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Abstract: This paper proposes a new spatial lag regression model which addresses global spatial auto-
correlation arising from cross-sectional dependence between counts. Our approach offers an intuitive
interpretation of the spatial correlation parameter as a measurement of the impact of neighbouring
observations on the conditional expectation of the counts. It allows for flexible likelihood-based
inference based on different distributional assumptions using standard numerical procedures. In ad-
dition, we advocate the use of data-coherent diagnostic tools in spatial count regression models. The
application revisits a data set on the location choice of single unit start-up firms in the manufacturing
industry in the US.
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1. Introduction

Our paper seeks to address global spatial autocorrelation arising form cross-sectional
dependence between counts, a research area which constitutes a fundamental challenge in
the spatial econometrics literature according to Billé and Arbia (2019). We propose a spatial
autoregressive specification for the expected mean of counts at location i as a function of its
j neighbouring region counts, an approach which is in the spirit of the class of observation-
driven models of Cox (1981). It allows us to obtain a reduced form of the conditional mean
function of the counts as a function of the so-called Leontief inverse or spatial multiplier as
in the spatial autoregressive (SAR) model for continuous (dependent) variables.

We contrast our model with the well-received SAR-Poisson count model of
Lambert et al. (2016), which also employs a spatial autoregressive structure for the ex-
pected mean of counts at location i, but relates this to its j neighbouring regions’ Poisson
log-intensities. We argue that this modelling of the spatial dependence between neighbour-
ing regions is less intuitive in terms of interpretation and is not directly in the spirit of a
continuous SAR model, because the intensity is an inherently unobserved measure while
the counts are observable. Moreover, in the SAR-Poisson count model, the exogenous re-
gressors have to explain the spatial dependence in the data fully, as there is no unexplained
part in the intensity modelled explicitly.

Lambert et al. (2016) also derived a full-information maximum likelihood approach for
parameter estimation, which, however, suffers from numerical difficulties mainly caused
by the need to invert a transformation of the n× n spatial weight matrix, where n denotes
the sample size. As an alternative, the authors suggested a two-step estimation framework
for their model, with an ad hoc specification to deal with the problem of computing the
logarithm from zero counts1.

Our proposed spatial count regression model addresses all the issues raised and aims at
supplying an alternative, which provides a useful interpretation of the model’s parameters
for the empirical economist and is straightforwardly to estimate using a likelihood-based
approach with standard numerical procedures.

Econometrics 2022, 10, 31. https://doi.org/10.3390/econometrics10030031 https://www.mdpi.com/journal/econometrics

https://doi.org/10.3390/econometrics10030031
https://doi.org/10.3390/econometrics10030031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/econometrics
https://www.mdpi.com
https://orcid.org/0000-0001-8729-1143
https://doi.org/10.3390/econometrics10030031
https://www.mdpi.com/journal/econometrics
https://www.mdpi.com/article/10.3390/econometrics10030031?type=check_update&version=1


Econometrics 2022, 10, 31 2 of 17

Our contribution extends the literature on econometric models for spatially correlated
count in two further directions: a more flexible functional form assumption to cope with
the empirically highly relevant phenomenon of overdispersion, and the introduction of
diagnostic tools and model validation methods. In non-spatial count data regression, the
Poisson model is regularly not able to deal with unobserved heterogeneity in the data.
One way to overcome this is to allow for a more flexible variance function as, e.g., in
the negative binomial (NB) regression model. We propose to allow for such flexibility in
spatial count data models as well and employ a negative binomial variant of our proposed
model specification.

Our paper also advocates the routine use of diagnostic tools and model validation
methods to assess the adequacy of a fitted model and to compare two or more competing
model specifications. For this purpose we propose, i.a., a suitably adjusted variant of the
probability integral transform (PIT) and scoring rules.

The reminder of paper is structured as follows: In Section 2, we briefly outline the
current state of the literature on econometric models for spatially correlated counts and
introduce our proposed alternative model specification. Section 3 contains goodness of fit
analysis tools for spatial count data models. In Section 4, we report the results of a small
Monte Carlo study to show the appropriateness of our estimation approach. In Section 5,
we revisit the start-up births data set of Lambert et al. (2016) and apply our spatial count
regression model to it. Section 6 concludes.

2. Spatial Lag Models for Count Data

As already pointed out, the econometrics literature on models accounting for spatial
autocorrelation in count data is quite sparse. The starting point of this literature is deemed
to be the widely studied auto-Poisson model of Besag (1974)2. However, the model suffers
from related problems to the exponential feedback models for time series models for counts3.
The recent surveys of Glaser (2017) and Billé and Arbia (2019) list the few approaches
available so far. Among them, the SAR-Poisson model of Lambert et al. (2016) features
prominently, as it allows one to compute marginal effects which, due to the autoregressive
nature of the model, can be decomposed in direct and indirect effects and allow for useful
econometrics interpretations in many fields of applications.

To provide a starting point for the following discussion, the SAR-Poisson model
specification for observed counts y is given here:

yi|µi ∼ Po(µi) with µi = E[yi|y−i, xi] = exp
(

ρ
n

∑
j=1
j 6=i

wij ln µj + xiβ
)

, (1)

where wij is an element of the time invariant (n× n) spatial weight matrix W, which is
assumed to be row-standardised, ρ is the spatial autocorrelation parameter, xi is the i-th
row of the matrix of exogenous variables X, and β denotes the corresponding parameter
vector. The symbol y−i denotes the vector of counts for all neighbours of yi. Note that
Equation (11) given in Lambert et al. (2016) differs slightly from (1); after careful checking,
we believe our result to be correct.

An attractive feature of the SAR-Poisson model is the availability of a reduced form.
This can be seen by collecting the µi’s in the vector µ and employing a log transformation of
(1) to obtain ln µ = (I − ρW)−1Xβ. Written in this reduced form makes it obvious that the
SAR-Poisson way of introducing spatial dependence only allows for spatial dependence in
the regressors, not in the unexplained part of the observations.

An explicit way to alter this is presented in Liesenfeld et al. (2016), where the SAR-
Poisson model is extended with an additional error term, allowing also for spatial depen-
dence in the unexplained part of the variation of the observed counts. However, while
the SAR-Poisson model of Lambert et al. (2016) can be estimated via (limited information)
maximum likelihood, the estimation of the model proposed by Liesenfeld et al. (2016) is not
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straightforward, as the likelihood function is not available in closed form. Their proposal is
then to use efficient importance sampling estimation which is not routinely available.

To overcome the shortcomings of the approaches discussed above, we propose a model
specification that adjusts Besag’s auto-Poisson model by introducing spatially lagged counts
linearly in the conditional expectation function of a Poisson regression. This is in the spirit
of the linear feedback model of Blundell et al. (2002), which has its origins in the integer
valued autoregressive models for count time series (see, e.g., Jung and Tremayne 2011).
Using the generic notation D for a (discrete) probability model, our spatial count regression
model is given by

yi|µi ∼ D(µi) with µi = E[yi|y−i, xi] = ρ
n

∑
j=1
j 6=i

wijyj + exp(xiβ) . (2)

To insure the non-negativity of the conditional mean function in (2), ρ must fulfil a
possibly more restrictive condition as compared to SAR models for continuous data. It can
be shown that

ρ > −exp(xiβ)

wiy

must hold for all i and wi denotes the ith row of the W matrix. The lower bound for ρ
will therefore be negative, although it might be greater than −1. In our empirical example
below, however, the bound is found to be far away from −1. Accordingly, a change in the
observation of a single neighbour j of i causes a change in yi by ρwij. As argued in the
Introduction, this interpretation of the spatial dependence between neighbouring regions
is more intuitive as compared to that in the SAR-Poisson specification.

The proposal to use neighbouring counts instead of unobservable neighbouring inten-
sities was also pursued in the recent paper by Apardian and Smirnov (2020), who, however,
relied on the exponential feedback framework, the drawbacks of which have already been
outlined above.

Several count data distributions can be assumed for D in (2), the most prominent being
the Poisson. The resulting model will be denoted as the Poisson spatial count regression
model below. One way to deal with unobserved heterogeneity in the observed counts is
to use the negative binomial (NB) distribution. Employing an NB distribution in (2) leads
to the NB spatial count regression model below. Many other extensions of the Poisson
distribution which have been introduced in the literature—e.g., the zero-inflated Poisson
and hurdle Poisson models—could be used in the modelling framework of (2). As these
more flexible specifications have turned out not to substantially improve the model fit in
our application below, they are not discussed further here.

In non-linear regression models such as the spatial count regression model (2), marginal
effects are regularly employed to support the interpretation of the model parameters. In or-
der to derive these, we restate the conditional mean of our model specification in (2)
using the identity y = E[y|y−i, X] + ε, where ε represents the (vector of) regression errors,
as follows.

E[y|y−i, X] = (I − ρW)−1 exp(Xβ) + (I − ρW)−1ρWε . (3)

Based on the form (3), it is straightforward to derive the total marginal effects for
continuous regressors Xk for as follows.

A−1
i exp(Xβ)βk

where A−1 = (I − ρW)−1 and A−1
i denotes the ith row of A−1.
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Following LeSage and Pace (2009), this can be decomposed into a direct and an indirect
marginal effect. The former is given as

∂µi
∂xik

= a−1
ii exp(xiβ)βk ,

where a−1
ii is the according element of the A−1, and the latter as

n

∑
j=1
j 6=i

a−1
ij exp(xjβ)βk .

Average marginal effects can be computed in various ways, e.g., by averaging over all
observations i.

The specific form of the proposed conditional mean function in (2) does not allow for
an easy to implement factorisation of the joint probability density function of the observed
counts. Additionally, an operational high-dimensional multivariate count distribution is
not available. Therefore, we propose a pseudo-likelihood approach for the estimation of
the model parameters and marginal effects.

The idea to compose a pseudo-likelihood function of conditional probability functions
such as the ones described in (2) stems from Besag (1975), who proposed this technique for
the auto-normal schemes of Besag (1974) and sketched a proof of the estimator’s consistency,
relating it to the coding technique. Besag pointed out that the obtained estimator can
be thought of as a weighted average of coding estimators. Since these are consistent,
the estimator of the conditional pseudo-likelihood approach is consistent as well (under
suitable regularity conditions).

Pseudo and composite likelihood functions have been either employed in the literature
to obtain an approximation for an intractable likelihood function (see for example
Jensen and Moller 1991) or to reduce the complexity of the maximisation of the likeli-
hood function either by using the joint distribution of subsets of the data (i.e., ’subsetting
methods’) or by omitting redundant information (i.e., ’omission methods’) in the likelihood
(Varin and Vidoni 2005). Such a procedure was first proposed for spatial models by Vecchia
(1998), building upon Besag (1974). In the case of a spatial model, one omits irrelevant
information and conditions only on the relevant neighbours (in our case the eight nearest
neighbours) instead of giving a full decomposition of the likelihood into conditional dis-
tributions. See also the description of the data generating process employed in the Monte
Carlo experiments in Section 4 below. Finally note that a pseudo-likelihood procedure has
also been proposed in the paper by Apardian and Smirnov (2020) in the context of their
spatial count regression model.

In case of a Poisson distributional assumption in specification (2), the corresponding
pseudo-log likelihood function takes the specific form

log LC =
n

∑
i=1

yi log
(

ρ
n

∑
j=1
j 6=i

wijyj + exp(xiβ)

)
−
(

ρ
n

∑
j=1
j 6=i

wijyj + exp(xiβ)

)
− log(yi!) .

For the NB model variant, we propose to use the Negbin 2 specification of the NB distri-
bution which is popular in econometric applications due to is quadratic variance function.

f (yi|µi, α) =
Γ(α−1 + yi)

Γ(α−1)Γ(yi + 1)

(
α−1

µi + α−1

)α−1(
µi

µi + α−1

)yi

,
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where the dispersion parameter is denoted as α. The resulting pseudo-log likelihood
function for the NB spatial count regression model is then given as

log LC =
n

∑
i=1

( yi

∑
j=1

log(α−1 + j− 1)
)
− log(yi!)

−(yi + α−1) log
(

1 + α

(
ρ

n

∑
j=1
j 6=i

wijyj + exp(xiβ)

))

+yi log(α) + yi log
(

ρ
n

∑
j=1
j 6=i

wijyj + exp(xiβ)

)
.

The parameter estimates from the pseudo-likelihood for both models can straightfor-
wardly be obtained using standard numerical optimisation methods. The properties of the
estimators were investigated in the Monte Carlo study in Section 4. Robust standard errors
were computed from the Godambe sandwich information matrix.

3. Diagnostics

In this section, we propose the application of several diagnostic tools adopted from the
literature on models for non-spatially correlated counts. Although checking the adequacy
of a specified model is an important part of any empirical (regression) modelling, diagnostic
tools specially designed for count data are rarely considered in the spatial econometrics
literature. In an attempt to bridge this gap, we employ the non-randomised probability
integral transform histogram, scoring rules and a relative deviations plot.

3.1. Non-Randomised Probability Integral Transform

The probability integral transform (PIT) of Rosenblatt (1952) can be used to obtain
an informal check for the model calibration. In the case of continuous random variables,
the PIT is calculated as the values of the predictive cumulative distribution function (CDF)
for the observations. If the predictive CDF equals the data generating process of the
observations, the obtained values follow a standard uniform distribution. This can then
be checked graphically, for example, by plotting a histogram of the PIT values (see, e.g.,
Diebold et al. 1998).

For the discrete case, this concept is not directly applicable because the predictive CDF
will not be a continuous function. In the case of count data, it is a step function, meaning
that the calculated PIT values will not follow a standard uniform distribution.

A popular solution for this problem is provided by the nonrandomised PIT, introduced
by Czado et al. (2009). The nonrandomised PIT approach uses the predictive CDF for each
observed count yi to obtain the distribution of the PIT values directly as follows:

F(u|yi) =


0, u ≤ Pyi−1,
(u− Pyi−1)/(Pyi − Pyi−1), Pyi−1 ≤ u ≤ Pyi ,
1, u ≥ Pyi ,

where Pyi is the predictive CDF of observation yi, evaluated at yi. The mean PIT is ob-
tained by aggregating over all F(u|yi) and dividing by n and compared to the cumulative
distribution function of standard uniform random variable. A straightforward way to
interpret PIT histogram can then be obtained by transforming the average F(u|yi) into J
equally spaced bins j = 1, . . . , J and checking for uniformity. A u-shaped pattern of the
histogram indicates overdispersion in the data (compared to the predictive distribution)
and an inverse u-shaped underdispersion in the data.
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3.2. Scoring Rules

With the help of scoring rules, the fit of the predictive distribution to the observed
data can be compared among models. Like information criteria which are based on the
likelihood values of the estimates, they negatively penalise a worse result, and are therefore
to be minimised. We adopted this method of model selection from the work of Czado
et al. (2009) and Jung et al. (2016), and average over the score of all observations for
model selection. Several scores are suggested in the count data literature. We will present
the logarithmic, quadratic and ranked probability scores, which place their emphases on
different aspects of the estimated distributions.

The logarithmic score centres on the predicted probability of the observed count and
penalises predictive distributions for which the observation has a small probability. The
average logarithmic score is

logs =
1
n

n

∑
i=1
−log(P̂i(yi))

where P̂i(yi) is the predictive probability distribution of observation yi.
The quadratic score also considers the whole estimated probability distribution by

adding the squared probabilities of all possible outcomes:

qs =
1
n

n

∑
i=1
−2P̂i(yi) +

∞

∑
j=0

P̂i(j)2

As a third scoring rule we use the ranked probability score, which especially penalises
a flat estimated distribution:

rps =
1
n

n

∑
i=1

∞

∑
j=0

(F(j)− I(yi ≤ j))2 .

An important property of scoring rules is propriety; i.e., the score takes its worst value
for the worst possible fit and its best value for its best. This property holds for all three
scoring rules presented here (Czado et al. 2009; Jung et al. 2016).

3.3. Relative Deviations Plot

A method for evaluating the whole predictive distribution graphically is available
by plotting the relative deviations of the estimated probability function together with the
observed frequencies of the counts. Similar plots can be found in Long (1997), for example.
Such a representation compares the predicted probabilities P̂i(k) for each predictive distri-
bution i = 1, . . . , n and possible outcome k = 0, 1, 2, . . . with the frequencies h(k) observed
in the data set, and averages over the n predictive distributions:

RelP =
1
n ∑n

i=1 P̂i(k)− h(k)
h(k)

with

P̂i(k) =
µ̂k

i e−µ̂i

k!
k = {0, 1, 2, 3, . . .}

and µ̂i being the estimate for the conditional expectation of observation yi in the case of a
Poisson distributional assumption.

Other than the logarithmic score, this measure takes the whole predictive distribu-
tion into account. In addition to the information in the quadratic score and the ranked
probability score, which also take into account the whole estimated probability function,
the deviation plot gives a visual impression of how well the predictive distributions display
the different features of the data, including modus, tails, etc.
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4. Monte Carlo Study

In this section, we assess the small sample properties of the parameter estimates
obtained from the pseudo-log likelihood functions of our proposed spatial count regression
model by means of a simulation study.

4.1. Data Generating Process

Due to the fact that spatially lagged yis are directly included into the conditional mean
specification of our model and no natural ordering of the data as compared to a time series
model is available, we propose to employ a Gibbs sampling approach to generate counts
according to our conditional model specification (2) using Poisson and NB distributions,
respectively, and the Gibbs sampling algorithm of Geman and Geman (1984). That is,
by iteratively drawing from the conditional distributions of yi, i = 1, . . . , n, given all other
yjs, we asymptotically obtain draws from the joint distribution of y1, . . . yn. E.g., in the k
iteration of this procedure we draw from the following distributions:

y(k)1 ∼ D(y1|y
(k−1)
2 , . . . , y(k−1)

n )

y(k)2 ∼ D(y2|y
(k)
1 , y(k−1)

3 , . . . , y(k−1)
n )

...

y(k)n ∼ D(y2|y
(k)
1 , . . . , y(k)n−1)

where D is defined as above. The starting values y(0)i were drawn from a non-spatial
Poisson and negative binomial distribution, respectively, with µi = exp(Xiβ). For the
negative binomial case, the dispersion parameter α was set to 0.2 in our experiments to
obtain a modest level of overdispersion.

We employed an 8-nearest neighbours inverse distance matrix for the spatial weight-
ing matrix. To calculate this matrix, we first generated n random coordinates using random
numbers from a U(0, 1) distribution. Then, we computed the Euclidian inverse distance
matrix for these points which represent the n spatial units of our simulated data set. Af-
ter selecting the 8 nearest neighbours of each unit, we set all other entries of the matrix
equal to zero, and finally row-standardised the resulting matrix. X consists of a constant,
X1 ∼ U(0, 2), and X2 ∼ N(1, 2). The parameter vector β was set [0.5, 0.5, 0.5]′, and data
were generated for ρ∗ = {0, 0.2, 0.4, 0.6, 0.8}, to cover a wide range of positive spatial depen-
dence. Sample sizes employed were n = {100, 250, 500, 1000, 5000, 10, 000}; in particular, a
range of low sample sizes was used to check for potential finite sample estimation bias. In
total, 10,000 replications for each simulation were used to obtain estimates of bias and root
mean squared error (RMSE) with a high precision.

4.2. Monte Carlo Results

The results of our simulation experiments are presented in Tables 1 and 2. With a
few exceptions, the root mean square errors and biases of the parameter estimates are in
general small. For both the Poisson and the NB case, the finite sample bias of the parameter
estimates decreased quickly, as the sample size was larger than 100. From simulation results
not reported in the tables, it emerged that fitting the Poisson spatial count regression models
to an even lower sample size than 100 is not recommended. To obtain precise and unbiased
estimates of the regression intercept β0 in both the Poisson and the NB case is more difficult
as compared to the slope coefficients β1 and β2. A high level of spatial dependence (lager
than 0.6) leads to larger biases and root mean squared errors for all parameter estimates
employed. Unsurprisingly, the RMSE and bias results for the NB spatial count regression
model are larger than those obtained for the Poisson variant. For overdispersed counts,
the minimal sample size recommendations are even higher than in the equidispersed case.
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Table 1. Simulation results for the Poisson spatial count regression model. BIAS is calculated as the
average difference between estimates and true value. RMSE is calculated as the square root of the
average squared difference between estimates and the true value.

ρ\n 100 250 500 1000 5000 10,000

ρ

RMSE
0 0.0444 0.0159 0.0141 0.0090 0.0040 0.0023

0.2 0.0233 0.0221 0.0210 0.0146 0.0059 0.0041
0.4 0.0417 0.0350 0.0205 0.0136 0.0059 0.0044
0.6 0.0497 0.0291 0.0175 0.0139 0.0058 0.0038
0.8 0.0455 0.0224 0.0152 0.0082 0.0050 0.0043

BIAS
0 −0.0034 −0.0007 −0.0006 −0.0002 0.0001 −0.0001

0.2 −0.0009 −0.0018 −0.0021 −0.0016 −0.0010 −0.0010
0.4 −0.0040 −0.0041 −0.0018 −0.0015 −0.0009 −0.0012
0.6 −0.0048 −0.0030 −0.0014 −0.0010 −0.0009 −0.0007
0.8 −0.0113 −0.0045 −0.0036 −0.0030 −0.0030 −0.0031

β0

RMSE
0 0.1493 0.0819 0.0624 0.0425 0.0188 0.0118

0.2 0.1174 0.0926 0.0778 0.0560 0.0239 0.0159
0.4 0.2378 0.1554 0.0842 0.0628 0.0281 0.0195
0.6 0.2951 0.1871 0.1042 0.0900 0.0351 0.0237
0.8 0.6341 0.2598 0.1649 0.0732 0.0447 0.0331

BIAS
0 0.0019 0.0012 0.0001 0.0007 −0.0011 0.0001

0.2 −0.0007 0.0045 0.0051 0.0049 0.0040 0.0042
0.4 0.0058 0.0103 0.0056 0.0058 0.0047 0.0055
0.6 −0.0002 0.0083 0.0051 0.0057 0.0062 0.0054
0.8 −0.0104 0.0026 0.0011 −0.0011 0.0027 0.0032

β1

RMSE
0 0.0645 0.0422 0.0296 0.0206 0.0093 0.0062

0.2 0.0763 0.0426 0.0346 0.0238 0.0107 0.0071
0.4 0.0955 0.0569 0.0356 0.0269 0.0114 0.0084
0.6 0.1021 0.0704 0.0401 0.0326 0.0130 0.0096
0.8 0.1683 0.0844 0.0550 0.0360 0.0173 0.0123

BIAS
0 −0.0002 −0.0004 0.0002 −0.0001 0.0006 0.0001

0.2 0.0014 −0.0012 −0.0005 −0.0009 −0.0010 −0.0007
0.4 −0.0008 −0.0017 −0.0012 −0.0008 −0.0008 −0.0009
0.6 −0.0029 −0.0008 0.0001 −0.0013 −0.0016 −0.0006
0.8 0.0057 −0.0012 −0.0003 0.0005 −0.0008 −0.0008

β2

RMSE
0 0.0274 0.0135 0.0119 0.0075 0.0033 0.0021

0.2 0.0131 0.0145 0.0140 0.0096 0.0040 0.0027
0.4 0.0323 0.0263 0.0141 0.0099 0.0045 0.0029
0.6 0.0594 0.0257 0.0149 0.0136 0.0054 0.0037
0.8 0.1056 0.0401 0.0254 0.0090 0.0064 0.0046

BIAS
0 −0.0006 −0.0003 −0.0001 −0.0001 0.0001 0.0001

0.2 −0.0003 −0.0007 −0.0011 −0.0008 −0.0006 −0.0007
0.4 −0.0013 −0.0020 −0.0009 −0.0011 −0.0008 −0.0008
0.6 0.0008 −0.0016 −0.0012 −0.0009 −0.0008 −0.0010
0.8 0.0023 −0.0008 −0.0005 −0.0001 −0.0005 −0.0004
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Table 2. Simulation results for NB spatial count regression model. BIAS is calculated as the average
difference between estimates and true value. RMSE is calculated as the square root of the average
squared difference between estimates and true value.

ρ\n 100 250 500 1000 5000 10,000

ρ

RMSE
0 0.0581 0.0352 0.0162 0.0102 0.0041 0.0031

0.2 0.0705 0.0438 0.0333 0.0229 0.0125 0.0102
0.4 0.0653 0.0580 0.0413 0.0276 0.0148 0.0108
0.6 0.1113 0.0652 0.0391 0.0291 0.0129 0.0103
0.8 0.0910 0.0539 0.0429 0.0305 0.0129 0.0100

BIAS
0 −0.0101 −0.0064 −0.0009 −0.0008 0.0001 −0.0001

0.2 −0.0189 −0.0116 −0.0103 −0.0095 −0.0080 −0.0079
0.4 −0.0099 −0.0132 −0.0129 −0.0096 −0.0087 −0.0074
0.6 −0.0299 −0.0157 −0.0087 −0.0067 −0.0049 −0.0054
0.8 −0.0291 −0.0118 −0.0108 −0.0102 −0.0057 −0.0056

β0

RMSE
0 0.2771 0.1549 0.0990 0.0653 0.0300 0.0196

0.2 0.3330 0.1987 0.1498 0.1091 0.0594 0.0493
0.4 0.3564 0.2672 0.1868 0.1402 0.0864 0.0706
0.6 0.7309 0.4176 0.2675 0.1958 0.1069 0.0908
0.8 1.2300 0.6524 0.5012 0.3573 0.1637 0.1334

BIAS
0 0.0142 0.0124 0.0003 0.0017 −0.0028 0.0016

0.2 0.0581 0.0419 0.0436 0.0460 0.0397 0.0395
0.4 0.0481 0.0562 0.0663 0.0617 0.0647 0.0590
0.6 0.0836 0.0804 0.0897 0.0761 0.0732 0.0726
0.8 0.0421 0.0439 0.0761 0.1181 0.0928 0.0951

β1

RMSE
0 0.1297 0.0744 0.0527 0.0373 0.0172 0.0113

0.2 0.1598 0.0935 0.0679 0.0470 0.0222 0.0168
0.4 0.1734 0.1092 0.0767 0.0560 0.0290 0.0207
0.6 0.2461 0.1619 0.1071 0.0761 0.0368 0.0282
0.8 0.6660 0.2615 0.1854 0.1267 0.0574 0.0428

BIAS
0 −0.0037 −0.0024 −0.0002 −0.0003 0.0018 −0.0007

0.2 −0.0105 −0.0078 −0.0090 −0.0096 −0.0078 −0.0075
0.4 −0.0132 −0.0126 −0.0118 −0.0108 −0.0140 −0.0112
0.6 −0.0076 −0.0132 −0.0180 −0.0165 −0.0164 −0.0157
0.8 −0.0230 −0.0058 −0.0153 −0.0221 −0.0200 −0.0198

β2

RMSE
0 0.0572 0.0363 0.0202 0.0142 0.0061 0.0044

0.2 0.0601 0.0397 0.0311 0.0209 0.0118 0.0098
0.4 0.0628 0.0520 0.0367 0.0271 0.0163 0.0139
0.6 0.1147 0.0784 0.0436 0.0355 0.0195 0.0175
0.8 0.1742 0.1007 0.0779 0.0650 0.0278 0.0248

BIAS
0 −0.0040 −0.0033 −0.0004 −0.0004 0.0002 −0.0003

0.2 −0.0129 −0.0095 −0.0094 −0.0091 −0.0079 −0.0079
0.4 −0.0107 −0.0131 −0.0142 −0.0133 −0.0127 −0.0121
0.6 −0.0224 −0.0198 −0.0171 −0.0156 −0.0147 −0.0146
0.8 −0.0221 −0.0167 −0.0166 −0.0250 −0.0183 −0.0198
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Table 2. Cont.

ρ\n 100 250 500 1000 5000 10,000

α

RMSE
0 0.0554 0.0358 0.0243 0.0174 0.0075 0.0056

0.2 0.0503 0.0314 0.0225 0.0155 0.0077 0.0065
0.4 0.0424 0.0295 0.0213 0.0161 0.0098 0.0092
0.6 0.0406 0.0256 0.0195 0.0145 0.0095 0.0087
0.8 0.0353 0.0227 0.0165 0.0125 0.0079 0.0067

BIAS
0 −0.0129 −0.0050 −0.0028 −0.0012 −0.0005 −0.0002

0.2 −0.0088 −0.0020 0.0004 0.0022 0.0036 0.0042
0.4 −0.0034 −0.0002 0.0056 0.0071 0.0075 0.0081
0.6 0.0035 0.0025 0.0082 0.0074 0.0078 0.0077
0.8 −0.0004 0.0040 0.0046 0.0058 0.0061 0.0056

In particular, the good performance of the parameter estimators for large sample
sizes supports our conjecture that our pseudo-log likelihood function for the spatial count
regression model can be seen as compatible with the form provided in Besag (1975). The es-
timations for small sample sizes showed satisfactory results as well. With regard to our
empirical application, which will be presented in Section 5 below, the simulation showed
that for our sample size of about 3000 observations, the estimation based on the conditional
likelihoods works quite well.

5. Empirical Application
5.1. Data

For the application of the proposed spatial count regression models, we revisit the
cross-sectional data of Lambert et al. (2016) on firm births in the manufacturing sector of
the United States between 2000 and 2004. The data contain the number of start-up firms
during this time period for 3078 U.S. counties and variables measuring the location factors,
such as market structure, labour market and infrastructure for each county (see Table 3 and
Lambert et al. (2016), p. 249, for more details). Figure 1 displays the spatial structure of
the number of firm births. The frequency distribution of the number of start-up firms for
values up to 100 is shown in Figure 2. It is evident that the counts do not exhibit excess
zeros but an extraordinarily large range (from 0 to 6938), which is very difficult to capture
for any single index model adequately.

We experimented with several forms of the weighting matrix W. All of these specifi-
cations produced very similar results. Therefore, only the results for a row-standardised
inverse distance matrix considering only the eight nearest neighbours (which equals the
weight matrix used by Lambert et al. 2016) are reported.
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Figure 1. Observations for the subirth variable in dezils with dark blue representing the lowest values
and dark red representing the highest ones.

Figure 2. Histogram of start-up firm birth counts in the manufacturing sector, U.S. counties, 2000–
2004; x-axis is cut at 100.

Table 3. Short description of the variables.

Dependent variable subirths Single unit start-ups in the lower 48 United
States during 2000–2004 in the manufactur-
ing sector (NAICS 31-33)

Agglomeration economies msemp Manufactoring share of employment
tfdense Total establishment density (in 100 s)
pel10emp Percent of manufacturing establishments

with less than 10 employees
pem100emp Percent of manufacturing establishments

with more than 100 employees

Market structure mhhi Median household income (in 1000 s)
pop Population (in 10,000 s)
cclass Share of workers in creative occupations

Labor availability and cost uer Unemployment rate
pedas Pecent of adults with an associate’s degree
avg_wage Average wage per job (in 1000 s)
netflow_emp Net flow of wages per commuter (in

1000 s)



Econometrics 2022, 10, 31 12 of 17

Table 3. Cont.

Infrastucture proad Public road density
interst Interstate highway miles
hwy_pc Government expenditures on highways per

capita (in 100 s)
avland Percent of farmland to total county

Fiscal policy educ_pc Government expenditures on education per
capita (in 100 s)

bci State tax business climate index (higher values
indicate more favorable business climates)

Area metro Dummy variable indentifying counties as be-
longing to metropolitan areas

micro Dummy variable indentifying counties as be-
longing to micropolitan areas

5.2. Results

Table 4 displays the estimation results for the Poisson and NB models discussed in
Section 2, and for comparison, the non-spatial Poisson and non-spatial NB regression,
whose conditional expectations are given by

E[y|X] = exp(Xβ) .

In the case of the non-spatial NB model, we chose again the Negbin2 (NB2) specifica-
tion. In both spatial models, the spatial autocorrelation parameter ρ is highly significant,
indicating that the proposed spatial structure exists in the data but is considerably different
in size. Additionally, several of the other parameter estimates (and marginal effects, respec-
tively) show clear differences between the Poisson and NB model specifications. Both the
log score and the quadratic score clearly favour the negative binomial models and give the
spatial variant a slight preference. The ranked probability score, in contrast, prefers the
spatial Poisson model because it highly penalises the relatively flat estimated distributions
from the negative binomial models. All three scores give evidence in favour of the spatial
model specification over their non-spatial counterpart.

To get a first visual impression of the fit of the models, Figure 3 shows the estimated
conditional expectations of each county for the four models. The classes equal the deciles
of the observations displayed in Figure 1 going from dark blue (0 firm births) to dark red
(60 to 6938 firm births). On all four maps, the clusters of high numbers of firm births at
west and east coasts and at the Great Lakes of the observations are recognisable, along
with the cluster of lower values in the Midwest. The spatial models, however, predicted
higher values for many counties, reproducing the map of the observations more properly.
However, all models tended to estimate the outcomes of counties with observation 0 (dark
blue in Figure 1) too high.

Next, the nonrandomised probability integral transform (PIT) is presented to evaluate
the calibration of the models. Figure 4 displays the PIT histograms for the four estimated
model specifications. The u-shaped PIT histograms of both Poisson models show clear
signs of too little dispersion allowed by the model. The PIT histogram of the non-spatial
negative binomial model has an even shape, but shows a decrease for PIT values larger
than 0.8. This might be caused by the occurrence of large outliers in the data (>6000), and at
the same time relatively high frequencies of small counts (<3). As already mentioned, single
index models, as used here, generally have difficulties coping with such a data structure.
The model having the PIT histogram closest to a uniform distribution, even though the
difference to the non-spatial negative binomial is small, is the negative binomial spatial
count regression model.
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Table 4. Estimation results from Poisson and the NB spatial count data regression and the non-spatial
Poisson and NB2 regressions. N = 3078; robust standard errors in brackets. ∗∗ and ∗∗∗ denote a 5%
and 1% significance, respectively.

Spatial Non-Spatial Spatial Non-Spatial

Variable Poisson NB Poisson NB2 Poisson NB Poisson NB2

ρ 0.288 ∗∗∗ 0.166 ∗∗∗ awage 0.033 ∗∗∗ −0.058 ∗∗∗ 0.019 ∗∗∗ −0.038 ∗∗∗

(0.043) (0.022) (0.008) (0.012) (0.007) (0.007)
const −1.707 ∗∗∗ −1.120 ∗∗∗ −0.934 ∗∗∗ −1.066 ∗∗∗ netflow 0.003 −0.027 0.002 −0.016 ∗∗∗

(0.397) (0.249) (0.281) (0.195) (0.003) (0.006) (0.820) (0.003)
msemp 0.035 ∗∗∗ 0.053 ∗∗∗ 0.031 ∗∗∗ 0.050 ∗∗∗ proad 0.093 ∗∗∗ 0.084 ∗∗∗ 0.103 ∗∗∗ 0.083 ∗∗∗

(0.006) (0.003) (0.004) (0.002) (0.023) (0.024) (0.018) (0.022)
pelt10 −0.007 ∗∗ 0.005 ∗∗∗ −0.002 0.005 ∗∗∗ interst 0.009 ∗∗∗ 0.005 ∗∗∗ 0.007 ∗∗∗ 0.005 ∗∗∗

(0.003) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
pemt100 −0.034 ∗∗∗ −0.023 ∗∗∗ −0.029 ∗∗∗ −0.018 ∗∗∗ avland −0.007 ∗∗∗ −0.006 ∗∗∗ −0.009 ∗∗∗ −0.007 ∗∗∗

(0.006) (0.003) (0.004) (0.002) (0.002) (0.001) (0.001) (0.001)
tfdens −0.013 −0.046 ∗∗∗ 0.006 −0.053 ∗∗∗ bci 0.128 ∗∗∗ 0.032 0.080 0.034

(0.011) (0.016) (0.010) (0.013) (0.042) (0.021) (0.037) (0.015)
mhhi −0.034 ∗∗∗ 0.024 ∗∗ 0.000 0.027 ∗∗∗ educpc 0.006 ∗∗∗ 0.006 ∗∗ 0.004 0.004

(0.008) (0.010) (0.009) (0.005) (0.002) (0.003) (0.002) (0.003)
pop 0.002 ∗∗∗ 0.017 ∗∗∗ 0.002 ∗∗∗ 0.018 ∗∗∗ hwypc −0.039 −0.132 −0.030 −0.028

(0.000) (0.003) (0.000) (0.003) (0.023) (0.031) (0.019) (0.021)
cclass 0.088 ∗∗∗ 0.101 ∗∗∗ 0.048 ∗∗∗ 0.082 ∗∗∗ metro 1.630 ∗∗∗ 1.017 ∗∗∗ 1.265 ∗∗∗ 0.845 ∗∗∗

(0.011) (0.007) (0.013) (0.005) (0.157) (0.081) (0.092) (0.054)
uer 0.037 0.076 ∗∗∗ 0.073 ∗∗∗ 0.080 ∗∗∗ micro 0.839 ∗∗∗ 0.645 ∗∗∗ 0.573 ∗∗∗ 0.546 ∗∗∗

(0.037) (0.021) (0.022) (0.013) (0.119) (0.055) (0.063) (0.038)
pedas 0.150 ∗∗∗ 0.062 ∗∗∗ 0.130 ∗∗∗ 0.044 ∗∗∗ α 0.403 ∗∗∗ 0.437 ∗∗∗

(0.022) (0.011) (0.021) (0.009) (0.026) (0.024)

Log L −28,149 −10,300 −32,248 −10,401
logs 9.002 3.348 9.917 3.379
qs −0.027 −0.073 −0.017 −0.070
rps 14.035 22.836 15.244 33.858

A further way to look at the fit of the model is to predict the probabilities of each
possible outcome and compare these visually with the empirical frequencies in a relative
deviations plot. The relative differences of predictive probabilities and observed frequency
of the four models are displayed in Figure 5. Generally, the two negative binomial models
outperform the Poisson models. Small counts are underestimated by the Poisson model;
large counts are overestimated by all models. For outcomes between 5 and 25, only
small differences between frequencies and predicted distributions of the negative binomial
models and the Poisson spatial count regression model can be observed, whereas the
non-spatial Poisson model fits the data less well.

For evaluating the impact of the regressors on the number of firm births in these non-
linear models, the marginal effects have to be considered. Table 5 displays the estimated
median marginal effects for all four model specifications considered. We decided to look
at the median rather than the mean, since our data set contains some unusually large
observations of the dependent variable. As for that, the predicted effects for these regions
distort the mean marginal effects. On the other hand, calculating only the marginal effect
for a certain (hypothetical) observation would not reflect the spatial nature of the data
accurately, since only one particular pattern of neighbours could be considered.

As mentioned in Section 2, the total marginal effects in our spatial count regression
model can be separated into the direct effect and indirect effect. The direct effect gives the
impact of a change in the regressor xik on observation i and is therefore comparable to a
marginal effect in a non-spatial model. The indirect effect is the sum of the impacts of a
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change in all other regressors xjk, j 6= i on observations i which do not exist in a non-spatial
model. Following (LeSage and Pace 2009, p. 39), the standard errors for the marginal effects
were obtained using 2000 draws from the simulated joint distribution of the parameter
estimators. As can be seen in Table 5, the majority of effects are significant. In general, more
effects are significant in the negative binomial models than in the Poisson models. In the
spatial models, the indirect effects are smaller than the direct ones.

(a) Poisson spatial count regression (b) NB spatial count regression

(c) Non-spatial Poisson regression (d) Non-spatial NB regression

Figure 3. Estimated conditional expectations. The colours indicate the deciles of the observations,
with dark blue representing the lowest values and dark red representing the highest ones (see also
Figure 1).
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(a) Poisson spatial count regression
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(b) NB spatial count regression
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(c) Non-spatial Poisson regression
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(d) Non-spatial NB regression

Figure 4. Nonrandomised PIT histograms for the four regression models.
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Figure 5. Relative deviations plot based on the four regression models employed.

When comparing the impacts between spatial and non-spatial models, we can see that
the total marginal effects are in general of the same magnitude as the marginal effects of
the corresponding non-spatial model. Therefore, the spatial models separate in some sense
the effects in the non-spatial ones into direct and indirect and highlight the influence of
neighbouring observations. Again, there are similar patterns for non-spatial and spatial
versions of the Poisson and the negative binomial models.

Table 5. Median of marginal effects of the Poisson and NB spatial count regressions, and the non-
spatial Poisson and non-spatial NB2 regressions. For the dummy variables metro and micro, the effect
of a change from 0 to 1 is given. ∗∗ and ∗∗∗ denote 5% and 1% significance, respectively. Standard
errors (in brackets) were estimated using their sample counterparts of 2000 draws of the asymptotic
joint distribution of the coefficients.

Poisson Spatial Reg. NB Spatial Reg. Poisson NB2
Variable Total M.E. Direct M.E. Indirect M.E. Total M.E. Direct M.E. Indirect M.E. Direct M.E. Direct M.E.

msemp 0.377 ∗∗∗ 0.198 ∗∗∗ 0.148 ∗∗∗ 0.516 ∗∗∗ 0.339 ∗∗∗ 0.116 ∗∗∗ 0.326 ∗∗∗ 0.463 ∗∗∗

(0.061) (0.040) (0.032) (0.032) (0.026) (0.018) (0.044) (0.024)
pelt10 −0.065 ∗∗ −0.034 ∗∗ −0.025 ∗∗ 0.050 ∗∗∗ 0.033 ∗∗∗ 0.011 ∗∗∗ −0.022 0.048 ∗∗∗

(0.028) (0.014) (0.013) (0.013) (0.009) (0.003) (0.020) (0.011)
pemt100 −0.366 ∗∗∗ −0.192 ∗∗∗ −0.144 ∗∗∗ −0.226 ∗∗∗ −0.148 ∗∗∗ −0.051 ∗∗∗ −0.314 ∗∗∗ −0.171 ∗∗∗

(0.062) (0.035) (0.035) (0.034) (0.021) (0.012) (0.038) (0.023)
tfdens −0.140 −0.074 −0.055 −0.456 ∗∗∗ −0.299 ∗∗∗ −0.102 ∗∗∗ 0.066 −0.493 ∗∗∗

(0.123) (0.065) (0.050) (0.157) (0.109) (0.034) (0.107) (0.125)
mhhi −0.366 ∗∗∗ −0.192 ∗∗∗ −0.144 ∗∗∗ 0.237 ∗∗ 0.155 ∗∗ 0.053 ∗∗ 0.002 0.249 ∗∗∗

(0.095) (0.046) (0.049) (0.103) (0.064) (0.026) (0.091) (0.049)
pop 0.022 ∗∗∗ 0.011 ∗∗∗ 0.008 ∗∗∗ 0.163 ∗∗∗ 0.107 ∗∗∗ 0.037 ∗∗∗ 0.025 ∗∗∗ 0.170 ∗∗∗

(0.005) (0.003) (0.002) (0.033) (0.023) (0.008) (0.005) (0.030)
cclass 0.948 ∗∗∗ 0.498 ∗∗∗ 0.373 ∗∗∗ 0.987 ∗∗∗ 0.648 ∗∗∗ 0.222 ∗∗∗ 0.516 ∗∗∗ 0.764 ∗∗∗

(0.125) (0.075) (0.082) (0.069) (0.055) (0.037) (0.136) (0.049)
uer 0.399 0.209 0.157 0.745 ∗∗∗ 0.489 ∗∗∗ 0.167 ∗∗∗ 0.779 ∗∗∗ 0.750 ∗∗∗

(0.398) (0.212) (0.159) (0.215) (0.133) (0.059) (0.236) (0.124)
pedas 1.616 ∗∗∗ 0.848 ∗∗∗ 0.636 ∗∗∗ 0.608 ∗∗∗ 0.399 ∗∗∗ 0.136 ∗∗∗ 1.387 ∗∗∗ 0.415 ∗∗∗

(0.256) (0.135) (0.157) (0.109) (0.076) (0.031) (0.211) (0.084)
awage 0.356 ∗∗∗ 0.187 ∗∗∗ 0.140 ∗∗∗ −0.565 ∗∗∗ −0.371 ∗∗∗ −0.127 ∗∗∗ 0.198 ∗∗∗ −0.354 ∗∗∗

(0.089) (0.047) (0.044) (0.129) (0.072) (0.040) (0.075) (0.062)
netflow 0.032 0.017 0.013 −0.267 ∗∗∗ −0.175 ∗∗∗ −0.060 ∗∗∗ 0.025 −0.146

(0.027) (0.014) (0.011) (0.063) (0.035) (0.020) (0.024) (0.025)



Econometrics 2022, 10, 31 16 of 17

Table 5. Cont.

Poisson Spatial Reg. NB Spatial Reg. Poisson NB2
Variable Total M.E. Direct M.E. Indirect M.E. Total M.E. Direct M.E. Indirect M.E. Direct M.E. Direct M.E.

proad 1.002 ∗∗∗ 0.526 ∗∗∗ 0.395 ∗∗∗ 0.825 ∗∗∗ 0.542 ∗∗∗ 0.185 ∗∗∗ 1.097 ∗∗∗ 0.776 ∗∗∗

(0.251) (0.147) (0.114) (0.236) (0.155) (0.064) (0.194) (0.213)
interst 0.086 ∗∗∗ 0.045 ∗∗∗ 0.034 ∗∗∗ 0.049 ∗∗∗ 0.032 ∗∗∗ 0.011 ∗∗∗ 0.078 ∗∗∗ 0.044 ∗∗∗

(0.014) (0.008) (0.008) (0.009) (0.006) (0.003) (0.011) (0.007)
avland −0.075 ∗∗∗ −0.040 ∗∗∗ −0.030 ∗∗∗ −0.056 ∗∗∗ −0.037 ∗∗∗ −0.013 ∗∗∗ −0.092 ∗∗∗ −0.062 ∗∗∗

(0.018) (0.010) (0.008) (0.009) (0.006) (0.003) (0.016) (0.007)
bci 1.368 ∗∗∗ 0.718 ∗∗∗ 0.539 ∗∗∗ 0.313 0.206 0.070 0.855 ∗∗ 0.316 ∗∗

(0.450) (0.230) (0.207) (0.211) (0.136) (0.050) (0.400) (0.137)
educpc 0.065 ∗∗∗ 0.034 ∗∗∗ 0.025 ∗∗∗ 0.055 ∗∗ 0.036 ∗∗ 0.012 ∗∗ 0.038 0.036

(0.022) (0.012) (0.010) (0.025) (0.017) (0.006) (0.020) (0.025)
hwypc −0.420 −0.221 −0.165 −1.294 ∗∗∗ −0.850 ∗∗∗ −0.290 ∗∗∗ −0.320 −0.258

(0.248) (0.132) (0.103) (0.313) (0.197) (0.090) (0.200) (0.194)
metro 23.233 ∗∗∗ 14.520 ∗∗∗ 7.382 ∗∗∗ 12.481 ∗∗∗ 8.632 ∗∗∗ 2.449 ∗∗∗ 19.385 ∗∗∗ 9.909 ∗∗∗

(2.972) (1.486) (1.791) (1.304) (0.752) (0.513) (2.288) (0.822)
micro 10.901 ∗∗∗ 4.787 ∗∗∗ 5.031 ∗∗∗ 7.154 ∗∗∗ 4.650 ∗∗∗ 1.757 ∗∗∗ 6.200 ∗∗∗ 5.575 ∗∗∗

(2.349) (0.639) (1.677) (0.759) (0.397) (0.378) (0.788) (0.434)

6. Conclusions

This article proposes a new regression model for spatially autocorrelated count data,
denoted as the spatial count regression model. The model is observation-driven in the
sense that neighbouring counts linearly affect the conditional expectation function of
a Poisson or negative binomial regression model. This avoids the problems caused by
exponential feedback specifications and provides a more intuitive interpretation of the
spatial autocorrelation than most existing specifications. It also allows one to compute
marginal effects, which can be decomposed into direct and indirect effects and allow
for useful econometrics interpretations in many fields of application. The model can be
estimated via pseudo-maximum likelihood using standard optimisation methods, making
it easily adoptable in applied work. Finally, we advocate the usage of several model
validation and diagnostics already standard in the regression analysis of non-spatial count
data, i.e., PIT histograms, scoring rules and relative deviations plots.

In our empirical example, we revisited the start-up firm births data set of Lambert et al.
(2016). With the help of the model validation devices and diagnostic tools, we illustrated the
pros and cons of several model specifications. Among these, the best fit for the modelling
of firm births in U.S. counties can be obtained with the negative binomial spatial count
regression model. Nevertheless, this model considerably overestimated the smallest counts.
A future improvement of the fit for this particular application may be obtained by moving
away from single-index models, e.g., by employing a mixture of discrete distributions.
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Notes
1 Proença and Glórias (2021) also employed the SAR-Poisson specification (1), but proposed an alternative two-step Poisson

pseudo-maximum likelihood approach to solve the problem of taking logarithms from zero counts. See also Simões et al. (2017),
who employed the SAR-Poisson model of Lambert et al. (2016) to analyse the spatial correlation of calls to the Portugese National
Healthline. The authors proposed a spatial lag Poisson Bayesian model to be estimated by a suitably augmented Nested Laplace
Approximation (INLA) developed by Gómez-Rubio et al. (2015).

2 Besag’s model has been used frequently to model spatial heterogeneity in context of a count data model (see, e.g., Gschlößl and
Czado 2007; Gschlößl and Czado 2008; Apardian and Smirnov 2020).

3 See the very instructive discussion on this in Lambert et al. (2016).
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