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Abstract: In this paper, we consider the estimation of a dynamic panel data model with non-stationary
multi-factor error structures. We adopted the common correlated effect (CCE) estimation and estab-
lished the asymptotic properties of the CCE and common correlated effects mean group (CCEMG)
estimators, as N and T tend to infinity. The results show that both the CCE and CCEMG estimators
are consistent and the CCEMG estimator is asymptotically normally distributed. The theoretical
findings were supported for small samples by an extensive simulation study, showing that the CCE
estimators are robust to a wide variety of data generation processes. Empirical findings suggest
that the CCE estimation is widely applicable to models with non-stationary factors. The proposed
procedure is also illustrated by an empirical application to analyze the U.S. cigar dataset.

Keywords: dynamic panel models; cross-sectional dependence; non-stationary; common factors;
common correlated effects
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1. Introduction

Recently, there has been increased interest in the analysis of panel data models with
cross-sectionally dependent errors (also known as unobserved common factors or multi-
factor error structures), which are motivated by empirical applications in economics, such
as common shocks and the global financial crisis, see Omay and Kan (2010); Bussiere et al.
(2013); Eberhardt et al. (2013) and Chudik et al. (2017), etc. The dependencies across
the units violate the traditional assumption of independent and identically distributed
errors; conventional panel estimation methods (such as fixed effects estimation) could
have serious consequences and lead to inconsistent estimations and misleading inferences.
Therefore, in econometrics literature, much effort has been devoted to the estimations for
panels with cross-sectional dependence, for example, Pesaran (2006); Bai (2009); Zaffaroni
(2009); Greenaway-McGrevy et al. (2012); Kao et al. (2012); Chudik and Pesaran (2013);
Moon and Weidner (2015, 2017), among others. See also Chudik and Pesaran (2015b) for a
survey of recent developments in large panel models with cross-sectional dependence.

Among these studies, a predominant approach of dealing with cross-sectionally de-
pendent errors in panel models is the so-called common correlated effect (CCE) method
proposed by Pesaran (2006)1. The basic idea of CCE estimation is to proxy the unobserved
common factors using the cross-sectional averages of the observables in the regression. Com-
paratively, it has several advantages. For instance, it can be computed by least squares to
auxiliary regression, and it does not require the knowledge of the number of unobserved
factors. The CCE method has been further developed and applies to different types of
panel models. To name a few, Chudik and Pesaran (2015a) suggested the CCE approach
to analyze dynamic heterogeneous panels with stationary unobserved common factors.
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Kapetanios et al. (2011) extended the CCE method to static panel data models with non-
stationary multi-factor error structures. Westerlund et al. (2019) considered the CCE for
short panels, and Zhou and Zhang (2016) extended the CCE for unbalanced panels.

Among the aforementioned works, there is a gap in the CCE estimation for dynamic
panels with non-stationary unobservable factors. To fill this gap, in this paper we consider
a linear dynamic heterogeneous panel data model with non-stationary unobserved com-
mon factors when both the cross-sectional and time dimensions of the dataset grow to
infinity. Under these settings, we find that the CCE estimator of the individual coefficient is
consistent, and the CCE mean group (CCEMG) estimator is consistent and has a normal
limit distribution. The practical implication of this finding is that for inferential purposes
of the CCE estimation, one does not necessarily need to test the stationarity of the unob-
served common factors in the model. The finite sample properties are examined through
Monte Carlo simulations and the simulation results confirm our theoretical findings in the
paper. Moreover, the proposed procedure is illustrated by an empirical application, which
analyzes the U.S. cigar dataset.

The rest of the paper is organized as follows. Section 2 sets up the basic model
and introduces the CCE estimation of the dynamic heterogeneous panel data model with
common factors. The asymptotics of the CCE estimation with non-stationary unobserved
common factors is provided in Section 3. Monte Carlo simulation results and an empirical
application are reported in Sections 4 and 5, respectively. The concluding remarks are made
in Section 6. Proof of the main results is provided in Appendix A.

Notation: The letter K stands for a finite positive constant. All vectors are column
vectors represented by bold lower case letters, and matrices are represented by bold capital

letters. Let ‖A‖ =
√

tr
(
AA′

)
denote the Frobenius norm. ‖A‖1 = max1≤j≤n Σn

i=1

∣∣aij
∣∣,

and ‖A‖∞ = max1≤i≤n Σn
j=1

∣∣aij
∣∣ denote the maximum absolute column and row sum

matrix norms, respectively. A+ denotes the Moore–Penrose inverse of A, rank(A) and $(A)
denotes the rank and the spectral radius of A, respectively.

2. Dynamic Panel Data Model with Non-Stationary Unobserved Common Factors
2.1. The Model

We assume the scalar dependent variable yit and regressors xit are generated as
follows2

yit = cyi + φiyi,t−1 + β′ixit + γ′ift + εit, (1)

and
xit = cxi + αiyi,t−1 + Γ′ift + uit, (2)

for i = 1, 2, . . . , N and t = 1, 2, . . . , T, where cyi and cxi are individual fixed effects for unit
i, xit is a k× 1 vector of the regressors specific to cross-sectional unit i at time t, εit are the
individual-specific (idiosyncratic) errors and uit are the individual-specific components of
xit, γi and Γi are m× 1 and m× k factor loading matrices, and the m× 1 vector ft represents
unobserved common factors. In what follows, we maintain the restriction that model (1) is
stationary, such that 0 < |φi| < 1 for i = 1, 2, . . . , N.

Models (1)–(2) have been widely studied in the literature; see, for instance, Pesaran
(2006), Chudik and Pesaran (2015a), Westerlund et al. (2019), and the references therein.
We follow these studies to consider the CCE estimation for φi and βi, and reexamine the
validity of the CCE estimation when ft is non-stationary.

2.2. CCE Estimation

Following Chudik and Pesaran (2015a), let zit =
(
yit, x′it

)′, then (1) and (2) can be
compactly written as

zit = czi + Aizi,t−1 + A−1
0i Cift + ezit, (3)
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where czi = A−1
0i ci, Ai = A−1

0i A1i, Ci = (γi, Γi)
′, and ezit = A−1

0i eit, with ci = (cyi, c′xi)
′,

eit =
(
εit, u′it

)′, and

A0i =

(
1 −β′i
0 Ik

)
, A1i =

(
φi 0
αi 0

)
. (4)

If the support of $(Ai) lies strictly inside the unit circle, then (3) can be rewritten as
the following distributed lag form

zit =
∞

∑
l=0

Al
i

(
czi + A−1

0i Cift−l + ezi,t−l

)
, (5)

for i = 1, 2, . . . , N.
Taking the cross-sectional average of (5) yields

z̄t = c̄z + Λ(L)Cft + Op(N−1/2),

where z̄t = 1
N ∑N

i=1 zit is a k + 1 dimensional vector of the cross-section average,
c̄z = 1

N ∑N
i=1(Ik+1 − Ai)

−1czi, and C = E(Ci) = (γ, Γ)′, Λ(L) = ∑∞
l=0 Λl Ll with Λl =

E
(

Al
iA
−1
0i

)
, and L being the lag operator. Furthermore, if Λ(L) is invertible (see Assump-

tion 4 below), then we have

Cft = Λ−1(L)(z̄t − c̄z) + Op(N−1/2).

When the (k + 1)×m matrix C has the full column rank, i.e., the rank condition

rank(C) = m ≤ k + 1, (6)

holds, we have
ft = B(L)(z̄t − c̄z) + Op(N−1/2), (7)

where B(L) = (C′C)−1C′Λ−1(L). This suggests that the contemporary and lagged value
of z̄t = (ȳt, x̄′t)

′ can be used as observable proxies for the unobserved common factors ft.
Substituting the observed proxies of the unobserved common factors (7) into (1) yields

the following augmented regression

yit = c∗yi + φiyi,t−1 + β′ixit + δ′i(L)z̄t + εit + Op(N−1/2),

or

yit = c∗yi + φiyi,t−1 + β′ixit +
pT

∑
l=0

δ′il z̄t−l + wit, (8)

for t = pT + 1, pT + 2, . . . , T, where c∗yi = cyi − δ′i(1)c̄z, δi(L) = B′(L)γi = ∑∞
l=0 δil Ll , pT is

the number of lags used to truncate the infinite polynomial distributed lag function δi(L),3

and the composite error wit has the form of

wit = εit +
∞

∑
l=pT+1

δ′il z̄t−l + Op(N−1/2).

For notational simplicity, let yi =
(
yi,pT+1, yi,pT+2, . . . , yiT

)′, Ξi = (yi,−1, Xi), with
yi,−1 =

(
yi,pT , yi,pT+1, . . . , yi,T−1

)′ and Xi = (xi,pT+1, xi,pT+2, . . . , xiT)
′, and

wi =
(
wi,pT+1, wi,pT+2, . . . , wiT

)′, then the augmented regression (8) can be expressed in
vector form as

yi = Ξiπi + Q̄di + wi, (9)



Econometrics 2022, 10, 29 4 of 27

where πi =
(
φi, β′i

)′ are the parameters of interest, di = (c∗yi, δ′i0, δ′i1, . . . , δ′ip)
′ are nuisance

parameters, and4

Q̄ =


1 z̄′pT+1 z̄′pT

· · · z̄′1
1 z̄′pT+2 z̄′pT+1 · · · z̄′2
...

...
...

. . .
...

1 z̄′T z̄′T−1 · · · z̄′T−pT

. (10)

Based on the cross-sectionally augmented regression model (9) and by the formula for
partitioned regression, the CCE estimator of the individual coefficients πi is given by

π̂i =
(
Ξ′iMqΞi

)−1
Ξ′iMqyi, (11)

which is an ordinary least squares estimate, where Mq = IT−pT − Q̄(Q̄′Q̄)+Q̄′ is an
orthogonal projection matrix, with IT−pT a (T− pT)-dimensional identity matrix. In panel
models with N large, the primary parameters of interest are the means of the individual–
specific coefficients, E(πi) = π, which can be estimated by the common correlated effects
mean group (CCEMG) estimator

π̂MG =
1
N

N

∑
i=1

π̂i. (12)

3. Asymptotics of CCE Estimators with Non-Stationary Factors
3.1. Assumptions

When the unobserved common factors ft are stationary processes, Chudik and Pesaran
(2015a) showed that the CCE estimator (11) of the individual coefficient is consistent, and the
CCEMG estimator (12) is consistent and asymptotically normal. However, in practice,
the common factors ft may follow a non-stationary process (see Bai and Ng 2004, 2010;
Pesaran 2007; Pesaran et al. 2013, among others). In this scenario, the validity of CCE
estimators and their asymptotic properties need to be re-examined.

Following Kapetanios et al. (2011), we assume the unobserved common factors follow
the multivariate unit root process

ft = ft−1 + ςt. (13)

To derive the asymptotic properties of the CCE type estimators (11) and (12) when ft
follows (13), we make the following assumptions.

Assumption 1. (Individual-specific errors). (i) The individual–specific errors εit follow a linear
stationary process with uniformly-bounded positive variance, supi σ2

i < K, for some constant
K, and uniformly-bounded fourth-order cumulants. uit follows a linear stationary process with
absolute summable auto-covariances (uniformly in i), with covariance matrices, Σui , which are
non-singular and satisfy supi‖Σui‖ < K, and have uniformly-bounded fourth-order cumulants.
(ii) εit are independently distributed of ujt′ for all i, j, t, and t′. For each i, eit = (εit, u′it)

′ is an
(k + 1)× 1 vector of L2+δ, δ > 0, stationary near epoch dependent processes of size 2δ/(2δ + 4)
on the α-mixing process of size −(2 + δ)/δ, and for i = 1, 2, . . . , N, Var(eit) = Σei , which is a
non-singular matrix and satisfies supi‖Σei‖ < K.

Assumption 2. (Factor loadings). The factor loadings γi and Γi are independently and identically
distributed (I ID) across i, and of the common factors ft, for all i and t, with means γ and Γ,
respectively, and the bounded second moments. In particular,

γi = γ + ηγi, with ηγi ∼ I ID(0, Σγ), for i = 1, 2, . . . , N,
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and
vec(Γi) = vec(Γ) + ηΓi, with ηΓi ∼ I ID(0, ΣΓ), for i = 1, 2, . . . , N,

where Σγ and ΣΓ are m × m and mk × mk symmetric nonnegative definite matrices, ‖γ‖ <
K, ‖Σγ‖ < K, ‖Γ‖ < K and ‖ΣΓ‖ < K, for some constant K.

Assumption 3. (Heterogeneous coefficients). The slope coefficients πi =
(
φi, β′i

)′ follow the
random coefficient model

πi = π + υπi, υπi ∼ I ID(0, Σπ), for i = 1, 2, . . . , N,

where π = E(πi) = (φ, β′)′, ‖π‖ < K, ‖Σπ‖ < K, Σπ is the (k + 1) × (k + 1) symmet-
ric nonnegative definite matrix and the random deviations υπi are distributed independently of
γj, Γj, ε jt, ujt and ςt for i, j, and t. Furthermore, the support of φi lies strictly inside the unit circle,
and E‖ci‖ < K, E‖αi‖ < K for all i, where ci = (cyi, c′xi)

′.

Assumption 4. (Exogenous regressors). Regressors xit are either strictly exogenous and generated
according to the canonical factor model (2) with αi = 0, or weakly exogenous and generated
according to (2) with αi, for i = 1, 2, . . . , N, I ID across i, and independently distributed of υπ j,
γj, Γj, ε jt, ujt and ft for all i, j, and t. In the case where the regressors are weakly exogenous, we also
assume:

(i) The support of $(Ai) lies strictly inside the unit circle, for i = 1, 2, . . . , N, where Ai =
A−1

0i A1i with A0i and A1i are defined in (4).
(ii) The inverse of polynomial Λ(L) = ∑∞

l=0 Λl Ll exists and has exponentially decaying
coefficients, where Λl = E(Al

iA
−1
0i ).

Assumption 5. (Rank condition). The (k + 1)×m matrix C has a full column rank, such that

rank(C) = m ≤ k + 1,

where C = E(Ci) = E(γi, Γi)
′.

Assumption 6. (i) As (N, T) → ∞, the (k + 1)× (k + 1) matrices Ψ−1
iT = (Ξ′iMqΞi/T)−1,

Ψ−1
ih = (Ξ′iMhΞi/T)−1 and Ψ−1

ig = (Ξ′iMgΞi/T)−1 exist for all i, and Ψ−1
iT , Ψ−1

ih and Ψ−1
ig have

finite second-order moments for all i, where Mh = IT−pT −H(H′H)+H′ and Mg = IT−pT −
G(G′G)+G′ are projection matrices, where A+ denotes the Moore–Penrose generalized inverse of
A, H, and G, defined as

H =


1 h′pT+1 · · · h′1
1 h′pT+2 · · · h′2
...

...
. . .

...
1 h′T · · · h′T−pT

, G = (τ, F̃) =


1 f′pT+1 · · · f′1
1 f′pT+2 · · · f′2
...

...
. . .

...
1 f′T · · · f′T−PT

,

where ht = Ψ(L)ft + c̄z with Ψ(L) = 1
N ∑N

i=1(Ik+1 −AiL)−1A−1
0i Ci and c̄z =

1
N ∑N

i=1(Ik+1 −
Ai)
−1czi, τ = (1, 1, . . . 1)′ is a (T − pT)× 1 vector of ones.

(ii) The matrix Ψ∗ = limN→∞
1
N ∑N

i=1 ΣΩi is non-singular, where

ΣΩi = Ψξi

(
σ2

i 0
0 Σui

)
Ψ′ξi with Ψξi =

(
S′y(Ik+1 −AiL)−1L
S′x(Ik+1 −AiL)−1

)
A−1

0i a (k + 1) × (k + 1)

matrix, S′y =
(

1 0
)

1×(k+1), and S′x =
(

0 Ik
)

k×(k+1).

Assumption 7. ςt in (13) is an m× 1 vector of L2+δ, δ > 0, stationary near epoch-dependent
processes of size 1/2, on an α-mixing process of size −(2 + δ)/δ, and is distributed independently
of the idiosyncratic errors εit and uit for all i and t.
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Several remarks can be made for these assumptions. Assumptions 1–3 are quite
standard in the literature for (dynamic) panel models with cross-sectional dependence,
for example, see Pesaran (2006) and Kapetanios et al. (2011) and the references therein.
Assumption 4 is also made on Chudik and Pesaran (2015a) for exogenous regressors and
stationarity conditions for dynamic panels. Assumption 5 is a common condition for
the implementation of the CCE estimation (e.g., Pesaran (2006) and Chudik and Pesaran
(2015a), etc.), which implies that there are more included regressors than the unobserved
factors in the model. See Juodis et al. (2021) for a detailed discussion of the validity of
the rank condition and the resulting asymptotics for the CCE estimation. Assumption 6 is
a common assumption for the CCE estimation and it is imposed for the partition regres-
sion in augmented regression for the dynamic panels (e.g., Chudik and Pesaran 2015a).
Assumption 7 requires that the error structures in the unit root process ft are stationary.

3.2. Asymptotics

Under these assumptions, we can establish the asymptotic properties of CCE estima-
tors (11) and (12) when ft is non-stationary. To begin with, we note that for the original
model (1), it can be rewritten as in the vector form

yi = cyiτ + φiyi,−1 + Xiβi + Fγi + εi, (14)

or more compactly as
yi = cyiτ + Ξiπi + Fγi + εi, (15)

for i = 1, 2, . . . , N, where yi =
(
yi,pT+1, yi,pT+2, . . . , yiT

)′, Xi = (xi,pT+1, . . . , xiT)
′, yi,−1 =(

yi,pT , yi,pT+1, . . . , yi,T−1
)′, Ξi = (yi,−1, Xi), F = (fpT+1, . . . , fT)

′, and εi = (εi,pT+1, . . . , εiT)
′.

Using the CCE estimator (11) into (15), we have

π̂i − πi =

(
Ξ′iMqΞi

T

)−1
Ξ′iMqFγi

T
+

(
Ξ′iMqΞi

T

)−1
Ξ′iMqεi

T
, (16)

which shows that the asymptotics of π̂i depends on the unobserved factors through
T−1Ξ′iMqF.

Using the results in Lemma A2, A5, and A6 in Appendix A, we obtain

Ξ′iMqF
T

= Op

(
1
N

)
+ Op

(
1√
NT

)
, uniformly over i, (17)

and, thus,

π̂i − πi =

(
Ξ′iMqΞi

T

)−1
Ξ′iMqεi

T
+ Op

(
1
N

)
+ Op

(
1√
NT

)
, (18)

when the rank condition (6) is satisfied. The above results are summarized in the follow-
ing theorem, establishing the consistency of the CCE estimator of individual coefficients
of interest.

Theorem 1. Consider the panel models (1) and (2), suppose Assumption 1–7 hold, then, as

(N, T, pT)
j→ ∞, such that p3

T/T → λ, 0 < λ < ∞, we have

π̂i − πi
p→ 0.

See the Appendix A for the proof.

Remark 1. The above theorem suggests that the CCE estimator of the individual slope coefficient
is consistent even if the common factors are non-stationary. When the rank condition (6) is not
satisfied, the CCE estimator of the individual slope coefficients would be inconsistent due to the
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correlation of xit and ft. See Juodis et al. (2021) for more discussions on the validity of the CCE
estimator when the rank condition does not hold.

Next, we establish the asymptotic properties of the CCEMG estimator of the mean
group coefficients, π = E(πi). We have

√
N(π̂MG − π) =

1√
N

N

∑
i=1

υπi +
1√
N

N

∑
i=1

(
Ξ′iMqΞi

T

)−1
Ξ′iMqF

T
γi

+
1√
N

N

∑
i=1

(
Ξ′iMqΞi

T

)−1
Ξ′iMqεi

T
.

When the rank condition is satisfied, by (17), we have
√

NΞ′iMqF
T

= Op

(
1√
N

)
+ Op

(
1√
T

)
,

hence, we can obtain

√
N(π̂MG − π) =

1√
N

N

∑
i=1

υπi + Op

(
1√
N

)
+ Op

(
1√
T

)
d∼ 1√

N

N

∑
i=1

υπi,

and, thus,

Theorem 2. Consider the panel models (1) and (2), suppose Assumptions 1–7 hold, as (N, T, pT)
j→

∞, such that p3
T/T → λ, 0 < λ < ∞, then we have

π̂MG − π
p→ 0.

If it is further assumed that N/T → ϕ, 0 < ϕ < ∞, then

√
N(π̂MG − π)

d→ N(0, ΣMG).

The asymptotic variance of π̂MG can be consistently estimated nonparametrically by

Σ̂MG =
1

N − 1

N

∑
i=1

(π̂i − π̂MG)(π̂i − π̂MG)
′.

For the results in both Theorems 1 and 2, we find that, for models with non-stationary
common factors, although the intermediate results needed for deriving the asymptotic
properties of the common correlated effects estimators significantly differ from the station-
ary case, as in Chudik and Pesaran (2015a), the final results are surprisingly similar. This is
in direct contrast to the usual phenomenon where distributional results of I(1) processes
are radically different from those of I(0) processes.

Remark 2. For the consistency of π̂i and π̂MG, no restrictions on the relative expansion rates of N
and T to infinity are required. However, they require N/T → ϕ, 0 < ϕ < ∞ for the derivation
of the asymptotic distribution of π̂MG due to the time series bias, which arises from the presence
of lagged values of the dependent variable; therefore, it is unsuitable for panels with T being small
relative to N.

Including a lagged dependent variable as the regressor in the model could induce
the estimators with time series bias of order O(T−1). When T is not large, the bias is non-
negligible; hence, a certain bias correction approach should be considered. In the simulations
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below, we consider the Jackknife bias-corrected method for bias reduction (e.g., see (21)
below), which is used extensively in the relevant literature (e.g., Hahn and Newey 2004).

4. Monte Carlo Simulation

In this section, we investigate the finite sample properties of the CCEMG estimation
for dynamic heterogeneous panels with non-stationary common factors. We consider the
following data-generating processes5

yit = cyi + φiyi,t−1 + β0ixit + β1ixi,t−1 + γ′ift + εit, (19)

and
xit = cxi + αxiyi,t−1 + γ′xift + uit. (20)

for i = 1, 2, . . . , N, and t = −99, . . . , 0, . . . , T. Let φi ∼ I IDU(0, 0.8), β0i ∼ I IDU(0.5, 1),
β1i = −0.5 and αxi ∼ I IDU(0, 0.35), cyi ∼ I IDN(1, 1), cxi = cyi + εcxi with εcxi ∼
I IDN(0, 1). The main purpose of this paper is to illustrate the validity of the CCEMG esti-
mator in the case of non-stationary unobserved common factors; hence, for the unobserved
common factors ft, we consider the following three different non-stationary DGPs:

DGP 1. Two non-stationary unobserved common factors (m = 2), flt = fl,t−1 + ς f lt,

ς f lt ∼ I IDN
(

0, σ2
f l

)
, where σf l = 0.2, for l = 1, 2, and t = −99, . . . , 0, . . . , T.

DGP 2. One non-stationary unobserved common factor and a stationary common
factor (m = 2), f1t = f1,t−1 + ς f lt, f2t = 0.6 f2,t−1 + ς f lt, ς f lt ∼ I IDN

(
0, σ2

f l

)
, where

σf l = 0.5, for l = 1, 2, and t = −99, . . . , 0, . . . , T.
DGP 3. Cointegrated unobserved common factors (m = 2), f1t = f1,t−1 + ς f 1t, f2t =

0.5 f1t + ς f 2t, ς f lt ∼ I IDN
(

0, σ2
f l

)
, where σf l = 1, for l = 1, 2, and t = −99, . . . , 0, . . . , T.

For the above DGPs, the starting values are fl,−100 = 0, for l = 1, 2; the first 100
observations are discarded.

Correspondingly, the factor loadings are generated independently across replica-
tions as

γil = γl + ηi,γl , ηi,γl ∼ I IDN
(

0, σ2
γl

)
,

and
γxil = γxl + ηi,γxl , ηi,γxl ∼ I IDN

(
0, σ2

γxl

)
,

for i = 1, 2, . . . , N and l = 1, 2, where σ2
γl = 0.22, σ2

γxl = 0.32, and γl =
√

bγl , γxl =
√

lbxl

for l = 1, 2, where bγl = 1/2− σ2
γl and bxl = 1/2− σ2

γxl for l = 1, 2.
For the idiosyncratic errors, εit ∼ I IDN(0, 1) for all i and t, and the unit-specific

components uit are generated as independent stationary AR(1) processes:

uit = ρxiui,t−1 + εxit, ρxi ∼ I IDU(0, 0.95), εxit ∼ I IDN(0, 1),

for i = 1, 2, . . . , N and t = −99, . . . , 0, . . . , T with the starting values ui,−100 = 0. The first
100 observations are discarded.

We consider the combination of N = 50, 100, 200, and T = 50, 100, 150, 200. The num-
ber of replications is set at 2000 times. In what follows, we focus on the lagged coefficient φ
(the cross-section mean of φi), as well as β0 (the cross-section mean of β0i). To save space,
we only report the results of β0 since the results for β1 are very similar to that of β0 and
they are available upon request.

Two estimators are considered in the simulation. The first is the main result of the
CCEMG estimator π̂MG given in (12), in which, the lag order pT is selected to satisfy
p3

T/T → λ, as T → ∞, for some 0 < λ < ∞; that is, pT = [T1/3], which works well in our
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Monte Carlo design6. The second is the Jackknife bias-corrected CCEMG estimator, which
is constructed as

π̂Jack−MG = 2π̂MG −
1
2

(
π̂a

MG + π̂b
MG

)
, (21)

where π̂a
MG is the CCEMG estimator calculated using the first two-thirds of the available

time period, namely over the period t = 1, 2, . . . , [2T/3], and π̂b
MG denotes the CCEMG

estimator computed using the observations over the period t = [T/3], [T/3] + 1, . . . , T,
where [T/3] denotes the integer part of T/3. Note that a new strategy is applied to improve
the performance of the Jackknife estimator, i.e., the whole time period is divided into
three parts, the first two-thirds of the available period is applied to calculate the first
estimator and another one is computed from the last two-thirds of the period. We find that,
in our settings, this division strategy performs better than the half-panel Jackknife method
discussed in Chudik and Pesaran (2015a).

We used the statistical software MATLAB to conduct the Monte Carlo experiments; the
simulation results are summarized in Tables 1–3 for DGPs 1–3, respectively.

From Table 1, we note that for the estimation of φ, the CCEMG performs well in terms
of bias and RMSE, with the bias diminishing as T is increased, and the associated RMSEs
fall steadily when T increases, which implies that the CCEMG estimator is consistent.
However, it still suffers from the time series bias when T is small. While the Jackknife
bias-corrected CCEMG estimator is quite effective at reducing the time series bias of the
CCEMG estimator, the bias has been significantly reduced compared with the original
CCEMG estimator when T was not large, and the RMSE also decreased with the increase
of either N or T. Similar findings can be observed for β0.

In order to evaluate the robustness of various estimators, we considered additional
results in Tables 2 and 3 for DGPs with both stationary and non-stationary factors or
cointegrated factors. Similar to the case with non-stationary factors in DGP1, we find that
the CCEMG estimator still performs well regardless of the number of common factors and
the non-stationary type, and it can be improved by the Jackknife bias-corrected for the
estimation of the autoregressive coefficient φ, the CCEMG estimator of the slope coefficient
β0 performs very well in almost all cases.

Table 1. Estimation results for DGP 1.

Bias RMSE

Parameter (N, T) 50 100 150 200 50 100 150 200

CCEMG estimation

φ

50 −0.1065 −0.0393 −0.0163 −0.0004 0.1131 0.0530 0.0392 0.0371
100 −0.1085 −0.0392 −0.0156 −0.0004 0.1120 0.0476 0.0311 0.0284
200 −0.1105 −0.0402 −0.0163 −0.0012 0.1116 0.0450 0.0265 0.0220

Jackknife bias-corrected CCEMG estimation
50 −0.0508 −0.0126 −0.0071 −0.0043 0.0747 0.0417 0.0415 0.0440
100 −0.0411 −0.0124 −0.0036 0.0034 0.0689 0.0324 0.0309 0.0365
200 −0.0417 −0.0127 −0.0042 −0.0039 0.0664 0.0273 0.0253 0.0309

CCEMG estimation

β0

50 0.0136 0.0071 0.0032 0.0012 0.0461 0.0332 0.0282 0.0275
100 0.0129 0.0058 0.0029 0.0008 0.0341 0.0232 0.0200 0.0192
200 0.0119 0.0049 0.0024 0.0003 0.0252 0.0169 0.0150 0.0139

Jackknife bias-corrected CCEMG estimation
50 0.0112 0.0043 0.0011 −0.0007 0.0550 0.0361 0.0307 0.0289
100 0.0098 0.0030 0.0003 −0.0015 0.0397 0.0251 0.0215 0.0206
200 0.0091 0.0020 0.0000 0.0017 0.0281 0.0180 0.0160 0.0150
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Table 2. Estimation results for DGP 2.

Bias RMSE

Parameter (N, T) 50 100 150 200 50 100 150 200

CCEMG estimation

φ

50 −0.0983 −0.0384 −0.0188 −0.0093 0.1053 0.0513 0.0386 0.0348
100 −0.1004 −0.0389 −0.0200 −0.0104 0.1040 0.0461 0.0312 0.0259
200 −0.1015 −0.0395 −0.0193 −0.0102 0.1036 0.0434 0.0271 0.0203

Jackknife bias-corrected CCEMG estimation
50 −0.0506 −0.0179 −0.0069 −0.0014 0.0840 0.0410 0.0360 0.0346
100 −0.0491 −0.0172 −0.0072 0.0015 0.0768 0.0316 0.0262 0.0245
200 −0.0457 −0.0167 −0.0071 −0.0013 0.0704 0.0257 0.0194 0.0177

CCEMG estimation

β0

50 0.0124 0.0077 0.0048 0.0036 0.0451 0.0334 0.0285 0.0275
100 0.0122 0.0063 0.0042 0.0033 0.0335 0.0235 0.0202 0.0193
200 0.0112 0.0056 0.0039 0.0028 0.0248 0.0171 0.0151 0.0138

Jackknife bias-corrected CCEMG estimation
50 0.0109 0.0061 0.0037 0.0027 0.0535 0.0362 0.0306 0.0284
100 0.0104 0.0045 0.0026 0.0020 0.0396 0.0252 0.0212 0.0200
200 0.0090 0.0036 0.0024 0.0017 0.0279 0.0179 0.0156 0.0145

Table 3. Estimation results for DGP 3.

Bias RMSE

Parameter (N, T) 50 100 150 200 50 100 150 200

CCEMG estimation

φ

50 −0.0649 −0.0330 −0.0154 −0.0076 0.0733 0.0475 0.0363 0.0342
100 −0.0760 −0.0370 −0.0159 −0.0119 0.0801 0.0440 0.0313 0.0259
200 −0.0789 −0.0378 −0.0179 −0.0127 0.0814 0.0434 0.0284 0.0222

Jackknife bias−corrected CCEMG estimation
50 −0.0195 −0.0073 0.0041 0.0010 0.0425 0.0368 0.0340 0.0335
100 −0.0246 −0.0098 −0.0030 0.0001 0.0410 0.0272 0.0252 0.0235
200 −0.0309 −0.0091 −0.0059 −0.0026 0.0395 0.0224 0.0182 0.0171

CCEMG estimation

β0

50 0.0094 0.0063 0.0043 0.0045 0.0412 0.0329 0.0299 0.0276
100 0.0092 0.0060 0.0045 0.0039 0.0312 0.0237 0.0205 0.0198
200 0.0092 0.0062 0.0043 0.0038 0.0224 0.0174 0.0148 0.0141

Jackknife bias-corrected CCEMG estimation
50 0.0069 0.0045 0.0032 0.0039 0.0441 0.0341 0.0307 0.0284
100 0.0068 0.0041 0.0035 0.0027 0.0330 0.0243 0.0212 0.0202
200 0.0058 0.0040 0.0029 0.0021 0.0230 0.0175 0.0148 0.0143

Overall, the findings of our Monte Carlo simulations show that, if the parameter
of interest is the mean coefficient of the regressors, β0, the CCEMG estimator performs
well even if N and T are not large. For the mean coefficient of the lagged dependent, φ,
the CCEMG estimator is still consistent, but it suffers from the time series bias unless T is
sufficiently large and, thus, the Jackknife bias-corrected CCEMG estimator is proposed, it
helps to mitigate the time series bias.

5. Empirical Study

In this section, we illustrate our method by considering the U.S. Cigar dataset, which
is frequently used in the literature on panel models (e.g., Baltagi and Li 2004; Bada and
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Liebl 2014). The panel contains the per capita cigarette consumption of N = 46 American
states from 1963 to 1992 (T = 30) as well as data on the income per capita and cigarette
prices; the dataset can be obtained from the R package phtt.

To test the cross-sectional dependence in the panel data, following Pesaran (2015)
and Bailey et al. (2016), we compute the CD statistic and the α statistic for the variables
of interest in Table 4. As can be seen from the table, the CD statistics turn out to be
101.519, 166.27, and 154.142 for consumption, income, and price, respectively; these are
highly significant and reject the null hypothesis of weak cross-sectional dependence for all
three variables. Additionally, the estimates of α together with their 95% confidence bands
further confirm the above results. As a result, we can conclude that there is an obvious
cross-sectional dependence for these three variables.

Table 4. Exponent of the cross-sectional dependence of variables.

Variable CD p-Value α α0.025 α0.975

consumption 101.519 0.000 0.975 0.887 1.064
income 166.270 0.000 1.004 −0.635 2.644
price 154.142 0.000 1.004 0.620 1.389

To investigate the relationship between the per capita cigarette consumption and the
income per capita as well as cigarette prices, following Baltagi and Li (2004), we consider
the panel model

yit = ci + φiyi,t−1 + β1ix1it + β2ix2it + eit, (22)

where yit, x1it, and x2it denote the per capita cigarette consumption, the income per capita,
and cigarette price for the ith state at time t, respectively, and the idiosyncratic error has
the multi-factor structure

eit = γ′ift + εit. (23)

The proposed dynamic CCE approach is applied to estimate the coefficients in model
(22), and the augmented equation to be estimated can be written as

yit = ci + φiyi,t−1 + β1ix1it + β2ix2it +
pT

∑
l=0

δ′il z̄t−l + wit, (24)

where the number of lags pT = [ 3
√

T] = 3, and z̄t = (ȳt−1, x̄1t, x̄2t)
′. We focus on the

CCEMG estimators and the results are presented in Table 5.
The following conclusions can be drawn from Table 5. On the one hand, the income

per capita has a positive effect on the per capita cigarette consumption, while the increase
in cigarette price will restrain cigarette consumption to a certain extent, and both are
significant. These results are consistent with the conclusions of Bada and Liebl (2014).
On the other hand, the lagged explained variable is highly significant, indicating that it is
appropriate to use dynamic models for the per capita cigarette consumption.

Table 5. Estimation results (Jackknife bias-corrected CCEMG).

Variable coef. Std.Err. p-Value CI0.025 CI0.975

L. consumption 0.368 0.091 0.000 0.190 0.545
income 0.936 0.387 0.016 0.177 1.695
price −0.629 0.115 0.000 −0.854 −0.404

Note: L. consumption denotes the first lag of cigarette consumption.

To illustrate the heterogeneous slopes across states, we display both the CCE and the
CCEMG estimators in Figure 1, which clearly show that the estimates of coefficients vary
from state to state, reflecting the heterogeneity among states. Moreover, to illustrate the
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potential non-stationarity of unobservable common factors in (23), we consider the method
proposed by Bada and Kneip (2014) to select the number of unobservable common factors
and estimate the selected common factors. The results are given in Figure 2, where the
top panel shows the estimated common factors and the bottom panel shows the estimated
time-varying individual effects of N = 46 states. As can be seen from the figure, five
common factors have been selected, among which the first and second common factors
have obvious tendencies and violate the stationarity condition.

−
1

0
0

1
0

2
0

0 10 20 30 40 50
state

Mean: .936
SE:     .387

income

−
6

−
4

−
2

0
2

4

0 10 20 30 40 50
state

Mean: −.629
SE:      .115

price

Figure 1. CCE and CCEMG estimations for income (Left) and price (Right), respectively (CCE
estimates of individual coefficients are indicated by a cross, CCEMG estimates by the red line, and
the 95% confidence interval by the upper and lower range and dashed red line).

Figure 2. Estimated factors (Top) and the factor structure (Bottom).
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6. Conclusions

In this paper, we re-examined the CCE type estimator for dynamic heterogeneous
panel regression models with non-stationary common factors. Asymptotic properties of
CCE estimators are established when both N and T are large. It is shown that, under certain
conditions, the main results of Pesaran (2006) and Chudik and Pesaran (2015a) hold for
a dynamic panel with non-stationary factors. Monte Carlo simulations were conducted
to investigate the finite sample properties of the CCE estimation for the panel with non-
stationary factors. An empirical application to the U.S. cigarette consumption dataset
shows that the real data may have cross-sectional dependence as well as dynamic and
non-stationary common factors (at the same time). Based on the findings of this paper,
together with the results by Pesaran (2006); Kapetanios et al. (2011), and Chudik and
Pesaran (2015a), we can conclude that the CCE method can be widely used to deal with
panel models with error cross-sectional dependence, regardless of whether the model is
static or dynamic, and whether the unobservable common factors are stationary.
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Appendix A. Useful Lemmas and Theoretical Derivations of Theorems

The appendix includes proofs of the theorems and lemmas used in the derivations of
the main results in the paper.

Recall that

H =


1 h′pT+1 · · · h′1
1 h′pT+2 · · · h′2
...

...
. . .

...
1 h′T · · · h′T−pT

, G = (τ, F̃) =


1 f′pT+1 · · · f′1
1 f′pT+2 · · · f′2
...

...
. . .

...
1 f′T · · · f′T−PT

, (A1)

P̄ =


1 c̄′z · · · c̄′z
0 Ψ′(L) · · · 0
...

...
. . .

...
0 0 · · · Ψ′(L)

, V̄∗ =
(
0, Ṽ

)
=


0 v̄′pT+1 · · · v̄′1
0 v̄′pT+2 · · · v̄′2
...

...
. . .

...
0 v̄′T · · · v̄′T−pT

, (A2)

where ht = Ψ(L)ft + c̄z, Ψ(L) = 1
N ∑N

i=1(Ik+1 − AiL)−1A−1
0i Ci and v̄t = 1

N ∑N
i=1(Ik+1 −

AiL)−1A−1
0i eit. Then, the following equalities hold,

Q̄ = GP̄ + V̄∗ and H = GP̄, (A3)

where matrix Q̄ is given by (10).
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Appendix A.1. Useful Lemmas

Now, let us turn to the lemmas, which are needed for the derivation of the results in
the main paper.

Lemma A1. (a) If A ∈ Rm×n
r , r > 0, has a full-rank factorization A = BC, where B ∈ Rm×r

r ,
C ∈ Rr×n

r , then
A+ = C+B+.

(b) If A ∈ Rm×n
m , i.e., A is full row rank, then A+ = A′(AA′)−1.

Using the properties of Moore–Penrose inverse, Lemma A.1 can be easily established
by the MacDuffe Theorem of Ben-Israe and Greville (2003).

Lemma A2. If the rank condition (6) in the main text is satisfied, then

Mh = Mg (A4)

where Mh = IT−pT −H(H′H)+H′, Mg = IT−pT −G(G′G)+G′ and H = GP̄.

Lemma A3. Ξi = (yi,−1, Xi) can be written as

Ξi = G1Πi1 + Ωi, (A5)

or more concisely as
Ξi = G2Πi2 + Ωi, (A6)

where G1 = G =(τ, F̃) given by (A1), Πi1 =
(
cξi, ΨξiCi, 0, . . . , 0

)′, G2 = (τ, F), Πi2 =(
cξi, ΨξiCi

)′ and Ωi = eiΨ
′
ξi, with ei = (εi, Ui), cξi = (Sy, Sx)′(Ik+1 − Ai)

−1czi, Ψξi =(
S′y(Ik+1 −AiL)−1L
S′x(Ik+1 −AiL)−1

)
A−1

0i is (k + 1) × (k + 1) matrix, and S′y =
(

1 0
1×k

)
, S′x =(

0
k×1

Ik
)

.

Lemma A4. Under Assumption 1–7 as well as restriction (N, T, pT)
j→ ∞, such that p2

T/T → 0
and T/N → ϕ 6= 0 < ∞, then the following holds,∥∥∥∥ V̄∗′V̄∗

T

∥∥∥∥
∞
= Op

( pT
N

)
(A7)

∥∥∥∥ ε′iV̄
∗

T

∥∥∥∥
∞
= Op(

pT
N

) + Op(
pT√
NT

),
∥∥∥∥U′iV̄

∗

T

∥∥∥∥
∞
= Op(

pT
N

) + Op(
pT√
NT

) (A8)∥∥∥∥G′V̄∗

T

∥∥∥∥
∞
= Op(

pT√
N
),
∥∥∥∥H′V̄∗

T

∥∥∥∥
∞
= Op(

pT√
N
),
∥∥∥∥Ξ′iV̄

∗

T

∥∥∥∥
∞
= Op(

pT√
N
) (A9)∥∥∥∥G′εi

T

∥∥∥∥
∞
= Op(1),

∥∥∥∥G′Ui
T

∥∥∥∥
∞
= Op(1),

∥∥∥∥ Q̄′εi
T

∥∥∥∥
∞
= Op(1) (A10)∥∥∥∥G′G

T2

∥∥∥∥
∞
= Op(pT),

∥∥∥∥H′H
T2

∥∥∥∥
∞
= Op(pT),

∥∥∥∥ Q̄′Q̄
T2

∥∥∥∥
∞
= Op(pT) (A11)∥∥∥∥ Q̄′G

T2

∥∥∥∥
∞
= Op(pT),

∥∥∥∥H′Ξi
T2

∥∥∥∥
∞
= Op(pT),

∥∥∥∥ Q̄′Ξi
T2

∥∥∥∥
∞
= Op(pT) (A12)

Lemma A5. Under Assumption 1–7 and (N, T, pT)
j→ ∞, such that p3

T/T → λ, 0 < λ < ∞.
Then,

Ξ′iMgΞi

T
p→ ΣΩi, (A13)
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where ΣΩi = Ψξi

(
σ2

i 0
0 Σui

)
Ψ′ξi is a positive definite matrix. Additionally, if the rank condition

(6) is satisfied, then

Ξ′iMqF
T

= Op

(
1
N

)
+ Op

(
1√
NT

)
, uniformly over i. (A14)

Lemma A6. If the rank condition (6) is satisfied, and (N, T, pT)
j→ ∞, such that N/T → ϕ,

0 < ϕ < ∞ and p2
T/T → 0, it follows that

Ξ′iMqΞi

T
−

Ξ′iMhΞi

T
= Op

(
pT√

N

)
, uniformly over i, (A15)

Ξ′iMqF
T

−
Ξ′iMhF

T
= Op

(
pT√

N

)
, uniformly over i, (A16)

Ξ′iMqεi

T
−

Ξ′iMhεi

T
= Op

(
pT√
NT

)
+ Op

( pT
N

)
, uniformly over i. (A17)

Appendix A.2. Theoretical Derivation of the Asymptotics of the CCE Estimators

Proof of Theorem 1. Since

π̂i − πi =

(
Ξ′iMqΞi

T

)−1
Ξ′iMqFγi

T
+

(
Ξ′iMqΞi

T

)−1
Ξ′iMgεi

T
,

and using the results of Lemmas A5 and A6, we have

π̂i − πi =

(
Ξ′iMqΞi

T

)−1
Ξ′iMgεi

T
+ Op

(
1
N

)
+ Op

(
1√
NT

)
.

Noting that under our assumptions, T−1Ξ′iMqΞi tends to a fixed positive definite
matrix. Since Ξi = GΠi + Ωi, then we have

Ξ′iMgεi

T
= −(Π̂i −Πi)

′G
′εi
T

+
Ω′iεi

T
,

where Π̂i is the OLS estimator of Ξi on G. Since (Π̂i −Πi) = Op(T−1), the first part of

(A10) in Lemma A4 implies that the first term is Op(T−1). Next, we establish T−1Ω′iεi
p→

0. Note that Ωi = eiΨ
′
ξi with ei = (εi, Ui), i.e., Ωi contains the lags of εit, as well as

the contemporary and lags of uit, by Assumption 1, εit is the series uncorrelated and

independent of uit, then we have T−1Ω′iεi
p→ 0; consequently,

Ξ′iMgεi

T
p→ 0, uniformly over i. (A18)

as (N, T, pT)
j→ ∞ and p2

T/T → 0. Then it is followed by the consistency of π̂i.

Proof of Theorem 2. Using the consistency of π̂i, and the definition of the mean group
estimator π̂MG, we obtain

π̂MG −
1
N

N

∑
i=1

πi
p→ 0, (A19)

By the assumption of the random coefficient model, πi = π + υπi, it follows that

1
N

N

∑
i=1

πi = π +
1
N

N

∑
i=1

υπi. (A20)
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Combining (A19) and (A20), we have

π̂MG
p→ π +

1
N

N

∑
i=1

υπi, (A21)

so we only need to show that 1
N ∑N

i=1 υπi
p→ 0. Since υπi ∼ I ID(0, Σπ) by Assumption 3, we

have E
(

1
N ∑N

i=1 υπi

)
= 0 and Var

(
1
N ∑N

i=1 υπi

)
= 1

N2 ∑N
i=1 Var(υπi) = O( 1

N ), which implies

1
N

N

∑
i=1

υπi
p→ 0. (A22)

Using (A21) and (A22), we obtain π̂MG
p→ π as desired.

Next, we establish the asymptotic distribution of π̂MG. We have

√
N(π̂MG − π) =

1√
N

N

∑
i=1

υπi +
1
N

N

∑
i=1

(
Ξ′iMqΞi

T

)−1√NΞ′iMqF
T

γi

+
1
N

N

∑
i=1

(
Ξ′iMqΞi

T

)−1√NΞ′iMqεi

T
. (A23)

Using the result (A14) in Lemma A5, when the rank condition is satisfied, we have
√

NΞ′iMqF
T

= Op

(
1√
N

)
+ Op

(
1√
T

)
,

which, together with the assumption of γi to be bounded, and the results of Lemma A2, A5
and Lemma A6, we obtain(

Ξ′iMqΞi

T

)−1√NΞ′iMqF
T

γi = Op

(
1√
N

)
+ Op

(
1√
T

)
,

uniformly over i, it follows that

1
N

N

∑
i=1

(
Ξ′iMqΞi

T

)−1√NΞ′iMqF
T

γi = Op

(
1√
N

)
+ Op

(
1√
T

)
. (A24)

For the third term, by Lemmas A2 and A6, we have

1
N

N

∑
i=1

(
Ξ′iMqΞi

T

)−1√NΞ′iMqεi

T

=
1√
N

N

∑
i=1

(
Ξ′iMgΞi

T

)−1
Ξ′iMgεi

T
+ Op

(
1√
N

)
+ Op

(
1√
T

)
.

Moreover, the result (A13) of Lemma A5 implies T−1Ξ′iMgΞi = Op(1), and
T−1Ξ′iMgεi = Op(T−1/2) by (A18); hence, we have

1
N

N

∑
i=1

(
Ξ′iMqΞi

T

)−1√NΞ′iMqεi

T
= Op

(
1√
N

)
+ Op

(
1√
T

)
. (A25)

Using (A24) and (A25) in (A23), we can obtain

√
N(π̂MG − π)

d∼ 1√
N

N

∑
i=1

υπi.
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By the random coefficient assumption, it now follows that

√
N(π̂MG − π)

d→ N(0, ΣMG),

and ΣMG can be consistently estimated nonparametrically by

Σ̂MG =
1

N − 1

N

∑
i=1

(π̂i − π̂MG)(π̂i − π̂MG)
′.

Appendix A.3. Proofs of Lemmas

Notation: All vectors are column vectors represented by bold lower case letters,

and matrices are represented by bold capital letters. Let ‖A‖ =
√

tr
(
AA′

)
denote the

Frobenius norm. ‖A‖1 = max1≤j≤n Σn
i=1

∣∣aij
∣∣ and ‖A‖∞ = max1≤i≤n Σn

j=1

∣∣aij
∣∣ denote the

maximum absolute column and row sum matrix norms, respectively. λmin(A) denotes
the minimum eigenvalue of A, and λmax(A) denotes the maximum eigenvalue of A. A+

denotes the Moore–Penrose inverse of A, and rk(A) denotes the rank of A. We also let K
denote a generic finite constant, which does not depend on N or T, and whose value may
vary case by case.

Proof of Lemma A2. Since H = GP̄, where

P̄ =


1 c̄′z c̄′z · · · c̄′z
0 Ψ′(L) 0 · · · 0
0 0 Ψ′(L) · · · 0
...

...
...

. . .
...

0 0 0 · · · Ψ′(L)

,

with Ψ(L) = Λ(L)C + Op(N−1/2), Λ(L) is invertible. If the rank condition (6) is satisfied,
i.e., C is a full column rank matrix, then Λ(L)C has a full column rank; hence, Ψ′(L) has
full row rank asymptotically, which implies limN→∞ P̄ is a full row rank matrix. More-
over, noting that when the rank condition holds, matrix G′G is full rank, so we have

Mh = I−H(H′H)+H′

= I−GP̄(P̄′G′GP̄)+P̄′G′

= I−GP̄P̄+
(G′G)+P̄′+P̄′G′

= I−GP̄P̄′(P̄P̄′)−1(G′G)+(P̄P̄′)−1P̄P̄′G′

= I−G(G′G)+G′ = Mg.

where the third equality follows from Lemma A1(a) since P̄ has the full row rank asymptot-
ically, and the fourth equality is based on the result of Lemma A1(b).

Proof of Lemma A3. Denote Ξi = (ξi,pT+1, ξi,pT+2, . . . , ξiT)
′, where ξit = (yi,t−1, x′i,t)

′.
Note that zit = (yi,t, x′i,t)

′, so we can write yi,t−1 = S′yzi,t−1 and xi,t = S′xzit, where

S′y =
(

1 0
1×k

)
, S′x =

(
0

k×1
Ik
)

. Hence, we have

ξit =

(
yi,t−1

xi,t

)
=

(
S′yzi,t−1

S′xzit

)
. (A26)
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We also note that

zit =
∞

∑
l=0

Al
i

(
czi + A−1

0i Cift−l + ezi,t−l

)
= (Ik+1 −Ai)

−1czi + (Ik+1 −AiL)−1A−1
0i (Cift + eit), (A27)

using (A27) into (A26), we have

ξit =

(
S′y(Ik+1 −Ai)

−1

S′x(Ik+1 −Ai)
−1

)
czi +

(
S′y(Ik+1 −AiL)−1L
S′x(Ik+1 −AiL)−1

)
A−1

0i (Cift + eit)

= (Sy, Sx)
′(Ik+1 −Ai)

−1czi +

(
S′y(Ik+1 −AiL)−1L
S′x(Ik+1 −AiL)−1

)
A−1

0i (Cift + eit)

≡ cξi + Ψξi(Cift + eit).

Consequently, we have

Ξi =


ξ ′i,pT+1
ξ ′i,pT+2

...
ξ ′iT

 =


c′ξi + f′pT+1C′iΨ

′
ξi

c′ξi + f′pT+2C′iΨ
′
ξi

...
c′ξi + f′TC′iΨ

′
ξi

+


e′i,pT+1
e′i,pT+2

...
e′iT

Ψ′ξi

=


1 f′pT+1 f′pT

· · · f′1
1 f′pT+2 f′pT+1 · · · f′2
...

...
...

. . .
...

1 f′T f′T−1 · · · f′T−PT




c′ξi

C′iΨ
′
ξi

0
...
0

+ eiΨ
′
ξi

= G1Πi1 + Ωi,

or more concisely as

Ξi =


1 f′pT+1
1 f′pT+2
...

...
1 f′T


(

c′ξi
C′iΨ

′
ξi

)
+ eiΨ

′
ξi = G2Πi2 + Ωi.

Proof of Lemma A4. We consider (A7) firstly. Note that

V̄∗ =
(
0, Ṽ

)
=


0 v̄′pT+1 v̄′pT

· · · v̄′1
0 v̄′pT+2 v̄′pT+1 · · · v̄′2
...

...
...

. . .
...

0 v̄′T v̄′T−1 · · · v̄′T−pT

,

where

v̄t =
1
N

N

∑
i=1

(Ik+1 − AiL)−1 A−1
0i eit =

1
N

N

∑
i=1

Al
iezi,t−l .

So we only need to consider T−1(Ṽ′Ṽ), which is a (k + 1)(pT + 1)× (k + 1)(pT + 1)
matrix. Since the elements of ezit are weakly cross-sectionally dependent, together with the
random coefficient assumptions, we have E‖v̄t‖ = O(N−

1
2 ) and E‖v̄t‖2 = O(N−1). Con-
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sider the (s, r)th block element of T−1(Ṽ′Ṽ), which can be written as T−1(∑T
t=pT+1 v̄t−sv̄′t−r),

for s, r ∈ {0, 1, . . . , pT}. where the cross-product terms with finite means and variances. Hence,

E

∥∥∥∥∥ 1
T

T

∑
t=pT+1

v̄t−sv̄′t−r

∥∥∥∥∥ ≤ 1
T

T

∑
t=pT+1

E‖v̄t‖2 = O(
1
N
), (A28)

then we have

E
∥∥∥∥ Ṽ′Ṽ

T

∥∥∥∥
∞
≤ O(

pT
N

),

which establishes (A7).
Now, we establish (A8), as before, we consider T−1ε′iṼ here, and note that the lth

column block of T−1ε′iṼ is T−1
(

∑T
t=pT+1 εitv̄′t−l

)
, for l = 0, 1, . . . , pT , which can be parti-

tioned as
1
T

T

∑
t=pT+1

εitv̄′t−l =
(

1
T ∑T

t=pT+1 εit ε̄t−l , 1
T ∑T

t=pT+1 εitū′t−l

)
. (A29)

We consider the first term and note that

ε̄t =
1
N

N

∑
j=1

(Ik+1 −AjL)−1A−1
0j ε jt =

1
N

N

∑
j=1

∞

∑
l=0

Al
jA
−1
0j ε j,t−l

=
1
N

N

∑
j=1

(
A−1

0j ε jt + AjA−1
0j ε j,t−1 + A2

j A−1
0j ε j,t−2 + · · ·

)
,

which implies that

1
T

T

∑
t=pT+1

εit ε̄t−l =
1

NT

T

∑
t=pT+1

N

∑
j=1

εit

(
A−1

0j ε j,t−l + AjA−1
0j ε j,t−l−1 + · · ·

)
.

Under the assumption of the individual–specific error, we have cov(εit, ε js) = 0, i 6= j;
hence,

1
T

T

∑
t=pT+1

εit ε̄t−l =
1

NT

T

∑
t=pT+1

εit

(
A−1

0i εi,t−l + AiA−1
0i εi,t−l−1 + · · ·

)
,

when l = 0, 1
T ∑T

t=pT+1 εit ε̄t−l =
A−1

0i
NT ∑T

t=pT+1 ε2
it, since by Assumption 1, E(ε2

it) = O(1),

and
∥∥∥A−1

0i

∥∥∥ ≤ K, then it easily follows that 1
T ∑T

t=pT+1 εit ε̄t−l = Op(
1
N ). When

l = 1, 2, · · · , pT , we have the result 1
T ∑T

t=pT+1 εit ε̄t−l = Op(
1
N ) since εit is a serial uncorre-

lated covariance stationary process under Assumption 2. Combining these results yields

1
T

T

∑
t=pT+1

εit ε̄t−l = Op(
1
N
), uniformly over i. (A30)

Now, we consider the second term 1
T ∑T

t=pT+1 εitū′t−l , noting that εit and uit are inde-
pendently distributed stationary processes with zero means, it follows that

sup
i

Var

(
1
T

T

∑
t=pT+1

εitū′t−l

)
= O(

1
N
)

 1
T2

T

∑
t=pT+1

T

∑
t′=pT+1

E(εitεit′) = O(
1

NT
)

,

which follows that

1
T

T

∑
t=pT+1

εitū′t−l = Op(
1√
NT

), uniformly over i. (A31)
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Using (A30) and (A31) in (A29), we have

1
T

T

∑
t=pT+1

εitv̄′t−l = Op(
1
N
) + Op(

1√
NT

), uniformly over i.

Consequently, we have∥∥∥∥∥ ε′iṼ
T

∥∥∥∥∥
∞

= Op(
pT
N

) + Op(
pT√
NT

), uniformly over i,

hence, the first part of (A8) is established. Similarly, the result for T−1U′iV̄
∗ of the second

part of (A8) is established.
For the first part of (A9), since G = (τ, F̃) and V̄∗ =

(
0, Ṽ

)
, we consider

F̃′Ṽ
T

=
1
T


fpT+1 fpT+2 · · · fT

fpT
fpT+1 · · · fT−1

...
...

. . .
...

f1 f2 · · · fT−PT




v̄′pT+1 v̄′pT
· · · v̄′1

v̄′pT+2 v̄′pT+1 · · · v̄′2
...

...
. . .

...
v̄′T v̄′T−1 · · · v̄′T−pT



=
1
T


∑T

t=pT+1 ftv̄′t ∑T
t=pT+1 ftv̄′t−1 · · · ∑T

t=pT+1 ftv̄′t−pT

∑T
t=pT+1 ft−1v̄′t ∑T

t=pT+1 ft−1v̄′t−1 · · · ∑T
t=pT+1 ft−1v̄′t−pT

...
...

. . .
...

∑T
t=pT+1 ft−pT v̄′t ∑T

t=pT+1 ft−pT v̄′t−1 · · · ∑T
t=pT+1 ft−pT v̄′t−pT

,

which is a m(pT + 1)× (k + 1)(pT + 1) matrix. Without loss of generality, we consider the
first block element, T−1 ∑T

t=pT+1 ftv̄′t, and note that the lth row of that can be written as
T−1 ∑T

t=pT+1 ftl v̄′t, l = 1, 2, . . . , m. According to the assumption of ftl and v̄t (independently
distributed processes), it easily follows that∥∥∥∥∥E

1
T

T

∑
t=pT+1

ftl v̄
′
t

∥∥∥∥∥ = 0,

and

Var

(
1
T

T

∑
t=pT+1

ftl v̄
′
t

)
= O(

1
N
)

[
∑t ∑t′ E( ftl ft′ l)

T2

]
= O(

1
N
).

by the standard unit root asymptotic analysis result T−2 ∑T
t=1 ∑T

t′=1 E( ftl ft′ l) = O(1),
which establishes that T−1 ∑T

t=pT+1 ftl v̄′t converges to its limit at the desired rate of Op(
1√
N
).

Consequently, we have ∥∥∥∥ F̃′Ṽ
T

∥∥∥∥
∞
= Op(

pT√
N
),

then the first part of (A9) is proven.
To establish the second part of (A9), recalling that H = GP̄, we have

∥∥∥H′V̄∗
T

∥∥∥
∞
≤

‖P̄′‖∞

∥∥∥G′V̄∗
T

∥∥∥
∞
= Op(

pT√
N
), since the norm of P̄ is assumed to be bounded.
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To establish the third part of (A9), noting that Ξi = GΠi + Ωi, and using triangle
inequality and the submultiplicative property of matrix norm ‖·‖∞, we have∥∥∥∥Ξ′iV̄

∗

T

∥∥∥∥
∞

=

∥∥∥∥Π′i
G′V̄∗

T
+

Ω′iV̄
∗

T

∥∥∥∥
∞

≤
∥∥∥∥Π′i

G′V̄∗

T

∥∥∥∥
∞
+

∥∥∥∥∥Ψξi(L)
(εi, Ui)

′V̄∗

T

∥∥∥∥∥
∞

≤
∥∥Π′i

∥∥
∞

∥∥∥∥G′V̄∗

T

∥∥∥∥
∞
+
∥∥Ψξi(L)

∥∥
∞

∥∥∥∥∥ (εi, Ui)
′V̄∗

T

∥∥∥∥∥
∞

= Op(
pT√

N
),

by (A8), the first and second parts of (A9), as well as the norm of Πi and Ψξi(L) are assumed
to be bounded in probability uniformly over i.

To establish the first part of (A10), recalling G = (τ, F̃), consider the m(pT + 1)× 1 vec-
tor T−1F̃′εi, the element of T−1F̃′εi can be written as T−1 ∑T

t=pT+1 ft−l,sεit, l = 0, 1, . . . , pT ,
s = 1, 2, . . . , m. Since by the assumption of ft−l,s and εit (independently distributed pro-
cesses), it easily follows that ∥∥∥∥∥E

1
T

T

∑
t=pT+1

ft−l,sεit

∥∥∥∥∥ = 0,

and

sup
i

Var(
1
T

T

∑
t=pT+1

ft−l,sεit) = O(1)
[

∑t ∑t′ E( ft−l,s ft′−l,s)

T2

]
= O(1).

by the standard unit root asymptotic analysis result T−2 ∑t ∑t′ E( ft−l,s ft′−l,s) = O(1),
which establishes that 1

T ∑T
t=pT+1 ft−l,sεit converges to its limit at the desired rate of Op(1). It

follows that
∥∥T−1F̃′εi

∥∥
∞ = Op(1); hence, the first part of (A10) is established. Moreover, the

second part of (A10) can be proven similarly.
Recalling that Q̄ = GP̄ + V̄∗, the third part of (A10) is established because∥∥∥∥ Q̄′εi

T

∥∥∥∥
∞

=

∥∥∥∥P̄′
G′εi

T
+

V̄∗′εi
T

∥∥∥∥
∞

≤
∥∥P̄′
∥∥

∞

∥∥∥∥G′εi
T

∥∥∥∥
∞
+

∥∥∥∥ V̄∗′εi
T

∥∥∥∥
∞
= Op(1),

by (A8) and the first part of (A10).
For the first part of (A11), note that G = (τ, F̃), we only need to consider the T−2F̃′F̃,

a m(pT + 1)×m(pT + 1) matrix. We consider the (s, r)th block element of T−2F̃′F̃, which
can be written as T−2(∑T

t=pT+1 ft−sf′t−r), for s, r ∈ {0, 1, . . . , pT}. Without loss of generality,
we consider the first block, T−2 ∑T

t=pT+1 ftf′t, and the element of T−2 ∑T
t=pT+1 ftf′t can be

written as T−2 ∑T
t=pT+1 ftl ftl′ , l, l′ ∈ {1, 2, . . . , m}. By the standard unit root asymptotic

analysis, we have
1

T2

T

∑
t=pT+1

E( ftl ftl′) = O(1),
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which implies that T−2 ∑T
t=pT+1 ftf′t = Op(1), then we have

∥∥T−2F̃′F̃
∥∥

∞ = Op(pT), which
establishes the first part of (A11). The second part of (A11) is established by∥∥∥∥H′H

T2

∥∥∥∥
∞

=

∥∥∥∥P̄′
G′G
T2 P̄

∥∥∥∥
∞

≤
∥∥P̄′
∥∥

∞

∥∥∥∥G′G
T2

∥∥∥∥
∞
‖P̄‖∞ = Op(pT),

since the norm of P̄ is assumed bounded (and the above result).
To prove the third part of (A11), note that Q̄ = H + V̄∗, by (A7), the second part

of (A9), and the previous result in (A11), we have∥∥∥∥ Q̄′Q̄
T2

∥∥∥∥
∞

=
(H + V̄∗)′(H + V̄∗)

T2

≤
∥∥∥∥H′H

T2

∥∥∥∥
∞
+

∥∥∥∥H′V̄∗

T2

∥∥∥∥
∞
+

∥∥∥∥ V̄∗′H
T2

∥∥∥∥
∞
+

∥∥∥∥ V̄∗′V̄∗

T2

∥∥∥∥
∞

= Op(pT).

Noting that Q̄ = GP̄ + V̄∗, by the first part of (A9) and (A11), the first part of (A12)
can be established.

To establish the second part of (A12), note that H = GP̄ and Ξi = GΠi + Ωi, and
recalling that Ωi = eiΨ

′
ξi(L) with ei = (εi, Ui), we have∥∥∥∥H′Ξi

T2

∥∥∥∥
∞

=

∥∥∥∥ P̄′G′(GΠi + Ωi)

T2

∥∥∥∥
∞
≤
∥∥∥∥P̄′

G′G
T2 Πi

∥∥∥∥
∞
+

∥∥∥∥P̄′
G′Ωi

T2

∥∥∥∥
∞

≤
∥∥P̄′
∥∥

∞

∥∥∥∥G′G
T2

∥∥∥∥
∞
‖Πi‖∞ +

∥∥P̄′
∥∥

∞

∥∥∥∥G′Ωi
T2

∥∥∥∥
∞
= Op(pT).

by (A10) and the first part of (A11), as well as the assumption that the norm of P̄, Πi, and
Ψξi(L) is assumed bounded in probability uniformly over i. The third part of (A12) is
proven straightforwardly since Q̄ = H + V̄∗, using (A8) and the second part of (A12).

Proof of Lemma A5. To proof (A13), we note that

Ξi = GΠi + Ωi, (A32)

where G = (τ, F, F−1, . . . , F−pT ) is a matrix of I(1) factors, Ωi = eiΨ
′
ξi with ei = (εi, Ui).

Denote the OLS estimator of the multiple regression (A32) as Π̂i = (G′G)−1G′Ξi. Since that
Ξ′iMgΞi = Ω′iMgΩi = Ω̂′iΩ̂i, where Ω̂i is the OLS residuals, i.e., Ω̂i = Ξi −GΠ̂i, and in
the light of Assumption, T−1(Ω′iΩi) → ΣΩi , we only need to show that T−1(Ω̂′iΩ̂i) −
T−1(Ω′iΩi)→ 0. In fact, we can write

T−1(Ω̂′iΩ̂i)− T−1(Ω′iΩi) = T−1Ω̂′i(Ω̂i −Ωi) + T−1(Ω̂i −Ωi)Ωi

= −T−1Ξ′iMgG(Π̂i −Πi)− T−1(Π̂i −Πi)G′Ωi

= −(Π̂i −Πi)(T−1G′Ωi),

because MgG = 0. However, since
∥∥T−1G′Ωi

∥∥
∞ = Op(1) by (A10) of Lemma A4, Π̂i −

Πi = Op(T−1), it follows that T−1(Ω̂′iΩ̂i)− T−1(Ω′iΩi) = Op(T−1). Hence, Ξ′iMgΞi
T

p→ ΣΩi ,
(A13) is established.

To prove (A14), we follow the same spirit of Lemma A.4 in Kapetanios et al. (2011),
but need more attention because of the lags. Specifically, note that

MqQ̄ = Mq(GP̄ + V̄∗),
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since Q̄ = GP̄+ V̄∗, where Q̄ = (τ, Z̄, Z̄−1, . . . , Z̄−pT ), G = (τ, F̃) = (τ, F, F−1, . . . , F−pT )
and V̄∗= (0, V̄, V̄−1, . . . , V̄−pT ). However, MqQ̄ = 0 and Mqτ = 0 since τ ∈ Q̄. Then

(0, MqF̃)
(

1 c̃z
0 Ψ̃

)
+ (0, MqV̄∗) = 0,

or MqF̃Ψ̃ = −MqV̄∗.
For the second column block of the above equation, we have MqFΨ′(L) = −MqV̄ or

MqFC′Λ′(L)=−MqV̄ as N P→ ∞, since Ψ̃ = diag(Ψ′(L)) and Ψ(L) = Λ(L)C +Op(N−1/2),
Hence

V̄′MqFC′Λ′(L) = −V̄′MqV̄, (A33)

and
Ξ′iMqFC′Λ′(L) = −Ξ

′
iMqV̄. (A34)

Since Λ(L) is invertible under the assumption, then (A34) can be rewritten as

Ξ′iMqFC′ = −Ξ
′
iMqV̄Λ

−1
(L).

When the rank condition is satisfied, we have

Ξ′iMqF = −Ξ′iMqV̄Λ
−1

(L)C(C′C)
−1

. (A35)

Note that Ξi can be written as Ξi = G2iΠ2i + Ωi, where G2i = (τ, F) and Π2i =
(cξi, ΨξiCi)

′, then

Ξ′iMqV̄ = (G2iΠ2i + Ωi)
′MqV̄ = Π′2iG

′
2iMqV̄ + Ωi

′MqV̄

= (c′ξi, C′iΨ
′
ξi)

(
τ′

F′

)
MqV̄ + Ωi

′MqV̄

= (c′ξi, C′iΨ
′
ξi)

(
0

F′MqV̄

)
+ Ωi

′MqV̄

= C′iΨ
′
ξiF
′MqV̄ + Ψξie′iMqV̄. (A36)

Substituting (A36) into (A35), we obtain

Ξ′iMqF = −C′iΨ
′
ξiF
′MqV̄Λ

−1
(L)C(C′C)

−1 −Ψξie′iMqV̄Λ
−1

(L)C(C′C)
−1

. (A37)

Moreover, from (A33), Λ(L)CF′MqV̄ = −V̄′MqV̄, which directly follows

F′MqV̄ = −(C′C)
−1

C′Λ
−1

(L)V̄′MqV̄, (A38)

under the assumption of Λ(L) is invertible and the rank condition is satisfied. Then, using
this result in (A37), we have∥∥∥∥Ξ′iMqF

T

∥∥∥∥ =
∥∥C′i

∥∥∥∥∥Ψ′ξi

∥∥∥∥∥∥(C′C)
−1

C′
∥∥∥2∥∥∥Λ−1(L)

∥∥∥2
∥∥∥∥ V̄′MqV̄

T

∥∥∥∥
+
∥∥Ψξi

∥∥∥∥∥∥e′iMqV̄
T

∥∥∥∥∥∥∥Λ−1(L)
∥∥∥∥∥∥C(C′C)

−1
∥∥∥. (A39)

Since the norms of Ci, Λ−1(L) and Ψξi are assumed to be bounded, we need to
establish the probability orders of

∥∥V̄′MqV̄/T
∥∥ and

∥∥e′iMqV̄/T
∥∥. For V̄′MqV̄/T, since
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V̄ is a (T − pT)× (k + 1) submatrix of V̄∗, (A7) and (A9) imply V̄′V̄/T = Op(N−1) and∥∥Q̄′V̄/T
∥∥

∞ = Op(N−1/2), which together with (A7), we obtain

V̄′MqV̄
T

= Op(
1
N
).

Similarly, by (A7)–(A9),

e′iMqV̄
T

= Op(
1
N
) + Op(

1√
NT

), uniformly over i,

Substituting the above two results into (A39) establishes the result.

Proof of Lemma A6. To prove (A15), we need to determine the order of probability of∥∥∥Ξ′iMqΞi
T − Ξ′iMhΞi

T

∥∥∥
∞

, by the triangle inequality of the matrix norm ‖·‖∞, which equals∥∥∥∥∥Ξ′iQ̄(Q̄′Q̄)−1Q̄′Ξi

T
−

Ξ′iH(H′H)−1H′Ξi

T

∥∥∥∥∥
∞

≤
∥∥∥∥ 1

T
(
Ξ′iQ̄− Ξ′iH

)
(Q̄′Q̄)−1Q̄′Ξi

∥∥∥∥
∞

+

∥∥∥∥ 1
T

Ξ′iH
(
(Q̄′Q̄)−1 − (H′H)−1

)
Q̄′Ξi

∥∥∥∥
∞

+

∥∥∥∥ 1
T

Ξ′iH(H′H)−1(Q̄′Ξi −H′Ξi
)∥∥∥∥

∞
. (A40)

Using the results of Lemma A.3 and the submultiplicative property of the matrix
norm, and noting that Q̄ = H + V̄∗, we focus on the individual elements on the right side
of (A40).

For the first term, we have∥∥∥∥ 1
T
(
Ξ′iQ̄− Ξ′iH

)
(Q̄′Q̄)−1Q̄′Ξi

∥∥∥∥
∞
≤

∥∥∥∥Ξ′iV̄
∗

T

∥∥∥∥
∞

∥∥∥∥∥
(

Q̄′Q̄
T2

)−1 Q̄′Ξi
T2

∥∥∥∥∥
∞

= Op(
pT√

N
), uniformly over i, (A41)

by the third parts of (A9), (A11), and (A12).
For the second term, we also have∥∥∥∥ 1

T
Ξ′iH

(
(Q̄′Q̄)−1 − (H′H)−1

)
Q̄′Ξi

∥∥∥∥
∞

≤
∥∥∥∥ V̄∗′V̄∗

T
+

H′V̄∗

T
+

V̄∗′H
T

∥∥∥∥
∞

∥∥∥∥∥Ξ′iH
T2

(
Q̄′Q̄
T2

)−1
∥∥∥∥∥

∞

∥∥∥∥∥
(

H′H
T2

)−1 Q̄′Ξi
T2

∥∥∥∥∥
∞

= Op(
pT√

N
), uniformly over i, (A42)

by (A7), as well as some results in (A9), (A11), and (A12).
Finally, we have∥∥∥∥ 1

T
Ξ′iH(H′H)−1(Q̄′Ξi −H′Ξi

)∥∥∥∥
∞
≤

∥∥∥∥∥Ξ′iH
T2

(
H′H
T2

)−1
∥∥∥∥∥

∞

∥∥∥∥Ξ′iV̄
∗

T

∥∥∥∥
∞

= Op(
pT√

N
), uniformly over i, (A43)
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by (A9), (A11), and (A12). Substituting (A41)–(A43) into (A40), we have∥∥∥∥Ξ′iMqΞi

T
−

Ξ′iMhΞi

T

∥∥∥∥
∞
= Op(

pT√
N
), uniformly over i,

as required.
To establish result (A16), similar to the proof of (A15), we have∥∥∥∥∥Ξ′iQ̄(Q̄′Q̄)−1Q̄′F

T
−

Ξ′iH(H′H)−1H′F
T

∥∥∥∥∥
∞

≤
∥∥∥∥ 1

T
(
Ξ′iQ̄− Ξ′iH

)
(Q̄′Q̄)−1Q̄′F

∥∥∥∥
∞

+

∥∥∥∥ 1
T

Ξ′iH
(
(Q̄′Q̄)−1 − (H′H)−1

)
Q̄′F

∥∥∥∥
∞

+

∥∥∥∥ 1
T

Ξ′iH(H′H)−1(Q̄′F−H′F
)∥∥∥∥

∞
, (A44)

then, examine each term of (A44), and note that F ∈ G.
For the first term, the third part of (A9) and (A12) imply∥∥∥∥ 1

T
(
Ξ′iQ̄− Ξ′iH

)
(Q̄′Q̄)−1Q̄′F

∥∥∥∥
∞
≤

∥∥∥∥Ξ′iV̄
∗

T

∥∥∥∥
∞

∥∥∥∥∥
(

Q̄′Q̄
T2

)−1 Q̄′F
T2

∥∥∥∥∥
∞

= Op(
pT√

N
), uniformly over i. (A45)

Using some results in Lemma A4, we have∥∥∥∥ 1
T

Ξ′iH
(
(Q̄′Q̄)−1 − (H′H)−1

)
Q̄′F

∥∥∥∥
∞

≤
∥∥∥∥ V̄∗′V̄∗

T
+

H′V̄∗

T
+

V̄∗′H
T

∥∥∥∥
∞

∥∥∥∥∥Ξ′iH
T2

(
Q̄′Q̄
T2

)−1
∥∥∥∥∥

∞

∥∥∥∥∥
(

H′H
T2

)−1 Q̄′F
T2

∥∥∥∥∥
∞

= Op(
pT√

N
), uniformly over i. (A46)

Finally, by the first part of (A9), the second part of (A11) and (A12), we have∥∥∥∥ 1
T

Ξ′iH(H′H)−1(Q̄′F−H′F
)∥∥∥∥

∞
≤

∥∥∥∥∥Ξ′iH
T2

(
H′H
T2

)−1
∥∥∥∥∥

∞

∥∥∥∥ V̄∗′F
T

∥∥∥∥
∞

= Op(
pT√

N
), uniformly over i. (A47)

Substituting (A45)–(A47) into (A44), we have∥∥∥∥Ξ′iM̄qF
T

−
Ξ′iMhF

T

∥∥∥∥
∞
= Op(

pT√
N
), uniformly over i,

which completes the proof of (A16).
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Result (A17) can also be established in a similar way, we have∥∥∥∥Ξ′iM̄qεi

T
−

Ξ′iMhεi

T

∥∥∥∥
∞

=

∥∥∥∥∥Ξ′iQ̄(Q̄′Q̄)−1Q̄′εi

T
−

Ξ′iH(H′H)−1H′εi

T

∥∥∥∥∥
∞

≤
∥∥∥∥ 1

T
(
Ξ′iQ̄− Ξ′iH

)
(Q̄′Q̄)−1Q̄′εi

∥∥∥∥
∞

+

∥∥∥∥ 1
T

Ξ′iH
(
(Q̄′Q̄)−1 − (H′H)−1

)
Q̄′εi

∥∥∥∥
∞

+

∥∥∥∥ 1
T

Ξ′iH(H′H)−1(Q̄′εi −H′εi
)∥∥∥∥

∞
, (A48)

then we examine each of the above terms. The first term equals∥∥∥∥ 1
T
(
Ξ′iQ̄− Ξ′iH

)
(Q̄′Q̄)−1Q̄′εi

∥∥∥∥
∞
≤ 1

T

∥∥∥∥Ξ′iV̄
∗

T

∥∥∥∥
∞

∥∥∥∥∥
(

Q̄′Q̄
T2

)−1 Q̄′εi
T

∥∥∥∥∥
∞

= Op(
1√
NT

), uniformly over i, (A49)

by the third part of (A9)–(A11). Next, we have∥∥∥∥ 1
T

Ξ′iH
(
(Q̄′Q̄)−1 − (H′H)−1

)
Q̄′εi

∥∥∥∥
∞

≤ 1
T

∥∥∥∥ V̄∗′V̄∗

T
+

H′V̄∗

T
+

V̄∗′H
T

∥∥∥∥
∞

∥∥∥∥∥Ξ′iH
T2

(
Q̄′Q̄
T2

)−1
∥∥∥∥∥

∞

∥∥∥∥∥
(

H′H
T2

)−1 Q̄′εi
T

∥∥∥∥∥
∞

= Op(
1√
NT

), uniformly over i, (A50)

by (A7), and the results in (A9)–(A12). Finally,∥∥∥∥ 1
T

Ξ′iH(H′H)−1(Q̄′εi −H′εi
)∥∥∥∥

∞

≤
∥∥∥∥∥Ξ′iH

T2

(
H′H
T2

)−1
∥∥∥∥∥

∞

∥∥∥∥ V̄∗′εi
T

∥∥∥∥
∞
= Op(

pT√
NT

) + Op(
pT
N

), (A51)

by (A8), the second part of (A11) and (A12). Using (A49)–(A51) into (A48), (A17) is proven.

Notes
1 An alternative approach to deal with cross-sectional dependence is the principle component analysis proposed by Bai (2009).
2 As in Pesaran (2006) and Kapetanios et al. (2011), observed factors, such as time effects, can also be included in model (1). For

notational simplicity and illustration purpose, we do not include such factors in the model (1).
3 As Chudik and Pesaran (2015a) point out, the number of lags pT needs to be restricted. Letting p3

T/T → λ, 0 < λ < ∞ can
ensures that, on the one hand, the number of lags is not too large, so that there are sufficient degrees of freedom for the consistent
estimator, and on the other hand, the number of lags is not too small, so that the bias due to the truncation of infinite lag
polynomials is sufficiently small

4 We note that Q̄ can be denoted as Q̄
4
= (τ, Z̃), where τ = (1, 1, . . . 1)′ is a (T− pT)× 1 vector of ones, Z̃ is the (T− pT)× (k + 1)pT

matrices of observations on z̄t for t = pT + 1, pT + 2, . . . , T.
5 To illustrate the validity and robustness of the CCE estimator in the case of non-stationary common factors, the data-generating

process and parameter settings are similar to the settings in Chudik and Pesaran (2015a), except for unobserved common factors.
6 We also conducted additional Monte Carlo simulations for other settings, such as pT = [0.75T1/3] and pT = [1.25T1/3];

the corresponding results are slightly worse than that of pT = [T1/3], these results are not reported to save space.
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