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Abstract: This note studies the criterion for identifiability in parametric models based on the mini-
mization of the Hellinger distance and exhibits its relationship to the identifiability criterion based on
the Fisher matrix. It shows that the Hellinger distance criterion serves to establish identifiability of
parameters of interest, or lack of it, in situations where the criterion based on the Fisher matrix does
not apply, like in models where the support of the observed variables depends on the parameter of
interest or in models with irregular points of the Fisher matrix. Several examples illustrating this
result are provided.
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1. Introduction

There are values of unknown parameters of interest in data analysis that cannot be
determined even in the most favorable situation where the maximum amount of data
is available, i.e., when the distribution of the population is known. This difficulty has
been tackled by either introducing criteria securing that the parameter of interest is (local)
identifiable or by delineating the set of observationally equivalent values of the parameter
of interest; for a review of these approaches, see, e.g., (Paulino and Pereira 1998) or (Lewbel
2019). This note contributes to these efforts by studying the criterion for identifiability
based on the minimization of the Hellinger distance, which was introduced by Beran (1977),
and exhibiting its relationship to the criterion for local identifiability based on the non-
singularity the Fisher matrix, which was introduced by Rothenberg (1971). The similarities
and differences between these two criteria for identifiability have so far not been studied.

The main result in this note is to show that the Hellinger distance criterion can be used
to verify the (local) identifiability of a parameter of interest, or lack of it, either in models or
points in the parameter space where the Fisher matrix criterion does not apply. This note
illustrates this result with several examples, including a parametric procurement auction
model, the uniform, normal squared, and Laplace location models. These models are either
irregular because the support of the observed variables depends on the parameter of interest
or the parameter space has irregular points of the Fisher matrix. Additional examples
of irreqular models and models with irregular points of the Fisher matrix are referenced
below after defining the concepts of a regular point of the Fisher matrix and a regular model
according to conventional usage, see, e.g., Rothenberg (1971).

Let Y be a vector-valued random variable in )V C RL with probability function P.
Let the available data be a sample {Y;}, of independent and identically distributed
replications of Y. Consider a family F of probability density functions f : JJ — [0, )
defined with respect to a common dominating measure y, which will allow us to dispense
with the need to distinguish between continuous and discrete random variables.' Let Fg
denote a subset of densities in F indexed by 8 € ®, where the parameter space © is a
subset of RK, with K a positive integer. Let fy denote an element of Fg.

Definition 1 (Identifiability). A parameter point 6, in © is said to be identifiable if there is no
other 6 in © such that fo(y) = fo,(y) for p-a.s y.
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Definition 2 (Local Identifiability). A parameter point 8, in © is said to be locally identifiable if
there exists an open neighborhood @, C © of 0, containing no other 8 such that Yes, it has been

fo(y) = fo,(y) for p-as y.

Definition 3 (Regular Points). The Fisher matrix Z(0) is the variance-covariance of the score
VL(0) ;== VIn fy,
Z(0) :=E[vL(0)vL(0) "] — E[VL(0)]E[VL(6)].

The point 8, € © is said to be a regular point of the Fisher matrix if there exists an open
neighborhood of 0, in which Z(0) has constant rank.

The (local) identifiability of regular points of the Fisher matrix in parametric models
has been extensively studied, see, e.g., Rothenberg (1971). In contrast, the identifiability
of irregular points has been less studied and the literature is rather unclear about what
may happen about (local) identifiability of irregular points of the Fisher matrix. The study
of irregular points is worthy of consideration because, first, there are several models of
interest with this type of point in the parameter space (see the list below), and second,
because irregular points may either correspond to:

*  points in the parameter space that are not locally identifiable and for which a consistent
estimator cannot not exist, e.g., the measurement error model studied by Reiersol
(1950), or a consistent estimator can only exist after a normalization; or

e points in the parameter space that are locally identifiable and for which a v/N-
consistent estimator cannot exist (and some algorithms, e.g., Newton-Raphson method
based on the Fisher matrix, will face difficulties in converging) or a v/N-consistent
estimator can only exist after a reparametrization of the model, see, e.g., the bivariate
probit model in Han and McCloskey (2019).

Hinkley (1973) noted that an irregular point of the Fisher matrix arises in the normal
unsigned location model when the location parameter is zero. Sargan (1983) constructed
simultaneous equation models with irregular points of the Fisher matrix. Lee and Chesher
(1986) showed that the normal regression model with non-ignorable non-response has
irregular points of the Fisher matrix in the vicinity of ignorable non-response. Li et al.
(2009) noted that finite-mixture density models have irregular points of the Fisher matrix
in the vicinity of homogeneity. Hallin and Ley (2012) showed that skew-symmetric density
models have irregular points of the Fisher matrix in the vicinity of symmetry. We use below
the normal squared location model (see Example 3) to illustrate in a transparent way the
notion of an irregular point of the Fisher matrix.

The next Section shows that the criterion for local identifiability based on minimizing
the Hellinger distance, unlike the criterion based on the non-singularity of the Fisher matrix,
does apply to both regular and irregular points of the Fisher matrix and to reqular and
irregular models, to be defined below in Section 3. Section 3 shows that, for regular points of
the Fisher matrix in the class of regular models studied by Rothenberg (1971), the criterion
based on the Fisher matrix is a particular case of the criterion based on minimizing the
Hellinger distance (but not for irregular models or irregular points of the Fisher matrix).
Section 4 relates the minimum Hellinger distance criterion with the criterion based on
the reversed Kullback-Liebler criterion, introduced by Bowden (1973), by showing that
both are particular cases of the criterion for identifiability based on the minimization of a
p-divergence.

2. The Minimum Hellinger Distance Criterion

Identifying 6, is the problem of distinguishing f, from the other members of Fg. It is
then convenient to begin by introducing a notion of how densities differ from each other.
The squared Hellinger distance for the pair of densities f, fg, in Fg is the square of the
Ly (p)-norm of the difference between the squared-root of the densities:
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1/2 1/2 _ 1/2 1/2
2/ dy 1-— / du.

The squared Hellinger distance has the following well-known properties (see, e.g.,
Pardo 2005, p. 51), which are going to be used later.

0(6) : 2H 1/2 f1/z L

Lemma 1. p can take values from 0 to 1, which are independent of the choice of the dominating
measure , and p(0) = 0 if and only if fo(y) = fo, () for p-a.s y.

(All the proofs are in Appendix A) Alternative notions of divergence between densities,
other than the squared Hellinger distance, are studied in the Section 4. Since p(0) is
equal to zero if and only if fy and f,, are equal, one has the following characterization of
identifiability.

Lemma 2. The parameter 6, € © is identifiable in the model Fg if and only if, for all 0 € © such
that p(6) =0, 0 = 6,.

Moreover, since 6 — p(6) is non-negative and reaches a minimum at 6 = 6,, one
obtains the following criterion for identifiability based on minimizing the squared Hellinger
distance.

Proposition 1. The parameter 8, € © is identifiable in the model Fg if and only if

9 —
= argmin p(6).
This criterion applies to models where:

*  the support of Y depends on the parameter of interest (see Examples 1 and 2 below);
* 0, is not a reqular point of the Fisher matrix (see Example 3 below);

*  some elements of the Fisher matrix Z(6,) are not defined (see Example 5 below);

e 0+ Z(0) is not continuous (see Example 6 below);

o Ois infinite-dimensional, as in semiparametric models (which are out of the scope of this note).”

The following examples illustrate the use of Proposition 1 and the definitions intro-
duced so far. They are also going to illustrate, in the next section, the regularity conditions
employed by Rothenberg (1971) to obtain a criterion for local identifiability based on the
Fisher matrix. In these examples, i denotes the Lebesgue measure. The Supplementary
Materials presents step-by-step calculations of the squared Hellinger distance in Exam-
ples 1-5.

Example 1 (Uniform Location Model). Set Y = (0,00) and ® = (0, 00). Consider the uniform
location model

foly) =0711(0 <y <6).
The Hellinger distance is
(6+6,— 160 —06|)
2./60, '

Since the unique solution to ZJW (9 +6,—10— 90|) =115 6 = 0,, see Figure 1a, one has

arg mingcg p(0) = 0,.
The Fisher matrix is Z(6,) = 0, which is a singular matrix.

p(6) =1-

Example 2 (First-Price Auction Model). Consider the first-price procurement auction model
with m bidders introduced in (Paarsch 1992, Section 4.2.2). For bidders with independent private
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p(6)

0.10 0.20 0.30

0.00

valuations, following an exponential distribution with parameter 6 (Paarsch 1992, Display 4.18)
shows that the density of the wining bid Y; in the i-th auction is

m

foly) = G exp (mm_l - ’Zy)l(y > n19—1>

Set Y = Ry and © = (0, 00). The Hellinger distance in this case is

_ 2\/% (9+90) m-1
(@) =1— (9+90)exp( ~ 200, max(9,90)> .

For 6 < 6, (resp. 0 > 6,), one has Vp(6) < 0 (Vp(0) > 0), see Figure 1b. Hence, by
continuity of 6 — p(0), argmingee p(0) = 6,. The Fisher matrix is Z(0,) = 0, which is a
singular matrix.

p(®)

0.0 01 02 03 04 05

(a) (b)

Figure 1. The Hellinger distance in Examples 1 and 2. (a) Example 1 (6, = 4); (b) Example 2 (6, = 4,
m =>5).

Example 3 (Normal Squared Location Model). Set Y = R and ® = R. Consider the normal
squared location model

foly) = (V2rr)Fexp [~ (y - 6%)%/2].

This model would arise, for example, if Y is the difference between a matched pair of random
variables whose control and treatment labels are not observed. The Hellinger distance is

p(6) =1 —exp(—(6 - 67)%/8).

The parameter point 6, = 0 is identifiable because 6 > 1 — exp(—0*/8) is a strictly convex
function, see Figure 2a. The parameter points 6, # 0 are not identifiable because p(6,) = p(—6,) =
0, see Figure 2b. The Fisher matrix is T(6,) = 462, which implies that Z(0) = 0 is a singular
matrix and 0, = 0 is an irregular point of the Fisher matrix.

Example 4 (Demand-and-Supply Model). Let Y = (P, Q) denote the observed price and
quantity of a good transacted in a market at a given period of time. Linear approximations to the
demand and supply functions are

D=a+pP+V (Demand)
S=y+éP+U (Supply)
Q=D=S§5, (Equilibrium)
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p(®)

where a, B, 7y, 8 are unknown parameters and (U, V') is an unobserved random vector. Assume that
U and V are independent and jointly normal distributed with mean zero and unknown variance oy;
and o, respectively. Set 0 = («, B,7, 0,011, 022). The density of the observed variables is then

) oP (—sv-wo'ly-w)

foly 27)2det(Q)

7

where det(-) is the determinant of the matrix in the parenthesis and

a—y 1211+¢7)222 5‘211+/5)¢;22
_ o0—p _ a—y a—y
H= (Mr> and Q= | 55 1 poyy  Poy+plon |-

o—p (a=)2 (a=)2

The squared Hellinger distance is

p(6) =1- det;z)zict:()?fz)w exp ( - %(V - m'(@)‘lw - ,”o)).
2

To show that 8, is not identifiable, by Proposition 1, it suffices to verify that arg ming p(6) is
not a singleton. We elaborate on this point in the Supplementary Material.

. _
o 7] © _|
o
© | i
° < |
< e °
S g -
N
N _ o I
o
o | e
© T T T T 1 © T T T T 1
) -1 0 1 2 -2 -1 0 1 2
0 0
(a) (b)

Figure 2. The Hellinger distance in Example 3. (a) Example 3 (6, = 0); (b) Example 3 (6, = 1).

Example 5 (Laplace Location Model). Set Y = R, ©® = R. Consider the Laplace location model

1
foly) = 5 exp(=|y —0)).
The squared Hellinger distance is

0(6) :1exp<|9_29”|) 2[1(990 >0)exp(9_290> —1(6 — 6, < 0) exp (9_29")].

Forany @ — 6, < 0(0 — 6, < 0), one has Vp(6) > 0 (Vp(8) > 0). By continuity, 6 — p(6)
has then a unique minimizer at 6 = 6, and, by Proposition 1, 0, is identifiable. The Fisher matrix
is Z(0) = 1, which is a non-singular matrix.

Example 6 (Exponential Mixture). Set ) = [0, 0], 6 = (01,06,,03) and © = [0,1] x [0, 00) X
[0, 00). Consider the finite mixture of exponential model

fo(y) = (1 —61) exp(Inb, — Bry) + 61 exp(In b3 — O3y).

Consider 6, = (1/2,1,2) and 6, = (1/2,2,1). Since felo/2 = ;*/2, one has p(6,) = 0 and
0, € argmingce p(0). Since 6, # 0., it follows from Proposition 1 that 6, is not identifiable.
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The previous examples also illustrate the difference between identifiable and local
identifiable points in the parameter space.

Example 7 (Normal Squared Location Model, Continued). In this example, any 6, € © is
locally identifiable—even the irregular point 8, = O to the Fisher matrix—and only 6, = 0 is
identifiable, see Figure 2.

We also have the following criterion for local identifiability based on minimizing the
squared Hellinger distance.

Proposition 2. The parameter 8, € © is locally identifiable in the model Fg if and only if there
exists an open set @, > 0, such that

6, = arg 5161i®n p(6).

This criterion, unlike the criterion based on the Fisher matrix by Rothenberg (1971) and
re-stated below as Lemma 3 for the sake of completeness, applies to the case when:

*  the support of Y depends on the parameter of interest;

* 0, is not a reqular point of the Fisher matrix;

e some elements of the Fisher matrix Z(0,) are not defined;
e 0+ Z(0) is not continuous;

* O isinfinite-dimensional.

Proposition 2 reduces local identifiability to a unique solution of a well-defined mini-
mization problem. One general criterion, and, as argued, e.g., (Rockafellar and Wets 1998),
virtually the only available one, to check in advance for the uniqueness of a minimizer of
an optimization problem is the strict convexity of the objective function. The application of
this general criterion to the characterization of local identifiability in Proposition 2 yields
the following result:

Proposition 3. If 6 — p(0) is a locally strictly convex function around 6, (i.e., if there is an
open convex set ©, > 0, such that p : ©, — [0,1] is a strictly convex function), then 6, is
locally identifiable.

Proposition 3 leads to the observation that local identifiability can be seen to be related
to the local convexity of the Hellinger distance. As with our earlier propositions, it holds
when the support of Y depends on the parameter of interest, 6, is not a regular point of
the Fisher matrix, some elements of the Fisher matrix Z(6,) are not defined or 6 — Z(6) is
not continuous.

3. The Fisher Matrix Criterion

Rothenberg (1971) gives a criterion for local identifiability in terms of the non-singularity
of the Fisher matrix. Additional insight about the relevance—and limitations—of the Fisher
matrix criterion for local identifiability may then be gained by relating it to the criterion
based on minimizing the Hellinger distance. To study this relationship, we now focus on
the regular models studied by Rothenberg (1971).

Assumption 1 (R (Regular Models)). Fg is such that:

(A1) @ is an open set in RK,

(A2) fo > 0and [ fodu =1forall 6 € ©.

(A3) supp(fo) :=={y € Y : fo(y) > 0} is the same for all 6 € ©.

(A4) For all 6 in a convex set containing © and for all y € supp(fy), the functions 6 — fo and
0 +— £(0) := In fy are continuously differentiable.
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(A5) The elements of the matrix E[V£(0)V{(0) "] are finite and are continuous functions of 0
everywhere in ©.

We now replicate the characterization of local identifiability by Rothenberg (1971)
Theorem 1 based on the non-singularity of the Fisher matrix.

Lemma 3. Let the reqularity conditions in Assumption R hold. Let 6, be a reqular point of the
Fisher matrix Z(6,). Then, 0, is locally identifiable if and only if T(6,) is non-singular.

This characterization of local identifiability only applies to the regular models defined
by Assumption R and to the regular points of the Fisher matrix, which may be a subset
of the parameter space (see Example 3). These conditions do not have themselves any
direct statistical or economic interpretation: their role is just to permit a characterization of
local identifiability.> We have already referenced in the introduction a list of models with
irregular points of the Fisher matrix, for which the characterization in Lemma 3 does not
apply. We now use Examples 1-5 to illustrate the notions of regular and irregular models
and their implications for the analysis of identifiability. The richness of the possibilities
that follow is a recall of the care needed in using the Fisher matrix criterion for showing
local identifiability (or lack of it). It also highlights the convenience of the identifiability
criterion based on minimizing the Hellinger distance as a unifying approach to study the
identifiability of regular or irregular points of the Fisher matrix in either regular or irregular
models. Specifically:

*  The uniform location model in Example 1 and the first-price auction model in Exam-
ple 2 have, respectively, supp(fg) = [0,1/6] and supp(fy) = [6/[m — 1], c0), which
means that these models violate the regularity condition (A3). We have seen that
6, is identifiable in Examples 1 and 2, which implies that (A3) is not necessary for
identifiability. These models also have a singular Fisher matrix, which implies that,
in irregular models violating (A3), the non-singularity of the Fisher matrix is not a
necessary condition for (local) identifiability.

*  One can verify that the normal squared location model in Example 3 and the normal
supply-and-demand model in Example 4 both satisfy the regularity conditions in
Assumption R. We have seen that in Example 3 the parameter of interest is locally
identifiable while in Example 4 it is not, which means that the regularity condi-
tions in Assumption R are not sufficient or necessary for (local) identifiability, they
are just convenient. In Example 3, moreover, 6, = 0 is not a regular point of the
Fisher matrix and is locally identifiable, which implies that, for irregular points of the
Fisher matrix, the non-singularity of the Fisher matrix is not a necessary condition for
(local) identifiability.

e In Example 5, the function 6 — In(1/2) — |y — 6| is not differentiable when y = 6,
which means that the Laplace location model is an irregular model because it vio-
lates (A4).

e To illustrate a failure of (A1) and (A5), consider the finite mixture of exponential
model in Example 6 with 8] = 0, 6, = 1 and 63 = 0.5. In this case, E[V/(0)V£(0) ] =
(1—2)2/[2(2 —2)], which is not finite.

We also have the following result linking the Hellinger distance to the Fisher matrix,
which we are going to use to show that, in regular models with irregular points to the
Fisher matrix, the non-singularity of the Fisher matrix is only a sufficient condition for
local identifiability.

Lemma 4. Let the reqularity conditions in Assumption R hold and assume that 6 +— £(6) := 91/ 2

is continuously differentiable y-a.e. Then, the Hellinger distance and the Fisher matrix are related by

v20(8,) = cZ(6,), where c = 1/4.
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Though this result is known, see, e.g., (Borovkov 1998), its implications for local
identifiability have so far not been drawn.

Since the Fisher matrix is a variance-covariance matrix, one has that Z(6) is, under

(A5), a real symmetric semi-definite positive matrix for every 6 € ®, and then the following
result follows from Lemma 4 and the characterization of a convex function in terms of its
Hessian, see, e.g., (Rockafellar and Wets 1998, Theorem 2.14).
Proposition 4. Let the reqularity conditions in Assumption R hold and assume that 6 — fel/ 2
is continuously differentiable y-a.e. Then, 6 +— p(0) is a locally convex function around 6,.
Furthermore, if Z(6,) is non-singular, then 0 — p(0) is a locally strict convex function around 6,
and 8, is locally identifiable.

Two remarks are in order. First, notice that, unlike Lemma 3, the result in Proposition 4
also applies when 6, is not a regular point of the Fisher matrix and the non-singularity of
the Fisher matrix becomes only sufficient for local identifiability. Second, if Z(6, ) is singular,
the function p : ®, — [0, 1] is still locally convex (because Z(6,) is positive semi-definite)
and arg mingc@, p(0) is a convex, but not necessarily bounded, set, which is a result that
can be used to delineate the set of observational equivalent values of 6,. This note does not
pursue this interesting direction.

Table 1 summarizes the information in this note about the necessity and sufficiency of
the non-singularity of the Fisher matrix for local identifiability.

Table 1. For local identifiability, the non-singularity of the Fisher Matrix is ....

Regular Points Irregular Points
necessary and sufficient only sufficient
Regular Models (Lemma 3) (Proposition 4 and Example 3)
Irregular Models not necessary

(Examples 1, 2, and 5)

We conclude this section by mentioning that, in response to the misbehavior of the
Fisher matrix when informing about the difficulty to estimate parameters of interest in
parametric models, alternative notions of information, other than the Fisher matrix, have
been proposed in the literature (see, e.g., Donoho and Liu 1987). Without further elabora-
tion, these alternative notions of information are not directly applicable to construct new
criteria of identifiability. In particular, the geometric information based on the modulus
of continuity of 6, — arg ming p(6) with respect to the Hellinger distance, introduced by
Donoho and Liu (1987) to geometrize convergence rates, cannot be used to construct a
criterion for local identifiability because this modulus of continuity, in its current format, is
not defined for parameters that are not locally identifiable.*

4. The Kullback-Liebler Divergence and Other Divergences

Some of the examples where we have had success in using the Hellinger distance to
analyze identifiability share the same structure: the Hellinger distance is a locally convex
function, see Figure 2, and so the results from convex optimization become available. If
the Hellinger distance proves to be difficult to analyze, one can set out a criterion for
identifiability based on another divergence function, such as the reversed Kullback-Liebler
divergence (see, e.g., Bowden 1973)

x(0) = —H(6), where H(0) := /ln <]]::D)f90dy.

One can unify the identification criteria based on the Hellinger distance and the
reversed Kullback-Liebler divergence by using the family of ¢-divergences defined as
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o9(6) = [[o( £ )a

where fy/ fp, is the likelihood ratio and ¢ : R — [0, +0] is a proper closed convex function
with ¢(1) = 0 and such that x — ¢(x) is strictly convex on a neighborhood of x = 1. The
squared Hellinger distance corresponds to the member of this family with ¢(x) = % (1—/%)?,
whereas the reversed Kullback-Liebler divergence corresponds to ¢(x) = —Inx + x — 1. The
following result is an immediate consequence of the property that J, is non-negative and it is
equal to zero if and only if fy = f4 (see, e.g., Pardo 2005, Proposition 1.1)).

Proposition 5. The parameter 6, € © is locally identifiable in the model Fg if and only if there
exists an open set @, > 0, such that

6, = arg 5reli®n 3y(0).

This result, which is a generalization of Proposition 2, shows that the choice of a
p-divergence for analyzing the identifiability of a parameter of interest only hinges on
the difficulty to characterize the set arg ming J, () for a given ¢-divergence. The choice
of the Hellinger distance over the reversed Kullback-Liebler divergence is, however, not
inconsequential when choosing ¢-divergence to construct an estimator for the parameter
of interest. The use of the Hellinger distance may lead to an estimator that is more robust
than the maximum likelihood estimator and equally efficient, see, e.g., Beran (1977) and
Jimenez and Shao (2002).°

We conclude this section with the following result showing that, for the regular models
analyzed by Rothenberg (1971), the Hellinger distance and the reversed Kullback-Liebler
divergence are both locally convex around a minimizer.

Lemma 5. Let the regularity conditions in Assumption R hold and assume that 0 — f, 12

continuously differentiable y-a.e. Let us assume, furthermore, that, in a neighborhood of 8,, fo and
In fy are twice differentiable in 6, with derivatives continuous in y € supp(fy). Then, the Hellinger
distance and the Kullback—Liebler divergence are related by

v20(8,) = cV?k(8,) forc = 1/4.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
econometrics10010010/s1, Auxiliary calculations in Examples 1-5.
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Appendix A. Proof

Proof of Lemma 1. Write

0(0) = S~ 1322y = 5 [P = SV =1~ [ £1253 .

Hence, p(0) = 0if and only if fy = fy, and p(#) = 1if and only if fyfy, = 0. To show
that p(#) does not depend on the choice of the dominating measure y, let gg and gy denote
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the densities of Py and Py, relative to another dominating measure v. Let h and k denote
the densities of v relative to p + v. The density of Py relative to u + v is fgh and also gpk.
Thus, foh = gek and also fy,h = gg k. Hence, (fafs,)/?h = (gege,)"/*k and

/(gegeu)l/zdv = /(89890)1/de(1/+l4) = /(89390)1/2hd(v+ﬂ) = /(fefea)l/zdﬂ

which completes the proof. [
Proof of Lemma 2. In the text. O

Proof of Lemma 3. We replicate the proof by Rothenberg (1971) Theorem 1. By the mean
value theorem, there is 6, between 6 and 6, such that

ly — Lo, = VLp(6x) T (6 — ).

Assume that 6, is not locally identifiable. Then, there is a sequence {6;}; converging
to 6, such that £y, = (g, This implies V0g(6+)Tgj = 0, where g; = (6; — 6,)/|6; — 6, || The
sequence {g;}; belongs to the unit sphere and therefore is convergent to a limit g,. As 6;
approaches 6,, q; approaches g, and in the limit g4 V0(6,). However, this implies that

9" Zo,9 = q E[Vle(6,)V4e(65) "]g =0,

and, hence, Zg, must be singular.

To show the converse, suppose that Zy has constant rank » < K in a neighborhood of
6,. Consider then the eigenvector vy associated to one of the zero eigenvalues of Zy. Since
0= veTIgvg, we have for all 6 near 6,

UGTVEQ =0.

Since Zy is continuous and has constant rank, the function 6 — vy is continuous in
a neighborhood of 6,. Consider now the curve 7 : [0,t,] — RX defined by the function

6(t), which solves the differential equation a%—(:) = vg with 6(0) = 6, for 0 < t < t*. The
log density function is differentiable in t with

s
% = v V4o (01(1)).

However, by the preceding display this is zero for all 0 < t < t*. Thus 6 — {y is
constant on the curve y and 0, is not locally identifiable. [J

Proof of Lemma 4. Assume first that 6 is a scalar, i.e., K = 1. Re-write

o _;[/( 172 f1/2 ] /f1/2 124y

Differentiating 6 +— p(#), one has that

1/2 _ ¢1/2
=l -7,

2= B h(6)

0
/f1/2f9 1/2vf d‘u — 2/ 1/2 d]/l,

where Assumptions (A3) and (A4) allow us to pass the derivative under the integral sign.
Since 0 — p(0) reaches a minimum at 6,, one has Vp(6,) = 0 and so

vo(6) f”? =)V h ()
2 9 90 1/2 H
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which, by the Lebesgue dominated convergence theorem, satisfies

2 1 Vp(0) — vp(6o) _ 1
Vip(Bo) = Jim ———o—p = = 1 Z(%),

because the integrand converges point-wise

o> = f)V16(®) 9 fo(80)Vol00)™ _ fo,71n fo(80) In fa(80) " fo,
(60— 60)f3 " 2fe. e

= %V In f4(6,)V lnfe(GO)Tﬁ?a'

and it is dominated by a sum of, under (A5), integrable functions

(R 12960 | _ (B2 1) | vh@vie)
G-y 17 E-ap 4

To extend this proof to the case when 0 is a vector, one applies the argument above
element-wise to the components of V2p(6,). [

Proof of Lemma 5. If V2H(8) = —Z(6,), the claim then follows from Proposition 1 after
replacing cZ(6,) = v2p(6,). To verify that V2H(6,) = —Z(6,), we follow (Bowden 1973,

Section 2). Recall that V{y = VIn fy = f % and, since we have assumed that [ fpdy = 1 for
any 6 € O, one has that

/Vfg(@)dy = KQK and /szg(e)dy = K(X)K forany 6 € ©.

Differentiating 6 — H(6), one obtains

/ fo. vfg feo

and differentiating again

2
0= [ 5= |0 fon = [ D oo o) s

Evaluating at @ = 6,, and using [ V2 fy(8,)dp = 0, one obtains V2H(8,) = —Z(6,). O

Proof of Proposition 1. The sufficiency has already been established by Beran (1977),
Theorem 1(iii) and it is an immediate consequence of the definition of identifiability. The
necessity is in the text and it follows immediately from Lemmas 1 and 2. [

Proof of Proposition 2. It is immediate from Proposition 1 and the definition of local
identifiability (Definition 2). O

Proof of Proposition 3. This result follows from the uniqueness of a solution for strictly
convex problems (see, e.g., Rockafellar and Wets 1998, Theorem 2.6) after noticing, from
Lemma 1, that 6 — p(0) is bounded, and hence a proper function. [

Proof of Proposition 4. The proof for the claim that 6 — p(#) is a locally convex function
around 0, is in the text. It only remains to show that, if the Fisher matrix is non-singular, then
6, is locally identifiable. When the Fisher matrix is non-singular, by Lemma 4 and the char-
acterization of convex functions in (Rockafellar and Wets 1998, Theorem 2.14), the Hellinger
distance is a strictly locally convex function. The claim then follows Proposition 3. O

Proof of Proposition 5. In the text. [
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Appendix B. Variational Representation and Estimation

It is well-known, see, e.g., Beran (1977), that the estimator based on minimizing
the Hellinger distance between the density postulated by the model for the observed
variables and a kernel nonparametric estimator of the density of these variables can be
more robust (to p-perturbations of density of the observed variables) than the maximum
likelihood estimator and still asymptotically efficient in regular models. This minimum
Hellinger distance-to-kernel estimator requires smoothing, which becomes an inconvenient
requirement in models with observable variables with mixed support, such as the normal
regression model with non-response in the dependent variable, or with support depending
on the unknown parameter, such as the parametric auction model in Example 2, or in mod-
els with high-dimensional observable variables, due to the curse of dimensionality. This
Appendix derives the variational representation of the Hellinger distance. This variational
representation serves to construct the minimum dual Hellinger distance estimator, which
unlike the minimum Hellinger distance-to-kernel estimator, does not require the use of a
smooth estimator of the density of the observable variables.

Recall first that the squared Hellinger distance is

1/2 1/2
=5 [ s (A1)
We are going to verify that
6) =1 32 f3 ) dp — 10 4p,, 1 A2
p(0) = ssup < [ (fo—fo'"f5"")dn — | TPy, (A2)
fcO fo

The expression in the last display, unlike (A1), admits, under a bracketing number
condition on the family of likelihood ratios {y — fo(v)/f5(y),0,0 € ®}, a consistent
sample analog estimator not depending on smoothing parameters. The minimum dual
Hellinger distance estimator of 6, is the set of minimizers of the sample analog of (A2):

0 = argmin  sup {/(f fl/zfl/z -1 Z fe }
0c® ico
H/_/
generator

discriminator

One could use a simulator to approximate fy or f; if these densities have an untractable

form.°

To verify (A2), define the functions

p(x) = 1(1 — x1/2)2 and ¢(x) := sup xx — ¢(x)
2 TeR

and write the squared Hellinger distance in (A1) as

p(0) = / (Jf:)y (A3)

The function ¢ is the convex conjugate of ¢(x). We first show that

o [o@ [olo(f)ns)

where Go = {y — ¢(fo(y)/f3(y)),0 € O} and ¢(x) = %(1 — x~1/2) is the derivative of

x — ¢(x) = 1(1—x!/2)2 For all x € (0,+c0), one has that ¢(x) = %73/2 > 0 and
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then x — @(x) = 1(1 — x'/2)2 is strictly convex on (0, +c0). By strict convexity, for any
x, % € (0,+00), it holds that

¢(x) = ¢(x) + ¢(%)(x — %)

with equality if and only if x = #. Fix two values 6, 0 in the parameter space and set

)
x—ﬁandx—dpé

Inserting these values in the last inequality and integrating with respect to Py, yields

o®) > [ [4’(22)‘11’9 - fp(ZfJZ)]dPgn,

where ¢(x) := ¢(x)x — ¢(x), which in turn implies

. dPg - dpg
> ] - ] .
p(o) = /@(dpé>dP9 /(p(dpé>dPeD
When 0 = 0,, this inequality turns to equality, which yields (A4) after noticing that
P(x)x = ¢(x) = ¢(@(x))-
To conclude the verification, since x — ¢(x) = 1(1 — x1/2)? is differentiable for all
x € (0,+00), one has

P(9(x)) = ¢(x)x — 9(x)

= %(1 — x*l/2>x - -(1- xl/2>2 _ %[(X _ xl/2> —(1- xl/z)z]
=321 (A5)

By replacing (A5) back in (A4), one obtains (A2).

Notes

1

Weuse — in‘f : Y — [0,00)" to declare the domain ()) and codomain ([0, o)) of the function f and we use the arrow notation
‘=’ to define the rule of a function inline. We use :=" to indicate that an expression is ‘defined to be equal to’. This notation is in
line with conventional usage.

See, e.g., Escanciano (2021) for a systematic approach to identification in semiparametric models.

As a referee has pointed out, necessary and sufficient conditions for (local) identification require different assumptions. Some of
the conditions in R are not necessary if we only seek sufficient conditions: differentiability of the score function and non-singularity
of the Fisher matrix would suffice.

4 A related modulus of continuity has been introduced by Escanciano (2021, Online Supplementary Materials, Lemma 1.3) to
provide sufficient conditions for (local) identification in semiparametric models. The analysis of these models is out of the scope
of this paper.

> Appendix B elaborates more on this point by using the variational representation of the Hellinger distance to construct a minimum
distance estimator which does not require a non-parametric estimator of the density of the data.

6 One could also replace the space © in the discriminator model by a family of compositional functions—as in neural network
models—to gain, if needed, flexibility when fitting f5 by introducing, again, tuning parameters.
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