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Abstract: For more than half a century, Manfred Deistler has been contributing to the construction
of the rigorous theoretical foundations of the statistical analysis of time series and more general
stochastic processes. Half a century of unremitting activity is not easily summarized in a few pages. In
this short note, we chose to concentrate on a relatively little-known aspect of Manfred’s contribution
that nevertheless had quite an impact on the development of one of the most powerful tools of
contemporary time series and econometrics: dynamic factor models.
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1. Introduction

Manfred Deistler is justly famous for his landmark contribution to the theoretical
foundations of time series analysis. In this short note, however, we deliberately chose to
focus on a lesser known aspect of his activity, which nevertheless had quite an impact on
the theory and practice of one of the most powerful tools of contemporary time series and
econometrics: dynamic factor models.

Dynamic factor models—as we shall see in Section 3 below, this traditional terminology
is somewhat of a misnomer, as the general dynamic factor model (6) and (7) (of which other
factor models are particular cases) follows as a representation result rather than constituting
a statistical model and does not necessarily involve factors, see Hallin and Lippi (2014)—
were developed, in the econometric literature mostly, as a response to the need to analyze
and forecast time series in high dimension. Increasingly often, datasets of econometric
interest take the form XN,T := {Xit| i = 1, . . . , N t = 1, . . . , T} of a large number N of
time series observed over a period of time T—the finite N × T realization of the double-
indexed process X := {Xit| i ∈ N t ∈ Z} with arbitrarily intricate cross-sectional and serial
dependence structures.

Even for moderate values of N, the traditional (parametric) methods of multivariate
time-series analysis are running into the theoretical and numerical problems related to
the curse of dimensionality. The need for an alternative approach became evident in the
late 1970s, leading to the first factor model proposals by Sargent and Sims (1977), Geweke
(1977), Chamberlain (1983), and Chamberlain and Rothschild (1983). These four papers can
be considered as early forerunners of the modern literature on factor models—a literature
that had a new start in the early 2000’s, with four papers, essentially, that triggered most
subsequent developments: Forni et al. (2000), Bai and Ng (2002), Stock and Watson (2002a,
2002b). Chamberlain (1983) and Chamberlain and Rothschild (1983) were particularly
influential as an early example of high-dimensional time-series asymptotics where both the
dimension N and the series length T tend to infinity.
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Econometricians, of course, were not the only ones facing inference problems in
high-dimensional spaces. Interestingly, a couple of years later, mathematical statisticians,
in the more restricted context of Gaussian i.i.d. observations (a very particular case of time
series) independently adopted a somewhat different approach, leading to the so-called
spiked covariance model. We are showing here how spiked covariance models and factor
models, while sharing some common features, nevertheless differ on an essential point,
and we explain why factor models are both more general and statistically more successful.

Finally, we show how Manfred Deistler, by providing the missing final piece of the
general dynamic factor model jigsaw, made a decisive impact in this area—an impact that
deserves to be better known.

Outline of the paper. Section 2 deals with the spiked covariance model developed
in the probability and mathematical statistics literature. This model, indeed, is somewhat
similar to the factor-model approach, with an essential difference that helps understand
the benefits of the latter. Section 3 features a brief history of the factor-model approach and
introduces the general dynamic factor model (GDFM). Section 4 highlights the importance
of Manfred Deistler’s contribution to the ultimate development of the GDFM methodology.

2. Spiked Covariance Models: A Needle in a Growing Haystack

While econometricians were facing the time-series version of high-dimensional ob-
servations and the curse of dimensionality, mathematical statisticians also were dealing
with high-dimensional asymptotics in the more restricted framework of i.i.d. samples
where only cross-sectional dependencies are present. Interestingly, while sharing some
common features with factor models, the models they developed are leading to strikingly
different conclusions.

Most of the probability and statistics literature in the area revolves around the so-called
spiked covariance models—a terminology that was coined, apparently, by Johnstone (2001).
In that model, which has attracted much interest in the recent years, the observation is of
the form

XN,T := {Xit| i = 1, . . . , N t = 1, . . . , T} (1)

where
Xt := (X1t, . . . , XNt)

′, t = 1, . . . , T (2)

are i.i.d. N (0, C) with, denoting by SN−1 the unit sphere in RN ,

CN = IN +
q

∑
k=1

λkv(n)
k v(n)′

k , q ≥ 1, λ1 > λ2 > . . . > λq > 0 (3)

for some unspecified v(n)
k ∈ SN−1, k = 1, . . . , q; asymptotics are taken as N and T tend to

infinity in such a way that N/T → κ—the so-called phase transition threshold. To simplify
the discussion, let q = 1, that is, CN = IN + λvNv′N for some vN ∈ SN−1.

That model leads to a number of mathematically beautiful but statistically puzzling
asymptotic results: the sample covariance eigenvalues pack together, filling the support
of the Marchenko-Pastur density; the distribution of any finite number of centered and
normalized largest sample covariance eigenvalues converges to the multivariate Tracy-
Widom law irrespective of the values of (1 + λ) in [1, κ); and the sequence of distributions
of Xt under λ = 0 (no spike) is contiguous to the corresponding sequence with 0 < λ < κ,
albeit with contiguity rate n0 = 1, which, in particular, precludes consistent estimation of λ
(see Onatski et al. 2013, 2014 for details). The statistical value of such results is, to say the
least, somewhat limited—all the more so that in practice N = N0 and T = T0 do not tend
to infinity, so that the value of κ, the role of which is crucial, is completely arbitrary and
bears no relation to the observed sample. (The value of the actual ratio N0/T0 is usually
chosen for want of anything better.) That spiked covariance literature, thus, has little to
offer to econometricians who have to produce forecasts and, moreover, are facing serially
dependent and mostly non-Gaussian observations.
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These intriguing results all are due to the choice of the asymptotic scheme itself. Recall
that asymptotics are a mathematical fiction by which limiting results (as N and T tend to
infinity) are expected to provide an approximation to the actual fixed-(N = N0, T = T0)
problem. The scenario of that mathematical fiction is not in the data and entirely depends
on the statistician’s choice. That choice, thus, should aim at optimizing the quality of the
approximation and is not meant to describe any actual real-world situation: a scenario
under which the “cross-sectional future” resembles the actual observation is likely to
achieve that objective much better than a “worst-case one”. In traditional time series
asymptotics with fixed dimension (N=N0), where only T → ∞, stationarity with respect
to t is the reasonable and usual choice. While the specification, for N > N0 of a fictitious
yet sensible “cross-sectional future” is more delicate, the choice leading to the spiked
covariance model (2) and (3) definitely has the flavor of a “catastrophe scenario”, which is
unlikely to provide a good approximation to the finite-dimensional, finite-sample situation.

Below are two types of data-generating processes (two sequences of unit vectors vN)
leading to the single-spiked-covariance model—the N × N covariance matrix (3):

(a)
{

X1t = χ1t + ξ1t
Xit = ξit, i = 2, . . . , N vN =


1
0
...
0

 CN = I + λ


1 0 . . . 0
0 0 . . . 0
...

. . .
0 0 . . . 0

,

where χ1t i.i.d. N (0, λ), and ξit i.i.d. N (0, 1), i = 1 . . . , N, t = 1, . . . , T;

(b)
{

X1t = χ1t + ξ1t
Xit = χit + ξit, i = 2, . . . , N vN =


1√
N

1√
N
...
1√
N

 CN = I + λ


1
N . . . 1

N
...

. . .
...

1
N . . . 1

N



where χit =
√

λ
N ut , ut and ξit i.i.d. N (0, 1), i = 1 . . . , N, t = 1, . . . , T.

Actually, (a) and (b) coincide up to a rotation in RN—an orthogonal matrix P with the
first column of the form ( 1√

N
. . . 1√

N
)′, indeed, is turning (a) into (b)—they only differ by

the choice of a coordinate system, thus, and all of their covariance eigenvalues (theoretical
and empirical) coincide.

Under (a), a bounded spike λ (justifying the spiked terminology) is “hidden” under a
growing number N − 1 of uninformative white noises—a finite needle buried in an ever-
growing haystack. Growing N clearly does not provide any information (only growing T
does). The fact that the needle gets undetected when its size λ is small relative to the
asymptotic value κ of the ratio N/T (the larger that ratio, the faster the haystack growth)
thus is hardly surprising.

Model (b) takes the form of a factor model decomposition, with a cross-sectionally
pervasive “common shock” ut loaded by all components Xit with loadings

√
λ/N tending

to zero as N → ∞, and an idiosyncratic ξit, which is Gaussian white noise . While cross-
sectionally pervasive, however, ut is not loaded strongly enough for the largest eigenvalue
of CN , which is 1 + λ, to diverge as N → ∞.

The situation, however, improves dramatically if the size of the needle grows with
the dimension N. Letting χit of the form χit =

√
λ/N1−δ ut in (b), with δ ∈ (0, 1) being

arbitrarily small (loadings
√

λ/N1−δ still tending to zero as N → ∞, at slightly slower rate,
though), CN ’s largest eigenvalue is 1 + Nδλ, which tends to infinity as N → ∞. With χit of
the form χit =

√
cλ ut (c > 0 arbitrarily small), the loadings are

√
cλ and no longer tend

to zero as N → ∞; CN’s largest eigenvalue is 1 + cλN, which linearly tends to infinity
as N → ∞.

All of the problems then disappear: with such loadings, (b) yields a (very) special case
of the dynamic factor models developed by the econometricians and described in Section 3,
where consistent estimation of the loadings—hence of λ—is possible.
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Now, the same conclusions hold about (b) if we let

χit =

√
λ

N
ut for i = 1, . . . , N and χit =

√
λ/N1−δ ut for i ≥ N + 1 (4)

or
χit =

√
cλ ut for i = 1, . . . , N and χit =

√
λ/N1−δ ut for i ≥ N + 1. (5)

Assuming (b) with χit of the form (4) or (5) instead of the original formulation (2) and (3)
is clearly tantamount to adopting alternative asymptotic scenarios as it only modifies the
postulated but not-to-be-observed form of the “cross-sectional future” (namely, the form of
the cross-sectional components with index i ≥ N + 1), which is an arbitrary choice of the
statistician. Under these alternative scenarios, the spike λ = λN , say, keeps growing with N
(viz., λN = λNδ under (4), λN = cλN under (5)), thus balancing the impact of a growing
dimension N: the needle now is growing—be it arbitrarily slowly—with the haystack.

The asymptotic scenario (5) and, in fact, any scenario of loadings leading to a lin-
early exploding largest eigenvalue for CN (all other eigenvalues remaining bounded) is
particularly appealing as it consists of assuming that the fictitious “cross-sectional future”
resembles the observed “cross-sectional past”—a form of cross-sectional stability that is
much more likely to provide a good approximation of the finite-(N, T) problem under
study than the classical spiked-covariance-model asymptotics underlying (2) and (3).

3. Dynamic Factor Models: Pervasive Needles and the Blessing of Dimensionality

As mentioned in the Introduction, econometricians faced the needle-in-the haystack
problem long time before probabilists and mathematical statisticians did—long time before
the expression “big data” was coined. Econometrics require operational solutions: the
asymptotic scenario of a needle that, at the end of the day, cannot be found is somewhat
inappropriate in the econometric context. Moreover, economic data are seldom i.i.d. Gaus-
sian; they generally are serially auto- and cross-correlated and often heavy-tailed (often
yielding infinite fourth-order moments). An econometric theory of high-dimensional time
series therefore needs to address much more general situations than those covered by
Gaussian spiked covariance models.

The econometric theory of factor models for high-dimensional observations arose from
that need and takes various forms; the spirit of the approach, as initiated by Chamberlain
(1983) and Chamberlain and Rothschild (1983), is easily explained, however, from a

multispiked (q spikes) extension of (b) yielding q exploding eigenvalues λ1;N , . . . , λq;N ,
namely, q needles, which, in a sense, are growing with the haystack.

Under their most general form—the so-called general dynamic factor model (the ter-
minology generalized dynamic factor model is used equivalently) or GDFM introduced in
Forni et al. (2000)—factor models proceed as follows. The observation is still of the
form XN,T described in (1), but the assumptions are much more general, allowing for
serial auto- and cross-correlations and non-Gaussian densities. Assuming that they exist,
denote by ΣΣΣN(θ), θ ∈ [0, π] the N × N spectral density matrices of the N-dimensional
processes {XN,t := (X1t, . . . , XNt)

′| t ∈ Z}. These density matrices are nested as N → ∞.
Some eigenvalues—q of them are (θ−a.e.) exploding, and the other ones remain (θ−a.e.)
bounded as N → ∞ . This yields a decomposition of ΣΣΣN(θ) into

ΣΣΣN(θ) = ΣΣΣχ
N(θ) +ΣΣΣξ

N(θ), θ ∈ [0, π]

where ΣΣΣχ
N(θ), called the common spectral density, has reduced rank q and q diverging dynamic

eigenvalues—the terminology dynamic eigenvalues used for the eigenvalues of a spectral
density matrix was coined by Brillinger (1964, 1981), who introduced the concept. As
for ΣΣΣξ

N(θ), called the idiosyncratic spectral density, it only has bounded dynamic eigenvalues.
That decomposition of ΣΣΣN(θ) in turn induces a decomposition of the observations Xit

into
Xit = χit + ξit i = 1, . . . , N, t = 1, . . . , T, N ∈ N, T ∈ Z (6)
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where χit, with spectral density ΣΣΣχ
N(θ), and ξit, with spectral density ΣΣΣξ

N(θ), are mutually
orthogonal at all leads and lags; χit is called the common component, ξit the idiosyncratic
component. Since the spectral density ΣΣΣχ

N(θ) has reduced rank q, the common component χit
is driven by q << n mutually orthogonal white noises:

χit = Bi(L)ut, ut = (u1t, . . . , uqt)
′ (7)

(L, as usual, stands for the lag operator), while the idiosyncratic component ξit, having
bounded dynamic eigenvalues, is only mildly cross-correlated (it can be strongly auto-
correlated, though); see Hallin and Lippi (2019) or Lippi et al. (2022) for recent surveys.

Further constraints can be imposed on the decomposition. Among them, the static
loading assumption (Stock and Watson 2002a, 2002b; Bai and Ng 2002; Bai 2003, and
many others)

χit = B′iut, ut = (u1t, . . . , uqt)
′ (8)

(Bi here is a q× 1 real vector) under which the shocks ut are loaded in a static and contem-
poraneous way, while in (7) the loadings are filters Bi(L) and the shocks are loaded in a
dynamic way (involving lagged shock values).

As soon as the spectral density ΣΣΣN(θ) exists and admits a finite number q of exploding
eigenvalues, a GDFM representation (6) with dynamic loadings (7) exists (although an infi-
nite number of exploding eigenvalues in theory is not impossible, such cases are extremely
artificial and contrived: see Hallin and Lippi (2014) for an example). The existence of a fac-
tor model decomposition (6) with static loadings (8), however, is a strong assumption one
should like to avoid. Multivariate economic time series, let alone the infinite-dimensional
ones, typically involve leading and lagging series, loading the common shocks with var-
ious leads and lags. The GDFM, which allows for this and basically does not place any
restrictions on the data-generating process, is much preferable in that respect.

The GDFM was introduced by Forni et al. (2000), who establish its asymptotic identi-
fiability—the “blessing of dimensionality”—and propose a consistent (consistency here is
not uniform in t, though: see Forni et al. (2000) for details) estimation strategy based on
Brillinger’s concept of dynamic principal components.

The moot point with dynamic principal components, however, is that their computa-
tion involves two-sided filters, i.e., it involves both the past and the future values of the
observed Xit’s. This is fine in the “center” of the observation period but not at the edges.
In particular, the estimation, for forecasting purposes, of uT , is likely to be poor irrespective
of N and T as the future observations XN,T+1, XN,T+2, . . . are not available.

The advantage of static loadings is that, under (8), q coincides with the number
of exploding “static” eigenvalues—the eigenvalues of the N × N covariance matrix CN
of XN,T . Additionally, Bai and Ng (2002) and Stock and Watson (2002a, 2002b) pro-
pose an estimation method relying on a traditional principal component analysis of XN,T .
These principal components, at given time t, only require the contemporaneous observa-
tion XN,t := (X1t, . . . , XNt)

′: no problems, thus, for t = T and forecasting issues. This,
and the popularity of traditional principal component methods, explains why practitioners,
somewhat regrettably, prefer the static contemporaneous loading approach despite its lesser
generality, its lack of parsimony, and the fact that the crucial and quite restrictive underly-
ing assumption (8) may not hold. This latter fact is often dispelled by arguing that lagged
values of the factors can be incorporated into a static loading scheme via stacking. This,
which may very severely inflate the number of factors, is a flawed argument. Indeed, there
is no guarantee that these lagged values enjoy the pervasiveness properties required from
static factors, with the consequence that, in the traditional principal component estimation
method, they get lost to the idiosyncratic.

Up to this point, the general dynamic factor model, in view of its generality, is a
brilliant idea, the practical implementation of which apparently is blocked, hopelessly,
by the the two-sided nature of Brillinger’s dynamic principal components. Here is, however,
where Manfred Deistler enters into the picture.
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4. Manfred Deistler and the General Dynamic Factor Model

Manfred Deistler’s seminal contribution to the analysis of general dynamic factor
models originates in his interest in the properties of reduced rank processes. The following
result—unrelated, at first sight, to factor models and high-dimensional time series—follows
from Anderson and Deistler (2008a).

Anderson and Deistler call tall the transfer function D(L) of a Q-dimensional pro-
cess {Yt| t ∈ Z} driven by a q-dimensional white noise {wt| t ∈ Z} where q < Q, namely,
a process of the form

Yt = D(L)wt t ∈ Z (9)

where D(L) is some Q× q filter. By abuse of language, we say that the process {Yt} itself
is tall.

Recall that a process satisfying (9) with D(L) =
(

Dij(L)
)

is called rational if the fil-
ter D(L) itself is rational, that is, if Q× q matrix filters

(
Eij(L)

)
and

(
Fij(L)

)
and integers m

and p exist such that, for all i = 1, . . . , Q and j = 1, . . . , q, Fij(0) = 1, the degree of Eij(L)
is m, the degree of Fij(L) is p, and Dij(L) = Eij(L)/Fij(L); note that D(L) then involves a
finite (although unspecified) number P = Qq(m + p + 1) of real parameters: call it rational
of order P. Also, recall that a subset of a topological space is generic if it contains an open and
dense subset. Denoting by ΠP the parameter space (a complete description of ΠP would
require the filters Fij(L) and Eij(L) to be stable and having no common zeroes) indexing the
family of rational filters of order P, the genericity below is meant for ΠP as a subset of RP:
call it ΠP-genericity.

As in Forni et al. (2015), the way the fundamental result of Anderson and Deistler
(2008a) is presented here is geared towards its general dynamic factor model application
and slightly differs from the original formulation. Rather than a rational spectrum of
order P (P unspecified but finite), the latter assumes a state space representation with
finitely many parameters. For the sake of simplicity, the formulation below also slightly
differs from the statements in Sections 3 and 4 of Forni et al. (2015), where more general
and complete results can be found.

Proposition 1. Let {Yt| t ∈ Z} be a tall process satisfying (9) for some rational Q× q filter D(L).
Then, for ΠP-generic values of D(L) (P unspecified), Yt admits, for some K < ∞, a VAR(K)
representation of the form

A(L)Yt =
K

∑
k=1

AkYt−k = Rwt (10)

where A(L) is Q×Q and R is Q× q.

Refinements of this result can be found in Anderson and Deistler (2009), Chen et al.
(2011), and Anderson et al. (2012), where some of its consequences are also discussed.

The most elegant proof is found in Anderson et al. (2016). Anderson and Deistler (2008a)
only briefly mention, without entering into details, the relevance of their result for the
general dynamic factor model (with dynamic loadings as in (7)). That relevance is further
discussed in Anderson and Deistler (2008b, 2009), Deistler et al. (2010, 2011), and Forni and
Lippi (2011); it is fully exploited in Forni et al. (2015, 2017, 2018), Barigozzi et al. (2021a,
2021b), and several subsequent papers. The same result also has important consequences
in the macroeconomic applications of factor models and the estimation and identification
of structural VARs: see Forni et al. (2020).

The relevance for the general dynamic factor model of the above result stems from
the fact that, by definition, for almost all of the values of i1, . . . , iq+1, the (q + 1)-dimen-
sional vector Yt := (χi1,t, . . . , χiq+1,t)

′ of common components is tall, with Q = q + 1 and
a q-dimensional white noise wt = ut in (9). Under the very mild additional assumption
that {Yt} is rational (for some unspecified m and p), the above proposition thus applies.
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Suppose, for convenience (and without loss of generality), that N = M(q + 1),
where M ∈ N, and write (χ1,t, . . . , χN,t) as (χχχ1′

t , . . . , χχχM′
t )′ where χχχk

t ∈ Rq+1, k = 1, . . . , M.
Assuming the rationality of all χχχk

t ’s, the Anderson–Deistler result applies, so that


A1(L) 0 · · · 0

0 A2(L) · · · 0
. . .

0 0 · · · AM(L)




χχχ1
t

χχχ2
t

...
χχχM

t

 =


R1

R2

...
RM

vt,

that is, generically, (genericity here is meant for any fixed N) for some An(L), Rn, and vt,
we have for χχχnt the block-diagonal VAR representation

An(L)χχχnt = Rnvt

with (q + 1)× (q + 1) blocks Ak(L), k = 1, . . . , M, an N × q matrix Rn, and q-dimensional
white noise vt; it can be shown, moreover, that vt = Out for some q × q orthogonal
matrix O.

As a consequence,

An(L)Xnt = An(L)(χχχnt + ξξξnt) = Rnvt + An(L) ξξξnt (11)

where, being a linear transformation of idiosyncratic components, AAAn (L)ξξξnt itself is id-
iosyncratic. This is a static factor model (static contemporaneous loadings) for the filtered
series An(L)Xnt: traditional principal components thus, which do not involve filters, can be
used instead of dynamic ones in the estimation of (11) once consistent estimators Âk(L) are
substituted for the unspecified filters Ak(L). Such estimators can be constructed from the
decomposition of the estimated spectral density followed by inverse Fourier transforms
and Yule–Walker VAR estimation in dimension q + 1: see Forni et al. (2015, 2017) for details.

Based on this, Forni and Lippi (2011) and Forni et al. (2015, 2017) propose a winning
strategy for a consistent one-sided reconstruction of the common components χit (hence,
also the idiosyncratic components ξit), their impulse-response functions, the common
shocks ut, the loadings filters Bi(L), etc. The corresponding asymptotic distributions are
derived in Barigozzi et al. (2021b). Surprisingly, the consistency rates are comparable to
those obtained by Bai (2003) for the static method (without the preliminary filtering (11))—
the validity of which, however, requires the much more stringent assumptions of the static
model (8). The same results also apply in the identification and estimation of volatilities
Barigozzi and Hallin (2016, 2017, 2019), of time-varying GDFMs Barigozzi et al. (2021a),
and in the prediction of conditional variances, values at risk, and expected shortfalls Hallin
and Trucíos (2022); Trucíos et al. (2022).

The (asymptotic) validity of this strategy, of course, requires (11) to hold. This has to
be assumed. Since, however, it holds generically, that assumption is extremely mild.

Numerical exercises (both Monte-Carlo and empirical) demonstrate the forecasting
superiority of the resulting method, which seems to outperform all of the other methods
proposed in the literature while remaining valid under much milder and more general
assumptions on the data-generating process. Forni et al. (2018) show that, even when the
assumptions (8) of static loadings are satisfied, the GDFM method still performs better than
the static one. Barigozzi et al. (2021b) finalize the study of its asymptotic properties by
establishing the corresponding asymptotic distributional results.

Manfred Deistler, thus, besides his many contributions to the mathematical founda-
tions of time-series analysis, can be credited for unlocking the applicability of the general
dynamic factor model with dynamic loadings instead of the more restrictive, less perfor-
mant, and less parsimonious model with static loadings—thereby turning a beautiful but
hardly applicable theoretical model into a fully operational and effective statistical tool, of
central importance in contemporary applied time-series econometrics.
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