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Abstract: This paper proposes a methodology for building Multivariate Time-Varying STCC–GARCH
models. The novel contributions in this area are the specification tests related to the correlation
component, the extension of the general model to allow for additional correlation regimes, and a
detailed exposition of the systematic, improved modelling cycle required for such nonlinear models.
There is an R-package that includes the steps in the modelling cycle. Simulations demonstrate the
robustness of the recommended model building approach. The modelling cycle is illustrated using
daily return series for Australia’s four largest banks.
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1. Introduction

Recently, Silvennoinen and Teräsvirta (2021) introduced a new multivariate GARCH
model called the Multivariate Time-Varying Smooth Transition GARCH model (MTV
model). This is a model that explicitly accounts for nonstationarities that are common
in daily return series. The authors considered maximum likelihood (ML) estimation of
the parameters of the model and, under suitable conditions, proved the consistency and
asymptotic normality of the resulting ML estimators.

Before actually estimating an MTV model, however, the model builder has to make
a number of data-driven decisions needed for specifying the parametric structure of the
model. Further, the estimated structure has to be evaluated by statistical tests to reveal its
potential weaknesses. Silvennoinen and Teräsvirta (2021) did not, however, discuss any
model building issues, leaving them for further research. The present work is intended to
fill this void.

As with many other multivariate GARCH models, the MTV model is based on the
decomposition of the conditional covariance matrix Bollerslev (1990), in which the con-
ditional covariance is decomposed to conditional variances and a conditional correlation
matrix. In the MTV model, however, it is assumed that the conditional variances can be
nonstationary, while a nested special case, (weak) stationarity, is a testable hypothesis.

Likewise, the correlations in this model are time-varying such that its time-varying
correlation matrix nests a constant correlation matrix. Due to the parametric structure
of this nonlinear correlation matrix, the constancy of correlations has to be tested (and
rejected) before fitting a model with time-varying correlations.
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Since, as will be explained later, these testing situations, both in the variances and
the correlation matrix, are nonstandard, specification of the MTV model is an important
issue in building MTV models. Furthermore, the estimated MTV model has to be evaluated
before using it, from which it follows that techniques for this part of the model building
process have to be examined as well.

In order to illustrate the MTV model building, we consider the Australian banking
sector. This is an oligopoly dominated by four banks, commonly called the ‘Big Four’. In
early 2020, they represented approximately 19% of the market value of the ASX200 share
index and held about 80% of the home loan market in Australia; see Figure 1. Consequently,
the banking sector is a major component for many Australian superannuation and other
investment funds. As to the Big Four daily returns, their volatility cannot automatically be
assumed to be stationary.

Furthermore, the correlations, even when time-varying, cannot a priori be assumed
to fluctuate around a constant level, which is one of the assumptions in many popular
multivariate GARCH models. Applying the flexible MTV model to these return series is,
therefore, an interesting exercise. An in-depth analysis of the Australian banking sector is
beyond the scope of this paper; however, modelling the daily returns of the Big Four over
a period of almost 30 years serves as a useful example of how our MTV model building
techniques work and are applied in practice.

The modelling process is data driven, requiring user input and consists of several
steps. For this reason, we developed an R-package to help users build MTV models. The
version of R used is 4.1.0. The package, called mtvgarch, includes, among other things, the
estimation routines as well as the necessary specification and evaluation tests. The code is
maintained in a private GitHub repository and can be obtained upon request.

The plan of the paper is as follows. The MTV model is introduced in Section 2,
followed by details of the stages and procedures related to the model building in Section 3.
Model specification is considered in Section 4, estimation in Section 5 and evaluation in
Section 6. Section 7 is devoted to the illustration of the complete modelling cycle on the Big
Four volatilities and correlations. Our conclusions can be found in Section 8. There are also
appendices containing material, such as relevant test statistics, simulation results, details of
the estimation algorithm, and estimated equations.
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Figure 1. The market capitalisation of the Big Four as percentage of ASX200 (left) and of ASX200
Financials Index (right).

2. The MTV Model

The MTV model used in this paper belongs to the family of multivariate GARCH
models introduced by Bollerslev (1990). In the original model, the conditional correlations
were constant, hence, the name Constant Conditional Correlation (CCC-GARCH) model.
This assumption that made the resulting model rather parsimonious was later found
to be too restrictive in applications, and time-varying correlations were simultaneously
introduced by Engle (2002) (dynamic conditional correlations, DCC) and Tse and Tsui (2002)
(varying correlations, VC). In these models, conditional variance components are typically
assumed to be stationary, and correlations are assumed, at least implicitly, to fluctuate
around a constant level.
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In order to consider the MTV model as defined in Silvennoinen and Teräsvirta (2021),
we introduce certain notation. The observable stochastic N × 1 vector εt is decomposed in
a customary fashion as

εt = H1/2
t zt = StDtP1/2

t ζt, (1)

where Ht = StDtPtDtSt is an N × N covariance matrix, and ζt ∼ iid(0, IN). We also define
zt = P1/2

t ζt, a vector of independent random variables with Ezt = 0 and a positive definite
deterministically varying covariance matrix cov(zt) = Pt. The structure of Pt will be defined
later. The deterministic matrix St = diag(g1/2

1t , . . . , g1/2
Nt ) has positive diagonal elements

for all t, and Dt = diag(h1/2
1t , . . . , h1/2

Nt ) contains the conditional standard deviations of the
elements of S−1

t εt = (ε1t/g1/2
1t , . . . , εNt/g1/2

Nt )
′. As in Silvennoinen and Teräsvirta (2021)

and earlier univariate papers, beginning with Amado and Teräsvirta (2008), and in the
multivariate time-varying GARCH article by Amado and Teräsvirta (2014), the diagonal
elements of S2

t are defined as follows:

git = gi(t/T) = δi0 +
ri

∑
j=1

δijGij(t/T, γij, cij), (2)

i = 1, . . . , N, where δi0 > 0 is a known constant, δij 6= 0, j = 1, . . . , ri, and the (generalised)
logistic function

Gij(t/T, γij, cij) = (1 + exp{−γij

Kij

∏
k=1

(t/T − cijk)})−1, (3)

where γij > 0 and cij = (cij1, . . . , cijKij)
′ such that cij1 ≤ . . . ≤ cijKij . Both γij > 0,

cij1 ≤ . . . ≤ cijKij , and δij 6= 0, j = 1, . . . , ri are identification restrictions. Assuming δi0 in (2)
is known is another one. Furthermore, to prevent exchangeability of the components in (2),
restrictions are needed on cij. As an example, if Kij = 1 for j = 1, . . . , ri, one can assume
(for instance) that ci11 < . . . < cir11.

As discussed in earlier papers, the idea of git is to normalise or rescale the observations.
Left-multiplying (1) by S−1

t yields

φt = S−1
t εt = Dtzt,

where each element of φt is assumed to have a standard weakly stationary GARCH
representation. In our work, the conditional variances have a GARCH or GJR-GARCH(1,1)
structure; see Glosten et al. (1993) for the latter:

hit = αi0 + αi1φ2
i,t−1 + κi1 I(φi,t−1 < 0)φ2

i,t−1 + βi1hi,t−1, (4)

where I(A) is an indicator function: I(A) = 1 when A occurs, zero otherwise. A higher-
order structure is possible, although there do not seem to exist applications of the GJR-
GARCH model of order greater than one.

The conditional covariance matrix E{φtφ
′
t|Ft−1} = DtPtDt. In order to describe the

correlation structure, we employ the Double Smooth Transition Conditional Correlation
(DSTCC) model by Silvennoinen and Teräsvirta (2009). In that model, assuming that the
transition variable is t/T throughout, the time-varying correlation matrix Pt is defined as

Pt =(1− G2(t/T, γ2, c2)){(1− G1(t/T, γ1, c1))P(11) + G1(t/T, γ1, c1)P(21)}
+ G2(t/T, γ2, c2){(1− G1(t/T, γ1, c1))P(12) + G1(t/T, γ1, c1)P(22)}, (5)

where P(ij), i, j = 1, 2, are four positive definite correlation matrices not equal to each other,
and

Gi(t/T, γi, ci) = (1 + exp{−γi

Ki

∏
k=1

(t/T − cik)})−1, γi > 0 (6)
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where ci = (ci1, . . . , ciKi ), ci1 < . . . < ciKi , i = 1, 2. This variant of the DSTCC model is
called the Time-Varying Correlation (TVC) model to emphasise its deterministic rather than
stochastic nature—hence, removing the term ‘Conditional’ from its name. For the Big Four
application, we simplify the definition (5) slightly by assuming P(12) = P(22), and therefore
(5) becomes

Pt =(1− G2(t/T, γ2, c2)){(1− G1(t/T, γ1, c1))P(1) + G1(t/T, γ1, c1)P(2)}
+ G2(t/T, γ2, c2)P(3), (7)

where re-indexing the matrices highlights the interpretation that there are two transitions
over time. One is from P(1) to P(2), and the other one is from a convex combination of these
two to P(3). Since P(1), P(2), and P(3) are positive definite, Pt is positive definite as a convex
combination of the three matrices. This simplified version of the TVC model is especially
useful when modelling correlations that shift from one state to the next as a function of time.
To that end, the obvious extension to n such transitions is best expressed as a recursion

P(0)
t = P(1)

P(n)
t = (1− Gn(t/T, γn, cn))P

(n−1)
t + Gn(t/T, γn, cn)P(n+1). (8)

When G2(t/T, γ2, c2) ≡ 1 and N = 2, (5) and (7) collapse into the smooth transition
correlation GARCH model by Berben and Jansen (2005) or, if the transition variable in G1 is
stochastic and N ≥ 2, into the smooth transition conditional correlation GARCH model of
Silvennoinen and Teräsvirta (2005, 2015). An MTV-Conditional Correlation GARCH model
with GARCH equations similar to the ones here but differently defined stochastic Pt was
discussed in Amado and Teräsvirta (2014). It may be noted that Feng (2006) introduced
another multivariate Conditional Correlation type GARCH model with deterministically
varying correlations. In this model, the variation is described nonparametrically, and the
model can be viewed as a generalisation of the univariate model in Feng (2004).

3. The Three Stages of Model Building

The MTV model is rather general and nests many models. To take one example, fitting
an MTV model when a nested CCC-GARCH model generates the data leads to inconsistent
parameter estimates. For this reason, building adequate MTV models requires care, and
a systematic approach is necessary. Selecting a candidate from this family of models is a
data-driven process, and statistical inference has to be used to obtain an acceptable model
such that it passes the available misspecification tests.

In this work, we follow the classical approach to model building advocated by Box
and Jenkins (1970) and later applied to nonlinear models of the conditional mean; see, for
example, Teräsvirta et al. (2010, Ch. 16). It has also been applied to building single-equation
MTV-GARCH models; see Amado and Teräsvirta (2017) and Amado et al. (2017). The
idea is to first specify the model (select a member from the family of MTV models) and,
once this has been done, to estimate its parameters. At the evaluation stage, the estimated
model is subjected to a battery of misspecification tests. These three stages, specification,
estimation, and evaluation, will be considered in the next three sections. The emphasis will
be on specification and evaluation as maximum likelihood estimation of the parameters of
the MTV model was already considered in Silvennoinen and Teräsvirta (2021).

4. Specification of the MTV Model
4.1. Specification of the Univariate Variance Equations

Specification of the MTV model is begun by specifying the univariate volatility equa-
tions. This was first discussed in Amado and Teräsvirta (2017). The idea is to begin with a
GARCH(1,1) model by Bollerslev (1986) or the GJR-GARCH model by Glosten et al. (1993)
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and to test the hypothesis that the multiplicative deterministic component is constant. The
single-equation MTV-GARCH model has the following form:

εit = zith
1/2
it g1/2

it , (9)

where zit ∼ iid(0, 1), the conditional variance hit is defined as in (4) with φit = εit/g1/2
it ,

and the deterministic positive-valued function git = gi(t/T) is defined as in (2) and (3).
Positivity of (2) imposes the following restrictions on δij, j = 1, . . . , ri:

δi0 +
ri

∑
j=1

δijGij(r, γij, cij) > 0

for all r ∈ [0,1].
Typically in applications, Kij = 1, 2 in (3). There are two specification issues, determin-

ing ri and choosing Kij, j = 1, . . . , ri. It is possible that gi(t/T) = δ0 > 0—that is, gi(t/T) is
a positive constant. In this case, the MTV-GARCH model collapses into a standard GARCH
or GJR-GARCH equation.

Amado and Teräsvirta (2017) solved the problem of choosing ri by first estimating
the GARCH model and testing the hypothesis of a constant gi(t/T) against the alternative
ri = 1 in (2) thereafter using a Lagrange multiplier type test. The test can be viewed as
a misspecification test of the estimated GARCH model. If the null hypothesis is rejected,
an MTV-GARCH model with a single transition is estimated, and the hypothesis ri = 1 is
tested against ri = 2. Sequential testing continues until the first non-rejection of the null
hypothesis.

The number of transitions is determined in this order because of an identification prob-
lem: the model with ri + 1 transitions is not identified if the true number of transitions is ri.
The shape of the logistic function, controlled by the parameter Kij, can be determined using
the sequence of tests familiar from the specification of smooth transition autoregressive
(STAR) models; see Teräsvirta (1994) or Teräsvirta et al. (2010, Ch. 16). Details can be found
in Amado and Teräsvirta (2017).

More recently, Silvennoinen and Teräsvirta (2016) considered testing the constancy of
gi(t/T) before estimating the GARCH model—that is, assuming hit = 1 in (9). The details
are laid out in Appendix A.1. This implies that the size of the test is distorted because
conditional heteroskedasticity is ignored, so it has to be adjusted by simulation. It turns out
that, by doing this, the power of the size-adjusted test considerably improves compared to
the case where the test is a standard misspecification test. Reasons for this improvement
are discussed in Silvennoinen and Teräsvirta (2016).

A major difficulty with this approach is that, while in simulations, the parameters of
the conditional variance component hit under the null hypothesis are known—in practice,
this is not the case. The underlying ‘null’ GARCH process has to be generated artificially. In
so doing, special attention is to be placed on the persistence of the (GJR-)GARCH process,
measured by αi1 + κi1/2 + βi1 in (4) when git ≡ 1. In fact, the asymmetry parameter has no
practical importance for the purpose of calibrating the test statistic distribution, and it is
therefore sufficient to restrict attention to the standard GARCH process. Other features,
such as implied kurtosis or relative sizes of α and β corresponding to a particular level of
persistence only have a negligible effect on the performance of the test.

A practical problem is that it is not possible to estimate this measure of persistence
when the null hypothesis does not hold—that is, when git is not constant over time. How
this difficulty is handled has an effect on the power of the test. We study two approaches
that are discussed more in detail in Appendix B.1. The first one consists of visually
identifying a period of time where there appears to be no change in the overall level of
baseline volatility. A standard GARCH(1,1) is estimated over this subperiod. The second
approach is to use rolling window variance targeting. This means that the intercept in the
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GARCH equation is time-varying, and its value at each point in time is calculated such that
it matches the unconditional variance obtained from a window around that point in time.

Simulations discussed in Appendix B.1 experiment with the choice of window size.
Both of these methods provide GARCH parameter and persistence estimates that are used
for calibrating the null distribution of the test statistic and calculating p-values.

4.2. Specification of Time-Varying Correlations

After the MTV-GARCH equations have been specified and estimated assuming the
errors are uncorrelated, the next step is to specify the time-varying correlation structure.
This is done by sequential testing. First, the constancy of correlation tested against the
model with a single transition, i.e., G2(t/T, γ2, c2) ≡ 1 in (5). The null hypothesis is that the
model is a MTV-Constant Correlation GARCH model as in Bollerslev (1990), except that the
GARCH equations are MTV-GARCH equations. If this model is rejected, the one-transition
model is estimated and tested against (5) or (7). If this specification is also rejected, the
alternative with two transitions is estimated. This is repeated until no further evidence for
time-variation in the correlations is detected.

As discussed in Silvennoinen and Teräsvirta (2005,2015), the MTV model with one
transition is only identified under the alternative, which invalidates the standard asymptotic
inference. The identification problem can be circumvented by approximating the transition
function (6) by its Taylor expansion around the null hypothesis, H0: γ1 = 0. The form of
the expansion depends on the order of the exponent in (6).

The test can be constructed along the lines presented in the appendix of Silvennoinen
and Teräsvirta (2005).1 See also Silvennoinen and Teräsvirta (2021). To derive the test
statistic, consider the first-order Taylor expansion of (6) around γ1 = 0 assuming K1 = 2. It
has the following form:

G1(t/T, γ1, c1) = (1 + exp{−γ1

K1

∏
k=1

(t/T − c1k)})−1

=
1
2
+

1
4
(t/T − c11)(t/T − c12)γ1 + R2(t/T; γ1), (10)

where R2(t/T; γ1) is the remainder. Using (10), (5) becomes

Pt =(P(1) − P(2))(
1
2
+

γ1c11c12

4
) + P(2) − (t/T)(P(1) − P(2))

γ1(c11 + c12)

4

+ (t/T)2(P(1) − P(2))
γ1

4
+ (P(1) − P(2))R2(t/T; γ1)

=P(A0) + (t/T)P(A1) + (t/T)2P(A2) + (P(1) − P(2))R2(t/T; γ1),

where P(A0) = (P(1) − P(2))(1/2 + γ1c11c22/4) + P(2), P(A1) = −(P(1) − P(2))γ1(c11 +
c12)/4, P(A2) = (P(1) − P(2))γ1/4, and P(1) 6= P(2). The main diagonals of P(A1) and
P(A2) consist of zeroes. Setting ρA = (ρ′A0, ρ′A1, ρ′A2)

′, where ρAi = vecl(P(Ai)), i = 0, 1, 2,

the new null hypothesis is H0: ρA1 = ρA2 = 0N(N−1)/2.2

Note that a simpler version of the test assumes Ki = 1 and yields a similar ap-
proximation although without the term (t/T)2P(A2). The new null in this case is H0:
ρA1 = 0N(N−1)/2. This version of the test is more powerful than the former in the case that
time-variation in the correlations is monotonic. However, and especially with longer time
horizons, this may not always be the case, and the square term of the expansion is able to
capture at least some nonmonotonic changes.

The details of the ensuing LM-type test statistic for the test of constant correlations is
presented in Appendix A.3, and the test for an additional transition in correlations is laid
out in Appendix A.4.
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5. Estimation of the MTV Model

After specifying the deterministic components of the model, both in GARCH equations
and correlations, one can estimate the complete model with conditional heteroskedasticity
included. The log-likelihood of the MTV-STCC-GARCH model has the form

ln f (ζt|θ) ∝− (1/2)
N

∑
i=1

ln git(θgi)− (1/2)
N

∑
i=1

ln hit(θhi)− (1/2) ln |Pt(θP)|

− (1/2)ε′t{St(θg)Dt(θg, θh)Pt(θP)Dt(θg, θh)St(θg)}−1εt, (11)

where the full parameter vector θ = (θ′h, θ′g, θ′P)
′ is partitioned according to the relevant

functions: the conditional variance in (4) θh = (θ′h1, . . . , θ′hN)
′ with θhi = (αi0, αi1, κi1, βi1)

′,
i = 1, . . . , N; the deterministic variance component in (2) and (3) θg = (θ′g1, . . . , θ′gN)

′

with θgi = (δi1, γi1, ci1, . . . , δiri , γiri , ciri )
′, i = 1, . . . , N; and correlations θP =

(veclP(1), . . . , γ1, . . . , c1, . . .)′, where the number of matrices as well as transition functions
(6) are determined by the choice of the model, (5), (7), or (8).

We make the following assumptions; see Silvennoinen and Teräsvirta (2021):

AN1. In (4), αi0 > 0, either αi1 > 0 and αi1 + κi1 ≥ 0 or αi1 ≥ 0 and αi1 + κi1 > 0, βi1 ≥ 0,
and αi1 + κi1/2 + βi1 < 1 for i = 1, . . . , N.

AN2. The parameter subspaces {αi0 × αi1 × κi1 × βi1}, i = 1, . . . , N, are compact, the whole
space Θh is compact, and the true parameter value θ0

h is an interior point of Θh.
AN3. ζt ∼ iidN(0, IN).

AN1 is the necessary and sufficient weak stationarity condition for the ith first-order GJR-
GARCH equation. Assumption AN2 is a standard regularity condition required for proving
the asymptotic normality of maximum likelihood estimators of θhi, i = 1, . . . , N. AN3
(normality) is a strong condition; however, it is needed here for the proofs to go through;
see Silvennoinen and Teräsvirta (2021). These assumptions are sufficient for the maximum
likelihood estimators of the GARCH parameters in single-equation GARCH models to be
consistent and asymptotically normal.

The parameters are estimated in turn: first estimate θgi to obtain starting-values for the
joint estimation of θg and θP. This is done assuming hit(θhi) ≡ 1, i = 1, . . . , N. Amado and
Teräsvirta (2013) showed in the single-equation GJR-GARCH case that, under regularity
conditions, the maximum likelihood estimator of θgi is consistent and asymptotically
normal. Silvennoinen and Teräsvirta (2021) generalised this result to MTV models. That
means that joint estimation of θg and θP by maximum likelihood produces consistent
estimates of these parameter vectors.

If θ̂g and θ̂P are consistent and Assumptions AN1, AN2, and AN3 hold, then, by
Theorem 3.3 of Song et al. (2005), the maximum likelihood estimator of θh is consistent
and asymptotically normal. After estimating θh, the parameter vectors θg and θP are
re-estimated. Iteration continues until convergence. Song et al. (2005) showed that the
final maximum likelihood estimator of θ is consistent and asymptotically normal. A more
detailed description of the maximisation by parts applied to the present situation can be
found in Appendix C; see also Silvennoinen and Teräsvirta (2021).

6. Evaluation of the MTV Model

Once the model has been specified and estimated, it has to be evaluated in order to
find potential misspecifications. The tests in Section 4.1 were used to guide the choice of
the functional form of the deterministic component, and a rejection of the null was seen
as evidence of the current model still lacking in its specification. In that sense, the tests in
Section 4.1 are seen as both specification and evaluation tests. It is worth reiterating that
these specification tests were constructed at the stage when the GARCH part was not yet
specified—that is, ht = 1 in (4). However, when the deterministic part passes these tests,
and an MTV-GARCH equation is subsequently estimated, there is room for additional
checks in terms of model misspecification, beyond the presently final model specification.
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The tests in Amado and Teräsvirta (2017) are available for this purpose. They fall into
three categories. In the first one, the deterministic component is additively misspecified. In
the context of the current MTV-GARCH model, the relevant case is a test for yet another
transition in (2). The second test assesses the GARCH equation for additive misspecification.
The concern here is the validity of the maximum lags p or q. The final test is the ‘test of
no remaining ARCH’, which is based on the idea of a sufficiently well-specified model
managing to clear any autocorrelation from the squared standardised residuals. The test
that suits each of these situations (or its robustified version to avoid the assumption of
normality) is conveniently performed following a set of steps outlined in Appendix A.2.

It is worth stating that the tests here are applied to P̂−1/2
t εt, one series at a time. Efforts

towards completing the tests in the complete N-variate system simultaneously would open
up a vast number of permutations of various misspecification options. To manage the task,
the recommendation is to focus on the univariate specifications one at a time, even with
the acknowledgment of some potential for deviating from the asymptotically exact results.
Simulations in Section Appendix B.2 indicate that applying the tests on the pre-filtered data
has very little impact on the distributions of the test statistics. While the standard form
of the misspecification tests suffers from minor oversizing, this is mostly corrected when
using the robust version of the test.

The test for an additional transition in the correlations in Section 4.2 may also be used
as an evaluation test. It is based on the completely specified univariate and correlation
components, and therefore its role as a misspecification test of a complete model is justified.
The number of degrees of freedom in this test quickly becomes large with increasing N.
One way of restricting this growth would be to assume that, under the alternative, only
the eigenvalues of the correlation matrix are changing over time. The alternative would
be a correlation matrix only if all correlations were identical (see Engle and Kelly (2012));
however, an LM test can nevertheless be built on this assumption.

Write the correlation matrix as Pt = QtΛtQ′t, where Pt is defined as in (5), Λt is the
diagonal matrix of eigenvalues and Qt contains the corresponding eigenvectors. Simplify
this by assuming Qt = Q and approximate Λt by Ψt = ∑K

k=0 Ψk(t/T)k. Under the null
hypothesis, K = 0. The resulting test statistic is derived, and its small-sample properties
are studied in Kang et al. (2022).

7. Big Four Results
7.1. Main Features of the Australian Banking Sector 1990–2020

In order to provide some background for our empirical results, we shall now draw
attention to a number of interesting features of the Australian banking sector between the
years 1990 and 2020. In 1990, the Australian government adopted an intervention policy
called ‘six pillars’. It covered the four biggest Australian banks commonly referred to as
the ‘Big Four’, the Commonwealth Bank of Australia (CBA), Westpac Banking Corporation
(WBC), National Australia Bank (NAB) and Australia and New Zealand Banking Group
(ANZ), listed in descending order of market share, as well as two insurers (AMP Limited
and National Mutual).

This policy stated that further mergers of these institutions would not be accepted.
The basic idea was to ensure a competitive banking market. In 1997, the policy became
‘four pillars’ as the insurers were left outside the arrangement. Since its establishment, it
has mostly enjoyed the support of the two main political parties, and the proponents of the
policy have argued that it has contributed to the stability and strength of the Australian
financial sector. The government also had sympathetic policy settings, which allowed the
banks to recapitalize in the 1990s and 2000s.

During this period, there were financial losses at Westpac (a $1.6 billion loss in 1992
and close to insolvency), ANZ (poorly executed international expansions) and subsequently
with NAB (purchase of the US mortgage originator and servicer Homeside led to $2.2 billion
in losses 2002). Although the Big Four were not allowed to merge with each other, larger
financial concentration due to mergers with other financial institutions was seen as accept-
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able: in 2008, Westpac and CBA acquired St. George and BankWest and then the fifth and
the sixth largest Australian banks, respectively. The impact can be seen in the right panel of
Figure 1 as the Big Four’s share of the ASX200 Financials Index drastically increased.

The recent history of the pillars policy coincides with a few major incidents and
changes. These include not only the dot-com boom in the late 1990s and early 2000s
and the global financial crisis (GFC) nearly ten years later but also events that have had
more localised impacts, such as a number of of regulatory changes (Basel guidelines), the
most recent mining boom that started around 2005 and was interrupted by the GFC, and
technology-driven market disruptions (non-bank lenders and payment providers). Since
the GFC, the banks have enjoyed substantial government support, including a deposit
guarantee and, as already noted, have come to dominate the home mortgage market with
an 80% market share.

During the first decade of the millennium, a few of the above-mentioned events have
positioned the Big Four in an increasingly competitive environment. The stagnation of the
housing market and the removal of barriers to changing mortgage providers may also have
contributed towards this trend; however, the most notable event was the announcement
in 2003 that Basel II was to be implemented in Australia by end of 2007. The idea behind
the updated accord was to level inequalities amongst the internationally active banks and
to set expectations regarding capital adequacy requirements. The Australian Prudential
Regulation Authority, in charge of overseeing the uptake of the accord, worked extensively
with numerous Authorised Deposit-Taking Institutions, the industry and other relevant
bodies during 2005 to 2007, aiming at ensuring that the adoption of Basel II included all
relevant aspects of the implementation process, its goals, and impacts.

Fear of being subjected to a competitive disadvantage relative to their international
counterparts, both within international and domestic operations, coupled with an opportu-
nity for a reduced regulatory capital, incentivised the banks to signal early their preference
to conform with the accord.3 As a result, Australia was amongst the first nations to have
fully implemented the framework on 1 January 2008.

7.2. Modelling the Error Variances

The daily return series for the Big Four used in this paper extend from 2 January 1992
to 31 January 2020. As suggested in the Introduction, these series may not be adequately
described by a weakly stationary GARCH or GJR-GARCH model. From the plots in
Figure 2, it is seen that the amplitude of clusters varies for all four banks, in particular
during and after the financial crisis beginning in 2008. The crisis was preceded by a rather
tranquil period between 2003 and 2008. This variation also shows in the autocorrelation
functions of the squared returns in Figure 3. In all four cases, the autocorrelations decay
very slowly as a function of the lag length, which suggests nonstationarity.

For this reason, modelling the returns has to be initiated by testing the stationarity
hypothesis. As discussed in Section 4.1, the slow moving ‘baseline’ volatility is specified
first, followed by the inclusion of the GJR-GARCH component. The test statistic from
Appendix A.1 is calibrated using methods described in Appendix B.1. In the first one,
based on choosing a period during which the amplitude of clusters seems constant, the
selected period extends from November 2003 to October 2007. In the other, where a rolling
window is moved over the observation period, the window size chosen by simulations is
400, as outlined in Appendix B.1.

To enhance the performance of the test, the entire sample of over 7000 observations
is broken into subsections. Once one transition is found and estimated, the test is applied
to both before and after this transition to determine if there is another transition on either
side. The process is continued until the null of no transition is not rejected. After the
deterministic component has been specified and its parameters tentatively estimated, the
GJR-GARCH equations are estimated together with the time-varying component to form a
complete TV-GJR-GARCH model. The estimated equations are then checked for signs of
misspecification using the tests from Amado and Teräsvirta (2017).
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Figure 2. Daily returns of the Big Four, from 2 January 1992 to 31 January 2020.
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Figure 3. The first 100 autocorrelations of squared returns.

Estimated TV-GJR-GARCH equations results appear in Table 1, and the deterministic
components are in Appendix D. For comparison, the GJR-GARCH equations without the
deterministic component are also reported in this table. In all four cases, the persistence
strongly decreases after rescaling the returns with the TV component.
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This is also indirectly obvious from the autocorrelations in Figure 4 that are consider-
ably smaller and decay faster than the ones in Figure 3. The main cause for this decrease lies
in the coefficient of the lagged conditional variance whose estimate shrinks in the process.
Estimates of the asymmetry parameter κi1 slightly increase, and thus asymmetry becomes
more pronounced when nonstationarity is properly modelled. Table 1 also contains the
kurtosis estimates for the two GJR-GARCH processes, obtained using definitions in He and
Teräsvirta (1999). It is seen that, in all four cases, rescaling lowers the kurtosis to values
close to three.

Table 1. Univariate estimation results for the four banks. GJR is the GJR-GARCH(1,1) equation, and
TV-GJR is the TV-GJR-GARCH equation; standard errors in parentheses.

αi0 αi1 κi1 βi1 Persistence Kurtosis

ANZ GJR 0.020
(0.005)

0.039
(0.007)

0.044
(0.008)

0.929
(0.008)

0.991 3.76

TV-GJR 0.111
(0.016)

0.015
(0.005)

0.046
(0.007)

0.792
(0.027)

0.831 3.02

CBA GJR 0.035
(0.005)

0.060
(0.008)

0.063
(0.011)

0.886
(0.010)

0.977 3.66

TV-GJR 0.107
(0.014)

0.021
(0.006)

0.065
(0.010)

0.813
(0.020)

0.867 3.06

NAB GJR 0.065
(0.009)

0.077
(0.010)

0.075
(0.014)

0.850
(0.014)

0.964 3.68

TV-GJR 0.152
(0.019)

0.021
(0.006)

0.058
(0.009)

0.731
(0.030)

0.780 3.03

WBC GJR 0.031
(0.006)

0.045
(0.007)

0.058
(0.010)

0.910
(0.009)

0.985 3.70

TV-GJR 0.079
(0.011)

0.015
(0.004)

0.041
(0.006)

0.829
(0.020)

0.864 3.02
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Figure 4. The first 100 autocorrelations of squared standardised returns ε2
it/ĝit.

Figure 5 contains the estimated transitions. There are two conspicuous features in
these graphs. One is the downward shift around 2004, which, for WBC, is a long and rather
smooth decline. This coincides with the local events discussed in the previous Section. The
other is that, for all four banks, the deterministic component remains higher after 2010 than
it was before 2008.
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For WBC, the deterministic component slowly but steadily declines after the crisis,
whereas, for the three others, it remains constant. This can also be seen from the estimated
equations behind the figures reported in Appendix D.
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Figure 5. Estimated multiplicative component ĝ1/2
it (solid curve) and the absolute returns |εit|

(grey area).

Effects of the deterministic component git on the GARCH equations also become obvi-
ous by comparing the conditional variances from the GJR-GARCH equations in Figure 6
with the TV-GJR-GARCH ones in Figure 7. Clearly, for all four banks, the nonstationarity
around 2008–2010 in the former figure is no longer visible in the latter.
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Figure 6. Estimated conditional variance ĥit from the GJR-GARCH model.
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Figure 7. Estimated conditional variance ĥit from the TV-GJR-GARCH model.

7.3. Modelling the Error Correlations

The stability of correlations over time, as discussed in Section 4.2, is tested using
the test statistic (A5) in Appendix A.3. The p-value of the test is very close to zero, and
thus the null hypothesis is rejected. An TVC model is then estimated with a single mono-
tonic time transition. The adequacy of this specification is tested with the test for an
additional transition.

The resulting p-value is 0.467; therefore, the single time-transition is deemed sufficient.
The estimation results of the TVC component of the model are presented in Table 2 (see
also Figure 8) indicate that the correlations between the standardised residuals are stable,
around 0.49–0.60 depending on the bank, from 1992 until the mid-to-late 2006. At that
point, the correlations begin their steady increase to the range of 0.78–0.83, which they
reach by early 2008. The final correlations are not only large but also remarkably similar.

Table 2. Estimation results for the four banks’ time-varying correlations. A total of 90% of the
estimated transition is between the dates 18 October 2006 and 28 February 2008. The centre point of
the location corresponds to 28 June 2007 with± two standard error ranges of 11 May–13 August 2007.

P(1) P(2)
ANZ CBA NAB ANZ CBA NAB

CBA 0.485
(0.011)

CBA 0.782
(0.006)

NAB 0.503
(0.010)

0.525
(0.010)

NAB 0.808
(0.005)

0.787
(0.005)

WBC 0.606
(0.009)

0.500
(0.011)

0.492
(0.011)

WBC 0.830
(0.004)

0.818
(0.005)

0.814
(0.005)

Transition parameters: c η
0.552
(0.002)

5.020
(0.162)

Note: η = ln γ; see Appendix A.2.

In addition to considering the complete Big Four system, we repeated the analysis
using bivariate models. The outcome was similar: a single transition was sufficient for all
pairs. Furthermore, inspection of the pairwise correlation estimates in Table 3 reveals strong
similarity between the four-variate and bivariate estimates. This is illustrated in Figure 9.
It should be noted that the shift in the correlation of the ANZ–NAB pair is estimated as a
step function.
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This happens when the speed of transition increases without a bound due to the
likelihood function effectively becoming ‘flat’ with respect to that particular parameter.
The solution is to fix the speed to a large value and proceed with the estimation of the
remaining parameters.

Table 3. Estimation results for the four banks’ time-varying bivariate correlations.

P(1) P(2)
ANZ CBA NAB ANZ CBA NAB

CBA 0.484
(0.011)

CBA 0.784
(0.006)

NAB 0.510
(0.010)

0.518
(0.011)

NAB 0.811
(0.005)

0.785
(0.005)

WBC 0.607
(0.009)

0.504
(0.011)

0.490
(0.011)

WBC 0.831
(0.004)

0.816
(0.005)

0.812
(0.005)

Transition parameters:
c η

ANZ CBA NAB ANZ CBA NAB
CBA 0.550

(0.005)
CBA 4.764

(0.280)
NAB 0.567

(0.001)
0.532
(0.008)

NAB 7.000
(−)

4.514
(0.341)

WBC 0.555
(0.005)

0.547
(0.004)

0.549
(0.004)

WBC 5.198
(0.308)

4.761
(0.254)

4.873
(0.294)

Note: η = ln γ; see Appendix A.2.

The steady increase of the correlations among the Big Four over time as well as the
maintained high correlation state since the GFC could be linked to a few changes in the
Australian financial sector. For instance, the time-varying correlation structure may reflect
the four pillars policy, the financial concentration, which was further strengthened by
the acquisition of the next largest banks by CBA and WBC in 2008. Further contributing
factors that may have made the banks look more similar from the investors’ point of view
include the regulatory requirements brought by the implementation of Basel II, the easing
of restrictions that directly impacted the home mortgage market that the Big Four now
dominated and the stagnation of the housing credit market. Furthermore, since the GFC,
all four banks have enjoyed substantial government support.

The fact that serious effort has been made to model the volatilities and correlations sep-
arately allows for observations on the timing and magnitude of those features without the
cross-contamination occurring if covariances were examined instead. It is often noted that
correlations increase during turbulent times. In the case of the Big Four, this is not exactly
the case. The calm volatility period (from 2003 until late 2007) overlaps with the period
of smoothly increasing correlations (16 months leading to early 2008). Furthermore, it is
notable that the GFC has a tremendous impact on the volatilities, whereas the correlations
have by then settled to their high levels and exhibit no further change.



Econometrics 2023, 11, 5 15 of 37

0.5

0.6

0.7

0.8

2000 2010 2020

ANZ:CBA

ANZ:NAB

ANZ:WBC

CBA:NAB

CBA:WBC

NAB:WBC

Figure 8. Estimated correlations. Vertical lines correspond to Oct 2007 and Feb 2008.
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Figure 9. Estimated pairwise correlations.

8. Conclusions

In this paper, a data-driven modelling cycle for building MTV-GARCH models for
asset returns was constructed and illustrated with an empirical example. The paper
complements Silvennoinen and Teräsvirta (2021), which presented the asymptotic theory
for this model, however, as already mentioned in the Introduction, does not contain
any discussion on practical model-building issues. All three phases of the cycle: model
specification, estimation, and evaluation, were covered. Specification includes testing the
constancy of the GARCH equations against multiplicatively time-varying GARCH. This is
a nonstandard testing problem as the MTV-GARCH model is not identified when the null
hypothesis holds.

Furthermore, constructing the null model requires new techniques due to the fact that
the conditional variance is not observed, and two such alternatives for solving this problem
are presented. Simulations reported in an online appendix show that the proposed testing
procedure had reasonable small-sample properties. In specifying the correlation structure,
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the constancy of correlations has to be tested, and a relevant test for this nonstandard
testing situation was developed.

The GARCH equations and the correlation structure, both nonlinear, were estimated
jointly, and the technical details of this process were presented. Misspecification tests for
the estimated model were derived to be used for the evaluation of the estimated model. The
application to the four main Australian banks, the Big Four, demonstrated the use of the
modelling cycle. The GARCH equations were found to be multiplicatively time-varying,
and the correlations also changed over time. The estimation results indicated that the
amplitude of the volatility clusters declines to a lower level around 2004 and temporarily
rises during the GFC.

The (positive) correlations were found to be nonconstant, and they increased to a
fairly high level already before the GFC. There is no single reason for this shift that is also
established by estimating pairwise models for the six pairs of banks separately. Generally
speaking, it may be argued that, whatever the aforementioned events before 2008 have
meant to the ability of the banks to compete with each other, from the investors’ viewpoint,
they have become increasingly similar. Given their size, these four banks may represent a
systemic risk to the Australian financial sector or the Australian economy in general.

Finally, the paper is accompanied by an R-package entitled mtvgarch, which is main-
tained in a private GitHub repository and contains all the econometric tools necessary for
building MTV-GARCH models.

There are appendices contain additional material to the paper. Appendix A provides
details of the TVV-model specification, the MTV-GARCH model evaluation, the test of
constant correlations, and finally the test for an additional transition in the correlations.
The simulations studies in Appendix B explore aspects of the specification and evaluation
of the GARCH equations, and the size and sensitivity of the test of constant correlations.
Appendix C presents the details of maximisation by parts. The estimated deterministic
components of the Four Banks’ transition equations are presented in Appendix D.
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Appendix A. Test Statistics

Appendix A.1. Test Statistic for TVV-Model Specification

In order to specify gt, we not only test constancy but even specify the number of transi-
tions before estimating the GARCH component of the model. Amado and Teräsvirta (2013)
showed that maximum likelihood estimators of the corresponding time-varying variance
(TVV) model, assuming that there is no conditional heteroskedasticity, are consistent and
asymptotically normal. This forms the base for constructing Lagrange multiplier type
tests for testing r against r + 1 transitions. For notational simplicity, consider testing one
transition against two. Omitting the subscript i for simplicity, the TVV model is (9) with
ht = 1, and

gt = δ0 + δ1G1(t/T, γ1, c1) + δ2G2(t/T, γ2, c2), γi > 0, i = 1, 2.

The null hypothesis is γ2 = 0—in which case, G2(t/T, γ2, c2) ≡ 1/2. To circumvent the
identification problem (the model with one transition is only identified when the alternative
γ2 > 0 is true), we follow Luukkonen et al. (1988) and approximate the second transition
by a third-order Taylor expansion around the null hypothesis. After reparametrisation,
this yields

gt = δ∗00 + δ1G1(t/T, γ1, c1) + ψ1t/T + ψ2(t/T)2 + ψ3(t/T)3, γ1 > 0. (A1)

We may call (9) with (A1) the auxiliary TVV model. The parameters ψi = γ2ψ̃i, where
ψ̃i 6= 0, i = 1, 2, 3. The new null hypothesis in (A1) equals H′0: ψ1 = ψ2 = ψ3 = 0. The
remainder term of the expansion can be ignored because when we construct a Lagrange
multiplier test, the model is only estimated under H0 (or H′0), and, under this hypothesis,
the order of the Taylor expansion equals zero. The remainder is present only under the
alternative, and thus ignoring it when H0 is valid does not affect the asymptotic size of the
test. It does make a positive contribution to the power of the test when H0 does not hold.

Assume (again, for notational simplicity) that K1 = 1 in (A1), so c1 = c1 (a scalar). The
log-likelihood for observation t of the auxiliary TVV model equals

`t = k− (1/2) ln gt − (1/2)
ε2

t
gt

and the corresponding element of the score is

∂`t

∂θ1
=

1
2
(

ε2
t

gt
− 1)

1
gt

∂gt

∂θ1
, (A2)

where θ1 = (δ∗00 , δ1, γ1, c1, ψ1, ψ2, ψ3)
′. Denoting G1(t/T) = G1(t/T, γ1, c1), the partial

derivative in (A2) is ∂gt/∂θ1 = (g′1(t/T), τ′t )
′ where

g1(t/T) = (1, G1(t/T), G1γ(t/T), G1c(t/T)G1γ(t/T))′

with G1γ(t/T) = G1(t/T)(1−G1(t/T))(t/T− c1), G1c(t/T) = −γ1G1(t/T)(1−G1(t/T)),
and τt = (t/T, (t/T)2, (t/T)3). Define the true parameter vector under H0 as θ0

1 =
(δ∗00 , δ0

1 , γ0
1, c0

1, 0, 0, 0)′. If zt is normally distributed, the corresponding element of the
information matrix under H0 has the form

Bt =
1
4
E(

ε2
t

gt
− 1)2

[
B11t B12t
B21t B22t

]
=

1
2

[
B11t B12t
B21t B22t

]
,
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where, letting g0
t = g0(t/T) = δ∗00 + δ0

1G1(t/T, γ0
1, c0

1) and denoting G0
1(t/T) = G1(t/T,

γ0
1, c0

1),

B11t =
1

2(g0(t/T))2 g0
1(t/T)g0

1(t/T)′, B12t =
1

2(g0(t/T))2 g0
1(t/T)τ′t

and
B22t =

1
2(g0(t/T))2 τtτ

′
t .

Let
g0

1(r) = (1, G0
1(r), G0

1γ(r), G0
1c(r))

′

and r = (r, r2, r3)′. We state the following lemma:

Lemma A1. Under the null hypothesis and assuming zt ∼ iidN (0, 1), the information matrix

B = lim
T→∞

1
2T

T

∑
t=1

[
B11t B12t
B21t B22t

]
=

1
2

[
B11 B12
B21 B22

]
,

where

B11 =
1
2

∫ 1

0
(g0(r))−2g0

1(r)g0
1(r)

′dr, B12 =
1
2

∫ 1

0
(g0(r))−2g0

1(r)r
′dr

and

B22 =
1
2

∫ 1

0
(g0(r))−2rr′dr.

Proof. The ‘sample’ information matrix with T observations equals

1
4T

T

∑
t=1

Bt =
1

4T

T

∑
t=1

[
B11t B12t
B21t B22t

]
.

Consider the (1, 2) element of B11(T) = (1/T)∑T
t=1 B11t:

[B11(T)]12 = (1/T)
T

∑
t=1

(g0(t/T))−2G0
1(t/T),

which is an average of T values of the logistic cumulative distribution function. Let [Tr] = t
be the integer closest to t. Then,

(1/T)
T

∑
t=1

(g0(t/T))−2G0
1(t/T) =

T

∑
t=1

∫ (t+1)/T

t/T
(g∗0([Tr]/T))−2G0

1([Tr]/T)dr

=
∫ (T+1)/T

1/T
(g∗0([Tr]/T))−2G0

1([Tr]/T)dr

→
∫ 1

0
(g∗0(r))−2G0

1(r)dr

as T → ∞. The other elements of B11 = limT→∞ B11(T), are derived in a similar fashion. In
matrix form,

B11 =
1
2

∫ 1

0
(g∗0(r))−2g0

1(r)g0
1(r)

′dr.

The blocks B12 and B22 are obtained similarly.
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Since the maximum likelihood estimators of the parameters of the auxiliary TVV
model under H0 are consistent, we may construct the LM test for the hypothesis H′0: ψ =
(ψ1, ψ2, ψ3)

′ = 0. Denoting the relevant block of the score by

s2(θ̂1) =
1

2T

T

∑
t=1

(
ε2

t
ĝt
− 1)

1
ĝt

∂gt

∂ψ
,

where ∂gt/∂ψ = τt and

ĝt = δ̂0 + δ̂1(1 + exp{−γ̂1(t/T − ĉ1)})−1.

Then, assuming zt = εt/g1/2
t is standard normal under H0, the test statistic has the follow-

ing form:
LM1

T = (T/2)s′2(θ̂1)(B22 − B21B−1
11 B12)

−1s2(θ̂1), (A3)

where θ̂1 = (δ̂∗0 , δ̂1, γ̂1, ĉ1, 0, 0, 0)′; see, for example, Godfrey (1988, p. 14). In order to make
(A3) operational, the blocks of B are replaced by their consistent counterparts.

When constancy of the error variance is tested against a single transition, gt ≡ δ0,
g1(t/T) = 1 (scalar), and ∂gt/∂ψ = τt as before. Then, B11 = (2(δ0

0)
2)−1,

B12 =
1

2(δ0
0)

2

∫ 1

0
r′dr and B22 =

1
2(δ0

0)
2

∫ 1

0
rr′dr.

The test statistic (A3) becomes

LM0
T =

T(δ0
0)

2

2δ̂2
0

s′2(θ̂1)(B22 − B21B−1
11 B12)

−1s2(θ̂1), (A4)

where

s2(θ̂1) =
1

2T

T

∑
t=1

(
ε2

t

δ̂0
− 1)τt.

When the elements of the covariance matrix are replaced by their consistent estimators in
(A4), the ratio (δ0

0)
2/δ̂2

0 equals unity.
As already mentioned, conditional heteroskedasticity is ignored in setting up the test.

For this reason, the test statistic (A3) is likely to be size distorted when applied to financial
time series of sufficiently high frequency—that is, when GARCH-type volatility clustering
is present. In applications, its size has to be adjusted by calibrating its distribution to reflect
the persistence of the GARCH effect present in the data. This is the topic of discussion in
Appendix B.1.

Appendix A.2. Test Statistic for MTV-GARCH Model Evaluation

In this section, the evaluation tests of the univariate MTV-GARCH equations are
presented in an easy to implement fashion. The full details can be found in Amado and
Teräsvirta (2017).

The test statistic is computed based on the following components: ζ̂t, r1t, and r2t.

ζ̂t = εt/
√

ĥt ĝt are the residuals, r1t contains the derivatives of the functions ht and gt with
respect to the parameters that govern the MTV-GARCH model under the null, θg and θh:

r1t = (ĝ−1
t

∂gt

∂θ̂g
+ ĥ−1

t
∂ht

∂θ̂g
, ĥ−1

t
∂ht

∂θ̂h
),

evaluated at the estimated parameters θ̂g and θ̂h. These are recursively calculated, and
depend on the prevailing MTV-GARCH model under the null. For example, one could
have gt = δ0 + δ1G1(t/T, γ1, c1) + δ2G2(t/T, γ2, (c21, c22)

′) and ht = α0 + α1ε2
t−1/gt−1 +
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κ1 I(εt−1 < 0)ε2
t−1/gt−1 + β1ht−1. Here, θg = (δ1, γ1, c1, δ2, γ2, c21, c22)

′ and θh =
(α0, α1, κ1, β1)

′. Then,

∂gt

∂θg
= (G1, δ1

∂G1

∂γ1
, δ1

∂G1

∂c1
, G2, δ2

∂G2

∂γ2
, δ2

∂G2

∂c21
, δ2

∂G2

∂c22
)′

where

∂G1

∂γ1
= G1(1− G1)(t/T − c1)

∂G1

∂c1
= −G1(1− G1)γ1

∂G2

∂γ2
= G2(1− G2)(t/T − c21)(t/T − c22)

∂G2

∂c21
= −G2(1− G2)γ2(t/T − c22)

∂G2

∂c22
= −G2(1− G2)γ2(t/T − c21).

The GARCH equation derivatives are formed recursively as

∂ht

∂θg
= −g−1

t (α1ε2
t−1/gt−1 + κ1 I(εt−1 < 0)ε2

t−1/gt−1)
∂gt−1

∂θg
+ β1

∂ht−1

∂θg

and
∂ht

∂θh
= (ε2

t−1/gt−1, I(εt−1 < 0)ε2
t−1/gt−1, ht−1)

′ + β1
∂ht−1

∂θh

From this example, it should be easy to extend the null model to include more addi-
tive deterministic terms and/or have a higher order GARCH equation with or without
asymmetric terms.

One extension regarding the deterministic part should be mentioned. It is often
convenient to replace the slope parameter γ with eη . In this case, θg = (δ1, η1, c1, δ2, η2,
c21, c22)

′, and

∂G1

∂η1
= G1(1− G1)eη1(t/T − c1)

∂G1

∂c1
= −G1(1− G1)eη1

∂G2

∂η2
= G2(1− G2)eη2(t/T − c21)(t/T − c22)

∂G2

∂c21
= −G2(1− G2)eη2(t/T − c22)

∂G2

∂c22
= −G2(1− G2)eη2(t/T − c21).

Vector r2t contains the derivatives of the misspecified part. Details in the most com-
monly encountered situations will be given shortly. The number of variables (columns) in
r2t defines the degrees of freedom in the χ2-distribution for the test statistic under the null.

Given the three components, the LM-test is performed as follows:

1. Compute the SSR0 = ∑T
t=1(ζ̂

2
t − 1)2.

2. Regress ζ̂2
t − 1 on (r1t, r2t), and form the sum of squared residuals SSR1.

3. Compute the test statistic LM = T SSR0−SSR1
SSR0

.

The robust version that does not rely on the normality of the error term is formed
as follows:
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1. Regress r2t on r1t and obtain residuals wt. When r2t has more than one variable, run
the regression for each of them separately and, thereby, obtain a set of residuals wt.

2. Regress 1 on (ζ̂2
t − 1)wt and form the sum of squared residuals SSR.

3. Compute the test statistic LMR = T − SSR.

The first case seeks to find evidence of misspecification of the determininstic part of
the MTV-GARCH model. The conditional variance is of the form

σ2
t = ht(gt + ft),

where the additive term ft is zero under the null of the model being correctly specified. The
case that we consider here is the one of testing r against r + 1 transitions in the deterministic
part. The additive term is linearised and reparameterised, after which, it becomes

ft = δ∗0 + δ∗1 t/T + δ∗2 (t/T)2 + δ∗3 (t/T)3.

The derivative component for the alternative is then

r2t = ĝ−1
t (1, t/T, (t/T)2, (t/T)3).

The second case addresses misspecification in the GARCH part:

σ2
t = (ht + ft)gt,

where the additive term ft is again zero under the null. A common scenario is when ft may
increase either the ARCH or the GARCH order (but not both). An example of the former is
GARCH(1,1) vs. GARCH(2,1), in which case, ft = α2ε2

t−2/gt−2, and therefore

r2t = ĥ−1
t ε2

t−2/ĝt−2.

If the model is a GJR one, and the potential increase in the order of the ARCH term extends
to the asymmetric terms as well, then ft = α2ε2

t−2/gt−2 + κ2 I(εt−2 < 0)ε2
t−2/gt−2, and

r2t = ĥ−1
t (ε2

t−2/ĝt−2, I(εt−2 < 0)ε2
t−2/ĝt−2).

An example of the latter is GARCH(1,1) vs. GARCH(2,1), which leads to ft = β2ht−2,
and thus

r2t = ĥ−1
t ĥt−2.

The third case is the test of no remaining ARCH. This is a test against multiplicative
misspecification,

σ2
t = htgt ft,

where ft = 1 under the null. If the alternative is that there is ARCH of order m left
unaccounted for, then

r2t = (ζ̂2
t−1, . . . , ζ̂2

t−m).

Appendix A.3. Test of Constant Correlations

The log-likelihood of the auxiliary MTV model for observation t assuming K = 2
equals

ln fA(ζt|θ) =− (1/2)
N

∑
i=1

ln git − (1/2)
N

∑
i=1

ln hit − (1/2) ln |PAt|

− (1/2)ε′t{StDtPAtDtSt}−1εt,

where
PAt = P(A0) + (t/T)P(A1) + (t/T)2P(A2)
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and git = δi0 + δi1Gi1(t/T, γi1, ci1); only one transition for notational simplicity, and hit
is as in (4). The first sub-block of the score corresponding to the deterministic variance
component under H0 becomes

st(θgi) = −
1
2
(g−1

it
∂git
∂θgi

+ h−1
it

∂hit
∂θgi

)(1− e′iP
−1
(A0)ztz′tei),

where ei = (0′i−1, 1, 0′N−i)
′, i = 1, . . . , N, and 00 is an empty set. The sub-block correspond-

ing to the GARCH parameters under H0 is

st(θhi) = −
1
2
(h−1

it
∂hit
∂θhi

)(1− e′iP
−1
(A0)ztz′tei),

i = 1, . . . , N. The remaining sub-blocks under H0 equal

st(ρAj) = −
1
2

∂vec(PAt)
′

∂ρAj
{vec(P−1

(A0))− (P−1
(A0) ⊗ P−1

(A0))vec(ztz′t)}

= −1
2
(t/T)jU ′{vec(P−1

(A0))− (P−1
(A0) ⊗ P−1

(A0))vec(ztz′t)},

j = 0, 1, 2, where U = ∂vec(P(Aj))/∂ρ′Aj consists of zeroes and ones and is identical for all j.
The N2×N(N− 1)/2 matrix U is a column-wise collection of vectorised indicator matrices
that identify the locations of the particular correlation parameters within the matrix PAt.
For example, the first correlation parameter in ρAj is located in positions (2,1) and (1,2) in
PAt. An indicator matrix corresponding to this parameter has ones in those positions and
zeros elsewhere. This vectorised indicator matrix is then the first column of matrix U and
so on. Consequently, the 3N(N − 1)/2× N2 matrix ∂vec(PAt)

′/∂ρA equals

∂vec(PAt)
′

∂ρA
=

 1
(t/T)
(t/T)2

⊗U ′.

The information matrix for observation t under H0 is quite similar to, but simpler
than, the corresponding one in Silvennoinen and Teräsvirta (2021). In order to give the
matrix a proper expression, we need the commutation matrix K, an N2 × N2 matrix whose
(i, j) block equals eje′i—that is, [K]ij = eje′i; see, for example, Lütkepohl (1996, pp. 115–18).
Let the superscript 0 indicate that the corresponding entity is evaluated under H0 (for
example, g0

it equals git|H0 , and ∂g0
it/∂θgi equals ∂git/∂θgi|H0). The matrix is defined in the

following lemma.

Lemma A2. The expectations of the nine blocks of the information matrix at (rescaled) time t/T
under H0: ρA1 = ρA2 = 0N(N−1)/2 are

B0
t = Est(θ

0)s′t(θ
0) = E

 st(θ0
g)s′t(θ

0
g) st(θ0

g)s′t(θ
0
h) st(θ0

g)s′t(ρA)

st(θ0
h)s
′
t(θ

0
g) st(θ0

h)s
′
t(θ

0
h) st(θ0

h)s
′
t(ρA)

st(ρA)s′t(θ
0
g) st(ρA)s′t(θ

0
h) st(ρA)s′t(ρA)

.

The (i, j) sub-block of B11t = Est(θ0
g)s′t(θ

0
g), i 6= j, equals

[B11t]ij = Est(θ
0
gi)s
′
t(θ

0
gj)

=
1
4
(

1
g0

it

∂g0
it

∂θgi
+

1
h0

it

∂h0
it

∂θgi
)(

1
g0

jt

∂g0
jt

∂θ′gj
+

1
h0

jt

∂h0
jt

∂θ′gj
)e′iP

−1
(A0)eje′iP(A0)ej.
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When i = j,

[B11t]ii = Est(θ
0
gi)s
′
t(θ

0
gi)

=
1
4
(

1
g0

it

∂g0
it

∂θgi
+

1
h0

it

∂h0
it

∂θgi
)(

1
g0

it

∂g0
it

∂θ′gi
+

1
h0

it

∂h0
it

∂θ′gi
)(1 + e′iP

−1
(A0)ei).

The (i, j) sub-block of B22t = Est(θ0
h)s
′
t(θ

0
h), i 6= j, equals

[B22t]ij = Est(θ
0
hi)s
′
t(θ

0
hj)

=
1
4
(

1
h0

it

∂h0
it

∂θhi
)(

1
h0

jt

∂h0
jt

∂θ′hj
)e′iP

−1
(A0)eje′iP(A0)ej.

When i = j,

[B22t]ii = Est(θ
0
hi)s
′
t(θ

0
hi)

=
1
4
(

1
h0

it

∂h0
it

∂θhi
)(

1
h0

it

∂h0
it

∂θ′hi
)(1 + e′iP

−1
(A0)ei).

The (i, j) sub-block of B12t = Est(θ0
g)s′t(θ

0
h), i 6= j, equals

[B12t]ij = Est(θ
0
gi)s
′
t(θ

0
hj)

=
1
4
(

1
g0

it

∂g0
it

∂θgi
+

1
h0

it

∂h0
it

∂θgi
)(

1
h0

jt

∂h0
jt

∂θ′hj
)e′iP

−1
(A0)eje′iP(A0)ej.

When i = j,

[B12t]ii = Est(θ
0
gi)s
′
t(θ

0
hi)

=
1
4
(

1
g0

it

∂g0
it

∂θgi
+

1
h0

it

∂h0
it

∂θgi
)(

1
h0

it

∂h0
it

∂θ′hi
)(1 + e′iP

−1
(A0)ei).

Furthermore, the (i, j) sub-block of Est(θ0
g)s′t(ρA) equals

[B13t]ij = Est(θ
0
gi)s
′
t(ρAj)

=
1
4
(t/T)j(

1
g0

it

∂g0
it

∂θgi
+

1
h0

it

∂h0
it

∂θgi
){(ei ⊗ ei)

′(P−1
(A0) ⊗ IN) + (ei ⊗ ei)

′(IN ⊗ P−1
(A0))}U,

i = 1, . . . , N; j = 0, 1, 2. The (i, j) sub-block of Est(θ0
h)s
′
t(ρA) equals

[B23t]ij = Est(θ
0
hi)s
′
t(ρAj)

=
1
4
(t/T)j(

1
h0

it

∂h0
it

∂θhi
){(ei ⊗ ei)

′(P−1
(A0) ⊗ IN) + (ei ⊗ ei)

′(IN ⊗ P−1
(A0))}U,

i = 1, . . . , N; j = 0, 1, 2. Finally, the (i, j) sub-block of the last block is equal to

[B33t]ij = Est(ρAi)s′t(ρAj)

=
1
4
(t/T)i+jU ′MAU,

i, j = 0, 1, 2, where

MA = P−1
(A0) ⊗ P−1

(A0) + (P−1
(A0) ⊗ IN)K(P−1

(A0) ⊗ IN).
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Proof. See the appendix of Silvennoinen and Teräsvirta (2005) or Silvennoinen and Teräsvirta
(2021).

In order to define the test statistic, let B13·j be the (i, j) blocks of B13 where i ∈
{1, . . . , N}—that is,

B13·j =
[
[B′13]j1, . . . , [B′13]jN

]
, j = 0, 1, 2

and define B23·j similarly. Partition the matrix B as follows:

B̃11 =

 B11 B12 B13·0
B′12 B22 B23·0

B′13·0 B′23·0 [B33]00

,

B̃12 =

[
B13·1 B13·2
[B33]01 [B33]02

]
and

B̃33 =

[
[B33]11 [B33]12
[B′33]12 [B33]22

]
.

Next, define

x̂jt = −
1
2
(

t
T
)jU ′{vec(P−1

(A0))− (P̂−1
(A0) ⊗ P̂−1

(A0))vec(ẑtẑ′t)},

j = 1, 2, where ẑt and P̂(A0) equal zt and P(A0) estimated under H0, respectively. The test
statistic

LMT = T(
1
T

T

∑
t=1

x̂′1t,
1
T

T

∑
t=1

x̂′2t){B̃22 − B̃′12(B̃0
11)
−1B̃12}−1(

1
T

T

∑
t=1

x̂′1t,
1
T

T

∑
t=1

x̂′2t)
′ (A5)

has an asymptotic χ2-distribution with N(N − 1) degrees of freedom when H0 holds. To
make the test statistic operational, the sub-blocks of the information matrix in (A5) have to
be replaced by consistent plug-in estimators.

Appendix A.4. Test for an Additional Transition in the Correlations

The test statistic for an additional transition is constructed in the same way as in
Appendix A.3, and the blocks related to the volatility components are identical. However,
all blocks related to the correlation need modifications to include the parameters governing
the time-varying correlation that exists under the null. This includes both the parameters
in the correlation matrices under the null, and their corresponding transition parameters.

Let us define xhit = h−1
it

∂hit
∂θhi

, xgit = g−1
it

∂git
∂θgi

+ h−1
it

∂hit
∂θgi

. Let us also partition the lin-

earised correlation model as PAt = PAt0 + t/TP(A1) + (t/T)2P(A2), where PAt0 contains
the time-varying correlation model under the null. When testing L transitions against L + 1
transitions, PAt0 contains L + 1 correlation matrices P(1), . . . , P(L+1) and L transition func-
tions Gl(t/T, γl , cl) (here, we assume Kl = 1 for simplicity), l = 1, . . . , L. The information
matrix is approximated by its consistent estimator

B̂ = T−1
T

∑
t=1

Et−1[st(θ
0)st(θ

0)′],

where θ0 = (θg, θh, θG, θρA0 , θρA1)
′, where θG contains the transition parameters from

the L transitions that are present under the null, θρA0 = (ρ(1), . . . , ρ(L+1))
′ and θρA1 =

(ρ(A1), ρ(A2))
′. From here on, the expressions are evaluated at the true parameter values

under the null (we omit the additional superscripts of 0 to keep the notation simple).
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With this notation, the (i, j) sub-block of B̂11, i 6= j, equals

[B̂11]ij =
1

4T

T

∑
t=1

xgitx′gjte
′
iP
−1
(At0)eje′iP(At0)ej.

When i = j,

[B̂11]ii =
1

4T

T

∑
t=1

xgitx′git(1 + e′iP
−1
(At0)ei).

Similarly, the (i, j) sub-block of B̂22, i 6= j, is equal to

[B̂22]ij =
1

4T

T

∑
t=1

xhitx
′
hjte
′
iP
−1
(At0)eje′iP(At0)ej.

When i = j,

[B̂22]ii =
1

4T

T

∑
t=1

xhitx
′
hit(1 + e′iP

−1
(At0)ei).

The (i, j) sub-block of B̂12, i 6= j, equals

[B̂12]ij =
1

4T

T

∑
t=1

xgitx′hjte
′
iP
−1
(At0)eje′iP(At0)ej.

When i = j,

[B̂12]ii =
1

4T

T

∑
t=1

xgitx′hit(1 + e′iP
−1
(At0)ei).

The next blocks deal with the transition parameters. Define xGt =
∂vecP′At

∂θG
. The lth block of

∂vecP′At
∂θG

is (
L

∏
i=l+1

(1− Gi)

)
∂Gi
∂θGi

vec(P(l+1) − P(l−1)
t )′

using the recursion in (8). The block B̂33 is equal to

B̂33 =
1

4T

T

∑
t=1

xGt MAx′Gt.

The ith sub-block of B̂13 equals

[B̂13]i =
1

4T

T

∑
t=1

xgit(e′iP
−1
(At0) ⊗ e′i + e′i ⊗ e′iP

−1
(At0))x′Gt

and the ith sub-block of B̂23 equals

[B̂23]i =
1

4T

T

∑
t=1

xhit(e
′
iP
−1
(At0) ⊗ e′i + e′i ⊗ e′iP

−1
(At0))x′Gt.
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Next, we will consider the blocks related to the correlations. The matrix ∂vec(PAt)
′/∂θρA0

equals

∂vec(PAt)
′

∂θρA0

= vs.⊗U ′ =



∏L
l=1(1− Glt)

G1t ∏L
l=2(1− Glt)

G2t ∏L
l=3(1− Glt)
· · ·

Gl−1,t(1− GLt)
GLt


⊗U ′

and the matrix ∂vec(PAt)
′/∂θρA1 equals

∂vec(PAt)
′

∂ρA1
=

[
t/T

(t/T)2

]
⊗U ′.

The block B̂44 is equal to

B̂44 =
1

4T

T

∑
t=1

vtv′t ⊗U ′MAU

and the (i, j) sub-block of B̂55 is equal to

[B̂55]ij =
1

4T

T

∑
t=1

(t/T)i+jU ′MAU

for i, j = 1, 2. The ith sub-block of B̂14 is equal to

[B̂14]i =
1

4T

T

∑
t=1

xgit(e′iP
−1
(At0) ⊗ e′i + e′i ⊗ e′iP

−1
(At0))(v

′
t ⊗U)

and the (i, j) sub-block of B̂15 is equal to

[B̂15]ij =
1

4T

T

∑
t=1

(t/T)jxgit(e′iP
−1
(At0) ⊗ e′i + e′i ⊗ e′iP

−1
(At0))U,

j = 1, 2. The corresponding sub-blocks of B̂24 and B̂25 are

[B̂24]i =
1

4T

T

∑
t=1

xhit(e
′
iP
−1
(At0) ⊗ e′i + e′i ⊗ e′iP

−1
(At0))(v

′
t ⊗U)

and the (i, j) sub-block of B̂15 is equal to

[B̂25]ij =
1

4T

T

∑
t=1

(t/T)jxhit(e
′
iP
−1
(At0) ⊗ e′i + e′i ⊗ e′iP

−1
(At0))U,

j = 1, 2. The block B̂34 equals

B̂34 =
1

4T

T

∑
t=1

xGt MA(v′ ⊗U).

The ith sub-block of B̂35 equals

[B̂35]i =
1

4T

T

∑
t=1

(t/T)ixGt MAU,
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i = 1, 2 Finally, the ith sub-block of B̂45 is equal to

[B̂45]i =
1

4T

T

∑
t=1

(t/T)i(vs.⊗U ′)MAU.

Next, define

x̂jt = −
1
2
(

t
T
)jU ′{vec(P−1

(A0t))− (P̂−1
(A0t) ⊗ P̂−1

(A0t))vec(ẑtẑ′t)},

j = 1, 2, where ẑt and P̂(A0t) equal zt and P(A0t) estimated under H0, respectively. The test
statistic

LMT = T(
1
T

T

∑
t=1

x̂′1t,
1
T

T

∑
t=1

x̂′2t)[B̂
−1]SW(

1
T

T

∑
t=1

x̂′1t,
1
T

T

∑
t=1

x̂′2t)
′,

where [B̂−1]SW is the N(N− 1)× N(N− 1) block in the south-west corner of the inverse of
B̂. As the matrix B̂ can have a large dimension, its inverse could be obtained by using block
inversion methods, perhaps applying them recursively. The test statistic has an asymptotic
χ2-distribution with N(N − 1) degrees of freedom when H0 holds.

Appendix B. Simulations of Test Statistics

Appendix B.1. Tests of GARCH Equations

The test for slow moving baseline volatility has a statistic whose distribution is sensi-
tive to the high frequency, GARCH, volatility. For this reason, one cannot use the asymptotic
distribution, rather the distribution must be generated via simulation. Further, Silvennoinen
and Teräsvirta (2016) showed that the size of the test was distorted if the GARCH param-
eterisation deviates from the true one. For this reason, a few alternative approaches to
estimate the GARCH parameters, and especially the persistence, have been investigated. It
should be noted that estimating GARCH without taking the nonstationarity into account
will yield overestimated persistence, thereby, impacting the null distribution of the test
statistic and thus rendering the test outcomes unreliable. These estimates are given in
Table A1.

The baseline volatility may be very different in different series. Therefore, one should
not ignore visual inspection of the returns nor rely on general rules of thumb. If there are
sufficiently long sections of data where the general level of volatility remains constant,
it is advisable to estimate the GARCH parameters over such subsample. In the present
case, there are a couple of relatively constant volatility sections—for example, one from
November 2003 until October 2007.

The parameter estimates for that calm subperiod are in Table A1. Comparison with
the estimates from the entire period GARCH model makes it clear that the neglected
nonstationarity has biased the estimates, resulting in high persistence and kurtosis. As
the data set has a sufficiently long span of GARCH-type clustering without (visually)
significant movement in the general baseline level, relevant estimates are obtained by using
that subsample only.

Another approach consists of estimating the GARCH equation over a rolling window
such that the intercept is time-varying, targeting the unconditional volatility over each
window, while the other parameters are assumed to be constant over the entire sample
period and estimated in the usual way. The choice of the window length should consider the
general recommendations regarding the sample size when attempting GARCH estimation.
Too long a window will be impacted by the slowly changing baseline volatility level,
whereas too short a window will yield very uncertain GARCH estimates.

To investigate the properties of this approach, we ran a simulation experiment with a
few different baseline volatilities. The window widths varied from 250 to 1000 observations.
Figures A1–A3 depict the distributions of the GARCH estimates and the derived persistence
and kurtosis measures, as explained in He and Teräsvirta (1999), for a selection of baseline
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volatilities and window widths. Based on these experiments, we concluded that a window
width of 400 observations yields sufficiently robust results for our application.

The resulting GARCH estimates are reported in Table A1, and they are quite similar to
the ones obtained for the aforementioned calm period. This can be interpreted as support
for the rolling window method, particularly in situations where visual inspection of data
does not reveal a sufficiently long period of constant unconditional volatility.

Overall, it is clear that using simply the GARCH estimates from the entire sample to
calibrate the null distribution of the test statistic for the specification of the deterministic
component of the volatility is not recommended. For comparison, Table A1 also reports
the GARCH estimates from a TV-GARCH model where the TV specification has been
completed. The estimated persistence is higher than the ones obtained from the calm
period or rolling window variance targeting method, however, as discussed in Silvennoinen
and Teräsvirta (2016), underestimation of persistence has a less severe impact on the
performance of the TV specification test than does overestimation.

Table A1. Specification stage for the deterministic component in volatilities of each of the four banks.
α̃ and β̃ are the initial estimates used for calibrating the test statistic distribution. The rolling window
method allows the GARCH intercept to adjust to target the unconditional variance in a window of
size 400. The ‘calm period’ selects the continuous period from Nov 2003 to Oct 2007, which has very
little visible variation in the baseline volatility. For comparison, the GARCH estimates from the entire
sample period are reported along with the final estimates from the TV-GARCH model.

α̃ β̃ Persistence Kurtosis

Rolling window 400

ANZ 0.090 0.836 0.926 3.38
CBA 0.087 0.850 0.937 3.43
NAB 0.095 0.817 0.912 3.36
WBC 0.085 0.858 0.943 3.45

Calm period

ANZ 0.073 0.852 0.925 3.24
CBA 0.081 0.842 0.923 3.29
NAB 0.066 0.829 0.896 3.14
WBC 0.091 0.806 0.897 3.28

Entire period GARCH only

ANZ 0.065 0.927 0.992 6.40
CBA 0.089 0.890 0.979 4.83
NAB 0.104 0.867 0.971 4.85
WBC 0.075 0.911 0.986 5.08

Entire period TV-GARCH

ANZ 0.078 0.880 0.957 3.50
CBA 0.091 0.860 0.950 3.61
NAB 0.107 0.825 0.931 3.62
WBC 0.084 0.878 0.962 3.70
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Figure A1. Simulated distributions of GARCH estimates and implied persistence and kurtosis
measures for a selection of window widths. The baseline gt has a single transition. The dotted vertical
lines indicate the true values of the parameters α, β, persistence and kurtosis.

Figure A1. Simulated distributions of GARCH estimates and implied persistence and kurtosis
measures for a selection of window widths. The baseline gt has a single transition. The dotted vertical
lines indicate the true values of the parameters α, β, persistence, and kurtosis.
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Figure A2. Simulated distributions of GARCH estimates and implied persistence and kurtosis
measures for a selection of window widths. The baseline gt has an asymmetric double transition. The
dotted vertical lines indicate the true values of the parameters α, β, persistence and kurtosis.

Figure A2. Simulated distributions of GARCH estimates and implied persistence and kurtosis
measures for a selection of window widths. The baseline gt has an asymmetric double transition. The
dotted vertical lines indicate the true values of the parameters α, β, persistence, and kurtosis.
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Figure A3. Simulated distributions of GARCH estimates and implied persistence and kurtosis
measures for a selection of window widths. The baseline gt has two double transitions. The dotted
vertical lines indicate the true values of the parameters α, β, persistence and kurtosis.

Figure A3. Simulated distributions of GARCH estimates and implied persistence and kurtosis
measures for a selection of window widths. The baseline gt has two double transitions. The dotted
vertical lines indicate the true values of the parameters α, β, persistence, and kurtosis.

Appendix B.2. Evaluation Tests of GARCH Equations

The fact that the evaluation tests discussed in Appendix A.2 are applied to the pre-
filtered data P̂t

−1/2
εt is known to potentially alter the distribution of the test statistic. In this

section, we present simulation results that show that the size of the tests remains practically
unchanged, rendering the tests applicable in the proposed way.

The simulation uses 2000 observations on a bivariate TVGARCH model parametrised
as ht = 0.10 + 0.05ε2

t−1/gt−1 + 0.85ht−1, gt = 1 + 3(1 + exp{−e3(t/T − 0.5)})−1. These
are coupled with a CCC model with ρ = 0.5, and then with an STCC model parametrised
as ρ(1) = 0.3, ρ(2) = 0.7, Gt = (1 + exp{−e2.5(t/T − 0.5)})−1. The noise terms are iid
standard normal. Two estimation procedures were used, a two-step and a multi-step one.

First step The individual TVGARCH models are estimated, assuming the series are
uncorrelated.
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Second step Estimate the correlation model conditional on the volatility model estimates
from the previous step. Then, estimate the TVGARCH models conditional
on the correlation estimates.

The misspecification tests are then calculated using the TVGARCH estimates from
the second step, and the data is pre-filtered with the correlation estimates from the second
step. The multi-step continues repeating the procedure of the second step until no further
improvements are achieved.

Table A2. Size simulation for the three types of misspecification tests in Amado and Teräsvirta (2017).
2000 replications. T = 2000, N = 2. MS1: gt additively misspecified, alternative linearised with a
first-order term only; MS2-a: GARCH(1,1) vs. GARCH(1,2); MS2-b: GARCH(1,1) vs. GARCH(2,1);
MS3: test for remaining ARCH, lag 1.

Standard Robust
10% 5% 1% 10% 5% 1%

CCC two-step MS1 0.146 0.085 0.020 0.132 0.074 0.016
MS2-a 0.122 0.064 0.012 0.101 0.048 0.013
MS2-b 0.143 0.080 0.017 0.108 0.051 0.008
MS3 0.125 0.061 0.010 0.104 0.054 0.010

STCC two-step MS1 0.134 0.074 0.023 0.121 0.055 0.015
MS2-a 0.123 0.059 0.015 0.101 0.045 0.013
MS2-b 0.122 0.062 0.019 0.087 0.044 0.010
MS3 0.115 0.058 0.015 0.100 0.050 0.011

CCC multi-step MS1 0.145 0.083 0.022 0.133 0.073 0.014
MS2-a 0.116 0.062 0.015 0.097 0.052 0.009
MS2-b 0.133 0.069 0.018 0.100 0.046 0.010
MS3 0.120 0.062 0.016 0.107 0.060 0.014

STCC multi-step MS1 0.147 0.084 0.023 0.135 0.068 0.012
MS2-a 0.130 0.059 0.011 0.103 0.046 0.006
MS2-b 0.120 0.067 0.016 0.090 0.039 0.005
MS3 0.112 0.055 0.012 0.104 0.047 0.009

From Table A2, it is evident that the standard form of the tests is slightly oversized.
The robust version of the tests, on the other hand, seems to behave well, and there is no need
for any adjustments of the test statistics or their distributions. Therefore, the procedure
of removing the correlations between the series prior to applying the evaluation tests can
be recommended.

Appendix B.3. Tests of Correlations

The simulation experiment investigates the size of the test in an environment where
the multivariate model is correctly specified. The number of data series considered in the
system is N = 2, 5, 10, 20. The length varies from T = 25 for the bivariate systems, which is
relevant for time series systems in macro applications, up to T = 1000, which, in turn, is
considered to be a fairly small sample size for high frequency returns data. The length of
the time series places a constraint on the dimension of the model—that is, the parametric
alternative is only feasible if the number of parameters remains comfortably below the
amount of available data points. We simulated the test by both assuming that Dt ≡ IN and
that there is conditional heteroskedasticity in the model: Dt 6= IN .

When Dt ≡ IN , we found that the results were fairly independent of the structure of
the correlations. We used both equicorrelation and Toeplitz matrices in our simulations,
and the results remained the same. Table A3 contains the results of a simulation in which
Dt ≡ IN , and the N × N correlation matrix P = [ρij] is an equicorrelated one with weak
(ρ = 1/3) and moderately strong (ρ = 2/3) correlation. The table also reports the results
from using a Toeplitz correlation matrix such that [ρij] = ρ|i−j|, i, j = 1, . . . , N with ρ = 0.5
representing moderate to weak correlation and ρ = 0.9 representing strong to moderate
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correlation. It is seen that the empirical size of the test is rather close to the nominal one
already when N = 2 and T = 100. The size holds up across the various correlation patterns.

Table A3. Size-study: Test of constant correlations. Data are generated as an MTV-CCC with
an equicorrelation coefficient of 0.33 (CEC33) and 0.67 (CEC67) and a Toeplitz structure with a
correlation coefficient of 0.5 (CTC50) and 0.9 (CTC90). Tests are based on the first-order polynomial
approximation. A total of 5000 replications.

CEC33 CEC67 CTC50 CTC90
N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

2 25 0.023 0.076 0.132 0.022 0.069 0.128 0.024 0.074 0.130 0.022 0.070 0.126
50 0.015 0.063 0.116 0.016 0.064 0.115 0.016 0.064 0.115 0.015 0.062 0.109
100 0.011 0.056 0.104 0.010 0.054 0.102 0.011 0.056 0.103 0.010 0.051 0.101
250 0.012 0.055 0.108 0.010 0.054 0.107 0.011 0.055 0.106 0.009 0.053 0.108
500 0.010 0.051 0.097 0.009 0.049 0.097 0.010 0.050 0.096 0.009 0.050 0.094

1000 0.010 0.048 0.099 0.010 0.048 0.095 0.010 0.046 0.097 0.010 0.049 0.092

5 100 0.011 0.054 0.112 0.011 0.053 0.110 0.011 0.056 0.112 0.011 0.053 0.111
250 0.014 0.054 0.099 0.012 0.051 0.099 0.013 0.053 0.100 0.012 0.051 0.101
500 0.010 0.050 0.104 0.010 0.053 0.106 0.009 0.052 0.101 0.010 0.054 0.105

1000 0.010 0.056 0.102 0.010 0.052 0.103 0.009 0.053 0.100 0.008 0.053 0.103

10 250 0.013 0.055 0.112 0.013 0.057 0.112 0.013 0.057 0.110 0.012 0.054 0.115
500 0.009 0.049 0.101 0.010 0.049 0.104 0.008 0.053 0.103 0.010 0.050 0.103

1000 0.011 0.052 0.102 0.011 0.054 0.105 0.011 0.053 0.099 0.012 0.056 0.103

20 1000 0.012 0.056 0.106 0.012 0.057 0.106 0.013 0.056 0.103 0.012 0.056 0.107

We next turn to the case Dt 6= IN . Tables A4 and A5 contain results of size simulations
where the sensitivity of the test is examined against combinations for the GARCH persis-
tence and kurtosis as well as a selection of strengths of correlations (the equicorrelated and
Toepliz ones described above). The test is generally well-sized.

Table A4. Size-study: Test of constant correlations. Data are generated as an MTV-GARCH-CEC with
persistence of 0.95 and 0.97, kurtosis of 4 and 6, and an equicorrelation coefficient of 0.33 and 0.67.
Tests are based on the first-order polynomial approximation. A total of 2500 replications.

CEC33 CEC67
kurtosis = 4 kurtosis = 6 kurtosis = 4 kurtosis = 6

Persistence N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

0.95 2 500 0.012 0.056 0.108 0.016 0.056 0.106 0.016 0.070 0.122 0.016 0.092 0.122
2 1000 0.009 0.044 0.103 0.009 0.042 0.097 0.011 0.045 0.093 0.009 0.044 0.097
2 2000 0.008 0.042 0.094 0.007 0.042 0.090 0.010 0.052 0.099 0.009 0.046 0.092
5 500 0.006 0.062 0.118 0.006 0.070 0.114 0.018 0.076 0.140 0.018 0.082 0.146
5 1000 0.016 0.060 0.119 0.016 0.061 0.112 0.016 0.059 0.115 0.018 0.060 0.112
5 2000 0.010 0.058 0.108 0.008 0.051 0.102 0.016 0.060 0.116 0.010 0.052 0.098

10 500 0.016 0.058 0.118 0.020 0.064 0.114 0.020 0.068 0.116 0.024 0.080 0.128
10 1000 0.018 0.053 0.104 0.015 0.051 0.101 0.014 0.061 0.111 0.017 0.063 0.110
10 2000 0.014 0.072 0.126 0.012 0.060 0.112 0.018 0.082 0.142 0.013 0.062 0.118

0.97 2 500 0.010 0.056 0.114 0.012 0.054 0.118 0.020 0.072 0.114 0.014 0.068 0.120
2 1000 0.011 0.043 0.102 0.011 0.044 0.103 0.012 0.047 0.107 0.013 0.048 0.103
2 2000 0.009 0.046 0.094 0.007 0.042 0.089 0.010 0.056 0.108 0.012 0.050 0.093
5 500 0.004 0.066 0.124 0.012 0.056 0.104 0.012 0.088 0.152 0.018 0.086 0.164
5 1000 0.015 0.063 0.113 0.014 0.067 0.114 0.018 0.063 0.121 0.019 0.060 0.125
5 2000 0.010 0.060 0.110 0.008 0.050 0.100 0.015 0.060 0.118 0.012 0.050 0.101

10 500 0.012 0.062 0.108 0.016 0.070 0.112 0.016 0.072 0.112 0.022 0.086 0.148
10 1000 0.016 0.053 0.100 0.015 0.056 0.107 0.015 0.063 0.113 0.018 0.057 0.110
10 2000 0.015 0.074 0.132 0.014 0.058 0.108 0.016 0.088 0.142 0.010 0.063 0.112
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Table A5. Size-study: Test of constant correlations. Data are generated as an MTV-GARCH-CTC with
persistence of 0.95 and 0.97, kurtosis of 4 and 6, and a correlation matrix with a Toeplitz structure with
a correlation coefficient of 0.5 and 0.9. Tests are based on the first-order polynomial approximation. A
total of 2500 replications.

CTC50 CTC90
kurtosis = 4 kurtosis = 6 kurtosis = 4 kurtosis = 6

Persistence N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

0.95 2 500 0.010 0.064 0.102 0.010 0.070 0.106 0.018 0.094 0.136 0.026 0.088 0.146
2 1000 0.009 0.041 0.097 0.011 0.042 0.103 0.014 0.053 0.096 0.020 0.062 0.104
2 2000 0.008 0.044 0.096 0.009 0.044 0.090 0.017 0.066 0.120 0.014 0.048 0.098
5 500 0.006 0.062 0.118 0.010 0.058 0.114 0.020 0.120 0.212 0.050 0.134 0.210
5 1000 0.014 0.060 0.112 0.018 0.064 0.113 0.027 0.076 0.134 0.034 0.093 0.144
5 2000 0.011 0.057 0.110 0.008 0.052 0.105 0.020 0.075 0.142 0.018 0.058 0.110

10 500 0.012 0.070 0.120 0.016 0.080 0.128 0.040 0.114 0.172 0.078 0.150 0.230
10 1000 0.012 0.049 0.100 0.013 0.051 0.102 0.019 0.078 0.127 0.032 0.089 0.147
10 2000 0.019 0.072 0.127 0.014 0.059 0.111 0.033 0.110 0.178 0.018 0.077 0.140

0.97 2 500 0.014 0.066 0.114 0.018 0.068 0.116 0.016 0.082 0.134 0.030 0.104 0.164
2 1000 0.009 0.044 0.101 0.008 0.042 0.099 0.016 0.051 0.112 0.022 0.063 0.119
2 2000 0.010 0.050 0.102 0.009 0.044 0.092 0.024 0.070 0.120 0.015 0.052 0.100
5 500 0.014 0.056 0.128 0.008 0.074 0.130 0.024 0.134 0.208 0.052 0.160 0.256
5 1000 0.013 0.059 0.112 0.016 0.066 0.123 0.022 0.082 0.157 0.037 0.102 0.164
5 2000 0.014 0.062 0.112 0.010 0.052 0.101 0.028 0.086 0.145 0.020 0.066 0.116

10 500 0.018 0.080 0.128 0.022 0.088 0.130 0.040 0.114 0.172 0.100 0.188 0.278
10 1000 0.012 0.054 0.105 0.013 0.054 0.107 0.019 0.078 0.127 0.030 0.104 0.181
10 2000 0.016 0.072 0.132 0.016 0.062 0.110 0.033 0.110 0.178 0.026 0.089 0.150

However, an interesting aspect is that there is slight oversizing when kurtosis decreases
(which means shifting the relative weight from α to β in the GARCH equation, while
keeping the persistence constant). A change in persistence does not seem to affect the size
of the test. As the dimension of the system increases, the test does not perform equally well.
Increasing the sample size does not seem to be able to counteract this (the simulations use
T = 500, 1000, 2000).

In yet another simulation (results not reported here), we considered the effects of
misspecifying the conditional heteroskedasticity on the correlation test. More specifically,
when Dt 6= IN but conditional heteroskedasticity is ignored, the test is, as may be expected,
heavily oversized. The obvious conclusion is that the constancy of correlations can only be
tested after specifying and estimating both Dt and St.

Appendix C. Details of Maximisation by Parts

This appendix describing the outlines of the estimation algorithm derives from Silven-
noinen and Teräsvirta (2021). The estimation proceeds as follows.

1. Assume ln hit(θhi, θgi) = 0, i = 1, . . . , N, and estimate parameters θg = (θg1, . . . , θgN)
′,

i = 1, . . . , N, equation by equation, assuming Pt(θρ) = IN . Denote the estimate

St(θ̂
(1,1)
g ). This means that the deterministic components gi(t/T, θgi) have been esti-

mated once, including the intercept δi0 in (2).
2. Estimate Pt(θρ) given θg = θ̂

(1,1)
g . This requires a separate iteration because Pt(θρ) is

nonlinear in parameters; see (5) and (6). Denote the estimate Pt(θ̂
(1,1)
ρ ).

3. Re-estimate St(θg) assuming Pt(θρ) = Pt(θ̂
(1,1)
ρ ). This yields St(θ̂

(1,2)
g ). Then, re-

estimate Pt(θρ) given θg = θ̂
(1,2)
g . Iterate until convergence. Let the result after R1

iterations be St(θg) = St(θ̂
(1,R1)
g ) and Pt(θρ) = Pt(θ̂

(1,R1)
ρ ). The resulting estimates are

maximum likelihood ones under the assumption Dt(θh, θg) = IN .
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4. Estimate θh from Dt(θh, θ̂
(1,R1)
g ) using Pt(θρ) = Pt(θ̂

(1,R1)
ρ ). This is a standard multi-

variate conditional correlation GARCH estimation step as in Bollerslev (1990), because
St(θ̂

(1,R1)
g ) is fixed and does not affect the maximum and Pt(θ̂

(1,R1)
ρ ) is known. In total,

steps 1–4 form the first iteration of the maximisation algorithm. Denote the estimate
θ̂
(1)
h .

5. Estimate θg from St(θg) keeping Dt(θ̂
(1)
h , θ̂

(1,R1)
g ) and Pt(θ̂

(1,R1)
ρ ) fixed. This step is

analogous to the first part of Step 3. The difference is that Dt(θ̂
(1)
h , θ̂

(1,R1)
g ) 6= IN .

Denote the estimator St(θ̂
(2,1)
g ).

6. Estimate Pt(θρ) given θg = θ̂
(2,1)
g and θh = θ̂

(1)
h . Denote the estimator Pt(θ̂

(2,1)
ρ ).

Iterate until convergence, R2 iterations. The result: St(θg) = St(θ̂
(2,R2)
g ) and Pt(θρ) =

Pt(θ̂
(2,R2)
ρ ).

7. Estimate θh from Dt(θh, θ̂
(2,R2)
g ) using Pt(θρ) = Pt(θ̂

(2,R2)
ρ ) (St(θ̂

(2,R2)
g ) is fixed). The

result: θh = θ̂
(2)
h . This completes the second full iteration.

8. Repeat steps 5–7 and iterate until convergence.

For identification reasons, δ0i, i = 1, . . . , N, is frozen to δi0 = δ̂
(1,R1)
i0 . This frees the

intercepts in θhi. Any positive constant would do for δi0; however, for numerical reasons,
the intercepts are fixed to the values they obtain after the first iteration when θh has not yet
been estimated a single time.

In practice, in estimating the slope parameters in transition functions it may be useful
to apply the transformation γij = exp{ηij}, in which case γij need not be restricted when
ηij is bounded away from −∞. The motivation for this transformation is that estimating
ηij instead of γij is numerically convenient in cases where γij is large; see Goodwin et al.
(2011) or Silvennoinen and Teräsvirta (2016) for discussion.

Another alternative, proposed by Chan and Theoharakis (2011), is to redefine the slope
parameter as γij = 1/η2

ij and estimate ηij. The authors show that this also alleviates the
convergence problems sometimes found when γij is large. Ekner and Nejstgaard (2013)
aim at the same effect by rescaling γij to vary between zero and one.

Appendix D. Estimated Transition Equations

This appendix contains the estimated deterministic components in the TV-GARCH
Equations (standard deviation estimates in parentheses). Note that the intercept is fixed
after the first iteration; hence, it does not have a standard deviation estimate.

ANZ: ĝ1t =2.28− 1.234
(0.059)

(1 + exp{−5.715
(1.223)

(t/T − 0.404
(0.003)

)})−1

+ 12.316
(1.518)

(1 + exp{−5.875
(0.392)

(t/T − 0.571
(0.002)

)})−1

− 11.704
(1.514)

(1 + exp{− 4.459
(0.0.166)

(t/T − 0.623
(0.004)

)})−1.

CBA: ĝ2t =1.35− 0.525
(0.054)

(1 + exp{−5.638
(2.545)

(t/T − 0.407
(0.007)

)})−1

+ 9.257
(1.871)

(1 + exp{−5.117
(0.374)

(t/T − 0.574
(0.004)

)})−1

− 8.944
(1.867)

(1 + exp{−4.504
(0.252)

(t/T − 0.621
(0.006)

)})−1.
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NAB: ĝ3t =1.07 + 3.843
(1.273)

(1 + exp{−2.518
(0.130)

(t/T − 0.303
(0.034)

)})−1

− 3.491
(1.114)

(1 + exp{−3.787
(0.329)

(t/T − 0.373
(0.008)

)})−1

+ 20.026
(5.692)

(1 + exp{−4.926
(0.229)

(t/T − 0.576
(0.003)

)})−1

− 20.039
(5.676)

(1 + exp{−4.183
(0.123)

(t/T − 0.609
(0.006)

)})−1.

WBC: ĝ4t =2.45− 3.120
(0.554)

(1 + exp{−2.194
(0.124)

(t/T − 0.534
(0.034)

)})−1

+ 25.782
(12.524)

(1 + exp{−4.569
(0.158)

(t/T − 0.585
(0.006)

)})−1

− 23.616
(12.682)

(1 + exp{−4.767
(0.375)

(t/T − 0.607
(0.007)

)})−1.

The locations of the transitions are remarkably similar across transitions. The first
transition of the WBC equation is very slow. The effect of the transition extends over the
whole estimation period and is the reason for the post-crisis decline in the value of ĝ4t; see
Figure 5.

Notes
1 Available also in https://econ.au.dk/research/researchcentres/creates/research/creates-research-papers/supplementary-

downloads/rp-2012-09, accessed on 26 January 2023.
2 The operator vecl(·) stacks the subdiagonal elements of its argument matrix.
3 See Explanatory Statement, Banking (prudential standard) Determination 2007, Nos 5, 12 and 15. https://www.legislation.gov.

au/Details/F2007L04593/ (accessed on 26 January 2023), https://www.legislation.gov.au/Details/F2007L04600/ (accessed
on 26 January 2023) and https://www.legislation.gov.au/Details/F2007L04603/ (accessed on 26 January 2023).
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