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Abstract: A multivariate, non-Bayesian, regression-based, or feasible generalized least squares
(GLS)-based approach is proposed to estimate time-varying VAR parameter models. Although it
has been known that the Kalman-smoothed estimate can be alternatively estimated using GLS for
univariate models, we assess the accuracy of the feasible GLS estimator compared with commonly
used Bayesian estimators. Unlike the maximum likelihood estimator often used together with the
Kalman filter, it is shown that the possibility of the pile-up problem occurring is negligible. In
addition, this approach enables us to deal with stochastic volatility models, models with a time-
dependent variance–covariance matrix, and models with non-Gaussian errors that allow us to deal
with abrupt changes or structural breaks in time-varying parameters.

Keywords: Kalman filter; non-Bayesian time-varying model; generalized least squares; vector
autoregressive model

1. Introduction

Most macroeconomists recognize that time-varying parameter models are sufficiently
flexible to capture the complex nature of a macroeconomic system, thereby fitting the
data better than models with constant parameters. The instability of the parameters
in econometric models has often been incorporated in Markov-switching models (e.g.,
Hamilton 1989) and structural change models (e.g., Perron 1989). However, time-varying
models allow the parameters to change gradually over time, which is the main difference
between time-varying models and Markov-switching or structural break models.

In the literature on the application of time-varying vector autoregressive (TV-VAR)
models in macroeconomics, Bernanke and Mihov (1998) consider that the autoregressive
parameters may be time-varying. However, after confirming the stability of the parameters
using the parameter consistency test of Hansen (1992), they employ the time-invariant (i.e.,
usual) VAR model. Indeed, Cogley and Sargent (2005) find that Hansen’s (1992) test has low
power and is unreliable and instead propose a TV-VAR model with stochastic volatility in
the error term. Primiceri (2005) sheds light on a technical aspect of the time-varying model,
namely, the Bayesian estimation technique used for the time-varying parameters. In general,
difficulties in dealing with time-varying parameter models arise when free parameters and
unobserved variables need to be estimated. Primiceri (2005) thus presents a clear estimation
procedure based on the Bayesian Markov Chain Monte Carlo (MCMC) method.

Several studies, including Primiceri (2005), claim that the Bayesian method is preferred
to the maximum likelihood (ML) method because the former (i) is less likely to suffer
from the so-called pile-up problem (Sargan and Bhargava 1983); (ii) is less likely to have
computation problems such as a degenerated likelihood function or multiple local minima;
and (iii) helps find statistical inferences such as standard errors. However, both the Bayesian
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and the ML methods require Kalman filtering to estimate an unobservable state vector that
includes the time-varying parameters.1

Duncan and Horn (1972), Sant (1977), Maddala and Kim (1998), more recently, Chan
and Jeliazkov (2009) and Durbin and Koopman (2012) have attempted to understand
Kalman filtering through the lens of conventional regression models.2 To the best of our
knowledge, Duncan and Horn (1972) are the first to show that the generalized least squares
(GLS) estimator for basic state-space models equivalently uncovers the unobserved state
vector estimated through Kalman filtering. Sant (1977) proves the equivalence between the
GLS estimator and Kalman-smoothed estimator. From a practical perspective, the series
of papers by Ito et al. (2014, 2016, 2021) apply the TV-VAR, time-varying autoregressive
(TV-AR) and time-varying vector error correction (TV-VEC) models to stock prices and
exchange rates using the regression method as opposed to the Kalman filter.

In this study, in the spirit of Duncan and Horn (1972) and Sant (1977), we propose
a multivariate, regression-based approach or GLS-based approach that utilizes ordinary
least squares (OLS) or GLS in lieu of the Kalman smoother. More precisely, our GLS-based
approach includes OLS as a variety of GLS. It is employed by Ito et al. (2014, 2016, 2021)
to evaluate market efficiency in stock markets and foreign exchange markets.3 However,
the main purpose of employing the Kalman filter (or smoother) is to avoid using a system
of large matrices required by GLS—at least until computers became capable of handling
large matrices.

The equivalence between GLS and the Kalman smoother leads us to the following
question: if GLS yields Kalman-smoothed estimates, to what extent can the GLS-based
approach recover time-varying parameters? This question is practical and important
because the finite sample properties of the GLS estimator are, generally, unknown.4 Another
question pertains to the seriousness of the pile-up problem, which occurs when the ML
estimation of the variance of the state equation error is zero, even though its true value is
non-zero (but small). While our proposed method is not identical to ML because we do
not maximize the likelihood function with respect to the variances of the errors, whether
our GLS-based approach suffers from the pile-up problem to the same degree as ML is not
immediately obvious.

We also consider the possibility of non-independent and identically distributed (i.i.d.)
or non-Gaussian errors in the model. The former are frequently used in this field because it
is reasonable to assume that the variance of the errors may be time-varying. The latter are
important in empirical studies because they allow us to model abrupt changes or structural
breaks in time-varying parameters similar to the strategy employed by Perron and Wada
(2009) among others.

To summarize, the contributions of this study are as follows: GLS estimates the true
time-varying parameters fairly well even when the errors are not i.i.d. or not Gaussian,
provided an appropriate way to implement FGLS is carefully chosen based primarily on
the relative size of the variances of the errors or signal-to-noise ratio (SNR). The pile-up
problem that is often cumbersome to ML is shown to be negligible. In addition, our
GLS outperforms the commonly used Bayesian estimation method in recovering the time-
varying parameter values.

The rest of this paper is organized as follows. Section 2 presents our model together
with its likelihood function. We explain the GLS-based approach for the class of TV-AR
models and steps used to implement FGLS in Section 3. Section 4 evaluates the GLS-
based approach in a variety of conditions such as a small SNR, non-i.i.d. errors, and
non-Gaussian errors.

An application to macroeconomic data, including a comparison with the Bayesian
MCMC method, is demonstrated in Section 5. Section 6 concludes.

2. Model

Our model allows the class of TV-AR models and permits two different matrix forms.
The first matrix form is that of Durbin and Koopman (2012), which they use as a device to
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find the Kalman-smoothed estimate of an unobserved state vector. The second matrix form
is an extended version of Maddala and Kim (1998), which we employ in this study. As it
will become clear, this form allows us to use GLS to estimate the time-varying parameters.
We can then formally demonstrate that the Kalman-smoothed estimate of the first matrix
form is equivalent to the GLS estimates of the second matrix form, showing that GLS
estimates are an alternative estimation method to the Kalman smoother.

2.1. Basic State-Space Model of the Class of TV-AR Models

Our model is given by:

yt = Ztβt + εt (1)

βt = βt−1 + ηt, (2)

where yt is a k× 1 vector of observable variables; Zt is a k×m matrix of observable variables;
βt is an m× 1 vector of time-varying parameters; and εt and ηt are k× 1 and m× 1 vectors
of normally distributed error terms with the variance–covariance matrices of Ht and Qt,
respectively:5 [

εt
ηt

]
∼ N

([
0
0

]
,
[

Ht 0
0 Qt

])
.

The variance–covariance matrices Ht and Qt are allowed to be time-dependent, as in
the stochastic volatility model. For the initial value of βt, we assume

β0 ∼ N(b0, P0).

If we assume b0 and P0 are known, it is reasonable to use the diffuse prior for P0
because βt follows a non-stationary process. In this case, the diagonal elements of P0
should be large numbers (e.g., Harvey 1989; Koopman 1997). Alternatively, we can simply
ignore P0 as zero when we assume β0 is known and not stochastic.

Equations (1) and (2) can be used for a variety of TV-AR models. For example, when
k = 1, Zt = yt−1 yields a TV-AR(1) model. Similarly, the TV-VAR(1) model yt = Atyt−1 + εt
with At = At−1 + ηt is expressed by setting Zt =

(
y′t−1 ⊗ Ik

)
and βt = vec(At). It is also

possible to include intercepts that vary over time. For a TV-AR(1) model, for example, one
can set Zt = (1, yt−1), meaning that the first element of βt is the time-varying intercept.

Below, we present two specifications of our model, (1) and (2). The first specification
allows us to derive the Kalman-smoothed estimate as explained by Durbin and Koopman
(2012). The second specification is in the spirit of Duncan and Horn (1972), leading us to the
GLS-based approach. As we will see, both specifications yield the same smoothed estimate.

2.2. Model Matrix Formulation of the State-Space Model

Following Durbin and Koopman (2012), we employ the matrix formulation of
Equations (1) and (2). For t = 1, . . . , T, we have a system of equations:

YT = Zβ + ε (3)

β = C(b∗0 + η) (4)

ε ∼ N(0, H), η ∼ N(0, Q),
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with

YT =


yp+1
yp+2

...
yT

, Z =


Zp+1 0

Zp+2
. . .

0 ZT

, β =


βp+1
βp+2

...
βT

, ε =


εp+1
εp+2

...
εT



H =


Hp+1 0

Hp+2
. . .

0 HT

, C =


I 0 · · · 0

I I
...

...
...

. . . 0
I I I I

, b∗0 =


b0
0
...
0

,

P∗0 =


P0 0 0
0 0
...

. . .
0 0 · · · 0

, η =


ηp+1
ηp+2

...
ηT

, Q =


Qp+1 0

Qp+2
. . .

0 QT

.

Unlike a more general state-space model in which Equation (2) has a transition matrix
that includes unknown parameters to be estimated, the matrix formulation of the time-
varying parameter model is largely simplified. For example, matrix C is often called the
random walk generating matrix (e.g., Tanaka 2017), which is non-singular, and there are no
free parameters to be estimated in the matrix. In addition, if Ht and Qt are time invariant
(i.e., if no GARCH effects or stochastic volatility exists in the model), matrices H and Q are
simplified substantially.

For simplicity, we assume b0 is known and non-stochastic; hence, P0 = 0.6

2.3. Likelihood Function
Since we assume that ε and η are normally distributed, our matrix formulation of (1)

and (2) allows us to write the log-likelihood function for YT given the covariance matrices
of the errors (H and Q), and initial value vector (b∗0 ) as

log p(YT |H, Q, b∗0) = −
(T − p)k

2
log 2π − 1

2
log|Ω| − 1

2
(YT − ZCb∗0)

′Ω−1(YT − ZCb∗0), (5)

where
Ω = H + ZCQC′Z′.

Interestingly, provided that H, Q, and b∗0 are known, the likelihood function does not
involve our main parameter vector of interest, β.

3. Estimation of the TV-AR Models
3.1. Regression Lemma and Kalman Smoothing

Before showing the equivalence of our estimator and Kalman smoother, let us clarify
the outcomes of the Kalman smoother when the model is described by Equations (1) and (2).
According to Durbin and Koopman (2012), the Kalman-smoothed state of β is given by the
expectation of β conditional on the information on all the observations of yt:

β̃ = E[β|YT ] = E[β] + Cov(β, YT)Var(YT)
−1(YT − E[YT ]). (6)

Note that we assume normal errors to derive Equation (6). The variance of β, given all
the observations YT , is then

Var(β|YT) = Var(β)− Cov(β, YT)Var(YT)
−1Cov(β, YT)

′. (7)

The Kalman-smoothed estimate and its mean squared error (MSE) are given by (6) and
(7), respectively. Durbin and Koopman (2012) call these equations the regression lemma,
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which derives the mean and variance of the distribution of β conditional on YT , assuming
the joint distribution of β and YT is a multivariate normal distribution. It follows that for
(3) and (4), the Kalman-smoothed estimate is

β̃ = E[β|YT ] = Cb∗0 + CQC′Z′Ω−1(YT − ZCb∗0), (8)

and the conditional variance (or MSE) of the smoothed estimate is

Var(β|YT) = CQC′ − CQC′Z′Ω−1ZCQC′, (9)

where Ω = H + ZCQC′Z′. Equations (8) and (9) are obtained given that Cov(β, YT) =
Var(β)Z′ = CQC′Z′ and Var(YT) = ZCQC′Z′ + H = Ω, and by substituting them into
Equations (6) and (7). It is well known that (8) is a minimum-variance linear unbiased
estimate of β, given YT , even though we do not assume the errors are normally distributed
(e.g., Durbin and Koopman 2012).

3.2. Equivalence of the GLS-Based Estimator and Kalman Smoother

Equations (3) and (4) can be written in another matrix form to apply conventional
regression analysis: [

YT
−b∗0

]
=

[
Z
−C−1

]
β +

[
ε
η

]
. (10)

This specification is similar to those of Duncan and Horn (1972) and Maddala and
Kim (1998). The main difference between our specification and that of Duncan and Horn
(1972) is that the former applies to a time-varying parameter model, while the latter is for a
more general state-space model, which allows the transition equation to have a transition
matrix F (i.e., when Equation (2) is βt = Fβt−1 + ηt). Since we do not need to estimate the
transition matrix, our regressors in Equation (10) are all known.7

As mentioned by Duncan and Horn (1972), the confusion around the similarities
and differences between Kalman filtering (including smoothing) and the conventional
regression model stems from the fact that the former is the expectation of β, conditional
on the information on YT , which is the linear projection of β onto the space spanned by YT
(provided that the errors are normally distributed). On the contrary, the latter is a linear
projection of the dependent variable onto the space spanned by the regressor, which is the
projection of the left hand side of Equation (10) onto the space spanned by

[
Z′ −C−1′ ]′.

However, Duncan and Horn (1972) show that GLS for (10) until the time-t observation
yields the Kalman-filtered estimate.

As shown by Sant (1977), a natural extension of Duncan and Horn (1972) is that we
obtain the Kalman-smoothed estimate of β when GLS is applied to all the observations, YT .
We summarize the equivalence of the GLS estimator of model (10) and Kalman-smoothed
estimator (8) and its MSE matrix (9) in Appendix A. We further reveal the equivalence when
the time-varying model has time-invariant intercepts in Appendix B. With the likelihood
function (5), GLS yields the ML estimator for the time-invariant intercepts and the Kalman-
smoothed estimator for the rest (time-varying coefficients).

3.3. GLS in Practice

As shown in the previous subsections, under the condition that the variance–covariance
matrices of the errors (H and Q) are known, the GLS estimator of β is identical to the
Kalman-smoothed estimates. However, in practice, those variance–covariance matrices
are generally unknown. The following two-step approach is often used to find the FGLS
estimator. First, β can be estimated using OLS. Then, the OLS residuals are used to estimate
H and Q, which are denoted as Ĥ and Q̂, respectively. In the second step, FGLS is applied to
our model assuming Ĥ and Q̂ are the variance–covariance matrices of ε and η, respectively.

However, FGLS suffers from two problems. First, H and Q may involve too many
unknown parameters. For example, when a TV-VAR(p) model has many variables (i.e.,
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when k is large), H has (T − p) of k× k matrices, and Q has the same number of k(kp + 1)×
k(kp + 1) matrices. The second problem is possible heteroskedasticity. Suppose that ε is
much greater in magnitude than η. More precisely, when the average trace of H is much
larger than the average trace of Q, our GLS-based approach has heteroskedasticity in
regression Equation (10), potentially causing an imprecise estimation of β. This concern is
largely mitigated when the average traces of H and Q are similar.

To solve these two problems, we propose the following FGLS procedure.

• Step 1. We estimate model (10) by OLS and obtain the estimate of β by OLS, β̂O. From
the OLS residuals, ε̂t and η̂t, we construct the first-step estimates of Ht and Qt:

Ĥt =
1

T − p

T

∑
t=p+1

ε̂t ε̂
′
t and Q̂t =

1
T − p

T

∑
t=p+1

η̂tη̂
′
t.

Then, to construct the estimates of H and Q, denoted as ĤO and Q̂O, respectively,
we set Ĥp+1 = Ĥp+2 = · · · = ĤT and Q̂p+1 = Q̂p+2 = · · · = Q̂T to assume that the
variances of ε and η are time-invariant. This assumption is undesirable because a
number of studies of TV-VAR models have focused on stochastic volatility models,
which require Q̂t 6= Q̂t+1, for example. However, thanks to this assumption, H and Q
are always invertible, and those inverses are readily computed. The simulations in
the next section will reveal how severely this assumption affects our estimation when
stochastic volatility is present. With ĤO and Q̂O, the log-likelihood is computed by
(A6) or (5).

• Step 2 (1FGLS). Given ĤO and Q̂O, we apply FGLS to obtain β̂G1, which is the FGLS
or 1FGLS estimate of β. We also compute the estimates of H and Q, denoted as ĤG1

and Q̂G1, respectively, in the same way as we computed ĤO and Q̂O in the first step.
Then, the value of the log-likelihood function is computed.

• Step 3 (2FGLS). We repeat Step 2, computing β̂G2, which is the (second-time) FGLS or
2FGLS of β. More precisely, we use the FGLS residuals in Step 2 to construct Ĥt and
Q̂t to obtain β̂G2. Then, the value of the log-likelihood function is computed. If the
likelihood ratio (from OLS to 1FGLS or from 1FGLS to 2FGLS) cannot be computed
or is extraordinarily large, such as greater than 1e+10, we disregard the 1FGLS and
2FGLS estimators because both indicate that the variance–covariance matrix is not
precisely estimated (degenerated). In such a case, we only record OLS. In addition,
we define 2FGLS’ as GLS using ŶT = Zβ̂G1

1 and −b̂∗0 = −C−1 β̂G1
2 in place of ε̂t and

η̂t, respectively, to compute Ĥt and Q̂t, where β̂G1
1 and β̂G1

2 are the corresponding
elements of 1FGLS, β̂G1. The reason why we use β̂G2′, which denotes 2FGLS’, is that it
is expected to ameliorate the effects arising from poorly estimated β̂G1. That is perhaps
due to misspecified H and Q. When those matrices are not correctly estimated, β̂G1

may be far from its true value; hence, the residuals computed from β̂G1 should not
be used for further FGLS because the repeated use of the wrong variance–covariance
matrices may make the estimator worse. In such a case, it may make sense to obtain
β̂G2′ as it does not repeat the same type of misspecification.

In summary, our procedure is based on the assumptions that the error terms have
time-invariant variances and that the heteroskedasticity arising from the different sizes of
H and Q can be correctly handled by the repeated use of FGLS. To validate our assumptions
and procedure, we investigate the degree to which our procedure precisely estimates the
true β using simulations.

4. Simulations

Among some influential empirical studies of TV-VAR, both Cogley and Sargent (2001,
2005) and Primiceri (2005) employ a three-variable TV-VAR(2) model. Hence, in our
simulation study, we adopt the same specification and use simulations to assess how well
the GLS-based approach recovers the true time-varying parameters relative to the Bayesian
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approach. First, we compute the means and variances of the estimated time-varying
parameters and compare them with those of the true time-varying parameters to evaluate
the accuracy of both the GLS-based and the Bayesian8 approaches. While comparing the
first and second moments of the estimates to those of the true process may be inadequate
to determine whether the GLS-based approach yields precise estimates, it is a useful way
to grasp the overall accuracy of the estimates.9

Second, we consider the possibility of the pile-up problem. According to Primiceri
(2005), the Bayesian approach is preferred when estimating time-varying parameter models
because, among other reasons, it can potentially avoid the pile-up problem. However,
the extent to which this problem affects our estimate is not immediately obvious because
the literature (e.g., Shephard and Harvey 1990) provides theoretical explanations only
for limited (simple) cases. On the contrary, our model can have a vector of time-varying
terms (βt), unlike prior studies that have analyzed scalar time-varying terms for simplicity.
Therefore, it is reasonable to conduct a simulation study to reveal the extent to which our
GLS-based approach suffers from the pile-up problem. Because the concern about the
pile-up problem grows when the variance of the state equation error or the SNR is small,
we study the performance of the GLS-based approach more comprehensively by altering
the SNR in the data-generating process.

Third, we also evaluate the performance of the GLS-based approach when stochastic
volatility and non-Gaussian errors are present. We investigate the effect of stochastic
volatility on the GLS-based approach because macroeconomic research, including Cogley
and Sargent (2005) and Primiceri (2005), has been allowing such shocks in the TV-VAR
model. While the GLS-based approach does not require the assumption of i.i.d. errors to
estimate βt, we are interested in the extent to which the accuracy of the GLS-based approach
is affected by the stochastic volatility of the errors. For the non-Gaussian errors, we focus
on the possible structural breaks in the time-varying coefficients, βt. By allowing a mixture
of normal errors, as explained in the following subsection, we can model structural breaks
or abrupt changes in βt, as opposed to the gradual changes that the time-varying model
generally assumes. Our simulation study is thus expected to shed light on the performance
of the GLS-based approach when such errors are present.

Finally, as mentioned in Section 1, since we consider OLS to be a component of the
GLS-based approach, we study its performance using simulations to clarify the relative
performance FGLS and OLS, especially for small samples.

4.1. Data-Generating Process

We generate pseudo data by the system of Equations (3) and (4) with T = {100, 250},
H =

{
0.022 I, 0.22 I, 12 I

}
and Q =

{
0.032 I

}
. By changing the variance of the error to the

observation equation, we consider the role of the SNR, which we define as the average trace
of the variance–covariance matrix of ηt relative to that of εt: In our simulation, we consider
the SNRs for 0.032/0.022, 0.032/0.22 and 0.032/12. The SNR is particularly important when
we consider the possibility of the pile-up problem, which will be discussed in the next
section. For the initial values, we set b∗0 = 0.

4.1.1. Non-Gaussian Errors

The original motivation to employ time-varying models for macroeconomic research
was to allow βt to change gradually. However, structural breaks or abrupt changes may
exist in βt, which means that βt is almost constant over time until some point in the sample,
for example, Tb; it then jumps to a different level afterward. One way to model such a
break is to assume non-Gaussian errors for ηt. In particular, we assume mixtures of normal
distributions (e.g., Perron and Wada 2009 for each element of error vector ηt:

ηit = λtζ1,t + (1− λt)ζ2,t



Econometrics 2022, 10, 23 8 of 27

where

λt ∼ i.i.d.Bernoulli(0.95)

ζ1,t ∼ N
(

0, 0.032
)

, ζ2,t ∼ N
(

0, 0.12
)

.

Intuitively, with a probability of 95%, ηt is ζ1,t, which is drawn from a normal distribu-
tion with a small variance. This small ηt keeps βt nearly constant over time. However, a
large ηt, which is ζ2,t, is drawn from a normal distribution with a (relatively) large variance.
This ηt causes βt to jump to a new level, with a 5% probability. Since we use the assumption
of Gaussian errors to derive the equivalence between GLS and the Kalman-smoothed esti-
mator, how non-Gaussian errors affect the accuracy of the GLS estimator when estimating
βt should be evaluated using simulations.

4.1.2. Stochastic Volatility and Autoregressive Stochastic Volatility

As Cogley and Sargent (2005) argue, in response to the criticism of Cogley and Sargent
(2001), it is more flexible and realistic to assume that the variance of the shock εt is time-
varying. Intuitively, not all shocks are generated from the same i.i.d. process. Since the
GLS-based approach can handle the heteroskedasticity in Ht and Qt, we can estimate the
time-varying model with stochastic volatility, such as the one used by Primiceri (2005), at
least theoretically. The error term εt may also follow the autoregressive stochastic volatility
process described by Taylor (2007) and elsewhere.

However, in general, FGLS is merely a remedy to more precisely estimate the co-
efficients (in our case, βt) when heteroskedasticity is present and FGLS is not primarily
designed to estimate the process that the error term (or its variance) follows.

Nevertheless, we use the following data-generating process to assess the performance
of the GLS-based approach.

εit =
√

hi,tξt

log hi,t = ρ log hi,t−1 + et

where ρ = 1 when stochastic volatility is considered and ρ = 0.9 when autoregressive
stochastic volatility is considered; εit is the i-th element of εt. We assume log hi,0 = 0,
et ∼ N

(
0, 0.022), and ξt ∼ N(0, 1).

4.1.3. Eliminating Outliers

Since time-varying parameters mean that the generated series are generally non-
stationary, some such series may be explosive and thus disregarded because they lack
practical usefulness. In particular, if the standard deviation of the last 50 observations of a
generated series is at least three times greater than that of the first 50 observations or if the
inverse of Z′Z does not exist, the series is discarded.

4.2. Mean and Variance of the Estimated βt and Likelihood

Since we simulate a TV-VAR(2) model with time-varying intercepts, βt is a 21 × 1
vector. Let βt,i,n denote the true (data-generating process) βt,i,n (i.e., the i-th element of
vector βt,n) and let β̂t,i,n denote the estimate of βt,i,n. In the Bayesian MCMC case, we use
the posterior mean for β̂t,i,n.10 Since b∗0 is unknown in practice when estimating βt,i,n, we
estimate b∗0 as the coefficient vector from a full-sample time-invariant (i.e., usual) VAR(2)
model before estimating βt,i,n by OLS, GLS, or Bayesian. The sample means and sample
standard deviations of the estimate over the sample period are then computed:



Econometrics 2022, 10, 23 9 of 27

β̂i,n =
1

T − p

T

∑
t=p+1

β̂t,i,n (11)

sd
(

β̂i,n

)
=

√√√√ 1
T − p− 1

T

∑
t=p+1

(
β̂t,i,n − β̂i,n

)2
. (12)

Similarly, we compute those of the true (data-generating) process:

βi,n =
1

T − p

T

∑
t=p+1

βt,i,n (13)

sd(βi,n) =

√√√√ 1
T − p− 1

T

∑
t=p+1

(
βt,i,n − βi,n

)2
. (14)

From (11) and (12) and their data-generating process counterparts, (13) and (14), we
have 21 means and standard deviations for each replication. After N = 1000 replications,

we compute the averages of β̂i,n, βi,n, sd
(

β̂i,n

)
, and sd(βi,n) over the replications. We

then have 21 means of time-varying parameters and 21 means of standard deviations (i.e.,
i = 1, 2, . . . , 21).

m̂i =
1
N

N

∑
n=1

β̂i,n; mi =
1
N

N

∑
n=1

βi,n (15)

ŝi =
1
N

N

∑
n=1

sd
(

β̂i,n

)
; si =

1
N

N

∑
n=1

sd(βi,n) (16)

Since both m and s are aggregate means, a small difference between m and m̂ or
between s and ŝ is only an indication that the estimator is close to what it is expected to
estimate. Hence, we further investigate the similarities of β and β̂. Comparing each element
of β, we define the distance, “dist”, as follows:

disti =
1

N(T − p)

N

∑
n=1

T

∑
t=p+1

∣∣∣βt,i,n − β̂t,i,n

∣∣∣. (17)

Similarly, we compare the standard deviations of each element of β as a ratio of the
standard deviation of β̂i,n to the standard deviation of the true process, βi,n:

rati =
1
N

N

∑
n=1

sd
(

β̂i,n

)
sd(βi,n)

. (18)

In this simulation study, we focus on both disti and rati. Our criteria for a good
estimator are whether the disti of an estimate is close to zero and whether the rati of that
estimate is close to one.

4.3. Simulation Results 1: The SNR, Sample Size and Estimation Precision

Tables 1 and 2 display the medians of disti and rati as well as the medians of mi and si
for T = 100 and T = 250, respectively.
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Table 1. Simulation Results T = 100.

H Q True OLS 1FGLS 2FGLS 2FGLS’ Primiceri

0.022 0.032 median m −0.006 −0.001 0.000 0.001 0.001 0.000
median s 0.086 0.033 0.016 0.019 0.010 0.000
median dist 0.129 0.141 0.164 0.193 0.273

SNR = 2.25 median rat 0.416 0.206 0.252 0.124 0.006

0.22 0.032 median m −0.002 −0.003 −0.003 −0.003 0.001 0.002
median s 0.087 0.135 0.084 0.048 0.031 0.000
median dist 0.164 0.131 0.120 0.122 0.273

SNR = 0.0225 median rat 1.759 1.078 0.609 0.397 0.006

1 0.032 median m −0.001 −0.009 −0.009 −0.006 −0.005 −0.003
median s 0.087 0.287 0.291 0.297 0.104 0.000
median dist 0.272 0.277 0.278 0.135 0.273

SNR = 0.0009 median rat 3.761 3.812 3.904 1.339 0.005
Notes: (1) The numbers in the column under “True”are computed from the data-generating process described
in Section 4.2. (2) “m”, “s”, “dist”, and “rat”stand for the mean, the standard deviation, the distance from the
true values, and the ratio of the standard deviation of the estimates to that of the true values of β. (3) The bold
numbers are the smallest (for median “dist”) and the closest to one (for median “rat”), indicating the best method
out of the four (OLS, 1FGLS, 2FGLS, 2FGLS’, Primiceri).

Table 2. Simulation Results T = 250.

H Q True OLS 1FGLS 2FGLS 2FGLS’ Primiceri

0.022 0.032 median m −0.007 −0.003 −0.002 −0.001 0.002 0.002
median s 0.156 0.110 0.076 0.059 0.022 0.024
median dist 0.103 0.126 0.150 0.263 0.348

SNR = 2.25 median rat 0.718 0.494 0.392 0.159 0.173

0.22 0.032 median m −0.004 −0.006 −0.006 −0.005 0.002 0.003
median s 0.156 0.201 0.150 0.105 0.061 0.048
median dist 0.153 0.128 0.120 0.144 0.341

SNR = 0.0225 median rat 1.379 1.013 0.692 0.408 0.337

1 0.032 median m −0.002 −0.003 −0.004 −0.005 −0.002 0.003
median s 0.156 0.321 0.320 0.317 0.135 0.030
median dist 0.243 0.243 0.243 0.114 0.341

SNR = 0.0009 median rat 2.285 2.282 2.265 0.922 0.208
Notes: (1) The numbers in the column under “True”are computed from the data-generating process described
in Section 4.1. (2) “m”, “s”, “dist”, and “rat”stand for the mean, the standard deviation, the distance from the
true values, and the ratio of the standard deviation of the estimates to that of the true values of β. (3) The bold
numbers are the smallest (for median “dist”) and the closest to one (for median “rat”), indicating the best method
out of the four (OLS, 1FGLS, 2FGLS, 2FGLS’, Primiceri).

We focus on the median values of the estimated parameters because we sometimes
encounter outliers. Our view is that the non-stationary nature of the data-generating
process together with the possibility of poorly estimated H and Q, especially when the
SNR is low, creates those outliers in the estimated coefficients. OLS works relatively well
when the SNR is relatively large because, as Tables 1 and 2 show, the median distance of
the estimate from the true process (i.e., disti) is small, and the median sample variance
of the estimated βt is closer to that of the true process compared with other approaches
(i.e., rati is closer to one).11 On the contrary, 2FGLS’ works relatively well when the SNR is
small. General tendencies from Table 1 can be summarized as follows. First, OLS, 1FGLS
and 2FGLS share largely the same characteristics. However, the volatility of βt estimated
by 2FGLS’ is much smaller than those estimated by OLS, 1FGLS and 2FGLS. Second, OLS,
1FGLS, 2FGLS and 2FGLS’ all tend to have larger rati as the SNR increases. More precisely,
OLS, 1FGLS, 2FGLS and 2FGLS’ overestimate (underestimate) the volatility of βt when
the SNR is very small (large). Third, for the median distance of the estimate from the true
process (i.e., disti) for T = 250, the best case for OLS and 1FGLS is when the SNR is 2.25.
This phenomenon is easy to understand because an SNR that is either too small or too
large make the estimation of βt difficult, since an SNR far from one means the degree of
heterogeneity is quite serious. In such a situation, it is easy to imagine that OLS cannot
recover βt well and 1FGLS may thus be unsuitable for implementing FGLS.
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What is the effect of increasing the sample size? A comparison of Tables 1 and 2
show that the degrees to which the volatility of βt is over- or underestimated is largely
mitigated for OLS, 1FGLS and 2FGLS when the sample size increases from 100 to 250. At
the same time, the median distances of the estimate from the true process for OLS, 1FGLS
and 2FGLS generally shorten as the sample size increases, showing that the accuracy of OLS
and 1FGLS improves with the sample size. However, such effects of an increased sample
size do not clearly hold for 2FGLS’. Furthermore, Primiceri’s (2005) Bayesian estimation is
inaccurate at recovering the true parameter values throughout the simulation. As Primiceri
(2005) explains in detail, one caveat is that the prior for Q is crucial for the volatility of the
posterior mean of βt. Hence, it may not be appropriate to use the same set of priors as
Primiceri (2005) for this simulation study because more suitable prior values may improve
the results. However, we must note that the other estimates do not necessitate such a choice
depending on the SNR.

Additionally, instead of computing the median value of each measure over i, we can
look closely at disti and rati for each i. There are some parameters (i) where Primiceri’s
(2005) method outperforms the others. Yet, our focus here is to see the overall performance
of each method.

4.4. Simulation Results 2: The Effects of Non-i.i.d. and Non-Gaussian Errors

Table 3 presents the effects of non-Gaussian errors as well as stochastic volatility and
stochastic autoregressive errors.

Table 3. Stochastic Volatility and Autoregressive Stochastic Volatility.

T Q True OLS 1FGLS 2FGLS 2FGLS’ Primiceri

100 0.032 median m −0.002 −0.002 −0.003 −0.002 −0.005 −0.001
RW median s 0.086 0.289 0.295 0.298 0.103 0.000

median dist 0.273 0.278 0.279 0.135 0.273
median rat 3.837 3.916 3.986 1.369 0.005

100 0.032 median m −0.002 −0.002 −0.003 −0.002 −0.005 −0.002
AR median s 0.086 0.289 0.295 0.298 0.103 0.000

median dist 0.273 0.278 0.279 0.135 0.273
median rat 3.837 3.916 3.986 1.369 0.005

250 0.032 median m −0.002 −0.006 −0.005 −0.005 −0.004 0.001
RW median s 0.154 0.321 0.320 0.318 0.136 0.030

median dist 0.244 0.244 0.244 0.114 0.343
median rat 2.299 2.291 2.277 0.928 0.211

250 0.032 median m −0.002 −0.008 −0.008 -0.009 −0.005 0.002
AR median s 0.154 0.322 0.321 0.318 0.137 0.030

median dist 0.243 0.244 0.244 0.114 0.338
median rat 2.310 2.303 2.292 0.937 0.213

Notes: (1) The numbers in the column under “True”are computed from the data-generating process: ηit =
λtζ

1
t + (1− λt)ζ2

t where λt ∼ i.i.d.Bernoulli(0.95), ζ1,t ∼ N(0, 0.032), ζ2,t ∼ N(0, 0.12) and εit =
√

hi,tξt, log hi,t =
ρ log hi,t−1 + et where ρ = 1 when stochastic volatility is considered (labeled as RW), ρ = 0.9 when autoregressive
stochastic volatility is considered (labeled as AR),εit is the i-th element of εt; log hi,0 = 0, et ∼ N

(
0, 0.022), and

ξt ∼ N(0, 1). (2) “m”, “s”, “dist”, and “rat”stand for the mean, the standard deviation, the distance from the true
values, and the ratio of the standard deviation of the estimates to that of the true values of β. (3) The bold numbers
are the smallest (for median “dist”) and the closest to one (for median “rat”), indicating the best method out of the
four (OLS, 1FGLS, 2FGLS, 2FGLS’, Primiceri).

The general tendencies that appear in the Gaussian error case (Tables 1 and 2) are
maintained. While both OLS, 1FGLS and 2FGLS overestimate the volatility of βt, the degree
of overestimation is largely mitigated when the sample size increases. Moreover, 2FGLS’
underestimates the volatility of βt, and increasing the sample size helps 2FGLS’ estimate
βt more accurately, and Primiceri’s (2005) Bayesian approach cannot estimate βt well.
Remarkably, given the value of the autoregressive parameter ρ, there is also a negligible
difference between the stochastic volatility and autoregressive stochastic volatility cases.
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When only the non-Gaussian error is considered, as Tables 4 and 5 show, we obtain
mostly the same results as those presented in Tables 1 and 2. Once again, except for
the Bayesian estimator, the degree of overestimation (underestimation) depends on the
SNR. Similar to the results in Tables 1 and 2, a larger sample size generally improves the
estimation by OLS, 1FGLS and 2FGLS in that the degree of over- or underestimation is
largely reduced when the sample size increases. In addition, for OLS, 1FGLS and 2FGLS,
the median distance between the true and estimated βt shortens with the sample size.
However, this tendency does not apply to 2FGLS’.

What is the effect of scholastic volatility or autoregressive volatility in the observation
equation error (εt) on our estimation? Table 6 shows that except for Primiceri’s (2005)
Bayesian approach, the results arising from such errors are similar to the small SNR cases
in Tables 1 and 2.

Table 4. Mixtures of Normals T = 100.

H Q True OLS 1FGLS 2FGLS 2FGLS’ Primiceri

0.022 median m −0.002 0.002 0.004 0.004 0.004 0.003
median s 0.102 0.042 0.025 0.021 0.012 0.001
median dist 0.137 0.151 0.171 0.229 0.328
median rat 0.477 0.266 0.229 0.139 0.006

0.22 median m −0.001 −0.004 −0.003 −0.003 0.006 0.007
median s 0.103 0.138 0.092 0.059 0.033 0.000
median dist 0.164 0.136 0.129 0.135 0.310
median rat 1.497 0.987 0.633 0.362 0.006

1 median m −0.002 −0.007 −0.007 −0.007 −0.007 0.000
median s 0.105 0.277 0.281 0.284 0.099 0.000
median dist 0.259 0.264 0.265 0.135 0.319
median rat 3.068 3.112 3.139 1.066 0.005

Notes: (1) The numbers in the column under “True”are computed from the data-generating process: ηit =

λtζ
1
t + (1− λt)ζ2

t where λt ∼ i.i.d.Bernoulli(0.95), ζ1,t ∼ N(0, 0.032), ζ2,t ∼ N(0, 0.12). (2) “m”, “s”, “dist”, and
“rat”stand for the mean, the standard deviation, the distance from the true values, and the ratio of the standard
deviation of the estimates to that of the true values of β. (3) The bold numbers are the smallest (for median
“dist”) and the closest to one (for median “rat”), indicating the best method out of the four (OLS, 1FGLS, 2FGLS,
2FGLS’, Primiceri).

This is because the observation error (εt) has a variance larger than one due to the
stochastic volatility (

√
ht) term. The results of the stochastic volatility and autoregressive

stochastic volatility cases are therefore similar.



Econometrics 2022, 10, 23 13 of 27

Table 5. Mixtures of Normals T = 250.

H Q True OLS 1FGLS 2FGLS 2FGLS’ Primiceri

0.022 median m −0.006 −0.001 −0.002 −0.003 0.004 0.002
median s 0.181 0.132 0.101 0.083 0.030 0.045
median dist 0.109 0.130 0.153 0.291 0.388
median rat 0.738 0.554 0.460 0.183 0.268

0.22 median m −0.004 −0.005 −0.004 −0.003 0.003 0.002
median s 0.182 0.212 0.169 0.128 0.064 0.074
median dist 0.150 0.131 0.129 0.177 0.387
median rat 1.235 0.969 0.726 0.373 0.450

1 median m −0.002 −0.006 −0.006 −0.006 −0.007 0.000
median s 0.181 0.318 0.317 0.329 0.138 0.063
median dist 0.228 0.229 0.239 0.127 0.385
median rat 1.918 1.906 1.961 0.795 0.373

Notes: (1) The numbers in the column under “True”are computed from the data-generating process: ηit =
λtζ

1
t + (1− λt)ζ2

t where λt ∼ i.i.d.Bernoulli(0.95), ζ1,t ∼ N(0, 0.032), ζ2,t ∼ N(0, 0.12). (2) “m”, “s”, “dist”, and
“rat”stand for the mean, the standard deviation, the distance from the true values, and the ratio of the standard
deviation of the estimates to that of the true values of β. (3) The bold numbers are the smallest (for median “dist”)
and the closest to one (for median “rat”), indicating the best method out of the four (OLS, 1FGLS, 2FGLS, 2FGLS’,
Primiceri).

Table 6. Stochastic Volatility, Autoregressive Stochastic Volatility, and Mixtures of Normals.

T RW/AR True OLS 1FGLS 2FGLS 2FGLS’ Primiceri

100 RW median m −0.002 −0.010 −0.010 −0.008 −0.008 −0.004
median s 0.104 0.275 0.278 0.282 0.098 0.000
median dist 0.258 0.261 0.262 0.134 0.317
median rat 3.070 3.131 3.175 1.078 0.005

AR median m −0.002 −0.010 −0.010 −0.008 −0.008 −0.004
median s 0.104 0.275 0.278 0.282 0.098 0.000
median dist 0.258 0.261 0.262 0.134 0.317
median rat 3.070 3.130 3.177 1.078 0.005

250 RW median m −0.001 −0.005 −0.005 −0.006 −0.004 −0.001
median s 0.180 0.317 0.315 0.314 0.135 0.060
median dist 0.228 0.228 0.229 0.127 0.381
median rat 1.924 1.913 1.905 0.785 0.361

AR median m −0.001 −0.005 −0.006 −0.007 −0.004 −0.001
median s 0.180 0.317 0.315 0.314 0.135 0.060
median dist 0.228 0.228 0.229 0.127 0.382
median rat 1.923 1.916 1.911 0.785 0.362

Notes: (1) The numbers in the column under “True”are computed from the data-generating process: εit =
√

hi,tξt,
log hi,t = ρ log hi,t−1 + et where ρ = 1 when stochastic volatility is considered (labeled as RW), ρ = 0.9 when
autoregressive stochastic volatility is considered (labeled as AR), εit is the i-th element of εt; log hi,0 = 0, et ∼
N
(
0, 0.022), and ξt ∼ N(0, 1). (2) “m”, “s”, “dist”, and “rat”stand for the mean, the standard deviation, the

distance from the true values, and the ratio of the standard deviation of the estimates to that of the true values of
β. (3) The bold numbers are the smallest (for median “dist”) and the closest to one (for median “rat”), indicating
the best method out of the four (OLS, 1FGLS, 2FGLS, 2FGLS’, Primiceri).

4.5. Discussion: The Pile-Up Problem

Our results suggest that the GLS-based approach does not suffer from the pile-up
problem and that lower SNRs often lead to the overestimation of the volatility of βt,
especially when OLS, 1FGLS or 2FGLS is used (Tables 1 and 2). Moreover, the degree of
overestimation of the sample variance of βt becomes more severe when the sample size is
small. This may be puzzling given the fact that OLS and ML are generally equivalent and
that GLS and ML are equivalent if the errors are not i.i.d. (i.e., the errors heteroskedastic
or autocorrelated). However, this statement is not true if FGLS fails to deal with non-i.i.d.
errors appropriately. As OLS, 1FGLS and 2FGLS would then be unable to estimate an
equivalent βt to that under ML, this explains why the GLS-based approach does not suffer
from the pile-up problem. Interestingly, our simulations reveal that the Bayesian estimator
yields much smaller variations over time.
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Therefore, our simulations seem to suggest both that the use of 2FGLS’ is recom-
mended when the sample size is small, and that OLS (1FGLS and 2FGLS as well) can
recover the time-varying parameters fairly well when the sample size is large.

5. Application to the TV-VAR(2) Model with Interest Rates, Inflation, and Unemployment

A number of studies that employ TV-VAR models, including Cogley and Sargent (2005)
and Primiceri (2005), focus on recovering the structural parameters from the estimated
reduced form. Although we do not aim to identify fundamental shocks or compute impulse
responses, we present the estimated TV-VAR(2) parameter using OLS (Figure 1), FGLS
(Figure 2 for 1FGLS, Figure 3 for 2FGLS’, and Figure 4 for 2FGLS), and the posterior mean
of the time-varying approach using Primiceri’s (2005) method (Figure 5).12
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Figure 1. The Estimated Time-Varying Parameters: OLS.
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Figure 2. The Estimated Time-Varying Parameters: 1FGLS.
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Figure 3. The Estimated Time-Varying Parameters: 2GLS’.

Figure 4. The Estimated Time-Varying Parameters: 2GLS.
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Figure 5. Replication of Primiceri (2005).
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While Primiceri’s (2005) Bayesian MCMC posterior means are virtually time-invariant
and the estimates by 2FGLS’ are slightly more volatile, the estimates provided by OLS,
1FGLS and 2FGLS have much larger volatility.

Interestingly, as detailed in the supplementary appendix (available upon request), the
coefficients on the interest rate vary noticeably over time, exhibiting distinct patterns in
the early 1980s (dip), late 1990s (up) and early 2000s (down). Similar to Primiceri’s (2005)
Bayesian posterior means, the intercepts (three time-varying coefficients) are largely stable
over time. This finding is consistent with our simulation results. Overall, Primiceri’s (2005)
Bayesian estimator for the time-varying parameter (βt) tends to have very small variation
over time, resulting in virtually time-invariant parameters.13

6. Conclusions

The multivariate non-Bayesian regression-based or GLS-based approach for the time-
varying parameter model is presented and assessed from a simulation aspect. Although this
approach has already been theoretically justified and (at least partly) used by Ito et al. (2014,
2016, 2021), it is shown that using the GLS-based approach has at least four advantages.
First, this approach can produce equivalent estimates without needing Kalman filtering or
smoothing; it is also applicable to a wide range of time-varying parameter models (e.g.,
TV-AR, TV-VAR, and TV-VEC models) by adjusting the regression matrix accordingly.
Second, the GLS-based approach works reasonably well in practice in that it can estimate
the time-varying parameters even when non-i.i.d. errors or non-Gaussian errors exist
in the model. In particular, we find that GLS outperforms Primiceri’s (2005) Bayesian
approach in recovering the true parameter values because it can take into account generally
heteroskedastic error terms. The ability to deal with non-Gaussian errors is particularly
important in empirical studies because it allows us to consider possible abrupt changes in
time-varying parameters instead of gradual changes due to Gaussian errors. Remarkably,
GLS can even outperform Primiceri’s (2005) Bayesian approach that is often employed to
estimate the TV-VAR models. However, in practice, the most appropriate method (OLS,
1FGLS, 2FGLS or 2FGLS’) should be chosen depending on the sample size and SNR. More
precisely, OLS is acceptable when the SNR is not far from one or the sample size is not
small; otherwise, 2FGLS’ is recommended. The reason why the sample size and SNR
are important for choosing the preferred of the three methods is that 1FGLS, 2FGLS and
2FGLS’ are not ideal GLS; hence, they cannot fully deal with the heterogeneity arising from
our regression equation that includes both observation equation errors and state equation
errors. However, because we do not maximize the unconditional likelihood function with
respect to the variances of the errors and because 1FGLS, 2FGLS and 2FGLS’ are not ideal
GLS, the true variances are imprecisely estimated, and our GLS-based approach does not
suffer from the pile-up problem that often occurs with ML.

While our focus in this paper is the estimation method of relatively simple TV models,
more flexible models, such as a TV-VAR with time-varying variances of the structural
shocks, have a higher necessity for macroeconomic analysis. Extending our approach to
such complex models is of great importance to both econometricians and macroeconomists.
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Appendix A. The Summary of GLS-Kalman Smoother Equivalence

Proposition A1. (Sant (1977); and else) The GLS estimator of model (10) yields the Kalman-
smoothed estimates (8) and its mean squared error matrix (9).

Proof of Proposition A1.

Lemma A1.
(
S− TU−1V

)−1
= S−1 + S−1T

(
U−VS−1T

)−1VS−1 provided S−1 exists.

The GLS estimate of β is

β̂GLS =

[[
Z′H

′−1/2 C′−1Q
′−1/2

][ H−1/2Z
Q−1/2C−1

]]−1

×
[

Z′H
′−1/2 −C′−1Q

′−1/2
][ H−1/2YT
−Q−1/2b∗0

]
=

(
Z′H−1Z + C′−1Q−1C−1

)−1(
Z′H−1YT + C−1′Q−1b∗0

)
=

[
CQC′ − CQC′Z′Ω−1ZCQC′

](
Z′H−1YT + C−1′Q−1b∗0

)
(A1)

= CQC′Z′Ω−1YT +
[
C− CQC′Z′Ω−1ZC

]
b∗0

= Cb∗0 + CQC′Z′Ω−1(YT − ZCb∗0).

Here, we used Lemma,(
Z′H−1Z + C′−1Q−1C−1

)−1
= CQC′ − CQC′Z′

(
H + Z∗CQC′Z′

)−1ZCQC′.

From (A2), the conditional variance of β̂GLS is
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Var
(

β̂GLS|YT

)
=

(
Z′H−1Z + C′−1Q−1C−1

)−1

= CQC′ − CQC′Z′Ω−1ZCQC′.

Appendix B. Model with Time-Invariant Intercepts

While our model, (1) and (2), and its matrix formulation, (3) and (4), are flexible
enough to admit time-varying coefficients, it is sometimes assumed that the class of TV-AR
models has time-invariant intercepts. For the purpose of deriving the likelihood function,
here, we modify our model to admit time-invariant intercepts. Suppose we have a k× k
vector of time-invariant intercepts, v, in our model. Then, (1) and (2) become

yt = v + Ztβt + εt (A2)

βt = βt−1 + ηt. (A3)

In this case, it is convenient to use a matrix form to derive the likelihood function.
With the vector of intercepts, our model in matrix form, (3) and (4), is then modified to

YT = Iv + Zβ + ε (A4)

β = C(b∗0 + η), (A5)

where
I =

[
Ik Ik · · · Ik

]′,
and Ik is a k× k identity matrix. Similar to our assumption that time-varying intercepts, if
they exist, are unknown, we assume that the vector of time-invariant intercepts, v, is the
unknown parameter vector.

From our matrix formulation of (A4) and (A5), the log-likelihood function for YT given
the covariance matrices of the errors (H and Q), intercept (v), and initial value vector (b∗0 ) is

log p(YT |H, Q, v, b∗0) = − (T − p)k
2

log 2π − 1
2

log|Ω|

−1
2
(YT − ZCb∗0 − Iv)′Ω−1(YT − ZCb∗0 − Iv). (A6)

Appendix B.1. The GLS Estimator under the Presence of Time-Invariant Intercepts

As we discuss in the previous section, our model admits time-invariant intercepts.
Therefore, it is straightforward to define the GLS estimator for such models. To do so, as-
suming that the time-invariant intercepts are unknown, let us define the vector of unknown
parameters, β∗ =

[
v′ β′

]′. Then, the matrix form for regression that is analogous to
(10) is [

YT
−b∗0

]
=

[
I Z
0 −C−1

]
β∗ +

[
ε
η

]
. (A7)

Here, one of the advantages of utilizing the regression approach (A7) over Kalman
smoothing (A5) is that the unknown intercept vector v is estimated simultaneously with β.
Then, it can be shown that the GLS estimate v̂ is indeed the maximum likelihood estimate.

Proposition A2. The GLS estimate v̂ of model (A7) is the maximum likelihood estimate (MLE) of
(A5), v̂ML conditional on H, Q, and b∗0 .

Proof. From the likelihood function, (A6), the normal equations pertaining to v are

I ′Ω−1(YT − ZCb∗0 − I v̂ML) = 0.
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Therefore, the MLE for v is

v̂ML =
(
I ′Ω−1I

)−1
I ′Ω−1(YT − ZCb∗0). (A8)

Now, the GLS estimates for β∗ in model (A7) are

β̂∗ =

[
v̂
β̂

]

=

[
I ′H−1I I ′H−1Z
Z′H−1I Z′H−1Z + C′−1Q−1C−1

]−1[( I ′H−1

Z′H−1

)
YT +

(
O

C−1′Q−1

)
b∗0

]
. (A9)

Using the Lemma, we arrive at the following (see Appendix B.2 “Detailed Proof of Proposi-
tion A2” for details):

v̂ =
(
I ′Ω−1I

)−1
I ′Ω−1(YT − ZCb∗0).

This proves v̂ML = v̂.

Proposition A3. The GLS estimate β̂ of model (A7) is the Kalman-smoothed estimate of model (A5).

Proof. Thanks to the intercept, the Kalman-smoothed estimate is now

β̃ = Cb∗0 + CQC′Z′Ω−1(YT − Iv− ZCb∗0). (A10)

From (A9), it follows that

β̂ = Cb∗0 + CQC′Z′Ω−1(YT − I v̂− ZCb∗0).

We prove the equivalence.

It is clear that the GLS-based approach can compute the Kalman-smoothed β and
estimate the unknown intercepts, v, simultaneously. The next question is how we can
obtain the statistical inference about β̂. More precisely, at issue is whether the GLS-based
approach yields the same MSE as the Kalman smoother. The answer to this question is
negative for β̂.

Proposition A4. The mean squared error of the Kalman smoothed estimate is

Var(β|YT) = CQC′ − CQC′Z′Ω−1ZCQC′, (A11)

whereas the variance estimated from the GLS-based approach (A9) is

Var
(

β̂
)
= CQC′ − CQC′Z′Ω−1ZCQC + CQC′Z′Ω−1I

(
I ′Ω−1I

)−1
I ′Ω−1ZCQC′. (A12)

Proof. See Appendix B.2 “Detailed Proof of Proposition A2” below.

The difference between the Kalman-smoothed Var(β|YT) and the GLS-based variance
Var

(
β̂
)

is CQC′Z′Ω−1I
(
I ′Ω−1I

)−1I ′Ω−1ZCQC′, which pertains to the estimation of v. If
we did not have to estimate v (as we assume for the Kalman-smoothed estimate), Var(β|YT)

and Var
(

β̂
)

would be the same. In other words, if v is known, the MSE of the Kalman-
smoothed estimate is the same as the variance of the GLS-based estimate. As a matter
of fact, if Var(v̂) =

(
I ′Ω−1I

)−1
= 0, the two estimates would be identical. This result

reflects that the two approaches yield the same estimate and MSE, as in Proposition A1.
Nevertheless, what is important here is that we can obtain (A11) by utilizing the estimated
variance of β̂∗ of (A9). More specifically, we can estimate the MSE of the Kalman-smoothed
estimate by

Var(β|YT) = Var
(

β̂
)
− Cov

(
β̂, v̂
)

Var(v̂)−1Cov
(

β̂, v̂
)′

.
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Appendix B.2. Detailed Proof of Propositions A2

Lemma A2. If G−1 and the inverse of F = A− BG−1E exist,(
A B
E G

)−1

=

(
F−1 −F−1BG−1

−G−1EF−1 G−1 + G−1EF−1BG−1

)
.

In our case,

A = I ′H−1I , B = I ′H−1Z, G = Z′H−1Z + C′−1Q−1C−1, E = Z′H−1I ;

and

F = I ′H−1I − I ′H−1Z
(

Z′H−1Z + C′−1Q−1C−1
)−1

Z′H−1I

= I ′
[

H−1−H−1Z
(

Z′H−1Z + C′−1Q−1C−1
)−1

Z′H−1
]
I ,

whose inverse is

F−1 =

{
I ′
[

H−1−H−1Z
(

Z′H−1Z + C′−1Q−1C−1
)−1

Z′H−1
]
I
}−1

=
[
I ′
(

H + ZCQC′Z′
)−1I

]−1

=
(
I ′Ω−1I

)−1
.

Other useful equations are

G−1 =
(

Z′H−1Z + C′−1Q−1C−1
)−1

= CQC′ − CQC′Z′
(

H + ZCQC′Z′
)−1ZCQC′

= CQC′ − CQC′Z′Ω−1ZCQC′;

Ω−1 =
(

H + ZCQC′Z′
)−1

= H−1−H−1Z
(

Z′H−1Z + C′−1Q−1C−1
)−1

Z′H−1

= H−1−H−1ZG−1Z′H−1. (A13)

Then, for (A9), we arrive at

v̂ =
(

F−1I ′H−1 − F−1BG−1Z′H−1
)

︸ ︷︷ ︸
( i )

YT − F−1BG−1C−1′Q−1︸ ︷︷ ︸
( ii)

b∗0 (A14)

β̂ =
[
−G−1EF−1I ′H−1 +

(
G−1 + G−1EF−1BG−1

)
Z′H−1

]
︸ ︷︷ ︸

(iii)

YT

+
(

G−1 + G−1EF−1BG−1
)

C−1′Q−1︸ ︷︷ ︸
(iv)

b∗0 . (A15)
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(i) F−1I ′H−1 − F−1BG−1Z′H−1 =
(
I ′Ω−1I

)−1
I ′H−1

×
(

I − ZCQC′Z′H−1 + ZCQC′Z′Ω−1ZCQC′Z′H−1
)

=
(
I ′Ω−1I

)−1
I ′H−1[

I − (Ω− H)H−1 + (Ω− H)Ω−1(Ω− H)H−1
]

=
(
I ′Ω−1I

)−1
I ′H−1(

I −ΩH−1 + I + ΩH−1 − I − I + HΩ−1
)

=
(
I ′Ω−1I

)−1
I ′Ω−1.

(ii) F−1BG−1C−1′Q−1 =
(
I ′Ω−1I

)−1
I ′H−1Z

(
CQC′ − CQC′Z′Ω−1ZCQC′

)
C−1′Q−1

=
(
I ′Ω−1I

)−1
I ′H−1Z

(
C− CQC′Z′Ω−1ZC

)
=
(
I ′Ω−1I

)−1
I ′H−1

(
ZC− ZCQC′Z′Ω−1ZC

)
=
(
I ′Ω−1I

)−1
I ′H−1

(
I − ZCQC′Z′Ω−1

)
ZC

=
(
I ′Ω−1I

)−1
I ′H−1

(
I − (Ω− H)Ω−1

)
ZC

=
(
I ′Ω−1I

)−1
I ′Ω−1ZC.

Therefore,

v̂ =
(
I ′Ω−1I

)−1
I ′Ω−1YT −

(
I ′Ω−1I

)−1
I ′Ω−1ZCb∗0

=
(
I ′Ω−1I

)−1
I ′Ω−1(YT − ZCb∗0).

(iii) − G−1EF−1I ′H−1 +
(

G−1 + G−1EF−1BG−1
)

Z′H−1

=− G−1EF−1
(
I ′H−1 − BG−1Z′H−1

)
+ G−1Z′H−1

=− G−1EF−1I ′
(

H−1 − H−1ZG−1Z′H−1
)
+ G−1Z′H−1

=− G−1EF−1I ′Ω−1 + G−1Z′H−1 (from (A13))

=− G−1Z′H−1IF−1I ′Ω−1 + G−1Z′H−1

=− G−1Z′H−1
(

I − IF−1I ′Ω−1
)

=−
(

CQC′ − CQC′Z′Ω−1ZCQC′
)

Z′H−1
(

I − IF−1I ′Ω−1
)

=− CQC′Z′H−1
(

I − IF−1I ′Ω−1
)
+ CQC′Z′Ω−1(Ω− H)H−1

(
I − IF−1I ′Ω−1

)
=CQC′Z′Ω−1

(
I − IF−1I ′Ω−1

)
=CQC′Z′Ω−1 − CQC′Z′Ω−1I

(
I ′Ω−1I

)−1
I ′Ω−1

=CQC′Z′Ω−1
[

I − I
(
I ′Ω−1I

)−1
I ′Ω−1

]
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(iv)
(

G−1 + G−1EF−1BG−1
)

C−1′Q−1

= G−1C−1′Q−1 + G−1EF−1BG−1C−1′Q−1

=
(

CQC′ − CQC′Z′Ω−1ZCQC′
)

C−1′Q−1 + G−1E
(
I ′Ω−1I

)−1
I ′Ω−1ZC (from (ii))

= C− CQC′Z′Ω−1ZC

+
(

CQC′ − CQC′Z′Ω−1ZCQC′
)

Z′H−1I
(
I ′Ω−1I

)−1
I ′Ω−1ZC

= C− CQC′Z′Ω−1ZC

+ CQC′
(

Z′H−1 − Z′Ω−1ZCQC′Z′H−1
)
I
(
I ′Ω−1I

)−1
I ′Ω−1ZC

= C− CQC′Z′Ω−1ZC

+ CQC′
[

Z′H−1 − Z′Ω−1(Ω− H)H−1
]
I
(
I ′Ω−1I

)−1
I ′Ω−1ZC

= C− CQC′Z′Ω−1ZC + CQC′Z′Ω−1I
(
I ′Ω−1I

)−1
I ′Ω−1ZC

=

[
I − CQC′Z′Ω−1Z + CQC′Z′Ω−1I

(
I ′Ω−1I

)−1
I ′Ω−1Z

]
C.

Therefore,

β̂ = CQC′Z′Ω−1
[

I − I
(
I ′Ω−1I

)−1
I ′Ω−1

]
YT

+

[
I − CQC′Z′Ω−1Z + CQC′Z′Ω−1I

(
I ′Ω−1I

)−1
I ′Ω−1Z

]
Cb∗0 (A16)

= Cb∗0 + CQC′Z′Ω−1(YT − I v̂− ZCb∗0).

The mean squared error matrix

Var(β|YT) = CQC′ − CQC′Z′Ω−1ZCQC′.

From (A9) and Lemma, we can show

Var
(

β̂
)

= G−1 + G−1EF−1BG−1

=
(

CQC′ − CQC′Z′Ω−1ZCQC′
)
+ G−1Z′H−1I

(
I ′Ω−1I

)−1
I ′H−1ZG−1

= CQC′ − CQC′Z′Ω−1ZCQC

+
(

CQC′ − CQC′Z′Ω−1ZCQC′
)

Z′H−1I
(
I ′Ω−1I

)−1
I ′H−1Z

×
(

CQC′ − CQC′Z′Ω−1ZCQC′
)

= CQC′ − CQC′Z′Ω−1ZCQC

+
(

CQC′Z′H−1 − CQC′Z′Ω−1ZCQC′Z′H−1
)
I
(
I ′Ω−1I

)−1
I ′

×
(

H−1ZCQC′ − H−1ZCQC′Z′Ω−1ZCQC′
)

= CQC′ − CQC′Z′Ω−1ZCQC

+
(

CQC′Z′H−1 − CQC′Z′Ω−1(Ω− H)H−1
)
I
(
I ′Ω−1I

)−1
I ′

×
(

H−1ZCQC′ − H−1(Ω− H)′Ω−1ZCQC′
)

= CQC′ − CQC′Z′Ω−1ZCQC

+CQC′Z′Ω−1I
(
I ′Ω−1I

)−1
I ′Ω−1ZCQC′.
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Note also that

−F−1BG−1 = −
(
I ′Ω−1I

)−1
I ′H−1Z

(
CQC′ − CQC′Z′Ω−1ZCQC′

)
= −

(
I ′Ω−1I

)−1
I ′
(

H−1ZCQC′ − H−1ZCQC′Z′Ω−1ZCQC′
)

= −
(
I ′Ω−1I

)−1
I ′
(

H−1ZCQC′ − H−1(Ω− H)Ω−1ZCQC′
)

= −
(
I ′Ω−1I

)−1
I ′Ω−1ZCQC′,

and

−G−1EF−1 = −
(

CQC′ − CQC′Z′Ω−1ZCQC′
)

Z′H−1I
(
I ′Ω−1I

)−1

= −
(

CQC′Z′H−1 − CQC′Z′Ω−1ZCQC′Z′H−1
)
I
(
I ′Ω−1I

)−1

= −
(

CQC′Z′H−1 − CQC′Z′Ω−1(Ω− H)H−1
)
I
(
I ′Ω−1I

)−1

= −CQC′Z′Ω−1I
(
I ′Ω−1I

)−1
.

Therefore,

Var(β|YT) = Var
(

β̂
)
− Cov

(
β̂, v̂
)

Var(v̂)−1Cov
(

β̂, v̂
)′

.

Appendix C. TV-VAR(2) with Time-Varying Intercepts

VAR(2) Case: p = 2 (i.e., 2 Lags) and k = 3 (i.e., 3 Variables)

To make the matrix Z, first define

Zt =
([

1, y′t−1, y′t−2
]
⊗ Ik

)︸ ︷︷ ︸
k×(pk+1)k

=
([

1, y′t−1, y′t−2
]
⊗ Ik

)
.

Then,

Z︸︷︷︸
k(T−p)×(pk+1)k(T−p)

=


Z3 0

Z4
. . .

0 ZT



=


[
1, y′2, y′1

]
⊗ Ik 0

[1, y′3, y′2]⊗ Ik
. . .

0
[
1, y′T−1, y′T−2

]
⊗ Ik


= z⊗ Ik

where

z︸︷︷︸
(T−p)×(kp+1)(T−p)

=


[
1, y′2, y′1

]
0

[1, y′3, y′2]
. . .

0
[
1, y′T−1, y′T−2

]
.
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For the regression:[
YT
−b∗0

]
︸ ︷︷ ︸

k(T−p)(kp+2)×1

=

[
Z
−C−1

]
︸ ︷︷ ︸

k(T−p)(kp+2)×(kp+1)k(T−p)

β∗︸︷︷︸
(T−p)k(kp+1)×1

+

[
ε
η

]
︸ ︷︷ ︸

k(T−p)(kp+2)×1

,

one needs to define

X =

[
Z
−C−1

]
.

Then,

X′X︸︷︷︸
(kp+1)k(T−p)×(kp+1)k(T−p)

=
[

Z′ −C−1′ ][ Z
−C−1

]
=

[
Z′Z + C−1′C−1

]
,

where

C︸︷︷︸
(kp+1)k(T−p)×(kp+1)k(T−p)

=


I 0 · · · 0

I I
...

...
...

. . . 0
I I I I



=


1 0 · · · 0

1 1
...

...
...

. . . 0
1 1 1 1


︸ ︷︷ ︸

(T−p)×(T−p)

⊗ I(kp+1)k

= c⊗ I(kp+1)k.

Here,

c︸︷︷︸
(T−p)×(T−p)

=


1 0 · · · 0

1 1
...

...
...

. . . 0
1 1 1 1

.

The rest of the matrices needed for GLS are:
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YT︸︷︷︸
(T−p)k×1

=


yp+1
yp+2

...
yT

,

Z︸︷︷︸
k(T−p)×(pk+1)k(T−p)

=


Zp+1 0

Zp+2
. . .

0 ZT

,

β︸︷︷︸
(T−p)k(kp+1)×1

=


βp+1
βp+2

...
βT

, ε︸︷︷︸
(T−p)k×1

=


εp+1
εp+2

...
εT

,

η︸︷︷︸
(T−p)k(kp+1)×1

=


ηp+1
ηp+2

...
ηT

,

C︸︷︷︸
(kp+1)kp(T−p)×(kp+1)k(T−p)

=


I 0 · · · 0

I I
...

...
...

. . . 0
I I I I

,

Q︸︷︷︸
(T−p)k(kp+1)×(T−p)k(kp+1)

=


Qp+1 0

Qp+2

0 QT

,

H︸︷︷︸
(T−p)k×(T−p)k

=


Hp+1 0

Hp+2
. . .

0 HT

,

b∗0︸︷︷︸
(T−p)k(kp+1)×1

=


b0
0
...
0

, P∗0 =


P0 0 0
0 0
...

. . .
0 0 · · · 0

.

Notes
1 An alternative to those two methods is the approach presented by Cooley and Prescott (1976), who use the likelihood method to

estimate the unknown parameters rather than Kalman filtering.
2 Related to our approach of not using Kalman filtering, McCausland et al. (2011) develop and propose a new simulation smoothing

approach which is more computationally efficient than the approach based on Kalman filtering. While we pay little attention
to computational efficiency in this paper, evaluating computation costs along with estimation accuracy should be further
investigated in later studies.

3 Ito et al. (2014, 2016) do not formally prove that their regression-based approach generates estimates that are equivalent to
Kalman-smoothed estimates.

4 As our model include unknown parameters such as the variances of the error terms, we must rely on feasible GLS (FGLS), which
may not be equivalent to GLS.

5 In this paper, we focus on the case where εt and ηt are mutually uncorrelated. Relaxing this assumption poses a great challenge.
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6 This assumption does not change our conclusions below. The main difference is that Var(β) = C
(

P∗0 + Q
)
C′ and Var(YT) =

ZC
(

P∗0 + Q
)
C′Z′ + H = Ω. An exception is when the diffuse prior is used and the likelihood function is computed excluding the

first few observations. In such a case, the estimates of the unknown intercept parameters under the two approaches would differ.
7 By contrast, Duncan and Horn (1972) assume that matrix F is known, which renders their estimation impractical. The original

form of Maddala and Kim (1998, pp. 469–70) is similar to ours, but it is a general form for a scalar yt. Hence, it does not aim to
deal with the autoregressive part of time-varying parameter models nor consider vector processes.

8 For the Bayesian approach, we focus on the posterior mean from MCMC. Since our simulations are based on Primiceri’s (2005)
model, we use the same priors as his. The Matlab codes provided by D. Korobilis are used, which can be downloaded from:
https://drive.google.com/file/d/1pYNP96FeGgBH1KpnDEEdXGqZ62ZPw_PQ/view, accessed on 14 March 2022.

9 In addition, we can compute the values of the log-likelihood function to evaluate whether the repeated use of FGLS improves
estimation accuracy. Our simulation tends to show that 2FGLS has a higher likelihood value than 1FGLS.

10 After computing β̂t,i,n, we discard first 40 (t = 1, . . . , 40) of them in accordance with Korobilis’s Matlab codes for the Bayesian
MCMC method. Hence, we use T = length o f the data −40 to compute the sample moments of β̂ by (11) through (18).

11 Throughout this simulation study, we use bold numbers to highlight the best (the smallest median dist and the median rat closest
to one) estimation method of the four approaches (OLS, 1FGLS, 2FGLS, 2FGLS’ and Primiceri).

12 We use the data and MATLAB codes provided by Koop and Korobilis (2010).
13 Note that the impulse responses of Primiceri’s (2005) VAR vary largely over time. This is not because the time-varying parameters

(βt) are very volatile over time, but mainly because the variance of the shocks are time-dependent and vary greatly, as shown in
Figure 1 of Primiceri (2005, p. 832) and as discussed in the conclusion thereof.
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