breaks of time
series for portfolio optimization and provided a specific implementation. Our first imple-
mentation has promising results in its own right and also offers numerous directions for
further research by incorporating other advances in the literature, such as noise cleaning
and model stacking. More broadly, we hope this paper will invite other novel approaches
and concepts towards exploring different “root causes” of simultaneous shocks in financial
holdings. Avoiding these has value not just for investors and portfolio managers but for
the health of the broader economy as a whole.
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Appendix A. Change Point Detection Algorithm

In this section, we describe the change point detection algorithm used in Section 2.
The general change point detection framework is the following: a sequence of observations
x1, x2, . . . , xn are drawn from random variables X1, X2, . . . , Xn and undergo an unknown
number of changes in distribution at points τ1, . . . , τm. We assume observations are inde-
pendent and identically distributed between change points, that is, between each change
point, a random sampling of the distribution is occurring. Ross (2015) notates this as
follows:

Xi ∼


F0 if i ≤ τ1

F1 if τ1 < i ≤ τ2

F2 if τ2 < i ≤ τ3,
. . .

(A1)

While this requirement of independence may appear restrictive, dependence can generally
be accounted by several means, such as modeling the underlying dynamics or drift process
and then applying a change point algorithm to the model residuals or one-step-ahead
prediction errors, as described by Gustafsson (2001). The change point models described
below that we apply in this paper follow Ross (2015).

Appendix A.1. Batch Detection (Phase I)

This first phase of change point detection is retrospective. We are given a finite
sequence of observations x1, . . . , xn from random variables X1, . . . , Xn. For simplicity, we
assume at most one change point exists. If a change point exists at time k, this means
observations have a distribution of F0 prior to the change point and a distribution of F1
proceeding the change point, where F0 6= F1. Then, one must test between the following
two hypotheses for each k:

H0 : Xi ∼ F0, i = 1, . . . , n (A2)

H1 : Xi ∼
{

F0 i = 1, 2, . . . , k
F1, i = k + 1, k + 2, . . . n

(A3)

and select the most suitable k.
One proceeds with a two-sample hypothesis test, where the choice of test depends on

the assumptions about the underlying distributions. Nonparametric tests can be chosen to
avoid distributional assumptions. One appropriately chooses a two-sample test statistic
Dk,n and a threshold hk,n. If Dk,n > hk,n, then the null hypothesis is rejected and one
provisionally assumes that a change point has occurred after xk. These test statistics Dk,n
are normalized to have mean 0 and variance 1 and are evaluated at all values 1 < k < n;
the largest value is assumed to be coincident with the existence of our sole change point.
The test statistic is then

Dn = max
k=2,...,n−1

Dk,n = max
k=2,...,n−1

∣∣∣∣∣ D̃k,n − µD̃k,n

σD̃k,n

∣∣∣∣∣ (A4)

where D̃k,n are non-normalized statistics.
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The null hypothesis of no change is rejected if Dn > hn for an appropriately chosen
threshold hn. In this case, we conclude that a (unique) change point has occurred, and its
location is the value of k which maximizes Dk,n. That is,

τ̂ = argmax
k

Dk,n. (A5)

This threshold hn is chosen to bound the Type 1 error rate, as is commonplace in statistical
hypothesis testing. First, one specifies an acceptable level α for the proportion of false
positives, that is, the probability of falsely declaring that a change has occurred when in
fact it has not. Then, hn is chosen as the upper α quantile of the distribution of Dn under the
null hypothesis. For the details of computation of this distribution, one can see Ross (2015).

The computational cost of this first phase is O(n), where n is the number of observa-
tions. Indeed, this calculates and compares n− 2 values of the (normalized) test statistics
Dk,n, k = 2, . . . , n− 1. This is implemented efficiently in C++.

Appendix A.2. Sequential Detection (Phase II)

In this second phase, the sequence (xt)t≥1 does not have a fixed length. New obser-
vations are continually received over time, and multiple change points may be present.
Assuming no change point exists so far, this approach treats x1, . . . , xt as a fixed-length
sequence and computes Dt as described in phase I. A change is flagged if Dt > ht for
an appropriately chosen threshold. If no change is detected, the next observation xt+1 is
brought into the sequence of consideration. If a change is detected, the process restarts
from the data point immediately following the detected change point. Thus, the procedure
consists of a repeated sequence of hypothesis tests.

In this sequential setting, ht is selected so that the probability of incurring a Type 1 error
is constant over time, so that under the null hypothesis of no change, the following holds:

P(D1 > h1) = α, (A6)

P(Dt > ht|Dt−1 ≤ ht−1, . . . , D1 ≤ h1) = α, t > 1. (A7)

In this case, assuming that no change occurs, the expected number of observations received
before a false positive detection occurs is equal to 1

α . This quantity is often referred to as the
average run length, or ARL0. Additional details on appropriate values of ht are detailed by
Ross (2015).

In the context of our paper, this algorithm is performed on time series of length T. Thus,
this second phase involves up to T implementations of Phase I, with a new observation
xt+1 brought in each step. As the complexity cost of Phase I is up to O(T), this means the
total cost of the CPM algorithm is O(T2). This is implemented efficiently in C++.

Appendix B. Overview and Properties of Distances between Sets

In this section, we provide an overview of (semi-)metric distances, with a focus on
distance between (finite) sets, and motivate the choice of distance between sets of structural
breaks chosen in (4) and (5).

Appendix B.1. Overview of Metrics

We first recall the definition of a metric d on a set X. A pairing d : X× X → R is called
a metric if it satisfies the following axioms for all x, y, z ∈ X:

1. d(x, y) ≥ 0, with equality if and only if x = y;
2. d(x, y) = d(y, x);
3. d(x, z) ≤ d(x, y) + d(y, z).

d is a semi-metric if it satisfies (i) and (ii) but not necessarily (iii), which is known as
the triangle inequality. If d is a metric on X, then the pair (X, d) is called a metric space
(Rudin 1976).
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As discussed in Section 1.4, the focus of our methodology is measuring discrepancy
between finite sets. With this in mind, the relevant class of (semi-)metrics for this paper is
that between subsets of a given metric space. We begin with more explanation of a concept
used in Section 2. Let S be a subset of a metric space X, and x ∈ X. Then, the distance
from the element x to the set S is defined as the minimal distance from x to any point in S,
computed as follows:

d(x, S) = inf
s∈S

d(x, s). (A8)

Now d(x, S) ≥ 0 with equality if and only if x lies in the closure of S. In addition,
d(−, S); X → R is continuous. This quantity d(x, S) is the base ingredient of several
existing and recently introduced (semi-)metrics between sets.

Appendix B.2. Distances between Sets

Now, let S, T ⊂ X be (finite) subsets of any metric space. A common first notion of
distance between these subsets is defined as the minimal distance between these subsets,
defined by

dmin(S, T) = inf
s∈S

d(s, T) = inf
s∈S

inf
t∈T

d(s, t) = inf
s∈S,t∈T

d(s, t). (A9)

Note dmin(S, T) = 0 if S, T intersect. In fact, dmin(S, T) = 0 if and only if their closures (in
the ambient space X) intersect. So, this is not an effective metric between subsets, as it can
frequently be zero for sets that are markedly different. We proceed to outline some existing
(semi-)metrics between finite sets that have been used for various applications (Conci and
Kubrusly 2017).

We begin with the Hausdorff distance, already defined in Definition 1:

dH(S, T) =max

(
sup
s∈S

d(s, T), sup
t∈T

d(t, S)

)
(A10)

= sup{d(s, T), s ∈ S; d(t, S), t ∈ T}. (A11)

Essentially, the Hausdorff metric considers how separated S and T are at the most, rather
than at least, compared with (A9). More precisely, it is the supremum or L∞ norm of all
minimal distances from points s ∈ S to T and points t ∈ T to S, as defined in (A8). The
Hausdorff distance satisfies the triangle inequality (so it is a true metric, rather than just a
semi-metric), but this supremum is highly sensitive to even a single outlier. Indeed, this is
the content of Proposition 3 and Corollary 1, that just one element of S or T can result in
great changes to dH(S, T).

Next, we discuss the pre-existing modified Hausdorff distances, which are semi-
metrics that were used in computer vision and other tasks.

Definition A1 (Modified Hausdorff distance 1). The first modified Hausdorff distance MH1 is
defined as follows (Deza and Deza 2013; Dubuisson and Jain 1994):

dMH
1 (S, T) = max

(
1
|S| ∑

s∈S
d(s, T),

1
|T| ∑

t∈T
d(t, S)

)
. (A12)

It takes a first step at replacing the max in the Hausdorff distance with geometric averaging.

Definition A2 (Modified Hausdorff distance 2). The second modified Hausdorff distance MH2
is defined as follows (Dubuisson and Jain 1994; Eiter and Mannila 1997):

dMH
2 (S, T) = ∑

s∈S
d(s, T) + ∑

t∈T
d(t, S). (A13)

Unlike (A12), this captures the total deviation between one set and another, with no averaging.
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Definition A3 (Modified Hausdorff distance 3). The third modified Hausdorff distance MH3 is
defined as follows (Deza and Deza 2013; Dubuisson and Jain 1994):

dMH
3 (S, T) =

1
|S|+ |T|

(
∑
s∈S

d(s, T) + ∑
t∈T

d(t, S)

)
. (A14)

This is a variant of (A12) with a different averaging component, referred to as geometric
mean error between two images.

In addition to the Hausdorff metric and the three pre-existing modified Hausdorff
distances defined above, there is also the Wasserstein distance, discussed in Section 3.

Now, we turn to the more recently introduced family of semi-metrics introduced in
James et al. (2020) and motivate it as our choice for this paper. Here, we first introduced the
MJ1 semi-metric:

d1
MJ(S, T) =

1
2

(
∑t∈T d(t, S)
|T| +

∑s∈S d(s, T)
|S|

)
. (A15)

Our initial motivation for this is as follow: In Dubuisson and Jain (1994), the authors
asserted that their distance MH1 is the best for image matching. To reach this conclusion,
they took two steps. First, they compared three favorable operators, f2, f3, and f4, each
operating on minimal distances d(s, T), d(t, S), as defined in Equation (A8). They briefly
argued that f2, equivalent to taking the max in the MH1, is preferable to other operators,
citing a “larger spread’.’ Second, they argued that a process of averaging distances is
superior to taking Kth ranked distances, such as the median. We differed with the first
step of their reasoning and replaced the max in their MH1 with the L1 norm average of all
the minimum distances from S to T and T to S, as seen in (A15). We proceeded to detail
some reasons why we preferred the MJ1 over the three aforementioned modified Hausdorff
distances, explained in Propositions 3.1, 3.2, 3.5, and 3.6 of James et al. (2020).

Regarding the second step of their reasoning (Dubuisson and Jain 1994), we agreed
that an averaging process was more suitable regarding outlier error than the alternative pro-
cesses and chose to generalize this by using other Lp norm averages. Thus, we introduced
the family of MJp semi-metrics. We define the MJp distance by

dp
MJ(S, T) =

(
∑t∈T d(t, S)p

2|T| +
∑s∈S d(s, T)p

2|S|

) 1
p

. (A16)

The normalization within the expression is chosen such that

dp
MJ(S, T) ≤ dH(S, T) for all p, and lim

p→∞
dp

MJ(S, T) = dH(S, T). (A17)

Thus, dH can now be viewed as the L∞ norm of these distances, that is, our family of
semi-metrics includes the Hausdorff distance as a limiting case when p → ∞. So, the
existing Hausdorff metric was thus placed in our newly introduced family of semi-metrics.
The parameter p sets up a trade-off of sorts: as p gets larger, dp

MJ becomes closer to a metric
satisfying the triangle inequality. However, as p gets smaller, Proposition 3 and Corollary 1
show that dp

MJ is less affected by outlier elements.
It is with this prior literature and body of work in mind that, when we wish to measure

discrepancy between time series’ sets of structural breaks (which are finite sets), the MJp
semi-metric in (4) was a natural choice. As for the precise selection of p, our optimization
framework did not particularly rely on the triangle inequality, while outlier sensitivity is
much more important. Hence, we select a small value of p, in this case p = 1

2 .
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Appendix B.3. Illustration Study of Different (Semi-)Metrics

In this section, we generate some figures to graphically illustrate different values the
aforementioned (semi-)metrics between sets can take. First, we generate a collection of
ten time series each, inspired by the synthetic time series in Section 4.1 and experiments
in James et al. (2020). The collection is displayed in Figure A1, chosen to feature time
series with moderate outlier elements. In this scenario, we consider the first five time series
(TS1–TS5 inclusive) as similar, the next three (TS6–TS8) as similar, and the final two (TS9
and TS10) as dissimilar to all other time series.

The graphical representation of these distances is supplied in Figure A2, in which we
apply hierarchical clustering to the collection of synthetic time series, using the Hausdorff,
MJ1, MJ0.5, and MJ2 distances. Even in this instance of moderate outliers, the Hausdorff
distance (Figure A2a) fails to correctly identify the general structure in the time series
collection (one cluster of 1–5, one of 6–8, and two outliers). The remaining three semi-
metrics correctly identify the general structure in the time series collection. As predicted,
the MJ0.5 (Figure A2b) does the best job, both at distinguishing between the two clusters of
similarity as well as highlighting the fact that the two outliers are distinct from everything
else. We thus provide this as graphical evidence of the suitability of p = 1

2 to handle outlier
elements, a necessary part of our overall optimization framework, as mentioned first in
Remark 1.

Figure A1. Collection of ten synthetic time series with structural breaks displayed. Two clusters of
similarity (TS1–TS5 and TS6–TS8) are observed, as well as two outlier elements (TS9 and TS10) not
similar to anything else.
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(a) (b)

(c) (d)
Figure A2. Hierarchical clustering applied to the ten synthetic time series in Figure A1 using (a) the
Hausdorff metric, (b) the MJ0.5, (c) the MJ1, and (d) the MJ2. Results indicate that the MJ0.5 does the
best job at distinguishing between the two clusters of similarity and highlighting the dissimilarity of
the two outliers.
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Drożdż, Stanislaw, Robert Gębarowski, Ludovico Minati, Pawel Oświęcimka, and Marcin Wątorek. 2018. Bitcoin market route to

maturity? Evidence from return fluctuations, temporal correlations and multiscaling effects. Chaos: An Interdisciplinary Journal of
Nonlinear Science 28: 071101. https://doi.org/10.1063/1.5036517.
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