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Abstract: This paper studies the generalized spatial two stage least squares (GS2SLS)
estimation of spatial autoregressive models with autoregressive disturbances when there are
endogenous regressors with many valid instruments. Using many instruments may improve
the efficiency of estimators asymptotically, but the bias might be large in finite samples,
making the inference inaccurate. We consider the case that the number of instruments K
increases with, but at a rate slower than, the sample size, and derive the approximate mean
square errors (MSE) that account for the trade-offs between the bias and variance, for both
the GS2SLS estimator and a bias-corrected GS2SLS estimator. A criterion function for the
optimal K selection can be based on the approximate MSEs. Monte Carlo experiments are
provided to show the performance of our procedure of choosing K.
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1. Introduction

This paper considers the instrumental variable (IV) estimation of the spatial autoregressive (SAR)
model with SAR disturbances (SARAR model) in the presence of endogenous regressors and many
instruments. We study the case where the number of instruments increases with the sample size and
derive asymptotic distributions of the generalized spatial two stage least squares (GS2SLS) estimator
and a bias-corrected GS2SLS (CGS2SLS) estimator based on the leading-order many-instrument bias.
Using many moments may improve the asymptotic efficiency but can make inference inaccurate in finite
samples. [1] propose to minimize an approximate mean square error (MSE) as that of [2] for choosing
the number of instruments in a cross section data model with endogenous regressors. The MSE takes
into account an important bias term, so the method can avoid cases where asymptotic inferences are poor
due to the bias being large relative to the standard deviation.

Ref [3] have derived the approximate MSEs of the two stage least squares (2SLS) and bias-corrected
2SLS (C2SLS) estimators for the SAR model with endogenous regressors and many instruments, but
that SAR model has not included a SAR process in the disturbances. We extend the analysis to the
SARAR model with endogenous regressors. The SARAR model combines spatial lag with spatial error
dependence. The latter reflects spatial autocorrelation in measurement errors or in variables that are
otherwise not crucial to the model [4,5]. It has a broader application than the simpler SAR model. It
has been applied to empirical studies, e.g., Case’s work [6—10]. Due to the presence of the spatial error
dependence in addition to the spatial lag dependence, we consider the GS2SLS estimation of the model
asin [11]. (Ref [12] have extended the estimation method in [11] to the SARAR model with endogenous
regressors. Our focus here is on choosing the number of instruments by minimizing the approximated
MSEs.) The estimation has taken into account the spatial error structure, based on a transformed
equation. Because the transformation uses an initial consistent estimator of the spatial error dependence
parameter, the impact from this initial estimator creates extra complexity that should be investigated. The
analytical difficulty lies in determining the leading order terms depending on the number of instruments
due to the presence of the spatial error process, whose orders cannot be expressed using terms appeared
only in a SAR model without SAR disturbances. The approximated MSEs of the GS2SLS and CGS2SLS
estimators turn out to be more complicated than those of the corresponding 2SLS and C2SLS estimators
for the SAR model but are still tractable for empirical use. For the GS2SLS, the expression for the
approximate MSE is similar to that for the 2SLS in [3], except for the presence of the filter for spatial
error dependence in various matrices. If the formula for the approximate MSE in [3] is used for the
SARAR models, then the derived number of instruments will not be asymptotically optimal. For the
CGS2SLS estimator, however, except for the filter, the approximate MSE has additional terms compared
with that for the C2SLS in [3], which are generated from the asymptotic distributions of the first two
stage estimators.

We consider the following SARAR model:

where n is the number of spatial units, y,, is an n-dimensional vector of observations on the dependent
variable, the n-dimensional vector of disturbances €¢,, = (€1, ..., €,,) has i.i.d. elements with mean

zero and variance Uf, and Zs, is an n X m matrix of variables that are possibly correlated with €,,, W,
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and M, are n X n spatial weights matrices that can be equal or different from each other, scalars A and
p are spatial autoregressive parameters, and - is a parameter vector for Z,,. Let Zo, = Zs,, + v,,, where
Zoy = E(Zs,). The Zop, is assumed to be an unknown function of X,,, which is an n x k, matrix of
exogenous variables, and spatial lags of X,,: W, X,,, W2X,,, and so on. Model (1) can be an equation
of the spatial simultaneous system as in [13]. In this case, ¥, is a vector of observations on one of, say,
k, endogenous variables, and the equation for y,,, similar to those for other endogenous variables, is
Yn = \Woyn + X1wv1 + Yoo + up, where X7, is the included exogenous variable matrix, Y,, is the
endogenous variable matrix including all observations on the other (k, — 1) endogenous variables and
~v1 and -, are parameter vectors, then Ty = Zzo Wﬁ;XnHi, where 11I;’s are matrices of parameters.
Alternatively, Z5, or some elements of Z,, may be generated by an unknown nonlinear model [14],
and thus we have an unknown nonlinear functional form for the conditional mean Z, [1]. For

/ /

-, Uh), we assume that v,;’s are i.i.d. with mean zero and E(v/,v,;) = X, v is

v, = (v
independent of ¢,; for j # i, but E(v,€,,) = oy That is, v,; and €,; are correlated except with
the exogenous explanatory variables. The th variable in Z5,, is exogenous if the ith element of o is
zero. Let Z,, = (W,yn, Zop,) and 6 = (A, '), then y,, = Z,,0 + u,,.

We are interested in the parameter d. As in [11], the final generalized estimator for ¢ is based on the

Cochrane—Orcutt transformed equation:

where R, (p,) = I, — pnM, with p, being a consistent estimator of p. We consider the problem of
choosing the number of instruments for R, (p,)Z,, which can be many due to the unknown functional
form of Zs,, for its endogenous components. To derive ,,, we may first estimate the equation y,, = Z,,0 +
uy, by the 2SLS with a fixed number of instruments to obtain an initial estimator 4,, of 3, and then estimate

p with a fixed number of quadratic moment equations that have the form €/, (p, 0,,) Dpjen(p, 9,) = 0,

where the n x n matrix D,,; has a zero trace, and €,(p,d,) = R.(p)(yn — Z.0,). (The equation
€ (p,0n)Dnjén(p,0,) = 0 is a valid moment equation since E(¢,D,je,) = otr(D,;) = 0 and
%[e;(po, 5n)Dnj €n(po, Sn) —e,, D, ;€,] = op(1) under regularity conditions.) The estimation thus involves
three stages and the derivation of approximated MSEs is more complicated due to the presence of many
terms with different orders. In [11], the asymptotic distribution of the third stage estimator SQSZS’” is
not affected by the estimators in the first two stages as long as p,, is a consistent estimator of p. For
the approximate MSE of our GS2SLS estimator in the third stage, one may expect that it involves
the asymptotic distributions of the first two stage estimators, since we use higher-order asymptotic
theory for IV. However, it turns out that the variance of the dominant component related to the first
two stage estimators in the expression for the GS2SLS estimator has a smaller order compared with
other terms because of the 1.i.d. property of €,;’s. As a result, the leading order component of the MSE
does not depend on the asymptotic distributions of the first two stage estimators and the expression for
the approximate MSE is similar to that in [3] except for the filter for spatial error dependence. However,
for the CGS2SLS estimator, the expression for the approximate MSE is more complicated than that
in [3], because the term resulting from the estimation error of the leading order bias involves the
asymptotic distributions of the first two stage estimators and an additional term appears due to the

estimation of the spatial autoregressive parameter in the error process.
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As Z,, is an unknown function of X,,, W,,X,. WﬁXn, etc., we may assume an infinite series
approximation for Z, and, in practice, use a known n x ¢ matrix v,,, to approximate Z,, where
14n depends on X,,, W, X,, and so on. To closely approximate Z,, with a linear combination of Vg n
we may need a large column number ¢ as well as appropriate form of v, ,,. The instruments for Wy,
can be based on 1, ,. Denote the true parameters for  and p by dy and p, respectively. As model (1)
represents an equilibrium model, (1, — A\gV,,) can be assumed to be invertible, where I,, is the n X n
identity matrix. (The SAR model is known as a simultaneous equation model in the spatial literature
because the outcomes are determined by the interactions of spatial units. By assuming (I, — \gW/,,) to
, the
equilibrium vector y, = (I,, — AoW,) " (Z2n70 + y) can have an expansion Y .o MW (Zapyo + ).

be invertible, we have the equilibrium vector y,,.) Then, if ||A\¢WV,,|| < 1 for some matrix norm || -

Therefore, the instruments for W,,y,, can be W, ,,, Wﬁ@/}w and so on, and the instruments for Z,, can

be taken as the n x K matrix

FK,n = [wq,n7 qu/Jq,m ceey W£¢q,n] (3)

where K = (p + 1)g > m + 1. As an extension, we use the instrument matrix

QK,n - [FK,na MnFK,n] (4)

for Z,,(pn) = (I, — pnM,)Z,. (Due to technical difficulties in the presence of many IVs that involve
estimated parameters in the literature, we do not use (1,,—p, M,,) Fx ,, as the instrument matrix for Z,(p,,)
(see [15]). If W,, = M, then M, F ,, generates some identical IVs as those in Fl ,,. In this case, we can
simply take Q. = [Fikn, W,’L’“wq,n] .) The asymptotic variance of the 2SLS estimator decreases when a
linear combination of I'Vs approximates the conditional mean of the endogenous variables more closely.
The efficiency (lower bound) of IV estimators is achieved when a linear combination of IVs equals
the conditional mean [16]. Under regularity conditions, a linear combination of [I,,, W,,, W2 ... WP?]
can approximate ([, — pW,,)~" arbitrarily well as p — oo. Thus, if a linear combination of ¢,,, can
approximate Z, well as n,q — oo, a linear combination of Qx,,, can approximate Z,(/,) arbitrarily
well in probability as n, p, ¢ — oo. On the other hand, if the number of instruments increases too fast
relative to the sample size, they will lead to a bias of certain order for the corresponding IV estimators.
The tradeoff between variance and bias can be summarized by the MSE of the estimator. So, minimizing
the (approximated) MSE can reduce inaccurate inference due to the presence of many instruments.
Following [1], we consider the case that the number of instruments K increases with, but at a rate
slower than, the sample size n, which facilitates the investigation of the high order asymptotics of
the MSEs.

The rest of the paper is organized as follows. Section 2 establishes asymptotic properties of the
GS2SLS and CGS2SLS estimators. Section 3 derives the approximated MSEs for the estimators and
gives a criterion function to choose the optimal number of IVs using the approximated MSEs. Section 4
presents some Monte Carlo results on the performance of the instrumental variable selection procedure
in finite samples. Section 5 concludes. A list of notations, lemmas and proofs are collected in

the appendices.
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2. Properties of the GS2SLS and CGS2SLS Estimators

We establish the properties of the GS2SLS and CGS2SLS estimators in this section. Let
R.(p) = I, — pM,,, G,(\) = W, (I, — A\W,,.), Z, = Z,, + (, with Z,, = E(Z,), and ||A|| = \/tr(4’A)
be the Frobenius matrix norm for a matrix A. UB stands for boundedness of the sequences of both row
and column sum matrix norms for a sequence of matrices. For simplicity, denote y,(p) = R.(p)Yn,
Zn(p) = Ru(p)Zn, un(p) = Ru(p)tn, Zon(p) = Rulp)Zan, Rn = Ru(po), and G, = Gn(Xo). As
Yn = (I, — MoWo) "N Zonvo + RiYen), Zn = [GnZonyo, Zon) and ¢, = [Grvnyo + GuR; e, v,]. The
following are some basic regularity conditions.

Assumption 1. {e,;,v,;}’s, i = 1,...,n, are i.i.d. with mean zero, E(e2,) = 02, E(v,,v,) = %,
and E(v,i€n;) = 0. The moments B |e,;|*77, E ||[v]|* and E ||vpieni||* are finite, where T is some

positive constant.

Assumption 2. (i) The sequences of matrices {W,}, {M,}, {(I,, — \oW,)"*} and {R;'} are UB;
(ii) W,, and M,, have zero diagonals.

Since we use quadratic moments to estimate p in model (1), the existence of a moment of ¢,; higher
than the fourth order is required to properly apply the central limit theorem for linear-quadratic forms
of disturbances in [17]. Some moment conditions are also imposed on v,,; and v,;€,; in Assumption 1.
Assumption 2 (i), originated in [11,18], is a condition that bounds the degree of spatial dependence;
Assumption 2 (i1) implies that no spatial unit is viewed as its own neighbor.

Let Iy, be a full rank n x k; instrument matrix for Z,, in the first stage of the GS2SLS estimation.
The number %y of IVs is at least as large as the number (m + 1) of columns of Z,,, but is fixed for
all n. Denote Pp, = Fy,(Fp,Fon)” Fp,, where A™ is a generalized inverse for the matrix A. The
first stage 2SLS estimator for § is 6, = (Z' Pr, Z,) ' Z! Pp,y,. The following assumption about Fon
1s maintained.

Assumption 3. The instrument matrix Fy , has full column rank ky > m+-1 for all n, lim,,_, %Fé,nFo,n
is finite and nonsingular, and lim,, ., %Fé’nZn is finite and has full column rank, where Do in Z,, has

uniformly bounded elements.

fn

Proposition 1. Under Assumptions 1-3, \/n(6,—6) = (1 Z} Pp,, Z,) ' 2= Z/ Pr, R; '€, +Op(n~%/?) 4
N(0,1im,, o0 (2!, Pp, Z,) 1% Z!, P, Ry R Py Z, (2 2 Py Z,) 7).

In the second stage of the GS2SLS estimation, we use a fixed number, say k,4, of quadratic moments
to estimate p in model (1). Let g,,(p, d,) = %[e;(p, On)Dni€n(p, o), - .. e (p, 5n)Dn7kden(p, Sn)]’, where
en(p, 5n) = R.(p)(yn — ann) and n x n matrices D,,;’s have zero traces. The D,;’s can be, e.g., M,
and M? — I, tr(M?)/n. We maintain the following regularity condition on D,,;.

Assumption 4. The sequences of matrices {D,;}, j =1,..., kq, have zero traces and are UB.

Consider a generalized moments estimator p,, of p, which is

pn = arg lrmn]gn(p,fS n)9n (0, 0n) (5)

PE|



Econometrics 2013, 1 76

for some a > 1 so that [—a,a] contains py. It can be shown that ¢’ (p,d,)gn(p,0n) —
E g/ (p,d0) E gn(p,d) converges to zero in probability uniformly over [—a,a]. For the identification
of po, it requires E ¢/, (p, 50) E gn(p, o) to be zero uniquely at p. Let A> = A+ A’ for any square matrix
A. Note that E g,,(p, &) = FZal(po — p), (p0 — p)*I'. where

tr[(Mn R Dy te[(Mo R Dy (M R

tr[(Mn R D5 ] (Mo B Dy (Mo Ry

Assumption 5. The smallest eigenvalue of =] =,, is bounded away from zero.

/

Assumption 5 is satisfied if the limit of the 2 x 2 matrix = =, exists and is nonsingular. With

Assumption 5, there exists some 7 > 0 such that E ¢/ (p, d9) E g,.(p, dp) > n for any p # po. Thus for
any p # po. 9.(p, 0,)9n(p, 0,) > /2 with probability approaching 1 as n — oc.

Proposition 2. Under Assumptions 1-5, p, is a consistent estimator of po, and

1
%(eéDnen + Foen) + Op(n_1/2)

is asymptotically normal with a finite variance, where

\/ﬁ(ﬁn —po) =

o2 kq kq
D, = nQZt (D3, M, R, Z—trDSMR YD,,; (6)
and
o2 e 1
s s s 7! ~ \—1 7/ —1
F, = nQZtr (Ds; M.R))™ Zln r(D;; MR, ) B(€, D05 BuCo) (— 23, Pr, 20) ™ 2, Pr, R,
]:
(7)

with E(e), D;, i R, C) = [tr(DfljRnGn)U%% + 02 tr(DfljRnGnRgl), tr(D;";jRn)ave].

In the expression for \/n(p, — po) above, the term \/LE]Fnen with the order Op(1) is due to the usage
of the first stage estimator o,,. That is to say that the asymptotic distribution of §,, has implication on the
asymptotic distribution of p,,.

We now consider the GS2SLS estimator using the transformed Equation (2). With the instrument
matrix (), in Equation (4), the GS2SLS estimator of ¢ is

dastsn = |25 (Pn) PrcnZon(pn)) ™ 22y (pn) Prc.nY (P ®)

where Py, = QK,n(anQK,n)_Q}(,n-

Assumption 6. (i) H = lim,_,oc H,,, where H, = 1 Z! (po) Z,(po), is a finite nonsingular (m~+1) x (m-+
1) matrix; (ii) for each Q ,, in Equation (4), there exists Ty ,, such that —HZ (p) — QrnTrall* = 0as
n, K — oo.
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Assumption 6 (i) gives a sufficient condition for the identification of 9, in Equation (2); Assumption 6
(ii) requires Z,(p) to be approximated arbitrarily well by a linear combination of Q, for large enough
K and n, which is implied by Lemma 1 in Section B under some other basic assumptions. For analytical

tractability, we maintain the following assumption.

Assumption 7. The elements of (k. in Equation (4) are uniformly bounded constants, and

lim,, o %Q’K QK exists and is nonsingular for each K.

The GS2SLS estimator 523157n is characterized by the first order condition %Zg(ﬁn)PK,n[yn(ﬁn) —
Zn(ﬁn)SQSlsm] = 0. By a Taylor expansion of this condition at dy, the first term is %Z;L(ﬁn)PKﬂun(ﬁn),
which has the dominant component %Z;L(po)PK’nen by Lemma 8. The expectation of this dominant
component is -1, (K ), where

Tn(K) = E(CT"LR;’LPK,RGN> = [tr(FnK,Q)O-vefYO + 052 tr(FnK,S)) tr(FnK,l)Jve]/ - O(K) (9)

with
1-‘nK,l - PK,ana FnK,2 - PK,anGna and FnK,S = PK,TLRTZGTLR;I (10)

Thus when K /n — ¢ # 0, the GS2SLS estimator 52513,n is generally inconsistent. When K /n — 0,
528[3,71 is consistent, but if the number of instruments K grows somehow fast relative to the sample size
n, the asymptotic distribution may not center at the true d,. The following proposition provides more
information on this issue.

Proposition 3. Under Assumptions 1-7,
(i) if K/n — ¢ # 0, then 32315,,1 — 5o & lim,, oo bni.1, where
burcr = [Z3,(p0) Zn(p0) + Qu (K)] 7' T (K) = O(K/n)
with

Q1 (K) = E(G, R, Prc.n RnGn)

_ Y02%0Y0 tr(F;zK,QFnKQ) +Ue2 tr(F;zK,BFTLKB) +20,¢7% tr(F;LK?,FnKQ) *
S0 tr(Lh g1 Dnkc2) 0y tr(U 1 Dok 3) Xy tr(I 1 Tnrc1)
(1T)
might converge to a nonzero constant;
(ii) if K/n — 0, then \/n(dss15m — 0 — buxc) > N(0,02HY), where
bn,K = [Z;z(ﬁn)PK,nZn(ﬁn)]_lTn(K) - BnK,Q + OP(K/n) (12)

with buxc2 = [Z},(p0) Zn(po)] ™' Tu(K) = O(K/n).

From the above proposition, when K/n — 0, SQSZS,,@ is consistent of dy, but whether its asymptotic
distribution is centered at d, or not depends on the ratio K /\/n as v/nb, x = Op(K/+/n). The following
corollary shows various scenarios.

)
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Corollary 1. Under Assumptions 1-7,

(l) lfKQ/n — O’ \/ﬁ(SZSZS,n - 50) i) N(O, O'?H_l);
(ii) if K2/n — ¢ < 0o and ¢ # 0, \/1(b2515m — 0o — bpic.2) KN N(0,02H1);
(iii) if K?/n — oo but K'*"/n — 0 for some 0 < n < 1, Kn(ﬁzsl&n —5) o,

When K?/n — 0, the number of instruments K increases slow relative to the sample size n
and the asymptotic variance matrix o>H ! achieves the efficiency lower bound for the class of IV
estimators. When K?2/n goes to a non-zero limit as n goes to infinity, \/ﬁ(gms,n — Jp) is centered
at lim,, _, oo \/ﬁBn K,2» which might be a non-zero finite constant and is a many instrument bias. Due to the
spatial error dependence, the matrices I, 1, I'y, k2 and I, i 3 in Equation (10) of the bias component in
Equation (9) play important roles. Without spatial error dependence, these matrices reduce to Pk, and
Pk »G,. Although the GS2SLS estimation is based on the spatial Cochrane—Orcutt transformed model
(2), the asymptotic distribution of the estimator p,, in the transformation does not affect the asymptotic
distribution of 52515,71, as usual for the GS2SLS estimation.

To correct the many instrument bias, we consider a bias corrected estimator based on the estimation
of the leading order bias b,, x in Equation (12). Let ) ,, be an instrument matrix with a fixed number of

instruments and Py, = Qo,n(Q),,Q0.n)~ Q-

Assumption 8. The instrument matrix Q) ,, has full column rank k, > m+1 for all n, lim,,_, %Q&HQO’”

is finite and nonsingular, and lim,, ., %Qg,nzn(po) is finite and has full column rank.

The GS2SLS estimator

Sn = [Z;L<ﬁn)P0,nZn(/5n)rer/z(ﬁn)PO,nyn(ﬁn) (13)

and p,, together can be used to estimate b, . Let an,1 = Pg Ry (pn)s anQ = PKvan(ﬁn)Gn(S\n),

ks = PK,an(ﬁn>Gn(:\n)Rr_Ll(ﬁn)v 53 = %(yn - ann)/R/n(ﬁn>Rn(ﬁn)<yn - ann) and oy = %(yn -
Zn6n) R (pn) Zan- A bias-corrected GS2SLS ( CGS2SLS) estimator is

~ ~

502315,71 = 825l3,n - bn,K (14)

where bnx = [Z(pn)PrnZn(pn)] "Ta(K)  with To(K) = [tr(Thx2)Fecin +

5'62 tI‘(FnKﬂg), tr(I’nK’l)&UE]’.
Proposition 4. Under Assumptions 1-8, if K /n — 0, then /n(d 2515 — o) N N(0,02H™Y).

Note that the asymptotic distribution of 502815@ in Equation (14) when K /n — 0 is the same as that of
Sgslm in Equation (8) when K2/n — 0. So the bias correction procedure has effectively relaxed some
requirement on K in order for the corrected estimator to have a properly centered asymptotic distribution.
The asymptotic distributions of the initial estimators b, in Equation (13) and p,, in Proposition 2 used
for the bias correction do not enter into the asymptotic distribution of chsls,n, when only the first order
asymptotic expansion is considered. But when we investigate the approximated MSE of 562513771 later, as
high order asymptotic expansions are considered, the asymptotic distributions of the estimators o, and

pr used for the bias correction will generate additional terms for the approximated MSE.
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3. Approximated MSE and Optimal K

For an estimator 5n satisfying \/ﬁ(Sn — o) = FI,; %n, [1] have derived a lemma that gives conditions
on the decompositions of H, and h,, such that the leading order term of the MSE depending on K is
Sy (K), in the sense that

n(On = 00)(0n — 00)' = Ln(K) + 7 (K) (15)

where E[L,(K)] = 02H; ' + S,,(K) + T,,(K), and T,,(K ) and #, (K ) are remainder terms that diminish
faster than S, (K), such that [7,(K) + T,,(K)]/tr(S,(K)) = op(l) as K,n — oo. A criterion
function for the optimal K can be S, ¢(K) = £'S,(K)E, the leading order MSE depending on K for
a linear combination £',,. In particular, one may use the unweighted version tr(S,(K)) as a practical
criterion. Let S, (K) be an estimator of S,(K), then K can be chosen by minimizing the function
Sne(K) = &8, (K)E.

In this section, we first derive the expression for S,(K) for both the GS2SLS and CGS2SLS
estimators and then show that the chosen K by minimizing 3n,5(K ) is asymptotically optimal in a sense
in Equation (20) originated in [1]. Intuitively, this indicates that the error in the use of the feasible

~

Sn.¢(K) criterion in place of the actual ideal S5, ¢([) is asymptotically negligible.

Assumption 9. (i) & tr(Dyx1) — ¢, where ¢ # 0, asn, K — oo;
(ii) max; [Tyl — 0forj =1,2,3, asn, K — oo, where Iy, c; i is the (i,1)th element of Tk j;
(iii) puz = E(e3,) = 0 and E(e?,v,;) = 0.

Assumption 9 (i) is for analytical tractability; Assumption 9 (ii) simplifies the expression for S,,(K)
by imposing a restriction on the rate at which K increases with n; Assumption 9 (iii) is also a
condition that simplifies S,,(K). These simplifications are adopted in [1,3]. (Without Assumption 9
(iii), S,(K) for the GS2SLS will have an additional term H,_{Z/ (po)[E(€2;vn:)70 vecp(Tnk,2) +
s veen (Tnx 3), B(€2,00:) veen (Dn 1)} H,, b, and S, (K) for the CGS2SLS has an additional term that
is much more complicated due to the estimator of p in the second stage of the GS2LS estimation and
its use to correct the many instrument bias. Without Assumption 9 (ii), S,,(K) for the GS2SLS is not
affected, but S,,(K) for the CGS2SLS has an additional term. Those additional terms can be estimated

along with other terms, but they are not included here for simplicity.)

Proposition 5. Under Assumptions 1-9, if K*/n — 0 and o, # 0, then Equation (15) for the GS2SLS

estimator 32315771 is satisfied with

1 - _
Su(K) = —H, [0 Z,,(po) (In = Picn) Zn(po) + Qo (K H, (16)

where Q,5(K) = T, (K)Y, (K).

Note that S, (K) above has a similar form as that in [3] except for the transformation R,
involved due to the spatial error dependence. The S, (/) has a similar interpretation as that in [3]:
2 -, -, . . . . . .
<H,; YZ! (po)(I, — Px.) Zn(po) H, ! is a variance term, which becomes smaller as a linear combination
of Q k., approximates the mean of Z,,(p,) better; %H; 10,0 (K)H, ! is the leading order term in the MSE
of \%Hg ¢! R! P €, with the dominant component being from its expectation, which stands for the
many instrument bias and increases as K increases. The minimization of a criterion function &'S,,(K)¢

thus takes into account the trade-off between the bias and variance.
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Proposition 6. Under Assumptions 1-9, if K/n — 0 and o, # 0, then Equation (15) for the CGS2SLS

estimator 502518@ is satisfied with
1 _ _
Sp(K) = EHgl[USZé(Po)([n — Prn)Zn(po) + 1 (K) + Mo (K) + Hn3(K)]Hr:1 (17)

where 11,1 (K), I,2(K) and 11,,3(K) are given in Equations (21), (22) and (25) respectively.

The first term in Equation (17) is the same as that in Equation (16). The second term
wH, Ly (K) H, ' is the leading order term in the variance of —=H,*[(}, R}, Pk n€n — E(C, B}, Prcnén)]-
The third term %Hg ,o(K)H, ! is due to the estimation error of the lead order bias of the GS2SLS
estimator. This term becomes much more complicated than that for the SAR model because of the spatial
error dependence. The last term £ H I1,,3(K)H," is an additional term compared with S,,(K) in [3],
which is due to the estimation of p. (Thus, the I, in IT,2(K) is from p,, used for the bias correction, and
the F,, in I1,,3(K) is from p,, in the spatial Cochrane—Orcutt transformation of the GS2SLS estimation.)
The S,,(K) is a sum of different variance terms, because the bias terms have smaller orders compared
with the variance terms.

We now consider the estimation of S, ¢(K) = £'S,,(K)E. Estimators for the parameters in S, ¢ (K)
can be constructed using a GS2SLS estimator. For the GS2SLS estimator, let the first stage IV matrix be
Ff , with K instruments, the matrices for the quadratic moments in the second stage be D,,1, . . ., D, ks
and the last stage IV matrix be Qg ,, = [Fi,, M,Fg,]. (The K needs to increase with n so that
the estimators for o,., ¥, and H defined below are consistent.) Then the first stage estimator for J is
o = (Z! P, Z,)"'Z! Pg y, with Pp = an(F[’-(nFRn)‘FI’—{n, and the last stage estimator for 0 is
571 = [Z;z(ﬁn)Pf(,nZn(ﬁn)]ilz;z(ﬁn)Pf(,nyn(ﬁn) with Pf(,n = Qf(,n( /f(’an(,n)inf(’n and p, being the
estimator for p in the second stage. Let the estimators for ‘752’ ove and 2, be, respectively, &62 = %élén,
Goe = 20, and B, = 10/,0,,, where &, = Y (pn) — Zu(pn)d, and 0, = (I,, — P, ) Zo,. An estimator
for Q2 (K), Qua(K), can be derived by replacing the parameters with their respective estimators. An
estimator for H,, is H,, = L2 (pn) P nZn(pn)- For 22! (po) (I, — Pin) Zn(po), note that

B2, (00) (I = Pca) Zalo)) = - B Za(p0) + Rl (1 = i) Za(p0) + Baal}

1 - _ 1 1
= EZ;L(PO)([n — Pxn)Zn(po) + - E(¢, R, RnCn) — ﬁin(K)

where Q,,1 (K) is in Equation (11), thus £ Z/ (po) (1, — Pk.n)Zn(po) can be estimated, up to an additive
constant not depending on K, by £ Z/,(p,) (I, — P ) Zn(pn) + %in (K), where ,,; (K) is an estimator
for Q0,1 (K), derived by replacing the parameters in €2,,; (K) by their estimators. Hence, for the GS2SLS,
Sne(K) = &S, (K)E can be estimated, up to an additive constant not depending on K, by

~ A

A 1 - A
Sne(K) =~ H 62 23 (pn) (In = Prcn) Zn(pn) + 622 (K) + Qo (K] H, ' (18)

Similarly, for the CGS2SLS, S, ¢(K) can be estimated, up to an additive constant not depending on
K, by

A A

. 1 . . . .
Sne(K) = ~&'H, 16223, (pn) (In—=Prc.n) Zn(pn) 4072 Q1 (K) A1y (K ) +10 (K ) +103 (K) Hy 'E (19)
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where II,;(K) is an estimator of II,;(K) derived by replacing the parameters in II,;(K) by their
estimators, I1,,(K) is given in Equation (26) and IT,,3(K) is given in Equation (27).
The optimal choice of K is the minimizer K of S,, ¢(K). The K is optimal in the sense that .S, ¢(K)

is asymptotically as small as ming S, ¢(K), i.e.,

Snel)  p
; 1 20
minK Snf(K) - ( )
Assumption 10. (i) /n(pn — po) = Op(1), 6y 2 60, 62 2 02 6 B 0pe and 3y, 2 5,
(ii) For the GS2SLS, |S,¢(K)|/(K?*/n + A1) > ¢ and for the CGS2SLS, |S,¢(K)|/(K/n +
Ank,1) > ¢ for some constant ¢ > 0, where A1 = = tx[Z)(po) (In — Pr.n) Zn(po)]-

Assumption 11. For both the GS2SLS and CGS2SLS, Y ;. [nSn¢(K)| ™t — 0.

We assume the +/n-consistency of p, and consistency of other preliminary estimators in
Assumption 10 (1). Assumption 10 (ii) and Assumption 11 are similar to those in [3]. For the GS2SLS,
from the proof of Proposition 5, the trace of the positive semi-definite matrix .S, (K') has exactly the same
order as (K?/n + A,k.1), then S, ¢(K) has the order O(K?/n + A,x.1). Assumption 10 (ii) requires
Sne(K) for the GS2SLS to have exactly the same order as (K?/n + A,x1). A similar condition on
Sn.¢(K) for the CGS2SLS is imposed. Assumption 11 imposes a restriction on the set of possible K.

Proposition 7. Under Assumptions 1-11, for K= arg min g Snyg(K ), Equation (20) is satisfied for both
the GS2SLS and CGS2SLS.

4. Monte Carlo Study

We demonstrate the finite sample performance of our instrument selection procedure with Monte
Carlo experiments. Except for the additional spatial error dependence, most parts of the experimental

design follow [3]. The model considered is
Yn = )\OWnyn + ’YOZQn + Uy, Up = pOMnun + €n, Z2n - XnBO + vy,

where €, = (€n1, ..., €m)s Un = (Vp1, ..., Uny) and Zy, is a vector. The (€,;, v,;)’s are i.i.d. normal
with mean zero, ¢,; and v,,; both have unit variance, and the correlation coefficient between ¢,,; and v,,; is
ove, Which will be varied by design. In the experiments, vy = 1, A\ = 0.6, and pg = 0.1 or 0.5. Elements
of the n X ¢ matrix X,, are random samples from the standard normal distribution. The specification
implies a theoretical first stage coefficient of determination R} = (,80/(8,80 + 1) (with the spatial
dependence being ignored), according to [19]. The ¢ will be designed later on.

As in [3], we consider two models with different specifications of 3y. In Model 1, the coefficients are
decreasing, i.e., the jth element of [, is

_ J N4 , _
= 1———), f =1,...
50] C(q)( g+ 1) , 101 j ) »d

where ¢(7) is chosen such that R? is equal to some specified value in the experiments; in Model 2, the
coefficients are all equal, i.e.,
2
]

Boj =4|——"=~,forj=1,...,7
v q(1 - R?)
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These two specifications stand for, respectively, the case that some instruments are more important than
others and the other case that no instrument should be preferred over others [1]. In the experiments, R?c
is equal to 0.02 or 0.1, o, 1s equal to 0.1, 0.5 or 0.9, and n = 98 or 490. The W, is a block diagonal
matrix with each block in the diagonal being the row normalized matrix used for the study of crimes
across 49 districts in Columbus, OH in [20]. The spatial weights matrix M, in the error process is set to
be the same as the spatial weights matrix 1//,,. The number of Monte Carlo repetitions is 2000.

Let X? be a matrix consisting of the first ¢ columns of X,,, and @, , = [X?, W, X2, ... WPXZ], for
p=12....pandg=1,2,...,q. Forn =98, we set p = 4 and ¢ = 5; for n = 490, we set p = 10 and
g = 10. The following estimators are considered:

(i) GS2SLS-min: the GS2SLS with (), ; (as the instrument matrix in the third stage);
(ii) GS2SLS-max: the GS2SLS with Q)5 4;
(iii) GS2SLS-op: the GS2SLS with @, ,, where (p,q) minimizes Sné(K ) in Equation (18) with
€= (1,1);
(iv) CGS2SLS-max: the CGS2SLS with @; 4
(v) CGS2SLS-op: the CGS2SLS with Q,,,, where (p, q) minimizes S, ¢(K) in Equation (19) with

&= (1,1).

The leading order bias for the CGS2SLS and the approximated MSEs are estimated using the GS2SLS
with 2 ; as the instrument matrix in the third stage. For all the GS2SLS and CGS2SLS estimators
considered, the instrument matrix used in the first stage is ()2 ;, and the matrices used for the quadratic
moments in the second stage are W,, and W? — I, tr(W?2)/n. (As q is relatively large compared with
the sample size, for the first stage estimator of the GS2SLS estimation and the estimator for the bias
correction, we use p = 2 as suggested by [11].)

For each estimator, the following robust measures of central tendency and dispersion are reported:
(There are some outliers in the GS2SLS and CGS2SLS estimates, thus the mean and variance of the
estimators are not reported.) the median bias (MB), the median of the absolute deviations (MAD), the
difference between the 0.1 and 0.9 quantiles (DQ) in the empirical distribution, and the coverage rate
(CR) of a nominal 95% confidence interval.

The summary statistics of the estimators for Model 1 are reported in Tables 1-4. We first compare
GS2SLS-min, GS2SLS-max and GS2SLS-op. The GS2SLS-max has the largest median bias in most
cases, and the GS2SLS-op has the smallest median bias for half of the cases when n = 98 but it has
the intermediate medium bias when n = 490. The GS2SLS-max has the smallest MAD and DQ in
all cases, the GS2SLS-op of Ay has the intermediate MAD and DQ, and GS2SLS-op of v, has the
intermediate MAD and DQ when R} = 0.02 but largest MAD and DQ when R} = 0.1. The CR of
GS2SLS-op is closest to the nominal level in most cases, while the CR of GS2SLS-max is significantly
lower than the nominal level in many cases. The CGS2SLS-max generally reduces the bias of
GS2SLS-max significantly, has similar magnitudes of MAD and DQ to those of GS2SLS-max, and
has a CR closer to the nominal level compared with GS2SLS-max but still significantly lower than the
nominal level in many cases. Compared with the GS2SLS-op, in most cases, the CGS2SLS-op has much

larger MAD and DQ, similar CR, and has smaller median bias for \y but larger median bias for ;.
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Table 1. Estimation of Model 1 with RJ% = (0.02 and n = 98.
)\0 = 0.6 Yo = 1.0

MB MAD DQ CR MB MAD DQ CR

Po = 0.1
0ye = 0.1 GS2SLS-min 0.174 0375 2.327 1.000 —0.011 0.612 3.618 1.000
GS2SLS-max 0.242 0.083 0.323 0.810 —0.065 0.175 0.654 0.992
GS2SLS-op 0.171 0.297 1.702 0.999 0.015 0.468 2.307 1.000
CGS2SLS-max —0.046 0.125 0.667 0.870 0.098 0.295 1.248 0974
CGS2SLS-op —0.375 0.581 10.489 0.991 0.332 0.719 8.277 1.000
0.5 GS2SLS-min 0.157 0428 2917 1.000 0.188 0.582 3.415 1.000
GS2SLS-max 0.156 0.071 0.279 0.921 0.347 0.154 0.609 0.932
GS2SLS-op 0.129 0.235 1.357 1.000 0.333 0.382 1.883 0.999
CGS2SLS-max —0.008 0.081 0.374 0.958 0.407 0.246 0.983 0.824
CGS2SLS-op —0.190 0.383 5713 0.999 0.501 0.531 4.274 1.000
0.9 GS2SLS-min 0.148 0.295 2.039 1.000 0.293 0.456 3.633 0.982
GS2SLS-max 0.064 0.031 0.120 0.968 0.791 0.081 0.306 0.033
GS2SLS-op 0.074 0.129 0.814 1.000 0.700 0.291 1.492 0.782
CGS2SLS-max 0.032 0.034 0.136 0.997 0.723 0.152 0.608 0.189
CGS2SLS-op 0.011 0.160 1.544 1.000 0.628 0.355 2.091 0.820

Po = 0.5
0pe = 0.1 GS2SLS-min 0.349 0342 2413 0.992 0.026 0.572 3.234 1.000
GS2SLS-max 0.344 0.059 0.241 0414 —0.070 0.176 0.696 0.992
GS2SLS-op 0.310 0.272 1.755 0.984 0.031 0.428 2.375 1.000
CGS2SLS-max 0.057 0.160 1.432 0.720 0.049 0.330 1.544 0.967
CGS2SLS-op —0.137 0.730 10.221 0.972 0.203 0.810 7.607 1.000
0.5 GS2SLS-min 0.262 0.347 2.225 1.000 0.195 0.556 3.487 1.000
GS2SLS-max 0.261 0.053 0.208 0.503 0.335 0.155 0.578 0.934
GS2SLS-op 0.227 0.208 1.342 0.991 0.350 0.403 2.108 1.000
CGS2SLS-max 0.092 0.077 0.401 0.855 0.400 0.254 1.022 0.848
CGS2SLS-op —0.085 0.368 6.524 0.996 0.464 0.565 4.658 1.000
0.9 GS2SLS-min 0.228 0.219 1.672 0.992 0.339 0.460 3.461 0.973
GS2SLS-max 0.181 0.027 0.103 0.224 0.775 0.066 0.264 0.023
GS2SLS-op 0.191 0.114 0.659 0.952 0.690 0.262 1.390 0.768
CGS2SLS-max 0.140 0.029 0.124 0.546 0.705 0.127 0.542 0.165
CGS2SLS-op 0.115 0.133 1.600 0.966 0.639 0.310 2.055 0.809

MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and 0.9

quantiles; CR: coverage rate of a nominal 95% confidence interval.
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Table 2. Estimation of Model 1 with Rfc =0.1and n = 98.
)\0 = 0.6 Yo = 1.0

MB MAD DQ CR MB MAD DQ CR

Lo = 0.1
oy = 0.1 GS2SLS-min 0.081 0.283 1.528 1.000 —0.024 0.240 1.026 1.000
GS2SLS-max 0.225 0.076 0.302 0.835 —0.062 0.135 0.548 0.995
GS2SLS-op 0.116 0.254 1.437 1.000 0.001 0.288 1.365 1.000
CGS2SLS-max —0.033 0.109 0.558 0.887 0.039 0.197 0.829 0.979
CGS2SLS-op —-0.212 0.379 5.158 0.997 0.211 0.461 3.997 1.000
0.5 GS2SLS-min 0.082 0.231 1.368 1.000 —0.031 0.255 1.127 1.000
GS2SLS-max 0.149 0.066 0.263 0.903 0.206 0.136 0.534 0.965
GS2SLS-op 0.078 0.213 1.203 0.998 0.147 0312 1.452 1.000
CGS2SLS-max —0.004 0.080 0.361 0.961 0.174 0.174 0.693 0.949
CGS2SLS-op —0.155 0.283 3.963 0.999 0.312 0.381 2418 1.000
0.9 GS2SLS-min 0.103 0.270 1.683 1.000 0.027 0.298 1.763 0.995
GS2SLS-max 0.075 0.044 0.171 0914 0.595 0.095 0.368 0.207
GS2SLS-op 0.071 0.182 1.185 0.998 0.284 0.357 1.671 0.928
CGS2SLS-max 0.022 0.049 0.210 0.985 0.407 0.153 0.605 0.598
CGS2SLS-op —0.034 0.190 2.795 1.000 0.374 0394 2.175 00913

Po = 0.5
oy = 0.1 GS2SLS-min 0.253 0.313 1.991 0.996 0.021 0.273 1.243 1.000
GS2SLS-max 0.327 0.059 0.237 0412 —0.058 0.146 0.568 0.995
GS2SLS-op 0.257 0.253 1.611 0.983 0.019 0.290 1.374 1.000
CGS2SLS-max 0.055 0.127 1.086 0.766 0.020 0.229 1.014 0.981
CGS2SLS-op —0.159 0472 6950 0.972 0.144 0.557 5.132 1.000
0.5 GS2SLS-min 0.197 0.280 1.646 0.997 0.002 0.278 1.253 1.000
GS2SLS-max 0.268 0.055 0.213 0.444 0.214 0.138 0.527 0.959
GS2SLS-op 0.217 0.232 1415 0.991 0.166 0.316 1.515 1.000
CGS2SLS-max 0.087 0.083 0421 0.826 0.197 0.192 0.802 0.941
CGS2SLS-op —0.047 0.309 4.120 0.987 0.282 0.400 2.706 1.000
0.9 GS2SLS-min 0.222 0.262 1.671 0.994 0.013 0.239 1.165 0.995
GS2SLS-max 0.217 0.030 0.118 0.156 0.488 0.080 0.322 0.334
GS2SLS-op 0.216 0.190 1.288 0.958 0.148 0.246 1.216 0.968
CGS2SLS-max 0.140 0.043 0.185 0.669 0.310 0.129 0.527 0.753
CGS2SLS-op 0.077 0.185 2.591 0.966 0.249 0.327 1.756 0.947

MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and 0.9

quantiles; CR: coverage rate of a nominal 95% confidence interval.
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Table 3. Estimation of Model 1 with RJ% = 0.02 and n = 490.

85

)\0 = 0.6 Yo = 1.0

MB MAD DQ CR MB MAD DQ CR

Lo = 0.1
ope = 0.1  GS2SLS-min 0.124 0.348 2.079 1.000 0.000 0.383 1.736 1.000
GS2SLS-max 0.245 0.040 0.147 0.168 —0.116  0.094 0.360 0.958
GS2SLS-op 0.158 0.210 1.203 0.995 —0.009 0.307 1.431 1.000
CGS2SLS-max —0.023 0.056 0.310 0.866 0.046 0.149 0.603 0.904
CGS2SLS-op  —0.326 0.433 7.033 0.993 0.265 0.425 4.096 1.000
0.5 GS2SLS-min 0.145 0322 1972 1.000 0.024 0.364 1.766 1.000
GS2SLS-max 0.156 0.031 0.117 0.367 0.306 0.080 0.302 0.587
GS2SLS-op 0.117 0.166 0.984 1.000 0.301 0.276 1.301 0.998
CGS2SLS-max  0.014 0.035 0.138 0.978 0.299 0.135 0.502 0.587
CGS2SLS-op  —0.128 0.269 4.360 1.000 0.364 0.360 1.961 0.999
0.9 GS2SLS-min 0.143 0271 1.772 0.999 0.016 0.295 1.569 0.995
GS2SLS-max 0.067 0.016 0.061 0.514 0.757 0.041 0.155 0.000
GS2SLS-op 0.089 0.183 1.014 0.998 0.348 0.274 1.361 0.898
CGS2SLS-max  0.038 0.019 0.076 0.934 0.558 0.088 0.342 0.043
CGS2SLS-op  —0.011 0.163 1.762 1.000 0423 0.284 1.513 0.850

Po = 0.5
ope = 0.1  GS2SLS-min 0.241 0333 2.121 0.996 0.009 0.382 1.682 1.000
GS2SLS-max 0.338 0.029 0.111 0.001 —0.111 0.098 0.370 0.948
GS2SLS-op 0.248 0.220 1.452 0.978 0.015 0.331 1.472 1.000
CGS2SLS-max  0.057 0.079 0.723 0.634 0.015 0.188 0.860 0.855
CGS2SLS-op  —0.241 0.530 9.160 0.936 0.218 0.572 5.418 1.000
0.5 GS2SLS-min 0.241 0.266 1.641 0.996 0.030 0.315 1.491 1.000
GS2SLS-max 0.265 0.025 0.094 0.002 0.308 0.079 0.311 0.552
GS2SLS-op 0.230 0.163 0.956 0.971 0.274 0.284 1.231 1.000
CGS2SLS-max  0.106 0.038 0.179 0.575 0.302 0.140 0.551 0.572
CGS2SLS-op  —0.077 0.292 4.467 0.984 0.344 0.358 2.332 0.999
0.9 GS2SLS-min 0.218 0.263 1.765 0.994 0.075 0.294 1.820 0.995
GS2SLS-max 0.184 0.012 0.046 0.000 0.754 0.037 0.138 0.000
GS2SLS-op 0.204 0.161 0.961 0.963 0.377 0.256 1.220 0.887
CGS2SLS-max  0.142 0.015 0.058 0.032 0.580 0.084 0.319 0.031
CGS2SLS-op 0.111 0.151 2.019 0.950 0.421 0.287 1.530 0.836

MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and 0.9

quantiles; CR: coverage rate of a nominal 95% confidence interval.
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Table 4. Estimation of Model 1 with RJ% = (0.1 and n = 490.

86

)\0 = 0.6 Yo = 1.0

MB MAD DQ CR MB MAD DQ CR

Lo = 0.1
ope = 0.1  GS2SLS-min 0.032 0.154 0.801 0.999 —0.016 0.131 0.526 1.000
GS2SLS-max 0.214 0.037 0.144 0.257 —0.068 0.076 0.274 0.984
GS2SLS-op 0.126 0.211 1.258 0.999 —0.004 0.296 1.475 1.000
CGS2SLS-max  0.007 0.044 0.176 0.970 0.009 0.093 0.362 0.979
CGS2SLS-op  —0.172 0301 3.807 0.999 0.209 0.388 2.928 1.000
0.5 GS2SLS-min 0.045 0.150 0.834 0.999 —0.015 0.136 0.553 1.000
GS2SLS-max 0.165 0.031 0.121 0.290 0.199 0.067 0.260 0.792
GS2SLS-op 0.097 0.221 1.402 1.000 0.110 0.301 1.433 1.000
CGS2SLS-max  0.029 0.035 0.139 0.967 0.112 0.086 0.328 0.922
CGS2SLS-op  —0.113 0.258 3.874 1.000 0.248 0.338 2.203 1.000
0.9 GS2SLS-min 0.053 0.147 0.975 1.000 —0.003 0.136 0.574 0.998
GS2SLS-max 0.114 0.019 0.073 0.144 0.503 0.044 0.167 0.003
GS2SLS-op 0.107 0.182 1.080 0.996 0.106 0.220 0.980 0.986
CGS2SLS-max  0.060 0.026 0.103 0.861 0.217 0.075 0.273 0.643
CGS2SLS-op  —0.046 0.216 2.924 1.000 0.280 0.364 2.083 0.957

Po = 0.5
ope = 0.1  GS2SLS-min 0.072  0.189 1.255 0.996 0.003 0.131 0.525 1.000
GS2SLS-max 0.316 0.030 0.115 0.006 —0.054 0.073 0.287 0.983
GS2SLS-op 0.211 0.238 1.563 0.986 0.020 0.276 1.241 1.000
CGS2SLS-max  0.079 0.054 0.277 0.718 0.014 0.108 0.431 0.957
CGS2SLS-op  —0.137 0.382 5.654 0.967 0.205 0.453 3.517 1.000
0.5 GS2SLS-min 0.097 0.173 1.275 0.993 —0.006 0.140 0.595 1.000
GS2SLS-max 0.264 0.025 0.101 0.006 0.200 0.068 0.263 0.776
GS2SLS-op 0.191 0.219 1.377 0.991 0.116 0.258 1.184 0.999
CGS2SLS-max  0.110 0.034 0.150 0.570 0.108 0.092 0.361 0.910
CGS2SLS-op  —0.028 0.291 4.901 0.985 0.206 0.330 2.157 1.000
0.9 GS2SLS-min 0.098 0.156 1.341 0.989 —0.005 0.148 0.638 0.999
GS2SLS-max 0.210 0.017 0.064 0.000 0.482 0.044 0.167 0.004
GS2SLS-op 0.150 0.180 1.114 0.977 0.120 0.191 0.833 0.996
CGS2SLS-max  0.138 0.022 0.088 0.183 0.195 0.078 0.300 0.702
CGS2SLS-op 0.039 0.213 3.970 0.974 0.205 0.307 1.865 0.969

MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and 0.9

quantiles; CR: coverage rate of a nominal 95% confidence interval.

Tables 5-8 report the summary statistics of the estimators for Model 2. Among GS2SLS-min,

GS2SLS-max and GS2SLS-op, in most cases, the GS2SLS-max has the largest median bias, the
GS2SLS-op of )y has the smallest median bias, and the GS2SLS-op of 7, has the intermediate median
bias. The GS2SLS-max has the smallest MAD and DQ, and the GS2SLS-op has the intermediate
MAD and DQ. The CR of GS2SLS-op is closest to the nominal level, while the CR of GS2SLS-max is
significantly lower than the nominal level in many cases. The performance of CGS2SLS-max for Model
2 is similar to that for Model 1. Compared with the GS2SLS-op, the CGS2SLS-op has much larger
MAD and DQ in most cases, similar CR, and has smaller median bias in more than half of the cases

when pg = 0.5 but larger median bias in most cases when pg = 0.1.
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Table 5. Estimation of Model 2 with RJ% = (0.02 and n = 98.
)\0 = 0.6 Yo = 1.0

MB MAD DQ CR MB MAD DQ CR

Po = 0.1
0ye = 0.1 GS2SLS-min 0.246 0.611 3.434 1.000 0.046 0.774 4.234 1.000
GS2SLS-max 0.250 0.082 0.317 0.797 —0.079 0.177 0.661 0.994
GS2SLS-op 0.198 0.326 2.034 0.999 0.059 0472 2.364 1.000
CGS2SLS-max —0.055 0.132 0.730 0.849 0.107 0.299 1.340 0.967
CGS2SLS-op —0.391 0.602 10.313 0.992 0.360 0.766 7.293 1.000
0.5 GS2SLS-min 0.160 0.354 2.317 1.000 0.408 0.796 4.989 1.000
GS2SLS-max 0.155 0.065 0.250 0910 0.338 0.146 0.576 0.943
GS2SLS-op 0.128 0.216 1.228 1.000 0.399 0.393 1.964 1.000
CGS2SLS-max —0.008 0.078 0.354 0.960 0.418 0.233 0.949 0.845
CGS2SLS-op —0.204 0.361 6.722 0.998 0.572 0.531 4.621 1.000
0.9 GS2SLS-min 0.050 0.210 1.433 1.000 0.741 0.523 3.243 0.963
GS2SLS-max 0.063 0.032 0.133 0.968 0.793 0.080 0.316 0.038
GS2SLS-op 0.051 0.121  0.699 1.000 0.763 0.238 1.278 0.775
CGS2SLS-max 0.030 0.036 0.155 0.993 0.721 0.147 0.609 0.193
CGS2SLS-op —0.006 0.148 1.445 1.000 0.714 0.286 2.544 0.800

Po = 0.5
0pe = 0.1 GS2SLS-min 0.2890 0.363 2.264 0.994 0.059 0.829 5.260 1.000
GS2SLS-max 0.342 0.061 0.238 0.367 —0.091 0.180 0.712 0.991
GS2SLS-op 0.267 0.274 1.645 0.985 0.071 0.523 3.235 1.000
CGS2SLS-max 0.063 0.160 1.484 0.698 0.023 0.356 1.665 0.958
CGS2SLS-op —0.167 0.675 9.228 0.966 0.254 0.807 7.433 1.000
0.5 GS2SLS-min 0.277 0342 2.408 0.997 0.303 0.694 4.551 1.000
GS2SLS-max 0.264 0.052 0.203 0.449 0.330 0.151 0.585 0.934
GS2SLS-op 0.226 0.196 1.324 0.986 0.356 0.394 2.001 0.999
CGS2SLS-max 0.100 0.073 0.372 0.844 0.356 0.242 1.027 0.853
CGS2SLS-op —0.098 0.362 7.297 0.989 0.475 0.584 5.336 1.000
0.9 GS2SLS-min 0.182 0.181 1.172 0.992 0.689 0.470 2.978 0.962
GS2SLS-max 0.184 0.027 0.105 0.240 0.777 0.073 0.285 0.024
GS2SLS-op 0.179 0.109 0.682 0.969 0.762 0.220 1.184 0.779
CGS2SLS-max 0.144 0.030 0.130 0.568 0.710 0.137 0.559 0.183
CGS2SLS-op 0.099 0.146 1.737 0.972 0.700 0.299 2.223 0.812

MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and 0.9

quantiles; CR: coverage rate of a nominal 95% confidence interval.



Econometrics 2013, 1

Table 6. Estimation of Model 2 with Rfc =0.1and n = 98.

88

)\0 = 0.6 Yo = 1.0

MB MAD DQ CR MB MAD DQ CR

Lo = 0.1
ope = 0.1  GS2SLS-min 0.199 0.439 2.673 1.000 —0.001 0.482 2.470 1.000
GS2SLS-max 0.230 0.076 0.295 0.804 —0.064 0.151 0.573 0.996
GS2SLS-op 0.190 0.290 1.703 0.999 0.017 0.364 1.702 1.000
CGS2SLS-max —0.039 0.115 0.562 0.892 0.069 0.209 0.839 0.983
CGS2SLS-op  —0.285 0.461 6.720 0.994 0.206 0.479 3.688 1.000
0.5 GS2SLS-min 0.002 0.385 2.408 1.000 0.198 0.669 4.025 1.000
GS2SLS-max 0.137 0.068 0.266 0.907 0.217 0.135 0.531 0.963
GS2SLS-op 0.058 0.217 1.323 1.000 0.198 0.337 1.710 1.000
CGS2SLS-max —0.003 0.076 0.335 0.964 0.177 0.178 0.709 0.942
CGS2SLS-op  —0.173 0302 4.685 0.999 0.263 0.364 2475 0.999
0.9 GS2SLS-min 0.058 0.364 2.209 0.999 0.260 0.504 3.843 0.992
GS2SLS-max 0.102 0.042 0.170 0.887 0.522 0.085 0.333 0.311
GS2SLS-op 0.103 0.231 1.521 0.999 0.369 0.282 2.034 0.958
CGS2SLS-max  0.039 0.053 0.220 0.982 0.331 0.134 0.528 0.728
CGS2SLS-op  —0.023 0.197 2.793 1.000 0.339 0.268 1.738 0.955

Po = 0.5
ope = 0.1  GS2SLS-min 0.290 0.364 2.446 0.998 0.053 0.601 3.690 1.000
GS2SLS-max 0.319 0.068 0.265 0.454 —0.064 0.162 0.632 0.989
GS2SLS-op 0.252 0.278 1.901 0.991 0.056 0.443 2.357 1.000
CGS2SLS-max  0.063 0.120 1.088 0.777 0.016 0.251 1.169 0.966
CGS2SLS-op  —0.149 0.495 7.195 0.970 0.220 0.642 5.969 1.000
0.5 GS2SLS-min 0.244 0309 1.949 0.997 0.329 0.728 4.353 1.000
GS2SLS-max 0.268 0.051 0.203 0.440 0.233 0.129 0.507 0.961
GS2SLS-op 0.243 0.214 1.317 0.986 0.222 0366 1.924 1.000
CGS2SLS-max  0.091 0.082 0.445 0.825 0.213 0.182 0.780 0.944
CGS2SLS-op  —0.052 0.321 5.613 0.988 0.259 0.395 2986 1.000
0.9 GS2SLS-min 0.163 0.261 1.781 0.984 0.088 0.387 2.616 0.991
GS2SLS-max 0.196 0.038 0.150 0.307 0.487 0.086 0.330 0.371
GS2SLS-op 0.149 0.184 1.207 0.970 0.290 0.247 1.503 0.965
CGS2SLS-max  0.117 0.050 0.220 0.774 0291 0.141 0.556 0.787
CGS2SLS-op 0.049 0.195 3.284 0.978 0.279 0.270 1.742 0.970

MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and 0.9

quantiles; CR: coverage rate of a nominal 95% confidence interval.
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Table 7. Estimation of Model 2 with RJ% = 0.02 and n = 490.
)\0 = 0.6 Yo = 1.0

MB MAD DQ CR MB MAD DQ CR

Po = 0.1
0ye = 0.1 GS2SLS-min 0.193 0416 2.823 1.000 0.070 0.704 4.351 1.000
GS2SLS-max 0.242 0.037 0.145 0.160 —0.100 0.093 0.351 0.967
GS2SLS-op 0.169 0.218 1.220 0.998 0.014 0.347 1.673 1.000
CGS2SLS-max —0.017 0.056 0.273 0.893 0.040 0.144 0.580 0919
CGS2SLS-op —0.348 0468 11.234 0.992 0.321 0.517 5.647 1.000
0.5 GS2SLS-min 0.130 0354 2.272 1.000 0.259 0.652 3.957 1.000
GS2SLS-max 0.154 0.031 0.120 0.389 0.316 0.078 0.297 0.557
GS2SLS-op 0.104 0.171  0.980 1.000 0.349 0.288 1.408 0.999
CGS2SLS-max 0.015 0.033 0.136 0.977 0.303 0.132 0.502 0.581
CGS2SLS-op —0.153 0.293 3.525 1.000 0.405 0.384 2.560 0.999
0.9 GS2SLS-min 0.100 0.263 1.769 1.000 0412 0.541 4.162 0.986
GS2SLS-max 0.070 0.015 0.059 0472 0.748 0.041 0.159 0.000
GS2SLS-op 0.086 0.155 0.995 1.000 0.546 0.263 1.447 0.860
CGS2SLS-max 0.041 0.020 0.074 0.925 0.538 0.083 0.338 0.051
CGS2SLS-op —0.008 0.169 2.335 1.000 0.490 0.247 1.964 0.863

Po = 0.5
0pe = 0.1 GS2SLS-min 0.322 0398 2.574 0.997 —0.005 0.723 3984 1.000
GS2SLS-max 0.338 0.029 0.110 0.002 —0.115 0.099 0.382 0.940
GS2SLS-op 0.271 0.243 1.508 0.976 —0.008 0.407 2.041 1.000
CGS2SLS-max 0.060 0.082 0.657 0.634 0.014 0.189 0.862 0.855
CGS2SLS-op —0.300 0.587 11.233 0.939 0.252 0.675 6.906 1.000
0.5 GS2SLS-min 0.251 0.281 1.692 0.997 0.291 0.661 3.651 1.000
GS2SLS-max 0.263 0.025 0.096 0.004 0.306 0.082 0.307 0.553
GS2SLS-op 0.239 0.172 1.055 0.971 0.337 0.295 1.385 0.998
CGS2SLS-max 0.104 0.038 0.181 0.576 0.302 0.140 0.554 0.580
CGS2SLS-op —0.086 0.316 6.578 0.984 0.375 0.373 2944 0.999
0.9 GS2SLS-min 0.252 0.236 1.595 0.991 0.240 0.400 3.186 0.988
GS2SLS-max 0.184 0.012 0.046 0.000 0.754 0.037 0.142 0.000
GS2SLS-op 0.212 0.134 0.943 0.961 0.534 0.256 1.511 0.831
CGS2SLS-max 0.142 0.015 0.059 0.035 0.584 0.082 0.320 0.026
CGS2SLS-op 0.098 0.156 2.048 0.958 0.503 0.263 1.808 0.823

MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and 0.9

quantiles; CR: coverage rate of a nominal 95% confidence interval.
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Table 8. Estimation of Model 2 with RJ% = (0.1 and n = 490.

90

)\0 = 0.6 Yo = 1.0

MB MAD DQ CR MB MAD DQ CR

Lo = 0.1
ope = 0.1  GS2SLS-min 0.138 0.318 1.886 1.000 0.019 0.342 1.584 1.000
GS2SLS-max 0.215 0.038 0.147 0.246 —0.073 0.075 0.282 0.983
GS2SLS-op 0.123 0.241 1.339 1.000 0.000 0.295 1.242 1.000
CGS2SLS-max  0.008 0.044 0.182 0.956 0.002 0.099 0.368 0.982
CGS2SLS-op  —0.261 0.416 7.521 0.998 0.128 0.393 2.719 1.000
0.5 GS2SLS-min 0.143 0.279 1.654 1.000 0.037 0322 1.661 1.000
GS2SLS-max 0.164 0.032 0.121 0.286 0.201 0.072 0.269 0.784
GS2SLS-op 0.094 0.223 1.218 0.999 0.120 0.273 1.162 1.000
CGS2SLS-max  0.028 0.035 0.138 0.970 0.108 0.091 0.343 0912
CGS2SLS-op  —0.181 0.357 7.336 1.000 0.129 0.384 2.341 1.000
0.9 GS2SLS-min 0.193 0.206 1.298 1.000 0.056 0316 1.821 0.997
GS2SLS-max 0.118 0.019 0.075 0.117 0476 0.045 0.182 0.005
GS2SLS-op 0.117 0.185 1.127 0.997 0.236 0.196 1.018 0.981
CGS2SLS-max  0.059 0.027 0.106 0.854 0.200 0.071 0.285 0.703
CGS2SLS-op  —0.073 0.284 5.465 0.998 0.069 0.275 1.452 0.994

Po = 0.5
ope = 0.1  GS2SLS-min 0.236 0.269 1.706 0.992 0.026 0.275 1.236 1.000
GS2SLS-max 0.319 0.030 0.113 0.008 —0.057 0.071 0.275 0.982
GS2SLS-op 0.224 0.220 1.365 0.988 0.030 0.237 1.036 1.000
CGS2SLS-max  0.078 0.054 0.306 0.724 0.009 0.102 0.402 0.967
CGS2SLS-op  —0.160 0.389 6.310 0.962 0.065 0.298 1.734 1.000
0.5 GS2SLS-min 0.255 0.245 1.559 0.993 0.082 0374 1.865 1.000
GS2SLS-max 0.267 0.026 0.098 0.005 0.215 0.073 0.267 0.740
GS2SLS-op 0.202 0.216 1.233 0.987 0.139 0.253 1.200 1.000
CGS2SLS-max  0.109 0.037 0.162 0.566 0.136 0.097 0.385 0.882
CGS2SLS-op  —0.112 0372 7.572 0.988 0.091 0.406 2.593 1.000
0.9 GS2SLS-min 0.250 0.200 1.235 0.986 0.060 0.271 1.456 0.996
GS2SLS-max 0.211 0.015 0.059 0.000 0492 0.042 0.158 0.001
GS2SLS-op 0.186 0.160 0.987 0.973 0.247 0.172 0.857 0.978
CGS2SLS-max  0.142 0.022 0.089 0.164 0211 0.076 0.299 0.667
CGS2SLS-op 0.022 0.249 4416 0.985 0.078 0.266 1.447 0.993

MB: median bias; MAD: median of the absolute deviations; DQ: difference between the 0.1 and 0.9

quantiles; CR: coverage rate of a nominal 95% confidence interval.

From the Monte Carlo results of both models, we can see that the proposed CGS2SLS estimator

can effectively reduce the many instrument bias, and the estimators derived by choosing the number
of instruments to minimize their respective approximated MSEs, GS2SLS-op and CGS2SLS-op, have

coverage rates closer to the nominal level than the estimators using very few or many instruments,

i.e., GS2SLS-op and CGS2SLS-op can make inference more reliable.

Between GS2SLS-op and

CGS2SLS-op, no one is always better than the other in terms of central tendency or coverage rate,

but the GS2SLS-op has much smaller dispersion in most cases.

The summary statistics of the estimated p and ¢ are presented in Tables 9 and 10. Consistent with [3],

in most cases for both models, only the first spatial lag (p = 1) is used. For Model 1, in most cases, ¢ is

1 or 2 with n = 98, and is larger with n = 490 but is smaller than the maximum number of instruments
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g = 10. For Model 2, ¢ tends to be larger, which might be due to the fact that the variables in X, of
Model 2 are equally important but the importance of the variables in X,, of Model 1 is in decreasing

order. For both models, ¢ tends to be larger with a larger R?c.

Table 9. The Distributions of p and ¢ in Model 1.

GS2SLS CGS2SLS
p q D q
MO LQ ME UQ MO LQ ME UQ MO LQ ME UQ MO LQ ME UQ
n =98

R2=10.02p=01,0,=01 1 1 1 4 1 1 1 5 1 1 2 4 1 1 2 5
05 1 1 1 4 1 1 2 5 1 1 1 4 1 1 2 5
09 1 1 1 4 1 1 1 5 1 1 1 4 1 1 1 5
Rfc =0.02,p0=05,00=01 1 1 1 4 1 1 1 4 4 1 3 4 5 1 3 4
05 1 1 1 4 1 1 1 5 1 1 1 4 1 1 2 5
09 1 1 1 4 1 1 1 5 1 1 1 4 1 1 1 5
R} =01,p=01,0p=01 1 1 1 4 1 1 1 5 1 1 2 4 1 1 3 5
05 1 1 1 4 1 1 2 4 1 1 2 4 2 1 2 4
09 1 1 1 3 1 1 1 3 1 1 1 3 1 1 2 3
R? =0.1,p=050p0=01 1 1 1 4 1 1 1 4 1 1 2 4 5 1 4 4
05 1 1 1 3 1 1 2 4 1 1 2 3 1 1 2 4
09 1 1 1 2 1 1 1 2 1 1 1 2 11 2 2

n =490
Rfc =0.02,p0=01,00=01 1 1 2 9 1 1 3 9 1 1 2 9 1 1 3 9
05 11 2 9 2 1 3 9 11 1 9 2 1 3 9
09 1 1 1 3 1 1 2 3 1 1 1 3 1 1 2 3
Rfc =0.02,p0=05,00=01 1 1 1 6 1 1 2 7 1 1 2 6 1 1 3 7
05 1 1 1 7 1 1 2 8 1 1 1 7 1 1 2 8
09 1 1 1 3 1 1 2 3 1 1 1 3 1 1 2 3
Rfc =01,p0=01,00=01 1 1 1 7 3 2 4 8 1 1 2 7 3 2 4 8
05 1 1 1 2 3 2 3 5 1 1 1 2 3 2 4 5
09 1 1 1 1 2 2 2 3 1 1 1 1 3 2 4 3
R?E =0.1,p=05,00=01 1 1 1 3 31 3 5 1 1 1 3 3 2 4 5
05 1 1 1 2 3 2 3 4 1 1 1 2 3 2 4 4
09 1 1 1 1 2 2 2 3 1 1 1 1 3 2 3 3

MO: mode; LQ: 0.1 quantile; ME: median; UQ: 0.9 quantile.
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Table 10. The Distributions of p and ¢ in Model 2.

GS2SLS CGS2SLS
p q p q
MO LQ ME UQ MO LQ ME UQ MO LQ ME UQ MO LQ ME UQ
n =98

R?t = 0.02, pg = 0.1, 0 = 0.1 1 1 1 4 1 1 1 5 1 1 2 4 5 1 3 5
05 1 1 1 4 1 1 2 5 1 1 1 4 1 1 2 5
09 1 1 1 4 1 1 2 5 1 1 1 4 1 1 1 5
R? =0.02, pg = 0.5, 0y = 0.1 1 1 1 4 1 1 1 5 4 1 2 4 5 1 3 5
05 1 1 1 4 1 1 2 5 1 1 1 4 1 1 2 5
09 1 1 1 4 1 1 1 5 1 1 1 4 1 1 1 5
Rfc = 0.1, pg = 0.1, gpe = 0.1 1 1 1 4 1 1 2 5 1 1 2 4 5 1 4 5
05 1 1 1 3 1 1 3 5 1 1 1 3 5 1 4 5
09 1 1 1 2 1 1 1 3 1 1 1 2 51 4 3
R?c = 0.1, pg = 0.5, 0pe = 0.1 1 1 1 3 1 1 2 5 1 1 2 3 5 2 5 5
05 1 1 1 3 1 1 2 5 1 1 1 3 5 1 4 5
09 1 1 1 2 1 1 1 3 1 1 1 2 5 1 4 3

n = 490
R?E = 0.02, pg = 0.1, 0 = 0.1 1 1 2 9 1 1 4 10 1 2 9 1 1 4 10
05 1 1 2 9 1 1 4 10 1 1 1 9 1 1 4 10
09 1 1 1 3 1 1 2 4 1 1 1 3 1 1 4 4
R? = 0.02, pg = 0.5, 0y = 0.1 1 1 1 6 1 1 2 9 1 1 2 6 10 1 5 9
05 1 1 1 8 1 1 3 10 1 1 1 8 1 1 4 10
09 1 1 135 1 1 1 4 1 1 135 1 1 2 4
R?c = 0.1, po = 0.1, 0pe = 0.1 1 1 1 5 10 3 9 10 1 1 1 5 10 8 10 10
05 1 1 1 1 10 2 6 10 1 1 1 1 10 8 10 10
09 1 1 1 1 31 2 5 1 1 1 1 10 8 10 5
Rfc = 0.1, pg = 0.5, gpe = 0.1 1 1 1 1 10 1 7 10 1 1 1 1 10 8 10 10
05 1 1 1 1 4 2 4 10 1 1 1 1 10 8 10 10
09 1 1 1 1 31 2 4 1 1 1 1 10 8 10 4

MO: mode; LQ: 0.1 quantile; ME: median; UQ: 0.9 quantile.

5. Conclusions

In this paper, we derive an approximated MSE of the GS2SLS estimator and a bias corrected
GS2SLS (CGS2SLS) estimator for the SARAR model in the presence of endogenous variables and many
instruments. We propose a instrument selection procedure by minimizing the approximated MSEs. Our
Monte Carlo experiments show that the CGS2SLS can effectively correct the many instrument bias and

the instrument selection procedure generally makes inference in finite samples more accurate.
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Appendix
A. Notations

A® = A + A’ for a square matrix A.

||A|| = y/tr(A’A) is the Frobenius matrix norm for a matrix A.

vecp(A) is a column vector whose elements are the diagonal elements of a square matrix A.
R, = R,(po) and G,, = G,,(\g), where R,,(p) = I,, — pM,, and G,,(\) = W, (I, — \W,,)~L.
Yn(0) = Ru(p)Yns Zan(p) = Ru(p) Z2ns Zn(p) = Ru(p)Zy and u,(p) = R (p)tin.

Zow = Zoy + Uy, where Zs, = E(Zs,).

Zn = [Walin, Zon) = Zn + (o, where Z,, = E(Z,) = (G Zon Yo, Zon) and (,, = [Grvpyo+ Gr R en, vy
Pin = Qrn(Qk Q) Q n» Where (Q Qi )~ is a generalized inverse of Q' Qk .
it = PrcnBo Tnkcz = PrnRuGr and T3 = P RuGn R

Ank1 = 2 t1[Z0(po) (In — Pron)Za(po)] and Ay o = L tr[Z), M (I,, — Py ) MnZy).

hn = \/LEZ;L(pO)En and H, = %Z;L(/)())Zn(po)'

For the GS2SLS,

SulK) = = 1,0 Z4(p0) (= i) ) + Qa1

n

where
Qo (K) = T (K) Y7, (K)

with
T’VL(K) = E(C;R;PK,’@ETL) = [tr(FnK,2)0ve’70 + 052 tr(FnK,?))a tr(FnK,l)JUe],
For the CGS2SLS,

Sn(K) = %Hgl[afzé(po)(fn - PK,n)Zn(PO) + Hnl(K) + Hn2(K> + Hn3(K)]H7:1

where I1,,; (K) is a symmetric matrix equal to

Hnl (K) -
Y000 Tve Yo tr(F%Kg) + 0627621)% tr(FnKQF;q,K,z) + ‘73 tf(FnK,z’)FiK,a) + 2‘762‘7%% tr(FnKQFfLK,:s) *
71000 T (Cri i Tnrc2) + 02800 tr (T i1 Dnic2) + 020 tr(Toge s i 1) *
(21)

with the (2, 2)th block being o, o tr(I; ;) + 028, tr(T, 5 Tnk1)s

oo (K) = =21 (K), Moo (K)]* — 20200 (K) (22)
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where

_ (’Yﬁzv% tr(I o lnrc2) + ol tr(I g 3T 3) + 20070 tr(1 g 3Tnkc 2) * )
o0 tr(Lh g1 Pnkc2) + 04 tr(l 1 Do) S tr(Dy g1 Tcr)
o1 (K) = Viglo? tr(Dox sM, RY) — 02 tr( Py My G R ) — tr( Pre My G ) 00ey0)
+ Van[tr (Do 2Gr)oveyo + 02 tr(Dug oG Ry ), 0 tr(Toc 2)] (23)

+ ‘/i’)n70 tr(FnK,Q) + ‘/471 tr(FnK,i’))
and
HnQ,Q(K) == _%nave tr(PK,nMn) + ‘/?m tr(FnK,l) (24)

with Vi, = % Z! (po)F, Vo = 02111

2 2 2
Vin = 2=21(p0) Zan—5 Z1(p0) Frruc tr(Mo B, ) =25 (Z4 Ry, Zo 2070 tr(RuG) 407 t1(Gi), B tr(Ra)]))
n n n
and
20? >1 / -1 2062 2 /
Vin = ——; Z (po)F, tr(M,R, ") — [tr(R.Gr)oweyo + 0 tr(G), 0y tr(Ry)]
n n
and )
Ue 7 s
IL,3(K) = _ﬁ{Z;L(pO)F;[E(u;MAPK,anCn) + E(EInPK,nMnCn)]} (25)
with

E(u,M] Pr nR0Cp) = [0ocvo tt (R M Tyge o) + o2 tr(RL M T 3), 0 tr(R M T k1))

and
E(€), Pk n My () = [0oecyo t1(Prn MG + 02 t1( Py MG R Y, 0y t1( P M, )]

~ 2 R ~ A~ R
Let Vi, = %Z;L(Pn)ﬂ?;w Von = 0-621771—5—1,

~ 6'52 1/ A N> é-z/A PN H—1 a-62/A/
VZ))TL = E[Zn<pn>22n - E(CanUnﬂ - ﬁ n(pn) nOve tI‘(Man ) - g anZQn
and
9 26? NN H—1 25-62 D A \a = ~2 A A D\’
V;ln - __QZn(pn)Fn tr(Man ) - [tl“(RnGn)O've’}/n + O tr(G”)7 Ove tr(R”>]
n n

where R, = Rp(pn), Gn = Gol(pn), E(C.R.v,) = [SoAn tr(RnGy) + 6 tr(G), Sy tr(R,)] and F,,
is an estimator of IF,, in (7) derived by replacing Z, by Z, and true parameters by their estimators. An

estimation for I, (K) is

A A A

o(K) = —[Mpo1 (K), g0 (K)]* — 2620, (K) (26)

where ﬂng,l(K>, ﬂn2,2<K) and in(K) are derived respectively from 11,2 1 (K), I1,,02(K) and Q,,1 (K)
by replacing V},,’s by an’s and the rest of involved parameters by their respective estimators.
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An estimator for I1,,3(K) is

A

A2
o A\ R n s
Wy (K) = =542 () (B, My, P R G) + E(€, P MG} 27)

where E(, R, P, M, u,,) and E(¢, M Py n€,) are derived by replacing the parameters in, respectively,
E((, R}, Pk nMy,u,) and E(C, M) Pk ,€,,) by their estimators.

B. Lemmas

The following lemma gives sufficient conditions under which Z,(p) can be approximated arbitrarily
well by a linear combination of Q, as n, K — oo. When the approximation of Z,(p) becomes better
as the number of instruments K increases, the variance part of the MSE becomes smaller.

Lemma 1. Suppose that sup,, ||AoW,|lec < 1, elements of 1,,, are uniformly bounded constants,

0
q

(Vg Walbgny - - - WP, ], where p,q — 00 as n — oo,

and there exists T° such that ||Z, — 1/1q,n772|]00 — 0 as n,q — oo. Then, for Fg, =

(i) there exists T, such that %HZn — Framinl|* = 0asn, K — oo,
(ii) %||Zn(p) — QunTinal|l? < || Zn — FrnTinl|? for some ¢ > 0, where wgep 1 = [, —pThe )

which implies that £||Z,,(p) — Qk nTxn1||*> = 0 as n, K — co.

Proof. (i) is Lemma 2.1 in [3]. The argument is as follows. Let

/
(0 (71'270)/ (/\077270)/ e ()\g_lﬂ'gfyo)’
TKn =
79 0 0 . 0

q

Then, FK,nTrK,n = [Wn Zéj;(l) Agwgwq,nW2707 wq,nﬂ'g] = [(In - /\ngZ)Gni/fq,nt%, ¢q,n772] and

Zn - FK,nﬂ_K,n = [AgngnZQn’YO + (In - )\gws)Gn(ZQn - ¢q,n7T2)”YO> Z2n - wq,nﬂ_g]
Thus

HZn - FK,nﬂ-K,nHoo
< AWl Bl Gnllool | Zan V0l [oo + (1 + [[AoWal B Gallool| Z2n — gnmgllool10]l00 + [ Z20 — Pgnmg oo
— 0,

as n, p, q — 00. Since 1| Zy, — Y nmo|[* < (|| Z2n — gnm|0)?, the result follows.

(ii) Let R (p)R.(p) = R},(p)Ran(p)Rin(p) be an eigenvalue-eigenvector decomposition, where
Ry, (p) is a diagonal matrix whose diagonal elements are the eigenvalues of R, (p)R,.(p) and Ry, (p) is
an orthonormal matrix whose columns are eigenvectors of R/, (p) R, (p). Then,

1 - 1 _
ﬁHZn(P) - QK,MTKn,lH2 = ﬁHRn(P)(Zn - FK,nWK,n)||2

1
= " tr[(Zn - FK,nﬂK,n)/R;(p)Rn(P)(Zn - FK,n'/TK,n)]

1

= " tr[(Z, — FKﬂIﬂ—K,n),R,ln(p)RQn(p)Rln(:0)(Zn - FKHWKN)]
1 _ _

S _Tn,max tr[(Zn - FK,nﬂ-K,n)/(Zn - FK,nﬂ-K,nﬂ
n
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where 7, max 18 the largest eigenvalue of R! (p)R,,(p). By the spectral radius theorem,

Tn,max < HR;(p)Rn(P)HOO < ||R;z<p)”ooupbn(p>“oo <c

for some ¢ > 0 and all n. Thus (ii) holds. ]

The following lemma, Lemma A.1 in [1], gives conditions on the decomposition of an estimator, such
that the dominant component of the MSE depending on the number of instruments can be derived.

Lemma 2. For an estimator given by \/ﬁ((gn — &) = I:In* o, suppose that there is a decomposition,
By =hy +Th+ 20 H, = H, +TH + 7H

(h + T2)(hy + T2 — hohl, HO' T — THH BB, = A (K) + ZA(K)
such that

(i) T" = op(1), h,, = Op(1), H, = O(1),
(ii) the determinant of H,, is bounded away from zero,
(iii) prcn = t1(Sa(K)) = o(1),
(iv) |T1* = op(pn) ITXIT | = op(prn) IZ3I] = op(pxn) 121 = op(prn). Z3(K) =
OP(PK,n),
(v) B[A(K)] = 02H, + H,S,(K)H, + 0(p.n)-

Then (15) is satisfied.
Lemma 3. Let A,, = [a,,;;| and B,, = [by, ;] be n X n matrices, then

(i) E(e,Ayv,) = oue tr(Ay),
(ii) BE(e, Ane,) = o2 tr(A,),
(iii) E(v), Ayv,) = X, tr(A,),
(iv) E(v, Anene, Bovy) = [E(€2,0),00:) — 20! 0y — 023, ] vecp' (A,,) veen (By) + 0l 04 [tr(A,) tr(B,)
+ tr(A,BL)] + 025, tr(A, B,),
(v) E(e, Anene,Byvy) = [E(€3,0,)—3020,] vecp' (A,,) veep (B, )+020,[tr(A,) tr(B,)+tr(A,B:)),
(vi) E(€, Anene, Bne,) = (pg — 30) veep/(A,) veen(B,) + ol[tr(A,) tr(B,) + tr(A4,B2)],
(vii) E(v, Apvnv), Byvy) = [E(v),0ni)* — 32 — E(0),0n,0;,0ni) — E(v),;00;)?] veep'(Ay) veep (By) +
Y2 tr(An) tr(Bp) + E(v],;00jV),0ni) tr(An Br) + E(v),;00;)* tr(A, By,).

Proof. For (i)—(ii1), we only prove (i), as the other two follow similarly; for (iv)—(vii), we only prove (iv)
for the same reason.

For (1)’ E;LAn'Un = Z?:l Qn3i€niVni + Z?:l Zj;éz Qn,ij€niUn;j- As E(%ﬂ)m) = Oye and E(Enzvnj> =0
for i # j, the result follows. For (iv),

E(v, Anenel Byvy) = i i i i nibn.rs BV Uns€ni€nr)

i=1 j=1 r=1 s=1
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where E(v,’ﬂvnsenjem) # 0 in one of the following situations: ¢ = j = r = s;¢ = jand r = s, but i # r;
t=rand j =s,buti # j;i = sand j = r, but i # j. Then

E(v) A, €eq€, Byuy,)

n n
= E O iibn i BV ni€o;) + E E E[(an,iibn,jj 4 On,ijbn,ij) Vpi€niUnj€nj + Qn.ijbn.jiViUni€oy]
=1

i—1 A
= [B(e2,0 0p;) — 20) 0ye — 028, veep' (Ay) veep(B,,) + o) oueltr(Ay,) tr(B,) + tr(A, B.)]
+ 025, tr(AnB,) O

Lemma 4. Suppose that n x n matrices {A,,} and {B,} are UB, C,, = Pk,A, = [cni;] and
Dn = PK,an = [dnﬂ]] Then

(i) tr(Pk,n) = K,
(ii) [6:(Co)| = O(K), |:(C2)| = O(K) and -, &, = O(K),

Proof. (1) and (i1) are Lemma B.2 in [21]; (ii1) By the Cauchy—Schwarz inequality,
tr*(C, D,,) < tr(C,C!) tr(D, D))
and . . .
(Z Cn,iidn,ii)Q < Z Ciu Z diu
i=1 i=1 i=1
where tr(C,C),) = tr(Pg,A,A)) and tr(D,, D)) = tr(Pk, , B, B],), thus the results follow by (ii). [
Lemma 5. Suppose that {A,,} and { B,,} are n x n matrices that are UB and C,, = A,, Pk ,, By, then

(i) Ll Ape, = Op(1), e, Apyv, = Op(1), and 20!, A, v, = Op(1);
(ii) \/iﬁ[e;lAnen — E(e,A,6,)] = Op(1), \/iﬁ[e’nAnvn — E(e,Ayv,)] = Op(1), and \/iﬁ[v;Anvn —
E(v,Anv,)] = Op(1);
(iii) \/Lﬁ[e;(}'nen — B(e,Chen)] = Op(y/K/n), =lenChvy — E(€,Chuy)] = Op(\/K/n), and
\/Lﬁ[vizcnvn — E(v,Covn)] = OP(\/K_/n>'

Proof. All the results follow by Chebyshev’s inequality and Lemmas 3—4. We only prove the last result

S

in (iii). Let e; be the ith column of the m x m identity matrix. Then the variance of the (i, j)th element of
[0],Crvy — E(v,Cvn)] is + E{e}[v], Crvn, — B(v],Crvy)]ej€s v, Crvn — E(v],Crvy)] e}, which is smaller

than or equal to

%E{e;[v;Cnvn — E(v),Cyop)] v, Crvy — E(v],Crv,)] e}

= %eg[E(v;Cnan;CﬁLvn) — E(v,Cyv,) E(v,Clu,)]e;

= O(K/n)
by Lemmas 3—4. Thus, the (4, j)th element of \/iﬁ[e;Cnvn — E(¢,Cv,)] is Op(y/K/n) by Chebyshev’s
inequality. The result follows as 7 and j are arbitrary. O
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Lemma 6. Suppose that { A,,} is a sequence of n X n matrices that are bounded in the column sum matrix
norm, the elements of the n x k matrix C,, are uniformly bounded, and €,;’s in €, = (€p1, ..., €ny) are
i.i.d. with zero mean and finite variance 2. Then #C’;Anen = Op(1).

Furthermore, if the limit of %C;AnA;Cn exists and is positive definite, then

2

Proof. See [22]. O

The following two lemmas show the orders of relevant terms in deriving the decompositions for the
GS2SLS and CGS2SLS estimators.

Lemma 7. Suppose that n x n matrices { A, } are UB, then

(i) Ankca = 5 tr[Z,(p0) (In = Prcn) Zu(po)] = o(1),

(i) Ango = 2 tr[Z M/, (I,, — Pk )M, Z,) = o(1),

(iii) }L||Z;Mé(1n — Pra)Zu(po)ll = O(AukaBukz) and 3 Z My (I, — Pry)AnZu(po) =
O(\/Ank2),

(iv) \/IﬁZ;L( 0)(In — Prp)Anen = OP(A:L/I?71>’ \/LHZ;L([)O)(I” — Prpn)Anv, = OP(A;/I?J)’
L2 M} (I — Prcn) Anen = Op(A)2 ) and 222 M (I, — Picn) Agvn = Op(A12,),

(v) Lx[Z) M! (I, — Prcn) AnAL (I, — Prn)MnZy) = O(Ank2),

(Vi) \/Anki/n=o(K/n+Ank1), /Ankz/n =o(K/n+Apks), KAk /n = O(K2/H+AnK,1)

and KAnKQ/TL = O(KQ/TL + AnK’Q).

Proof. (i) By Assumption 6, there exists 7, such that 1||Z,(py) — QxnTin|/* — 0asn, K — oo.
Then

Apka = [(Zn<p0) - QK,nWK,n)/([n - PK,n)(Zn<p0) — QKrnTKn)]
tr[(Zn(po) = QrnTrn) (Zn(po) — QrnTrn)]

1Z0(po) = Qe nl

3|H3|>—‘3|H

|

)
—~

—_
~—

(i) As pM,Z, = Z,(0) — Z,(p), there exist 7,k such that %HMnZn — QraTur1|]? — 0 as
n, K — oo. Then (ii) holds by an argument similar to that for (i).
(1i1) By the Cauchy—Schwarz inequality,

1, - _ 1 1, = _
|ﬁe;Z7{lM7{L(‘[n — Prn)Zn (/00)6]| < —6 Z, M, wIn — Prp)MpZye; - EG;‘Z;L(pO)(In — Prn)Zn(po)e;
< AnK,lAnK,Q

where e; denotes the ith column of the (m + 1) x (m + 1) identity matrix. Thus the first result follows.
The second result in (iii) follows by

1, _ 1, - _ 1 - _
’_GQZ;M;L(LL - PK,n)AnZn(pO)€j|2 < —6;Z7/1M7/1([n — Prn) My Zne; - _e;‘Z:z(pO)A;zAnZn(pO)ej
n n n

- O(AnK,Q)
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(iv) By Chebyshev’s inequality,

1, - o | _ _
P(|%6;Z7/1(/)0>(In — Prn)Anen] > 1) < m;g €§ZZ(P0)(In - PK,n)AnA;L(]n — Prcn) Zn(po)e

for some n > 0. Let A,A = A;,As,A},, where A;, is an orthonormal matrix whose columns

are A,A!’s eigenvectors and A, is a diagonal matrix with the diagonal elements being A,A!’s
eigenvalues. Then

1, - _
Ee;’Z;L(pO)([n - PK,n)AnAIn([n — Pg.n) Zn(po)e
1, _ _
= Eengm(pO)(]n - PK,n)AlnA2nA/1n(In - PK,n>Zn(p0)ei

1 _
< ﬁbneézé(/)o)([n — Prn)Zn(po)e;

1 _ _
< E“AnA:zHooeng/z(po)([n - PK,n)Zn(pO)ei

- O(AnK,l)
where ¢,, is the largest eigenvalue of A, A/ and the last inequality follows by the spectral radius theorem.
Thus =€, 2, (p0) (In = Picn) An€n = Op(A,/2 1) and 2=Z7(po)(In — Pic ) Anen = Op(A2 ). Other
results follow similarly.
(v) Use the expression A, A/, = A, As, A}, as in the proof of (iv), then

1 .5 _
—tr[Z) M, (I, — Px.n)AnAL (I, — Prn) My Z,)

n
1 _ _
< = tr[Z;LM;L([n — PK,n)AlnAlln<In — Py )M, Z,]
n
1 _ _
= i te[ZL M (I, — Prn) M,y Z,]
n
= O(AnK,Q)

(vi) The first two results are Lemma A.3 (vi) in [1]. For the third result, either A, x

0, in which case \/KA,x1/n/(K*/n + Apk1) = 0, or /KA, k1/n/(K?*/n + Apk1) =
1

< 1 . . . . . )
Ko R AR = 3R — 0, by the inequality of arithmetic and geometric means. Thus

the result follows. The last result follows similarly. [

Lemma 8. With A, k1 and A, 2 defined, respectively, in Lemma 7 (i) and (ii),

(i) L7 (po)PxnZn(po) = Hy + TH + T + T + TfL,
where

(a) Hy, = +Z)(po)Zn(po) = O(1),

(b) Tlljz = _%Zr/z(pﬂ)([n - PK,n)Zn(po) = O(AnK,l),

(¢) T = 1[Z(po) RuCo + CoRL Zu(po)] = Op(n~'/2),

(d) TS = L0 R}, P nRuGy = Op (K /n) and

(e) TH = —L[Z(po)(In — Picn)RuCo + CoRL(In — Pic)Zu(po)] = Op(v/Buga/n) =
op(K/n+ Ak ).
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(ii) LZ!(po) PxnMnZn, = LZ! (po) My Zy+O(\/Drk1 Dk 2) + Op(n™ %)+ Op(K /n) +op(K /n+
Apga) + OP(\/W)'
(iii) 22! M/ P M, Z, = L 2! M! M, Z,, + O(Apicn) + Op(n=2) + Op(K /1) + Op(v/Dux2/n).
(V) =Z5(po) Pruen = ho + 11, + T,
where hy, = =Zl(po)en = Op(1), Tl = —==Z0(po)(In — Pcn)en = Op(A)2,) and
T}, = 9=C, R!, Pk nen = Op(K//n).
(v) \/LﬁZ;L(pO)PK,nMnun = \%ZL(PO)Mnun + OP(A:L/[?,I) + \/LECQR%PK,nMnUm
where \/LEC;LR;LPK,nMnun = Op(K/\/n).
(i) 5=Z! M! Py e, = —=Z! M/ €, — ==Z! M (I, — Pr .)€ + \/LECT'LMZIPKMGH,

vnn Vvn nn
where \/%EZ;LM,’L(L1 — Prpn)én = OP(A%?Q) and \/LEC;LM;@PK,nEn = Op(K/\/n).
(vii) 2= 71, M}, Prc oy Myt = <= 21 M} My, + Op(D2 ) + Op(K [ /).

(viii) \/Lﬁ[ QR;PK,anCn - E( r,LR;zPK,anCn)] = OP(\/ K/n) and \/LE[C;ALAnGn - E(Cflenen>] =

Op(y/K/n),

where A, = M} Pk, R}, Pk, or R, Px,M, R

Proof. (i) Because Z,, = Z, + (,, we have the decomposition that %Zg(po)PKmZn(po) = H, +
TH + T + TH + TH Since elements of Z, are uniformly bounded, H,, = O(1). By Lemma 7 (i),
TH = O(A,k1). By Lemma 6, T = Op(n=/2). By Lemmas 3 and 4, E(T{!) = O(K/n), and,
hence, T = Op(K/n) by Markov’s inequality. By Lemma 7 (iv) and (vi), Tf = Op(y/Anx.1/n) =
op(K/n+ Apk1).

(i1) and (iii) follow similarly to (i).

(iv) Because 7, = Z, + (,, we have \/LEZ;L(pO)PKmun = h, +Th + Th. By Lemma 6,
h, = Op(1). By Lemma 7 (iv), T}, = OP(A:L/]?J). As ¢, = [Gpunyo + GuR;, e, vy], by Lemmas 3
and 4, BE(T T4) = O(K?/n), and, hence, T, = Op(K /\/n) by Chebyshev’s inequality.

(v), (vi) and (vii) follow similarly to (iv). (viii) follows directly by Lemma 5. ]

The following lemma shows the orders of some expectation terms, which are helpful in determining
the approximated MSEs of the GS2SLS and CGS2SLS estimators.

Lemma9. (i) E[(¢] D¢, + F,€,)ene,| is UB, where D,, and F,, are given in Proposition 2.
(ii) Let the elements of n x n matrices { A, } be uniformly bounded, then elements of E(e €., Anvy,) and
E(en€,, An€,) are uniformly bounded.
(iii) Let the elements of n x m matrices { By, } be uniformly bounded, where m is a finite fixed number,
then E(e,e), B,v!) is UB.
(iv) Let the elements of n-dimensional vectors {C,,} be uniformly bounded, then E(e,€,,C,€.,) is UB.

Proof. (i) LetD,, = [d,;;] and F,, = [fu1, ..., fan]. The (,7)th element of E[(¢, D€, + Fye, )€€, ] is
E(Efw)dn,ii + p3 fri + Uf[tr(Dn) — i) = [E(Efu) - U?]dn,ii + 13 fri

and the (¢, j)th element for i # j is 02(d,,;; + d, j;). Since D,, is UB and elements of F,, are uniformly
bounded, E[(e/, D¢, + F€,)e,qe)] is UB.
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(i) Let A, = [an;j], then the ith row of E(e,e,, A,v,) is D D" | Gprs E(€ni€nrtnsg)
i B(€2,0n:). Thus elements of E(e,e,A,v,) are uniformly bounded. Similarly, elements of
E(ene,, An€,) are uniformly bounded.

(iii) Let B, = [by,y, - . ., by,,,]', then the (4, j)th element of E(e,¢;, B,vy,) is ) b E(enenivy,; ), which

when i = j and 0 otherwise. Thus E(e,¢/, B,v!) is UB.

(iv) follows similarly to (iii). L]

TL’L nz)

is equal to b,,; E(€?

Lemma 10. The sequence of matrices {(I,, — \W,,)"'} is UB in a neighborhood of \o and { R;;* (p)} is
UB in a neighborhood of py.

Proof. See [22]. ]

The following lemma shows the dominant components of estimation errors for parameters of the
model or for T,,(K') in (9), which help to derive the approximated MSE of the CGS2SLS estimator.

Lemma 11. Let Ly,, = —=(¢' D¢, + F,.¢,,) as in Proposition 2, then
\/ﬁ n

(i) the GS2SLS estimator 0, = |z, (ﬁn)Po 2 Zn (Do) 220 (Pn) PonYn (pn) satisfies \/ﬁ(gn—do) = Loy, +
op(1), where Loy, = [ Z;,(p0) PonZn(po)] ™ 7= Z1(p0) Ponns
(ii) \/n(Gye — 0ve) = L, + op(1), where
1 1 - o' . 1., -
L, = ﬁ(gv;en —ol)+ %Zénen - tr(M, R, )Ly, — E[ZganZn + E(, Rn¢)] Lan
with E(v), R,(,) = [tr(R.Gr) X0 + tr(Gy)o!
(iii) /n(6? — 02) = Lay, + op(1), where
1 202 2
Lin = V(e = 01,) = Z (Mo R Ly =~ B(€, RuGo) Lan
with E(e/, R,¢,)) = [tr(RnGr)oweyo + t1(Gr) o2, 0 tr(R,)]
(iv) \/Lﬁ[”fn(K) — T, (K)] = %(a’l,a;)’ + op(K/n) = Op(K/n), where

5, tr(Ry)],

1}67

a; = [02tr(CpisM, R, 1) — 02 tr( Py My, G R — t1(Pren M G) 0 0eY0) Lt
+ [tr(FnK,ZGn>0v670 + 062 tr<FnK,2GnR;l)> Ove tr(FnK,Z)]LQn + tr(FnK,Q)fYé)LSn + tr(FnK,B)IUln
and ay = —o, tr(PxnM,) L1, + tr(Tnk1) Lan.

Proof. (i) The b, satisfies

1

ViBa80) = [ Z3(50) Q0 (- Qs Q0) o Za )] Z4(30) Q0.+ Qb Qo) =@ ().

NG
Note that \%ngnun(ﬁn) = %Q{) n€n + %QE) WM R enn/n(po — pn) and

1 - 1
EQ&”Z"('E) QOH (p0)+ QOn nCn [ Qé),nMnZn+ﬁ@é},nMnCn](pO_ﬁn)'

By Lemma 6, ~Q,R.¢, = op(1), Q4 MG = op(1) and Qf, MR, 'e, = op(l). By
Proposition 2, v/n(p, — po) = L1, + op(1) = Op(1). Furthermore, ~Qf , Z,(p) = O(1) and
LQ0nMnZ, = O(1). Thus

Vit = 0) = (- Z000) Pon Zu o) = Za ) P + 00 (1)

=
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(i) Write &/ as
. 1 N <

1 1 ~ 1 N
= Ezénﬁn + ﬁZénMnun(pO — Pn) + EZQanZn@O — 6n) EZénMnZn((SO —0n)(Po — Pn)

By Lemmas 5 and 6,

(a) L2 Myu, = LB, Myu,) + op(1) = 2= tr(M, R;") + op(1) = Op(1),
(b) 12, RoZ, = LYE(Z},RuZy) + op(1) with B(Z5,RZy) = Zb,RuZn + [tr(RaG)Su0 +
tr(Gp)ol., Xy tr(R,)] = O(n), and
(©) 12}, M,Z, = Op(L).
Then
Vn(Gye — o )':\/ﬁ(lv'e — o, )—i—LZ' € +U—;’6 r(M, R, )v/n(po — pn)
Ve ve n ntn Ve \/ﬁ wntn n ndly 0 n

1 -

The result follows as /n(j, — po) = L1n + 0p(1) by Proposition 2 and v/n(d,, — 0o) = Lay + 0p(1)
by (1).
(iii) Note that

Ry (pn)(Yn — ann) = [Rn + (po — pn) My][tn + Zn (50 — gn)]

then by an argument similar to that for (ii),

1 2 2 -
Vn(6: —o?) = \/ﬁ(ﬁe;en — o)+ Ee;MnRglen\/ﬁ(,@o — pn) + ﬁeﬁanZn\/ﬁ(éo — ) +op(1)

where

(@) e, M,R, ‘e, = +E(e,M, R, c,) + op(1) with E(¢), M, R, "¢,) = 02 tr(M,R,*) = O(n), and
(b) LRy Z, = L E(€,R(a) +0p(1) with B(€, Ry (o) = [tr(RaGr)oweyo + tr(Gn)o?, Sy tr(Ry)] =
O(n).

1
n

The result follows by using the expressions for v/n(d, — o) and v/n(5n — po)-
(iv) By the mean value theorem,

1 -~
o o S .. )
= l tr<PK,anGn)av€7n + 0, tI‘(PK,anGan ) Ove tl"(PKmRnGn) ﬁ(én - 60)
n 0 0
1 (= tr(PgnMnGp)Goein + 62— tr( P MypGu Ry + tr(Pgn RyGn RTUM, R N
L (= tr(PrndaCl)ducin + 2 tr( P )+ tr(Pic N vata, ~ o)
n _Uve tl"(PKmMn)
1 tr(PKanGnRgl) -9 9 1 tr(PK,anGn)%/z ~ '
n < O \/E(O-e Ue) + n tI‘(PK’an)]m ﬁ(ave Uve)
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where &, is between &, and o, 62 is between 62 and 02, 4, is between 4, and 7o, R,, = R,,(j,) with j,,
being between po and f,, and G,, = Gn(Xn) with \,, being between )\ and \,. Let tr(PK,nAn) stand for a
trace term that appeared in the above equation and tr( Pk ,, A,,) be the term evaluated at the true dy and py.
Using the mean value theorem once again, then %[tr(PK,nAn) —tr(Pk,An)] = op(K/n) by Lemmas 10
and 4. Thus by (ii), (iii) and Propositions 1 and 2, \/iﬁ[”fn([() =T, (K)] = 2(a}, ay)' + op(K/n), where
a; = Op(K) and ay = Op(K). O

The following lemma, Lemma A.9 in [1], gives a sufficient condition that the chosen K by the
minimization of S’M(K ), say I, is asymptotically optimal.

|86 (K)=Sp.e(K)| P
Sn,e(K)

The following is a central limit theorem for linear-quadratic forms of disturbances from [17].

Sn E(K) p
RN 0, then s (B 502 (R — 1.

Lemma 12. If supy

Lemma 13. Suppose that {A, = |an;]} is a sequence of symmetric n x n matrices that are UB,
bk = (burc1s - - -, bun) is @ vector such that sup, =1 Y1 | [by| >t < oo for some n; > 0, and €,;’s in
€n = (€n1, " , €nn) are mutually independent, with mean zero, variance o>, and finite moment of order

higher than four such that E(|e,;|**") for some 1y > 0 are uniformly bounded for all n and i. Let 0,
be the variance of Q,, where Q, = €, Apeyn +b,€n — 37" A ii0r;. Assume that o, [n is bounded away
from zero.

Then, Q. /0o, < N(0,1).

C. Proofs

Proof of Proposition 1. As b,, = 6, + (Z! Pr, Z,)"'Z' Pp, R '€
1 1 1 1 1 1

\/ﬁ(gn —do) = [EZ:LFO,n(EF(;,nFO,n)_lEF(;,nZn]_lEZ;LFO,n(EFOI,nFO,n) \/—F(; nR; n:

By Lemma 6, L F{ ¢, = Op(n~"/?) and - =5 R e, —>N(O limy, o0 ﬁF’ R,'RI-E, ). Hence,

O,n**n O,n**n

- 1- _
V(b —80) = (=Z! Pr, Z,)~ —Z;PFnR,;len + Op(n=1?%)
n vn
2
_ _ _ _ 1= _
2 N(0, lim (—Z;PFnZn)*l22;PFnR;lR;;lPFnZn(—Z;PFnZn)*l)
n—oo N n n

by Slutsky’s lemma. 0

Proof of Proposition 2. The consistency of p,, follows from the uniform convergence that

g;z(pa Sn)gn<pv 5n) - Eg;(p, 60) Egn(pa 50) = OP(l) uniformly in p € [_aa CL]

and the identification uniqueness condition ([23] [Theorem 3.4]).

To prove the uniform convergence, we first show that g,,(p,d,) — gn(p,dy) = op(1) uniformly in
p € [—a,a]l. As €,(p,0,) = Ru(p)(Yn — Znon) = Ru(p)[tn + Zn(60 — 0n)]s

1 / < s < 1 / s
2_€n<p7 5n)Dn]€n(p7 5%) - %en(pa 5O)Dnj€n(p) 60)

n

1 / s < 1 NIYErZA 534 s <
= —e,(p, 50)Dann(p)Zn(50 — 0n) + %(50 — 0n) Zan(p)Dann(p)Zn(éo — 0n)
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Note that Z,, = Z,, + Cn. €,,(p, 60) D R (p )Z = Op(1) and LZ R, (p)D;;Rn(p) Z, = Op(1) b
Lemmas 5 and 6. Then 3¢/, (p, 5n)D,ijen(p,5 ) — 5=, (p, 00) D s€n(p, d0) = op(1), as on — 00 = op(1).
Since g, (p, §) is quadratic in p, it follows that

9n(p,0n) — gn(p, 66) = op(1) uniformly in p € [—a, d]
By Lemma 5, g, (p, 60) — E gn(p, d0) = 0p(1) uniformly in p € [—a, a]. Thus,
Gn(p,0y) — E gn(p, do) = op(1) uniformly in p € [—a, a]
Furthermore, E ¢,,(p, o) = O(1) uniformly in p € [—a, a|. Hence,

(9, 00)gn(p; 0n) — E g, (p, 0) E gu(p, 0o)
= 2[gn(p,0n) — Egn(p,50)] E gn(p, 00) + [9n(p, ) — E gn(p,00)]'[9n(p, 0n) — E gn(p, b0)]
=op(1)

uniformly in p € [—a, a).

2

We now show that the identification uniqueness condition holds. Note that E g,,(p, do) = % Z,[(po —
p), (po — p)?]". Let 7,1 and 7,5 be the eigenvalues of =/ =,,. Write =/ =,, = = ==, where Z,,, is a
2 x 2 diagonal matrix with diagonal elements 7,,; and 7,2, and =, is an orthonormal matrix containing
the eigenvectors of =/ =,,. By Assumption 5, there exists some constant > 0 such that 7,,; > 7 and

Tno > 1 for all n. Obviously, E ¢/, (po, d0) E gn(po, do) = 0. Then,
Eg;(p, 50) Egn(/), 50) - EQ%(PO, 50) Egn(ﬂOa )

_ [po — 0, (0 — P)21E4,ZanZnlpo — 0 (p0 — p)?)'

[po —p, (po — P)*1E1,Emlpo — ps (po — p)?)

LS

[(po — p)* + (po — p)*]

>0

for any p # po. Thus the identification uniqueness condition holds.
The consistency of p,, follows from the uniform convergence and identification uniqueness.
For the asymptotic distribution, by the mean value theorem, we have

_ 8941(@”571) ~ 3N ag;(ﬁnagn) < 3gn(pn,5n) ~

where p,, is between p,, and py. Then

Vi = po) = —(ollee2) D008y 189”“)"’ ) /g (9o, 62)

The z’Eh element of %{’jjsn) is —%e;(ﬁ?, 5n)DijMn(yn - Znén), which can be ?xpanded by using
Yn — ZnOn = Up + Zn (00 — 0p) and €,(pp, 0n) = [Ry + (po — pn) My [tn + Z, (50 — 05,)]. By Lemmas 5
and 6, the terms involving (6, — 0,,) or (po — pn) are Op(n~"/?). Therefore,

1 < 1
_ﬁdz(ﬁm ﬁn)DijMn(yn — Zn0y) = _EGLDZJ'MHR;I% + OP(n71/2>

1
= —Eaf tr(D} M, R, ") + Op(n~1/?)
— 0p(1)
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by Lemma 5. Thus, %;’5") =E %p"’%) + Op(n~Y2) = Op(1), where

89n(Poa do)
dp

Similarly, ag”(gZ’S“) =E ag”(ap;”%) + Op(n~=1/2) = Op(1). Thus,

o2
= ——<[tr(Dy Mo Ry, - ta(D;
n

?’Lkd

M, R "))

Vi po) = (b 2 ) (1 H) i . 6) + O

For /ngn(po, 0,), the ith element is

1 § § 1
——[ent+RnZ0n(80—04)] Dpjlen+RnZn(50—0,)] = —=¢€, njen+ €D Ry Zu\/1(60—06,)+Op(n™"/?)

NT 7
By Lemmas 5 and 6,
1 s 1 s - 1 s _
Ee;DannZn = ﬁe;DmRn(Zn + ) = - E(e, D} RuGy) + Op(n™?) = Op(1)
where

E(e, Dy RuGp) = [tr(D;; RnGr)oweyo + o’ tr(D;jRnGnRgl), tr(D; Ry )0
By Proposition 1,

< 1- _
V(0 — 0g) = (EZ;PFnZ )t L Pr, R e, + Op(n~1?)

N
Then the ith element of \/ng,(po, o) is An; + Op(n_l/Q) where
Api = %E;Dnjen - %E( G (= L7 ! Pp,Z,)"! 7 2 P, Ry e
Hence,
o2 ka 1 ka g
V(pn — po) = (n_ez ZtTQ(DZjMnRglw Z n tr(D5; Mo Ry 1) Api + Op(n~'/?2)
j=1 j=1

1
— ﬁ(egﬂ)nen + Foen) + Op(n’I/Q)
where D,, and F,, are in, respectively, (6) and (7). Note that tr(DD,) = 0, then /n(p, — po) is
asymptotically normal with a finite variance by Lemma 13. U
Proof of Proposition 3. The GS2SLS estimator 52315,71 satisfies

1
vn

N 1 ~ ~ \1— 1~ ~ 1 !
\/5(52sls,n - 50 - bn,K) = [EZ;L(Pn)PK,nZn(Pn)] ! [Zn(pn)PK,an(pn)un - E(CanPKmen)]

where
E(C R, Pr nén) = [tr(Tnk2)owey0 + 0 tr(FnK’g),tr(FnK,l)ove]' = O(K)
by Lemma 4. Write Z,,(p,) = Zn(po) + (po — pn) My Z,, then

1 1 1 . .
;Z;(pn)PK,nZ (Pn) = EZ/ (p0) Pc.nZn(po) + ;[ZQM;PK,nZn(po)] (Po — pn)

1
+ _ZvliMr,zPK,nMnZn(pO - ﬁn)Q
n

By Lemma 8 (1)—(iii),
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@ if K/n = ¢ # 0, 1 Z(p0)PrnZn(po) = Hn + G R, PnlnG + op(1) = Op(1),
170 M! P nZo(po) = Op(1) and L2 M! Py, M, Z,, = Op(1);

0 i K/n — 0. 121(00) PrnZu(ps) = Hy + 0p(1) = Op(1), 1200 PrnZn(po) = Op(1) and
170 M Py My Zy = Op(1).

By Lemma 5, (! Rl P, R( — 2Q,1(K) = Op(VK /n), where €,,1(K) = O(K) by Lemma 4. By
Proposition 1, \/n(Jy — 0,) = Op(1). Hence,

(©) if K/n— c# 0,22 (pn)PxnZn(pn) = Hn + Q1 (K) + 0op(1) = Op(1) and b, i — bpr1 =
op(1);
) if K/n— 0,22 (p)PrnZn(pn) = Hy 4 0op(1) = Op(1) and by, jc — bpx 2 = op(K/n).
As Rnun = €p, Zn(ﬁn) - Zn(p()) + (,00 - ﬁn)MnZn and Rn(ﬁn) = Rn + (,00 - ﬁn)Mna
1 N -
%[Z;z(pJPKmRn(pn)un - E(C;R;PK,nen)]

= = Zulo0)en = = a0 = Pi)en + =GR Pt =BG, P
¥~ 2L Prcnea/p0 — )+~ Z40) P Mo B /o — )
+ %Z;M,QPKmMnR;len\/ﬁ(po — pn)’.
The terms on the right hand side have the following properties:

(1) By Lemma 8 (iv), —=Z;,(po)en = Op(1) and —=Z;(po)(In — Prn)en = OP(A;{,?J) =op(1);
(2) by Lemma 8 (vii), 2=}, ), P nén — B(C, Ry Picnen)] = Op(\/K/n);

(3) by Lemma 8 (vi), 1 Z/ M! Py e, = Op(n™"2) + Op(\/Duk2/n) + Op(K/n);

(4) by Lemma 8 (v), 22/ (po) Pxcn M Ry ten, = Op(n™V2) + Op(y/Auk,1/n) + Op(K/n);

(5) by Lemma 8 (vii), 22/ M Px , M, R, '€, = Op(n='/%) + Op(y/Ank2/n) + Op(K/n).
Therefore,

(e) if K/n — ¢ # 0, 2[Z(pn) Picn B (pn)ttn—E(C, Ry Pc nen)] = 0p(1), and dogs— 00 —bpic1 = 0;
0 if K/n — 0, =[Z,(pn)PrnB(pn)un — E(C R, Prnen)] = 7=Z5(po)en + op(1), and

V(82515 — 00 — bn.ic) 4 N(0,02H~") by Lemma 6. O

Proof of Proposition 4. By Proposition 3, it is sufficient to show that \/n(b,x — bnx) = op(1).
Furthermore, as 1 Z! () Px.nZn(pn) = Op(1), we only need to show that

%TH(K) _ %Tn([() — op(1)
By Lemma 4, as j,, — po = Op(n=/?),
S ltr(Fok) = ()] = = (o = 5) (P M) = Op(E/n) = op(1)
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By the mean value theorem,

%[tr{f‘nff,g —tr(Chk2)] = %(ﬁo — pn) tr[PK,nMnGn(;\.nﬂ + %(;\n — o) tr[PK,an<lbn)G?L(xn)]
= OP(K/TL)

as pn — po = Op(n~/2), \y — Ao = Op(n~"/?), and G,,()\,,) is UB in probability by Lemma 10, where
A is between Ao and \,, and pn 18 between pg and p,,. Similarly,

1 -
ﬁ[tI'(FnK’g) - tr(FnK’g)] = OP(K/H) = OP(l)

By Lemma 11, 52 — 02 = Op(n~"/?) and 6, — 0,c = Op(n~'/?). Furthermore, tr(T,51) = O(K),
tr(rn[(,g) = O( ) and tI‘( nk 2) (K) Then

1 ~ o ~ ~ ~ 1
_[tr(FnK,2)0v67n+052 tr(FnK,S)a tr(FnK,l)ave]_ [tr(FnK,2)0v670+052 tr(FnK,3)7 tr(FnK,l)Uve] == OP(l)

NG NG
and the result in the proposition holds. 0

Proof of Proposition 5. We find a decomposition for \/5(52518,,1 — dp) as in Lemma 2 and show that all
the conditions in the lemma are satisfied.

Let p,, = tr(S,(K)), where S(K) is in (16). We first establish some order properties for pg ,,. The
Pk 1s equal to

2

_ _ 1
PKmn = % tr[(In - PK,n)ZnQ)O)Hr:lH;lZ;L(pO)(In - PKn)] + ET;(K)HJIHEITTL(K)

027— max = = TH,max
< ZEE (1, — Prcn) Za(po) Z3(p0) (I = Pica)] + 2220 (K) X (K)

where Ty max 18 the largest eigenvalue of H, ! which is bounded from above because lim,,_, H,, is
finite and nonsingular. Furthermore, as Y/ (K)Y,(K) < K?c for some constant ¢ > 0 by Lemma 4,
prn = O(K 2in+ A, k.1)- By a similar argument but with a lower bound for py ,, by using the smallest
eigenvalue of H, ! and by Assumption 9 (i), as o, # 0, limy, 00 prcn/(K?/n + Ayi1) > ¢ for some
constant ¢ > 0. These together mean that p,, has exactly the same order as (K?/n+ A, x.1). This order
of px ., together with K?/n — 0 are helpful to determine the orders of the terms in the decomposition
of \/ﬁ<52sl5,n — do).

The 32518,,1 satisfies

where h,, = \/%;Z;L(ﬁn)PK,nun(ﬁn), and

~

1 1 N
H, = EZ;q(pO)PK,nZn(pO) + E(Po - pn)[Z%(PO)PK,nMnZn + Z;LM;LPK,nZn(Po)]
1
+ E(p() - ﬁn)2Z’;LMT,LPK,TLMnZn

because Z,,(pn) = Zn(po) + (po — pn)MnZ,. By Lemma 8 (i)—(iii) and Lemma 7 (vi),

1
EZA(ﬂO)PK,nZn(Po) =H,+T +T) + T30+ T
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where H, = O(1), Tl = O(Aukp), Tif = Op(n™'?), TH = Op(K/n) = op(px,s) and
Tﬁ; =op(K/n+ Ank1) = op(prn);
1 1 _ - /

mz&(po)PK’nMnZn = mz&(po)MnZn + O( AnK’lAnKQ/TL) + Op(n_1> + Op(Kn_3/2)
+ OP(Kn_3/2 + n_l/QAnK’l) —+ Op(\/ AnK,g/n)

1 - _
=7 M, Z, n
o »(po) + op(pr.n)
and 5 Z/ M Px .M, Z, = Op(1/n) + Op(K/n?) = op(pK ). As

\/ﬁ(ﬁn — po) = (€nDnen + Fren) + OP(n_1/2) = Op(1)

1
VLD
it follows that

(po — ﬁn>[Z7/z<p0)PK,nMnZn + Z:zMr,zPK,nZn(pO)] = T5I;Iz + OP(pK,n)

S|

where T2 = — L (¢/Dye, + Fue) [ 28 (po) Mo Zy + ZL M. Z,(po)] = Op(n~"?). Then, H, = H, +
TT{{ + Op(ijn) with Tr{{ = T{i + TQFTIL + T5Hn
For iLn, we have

1 1 1
=—27, P, ntn™T = _~n Z M P ntn Z, P nMn n| T — _Nn QZ/M,P nMn )
\/ﬁ n(po) K.n€ +\/ﬁ(p0 P )[ np 'K nt + n(po) K, u ]+\/ﬁ(p0 P ) n*int K, u

where, by Lemma 8 (iv)—(vii) and Lemma 7 (vi1),

fun

@ 5 20(00) Prcnn = ho -+ Tl + T, with b, = Op(1). T}y, = Op(A,5¢ ) and T, = Op(K/+/n),
(b) 22 M) Py ne, = =2 M) Py ey, + Op(K/n) = Op(n=12),
(© 17! (po) PicnMyu, = 27! (po) Myuy, + 0p(pin), and

(d) n=3/2Z! M! Py, My, = 0p(prc.n)-
Thus, hy = by + T + 0p(px ), where T/ = TE + TP + TI + TP with
Th = —n=32(e Dy, 4 Fren) Z, (po) Mpun, = Op(1/4/n)
and
Th = —n=32( Dye, + Fren) Z, M. Py nen, = Op(1/4/n)

Corresponding to the terms of the decomposition in Lemma 2, we have Z" = h,, — h,, — T, Z# =
ﬁn - Hn - T,,{I,

and

We shall check that all conditions in Lemma 2 are satisfied and derive the explicit expression for
E[A,(K)]. As h, + T} + T} = \%Z’l(po)PK,nen + \/LEC,QR;LPK”GH, then under the assumption that
ps = E(2,v,;) = 0, we have

s |9,

. . 1
E(hn + Tty + Top) (b + T, + 1)1 = —= 23 (p0) Prcn Zn(po) + — B(G R, P nén€, Picn BonGa)
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Since ¢, = [GrvnY0 + Gn R, '€y, vy, the matrix E(C, R!, P nén€l, Prcn BnCn) — Qn2(K), where
Qn2<K) = E(C;’lR:lPK,TLEH) E(E;LPK,TLR’HQH)

can be expanded as a 4 x 4 block matrix, with each block being of the order O(K') by Lemmas 3 and
4. Thus,

Then,
2
o¢ _ _
El(hn + Tty + Top) (o + T + T5,)'] = —< 23 (p0) Precn Zn(po) + Qua(K) + 0p(pic.n)
Note that ]
E(Tiihnh/n) = _EZ;L(pO)MnR;I E[(G/nDnen + Fnen)en‘f;@]zn(PO)
and

1 _ _
B(T4hn) = = —5 2, M; P B(€,Dnén + Fuén)enel ] Zn(po)
where E[(¢, D¢, + F,€,)enc,] is UB by Lemma 9 (i), then E(T2 h!)) = O(1/n) = o(px..), and
E(Ty,h,,)

1 - - 1~ _
= —EZ;LM,’L E[(€,Dnen + Fren)ene,] Zn(po) + EZ;LM,’L(Ll — Pk ) El(€,Dye, + Fren)ene,] Zn(po)
=0(1/n) + O(/Ankz2/n)

= O(IOK,n)
by Lemma 7 (ii). As E(h,h,H;'T") = —%QZ;L(/)O)(I” — Pg.n)Zn(po), and, by Lemma 9,
E(h b, H'TH') = O(1/n) = op(px.,) and E(h, b, H'THY = O(1/n) = op(px.), we have
. %, . 1 207 -, ,
ElAw(K)] = —=Z,,(p0) PrnZn(po) + —Eua(K) + == Z,,(po) (In = Prcn) Zu(po) + 0r(prcn)
o? _ ~ 1
= Uan + f ;(PO)Un — Prn)Zn(po) + EQM(K) + op(pxn)
Let S, (K) be given by (16), then all conditions of Lemma 2 are satisfied. L]

Proof of Proposition 6. The proof follows by modifying that of Proposition 5. Now pg, =
tr(Sp(K)) = O(K/n + Ank1). The deasn satisfies

%[Z;@n)PK,nun(ﬁn)—Tn(K)J

By Lemma 8 (viii), 75 — E(TY!) = op(K/n), where T4 = 1(! R P ,,R,(, is defined in Lemma 8
and E(T5]) = 2Q,,1(K) with Q,,; (K) given in (11).

Define 7! = E(T}!). Then, from the proof of Proposition 5,

A JERR N 1 -
V(0210 —00) = H  hy, with H, = = Z! (p) Pic.nZn(p) and h,, =
n

H,=H, + Tf + op(pK.n), Where Tf = T{i + T;fl + Tgﬁ + TGIZ
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For h,,, we have

. 1 o
[Tn(K) - Tn(K>] + %(ﬂo - pn)[ZnMr/LPK,nen + Z;L(pO)PK,nMnun]

1
NG
(pO - ﬁn)zZ;@MrlLPK,nMnun

By = hp +Th + T —

1
+%

where T = \/Lﬁ[ ! R! Py nen, — E(C R, Pk n€n)] = Op(y/K/n) by Lemma 8 (viii). By Lemma 11 (iv),
1

- _ 1
—%[Tn([() — Tn(K)] = T, + op(pr.n) With Tg), = —;(a/u as)" = Op(K/n)
where a; and ay are defined in Lemma 11 (iv). By Lemma 8 (v)—(viii), %Z;LMQPK’HEH =
%Z;LM;LPKﬂ?,En + %E(QZLMTILPK,nEn) + OP(pK,n)a

24 (0) Prca Mt =~ Z4() Mot + — BC, Prca Matia) + 00 (01
and #Z;MT’IPK“Mnun = op(px.n). Therefore,
hy = by +T" + 0p(pin), where T" = T + T8 + T8 +Th +Th + T
with Tf and T}, defined in the proof of Proposition 5; and
Th = —n"2(e} Dypen + Fren) [E((, M), Prnen) + E(C, Rl Prc.n Myu,)] = Op (K /n)

For the decomposition in Lemma 2, take Z2(K) = (hp+T")(hp+T") — (hoh H-'TH' ) — A, (K),
and

Then Z2(K) = op(p.n). To check that the conditions in Lemma 2 are satisfied, we now investigate
E(A,(K)). First,

1 _ _ o2 _
E[(hn + Tlhn)(hn + Tlhn)/] = n E(Z;z(:Ol))PK,nGne;LPK,nZn(pO)) = ?EZ;L(pO)PK,nZn(pO)

By the proof of Proposition 5, E[h,(T4. + T¥)] = op(pkn,). Under the assumption that
E(e3,) = E(2,0,) = 0, we have E(h,,TY) = 0, E(T) TY) = 0,

ng

2
E(haT4y) = =52, (p0)F[E(G, M, Pinen) + E(GL R, Prcn M)

and
B Ti) =~ [E(hnat), Ehna)] = —— (o1 (), o (K

where IT,,51 (K) and T1,,5 »(K) are given in (23) and (24) respectively. The expression for E(7%, T ) can
be derived by Lemma 3. Under Assumption 9 (ii), vecp’(I'y k) veen(Iyk,;) = o(K) for i, j = 1,2, 3.
Then E(T2,TF) = 11,1 (K) + o(K /n), where I1,,; (K) is given in (21). By the proof of Proposition 5,

E[h,hl HW(TE + THY] = op(pk.,). Furthermore,

2
_ O-e 7 7
Blb Hy (T8 + TEY) = =22 Z4p0) (I = Pan) (o) + 02T,
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Therefore,

. o? _ - 1 1 1
E(A,(K)) = Uean + ﬁZ;z(pO)(]n — Pr.n)Zn(po) + EHHI(K) + EHnQ(K) + EHni‘I(K) + op(px.n)
where L11,5(K) = E[(h,T)*] — 202TH and 11,5(K) = E[(h,T%)%]. Let S,(K) be given by (17),
then all conditions in Lemma 2 are satisfied and the result in the proposition holds. [

Proof of Proposition 7. As Z,,(p,) = Z,(po) + (po — pn)M,Z, and Z,, = Z, + (,, we have

Z;L(ﬁn)un - PK,n>Zn(i5n) = Z;](po)([n - PK,n)Zn(pO> + (Po - ﬁn)[Z;zM;z(In - PK,n)Zn(pO)]s

where

Zy,(po)(In = Pr.n) Zn(po)
= ZZ(PO)(]n - PK,n>Zn(p0) + [Zvlz<100)(ln - PK,H)RnCn]S + C;R;RnCn - CZR;PK,anCn

Sne(K) = Sne(K) = € H MG R RuCo+ (po = pu) (G RaCa)® + (p0 = )Gy Mool H '

As [S,¢(K) — S, ¢(K)] does not depend on K, arg ming S, ¢(K) = arg ming S, ¢(K). By Lemma 12,
BueK)=Sne(B)| 2,
Sn,e(K) )

Let ¢; be the ith column of the (m + 1) x (m + 1) identity matrix. Since 62 = o2 + op(1) and

H, = H,+o p(1) = Op(1), for the GS2SLS, by the triangular inequality, it is sufficient to show the

following:

we only need to show that supy

(i) supg |€/Qna(K)e;|/[nSne(K)] < ¢ for some constant ¢ > 0 and supg |e}[Qna(K) —

Qa(E)]ey| /[0, (K)] - 0

(i) supy [€;Z;,(po)(In = Prcn) Zn(po)e;| /[nSne(K)] = 0;

(iii) supg |ei21(K)]ej|/[nSne(K)] < ¢ for some constant ¢ > 0, supg |ei[2(K) —
Q1 (K)]e;|/[nSne(K)] 2 0 and supy |e4[C) R, Prcn RnCpn — Q1 (K)]ej]/[nSne(K)] 2 0;

(19) D €422, (00) (I — Prcn) R/ [0S (K] 5 0, and

(V) supg |€i{(po — pn)[Z, My, (In — Prcn) Zn(po) — G M RG]
4 (0 — PP ZM (I — Pica) Mo Za — COMM,Gol sl nSne (K] 25 0.

For the CGS2SLS, we need to show (ii)—(v) and

(") supg |€;[IL,1 (K) + 12 (K) + I,3(K)]e;j| /[nSne(K)] < ¢ for some constant ¢ > 0
and supje €}y (K) + o (K) + g (K) — Ty (K) — Mo (K) — s (K)]ej]/[1Sn¢(K)] — 0.

We first show (i) and (i’). By Lemma 4,

sup €2 (K)ej] /[nSne(K)] < e Sup K?/[nSn¢(K)]
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for some constant ¢; > 0. By Assumption 10 (ii), for the GS2SLS, S,,¢(K) > K?cy/n for some ¢y > 0.
Then supje |€}Q2(K)e;|/[nSn¢(K)] < ¢ for some constant ¢ > 0. For tr[Px , Ry (5n)Gn(An)], by the
mean value theorem,

| 2 Prcn R (Pn) G(An)] = tr (Te.2)|
= [(An = 20) tr[Prcn R (72) G (M) = (P = po) tr[Prcn MG (3]

< Key/ G = 20)2 + (90 — po)?

in probability for some constant ¢ > 0, by Lemmas 10 and 4. As all parameter estimates used in Qng(K )

are consistent, applying similarly the mean value theorem to other terms in Qng(K ), we can see that
|[Q2(K) — Qo (K)|| < K2¢, in probability, where ¢, = op(1) does not depend on K. Thus (i) holds.
For the CGS2SLS, (i’) holds similarly.

The (ii) holds because |€}Z! (po) (I, — Pr.n)Zn(po)ej| < c1A, k1 for some ¢; > 0, and n.S, ¢(K) >
cA, k1 for some constant ¢ > 0 by Assumption 10 (ii).

For (iii), the first two results are similar to those in (i), thus we only show that

SUP [€5[G Bty Prcn nGn = o (Kl |/ IS ¢ (K] =0
By Chebyshev’s inequality, for any 1 > 0,
P(sup [€;[Gu B PrcnFtnCn = Qon (K)leg |/ [nSn ¢ (K)] 2 1)
<Y E{EG R PronRaGn = Qo (K)es€5[G R P R — Qur (K)]es} /[P0 57, (K]
K
< X B{GIC R PRy = Qu (KGR, P R — Qo (K)ex}/ [°n? 7 (K)
K
< S Ko/l S0 < K enllnsis(i)
K

for some constants ¢ > 0 and ¢; > 0, where the third inequality follows by Lemmas 3 and 4, and the last
inequality holds since n.S,, ¢ (K) > K¢, for some constant c; > 0 by Assumption 10 (ii). The result then
follows by Assumption 11.

For (iv), by Chebyshev’s inequality, for any n > 0,

P(Sup 1€:23,(p0) (I = Picn) RuGnesl /1S, e (K)] > 1)

< Z Ele;Zy,(po)(In = Pre;n) RuGae€iC Ry (In — Prcu) Zu(po)lei/ [n*n* Sy ¢ (K)]
Z €; 23 (p0) (In = Prcn) R B(GaGo) Ry, (I — Prcin) Zn(po)ei/ 1170 Sy ¢ (K)]

< Z Te.max€i Zn(P0) (In = Pic.n) Zn(po)es/ [1°n? Sy ¢ (K)]

< ZC/ 7S¢ (K)]

for some constant ¢, where 7¢ ax denotes the largest eigenvalue of R;, E((, () R,,, and the last inequality
holds because R), E((,(,) R, is UB and S, ¢(K) > ¢1A, k1 for some ¢; > 0. Thus the result holds.
For (v), as Z, = Z,, + (, and /n(p,, — po) = Op(1), we show the following:
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(1) supg |e;Z, My(In —  Prpn)Za(po)ej|/Iny/nS,e(K)]  — 0 and supg |e;Z, M, (I, —
Pr )My Ze;]/[n*Sne(K)] — 0;

(2) supg |€;AnCne;l/[ny/nSn e (K)] 250, where A, = Z! M!(I,, — Prp)Rn, Z! (po) (I, — Pr.n) M,
or Z! M! (I, — Py ) My;

(3) sup |e; B[, My Pic o RnGalej| / [nv/nSne(K)] — 0, supg |e; B[, M; Prcn M Gales|/ [ny/nSn ¢ (K)) —
0, supg ei{¢, M), PxnRnCn — E[GM; PrnRuCl}esl/[ny/nS,e(K)] = 0, and
supy |€;{C}, M}, Pic.n MG — B¢, M, Pic s MGl Y|/ [n/1Sn e (K)] 2 0.

By Lemma 7 (iii), we have

SUp |6{Z3,M; (L, = Prca) Zpo)es |/ [/ ()] < sup e/ Do /S (KD Buica/ 116K

for some ¢ > 0. Since supyx Ank 2/ [NSne(K)] < D5 Ank2/[nSne(K)] and A, k2 = o(1), the first
result in (1) holds by Assumption 10 (ii). The second result in (1) holds since

sup |e}Z/ M/ (I,, — PKm)MnZnej]/[nQSn,g(K)] <sup cAnk2/[nSpe(K)]
K K
for some ¢ > 0. For (2), similar to (iv), for any > 0, we have

P(sup €120 M, (In = Picn) RuGoes|/Inv/nSp e (K)] > ) < en™® Y (Duica/ [0S (K)]) 1S (K)]

P(Sl}l{p €52, (po) (I — P ) My, Gues| /[ny/nSn e (K)] > 1) < cn”? Z(AnKJ/[nSﬂé(K)])[nsn,£(K)]_17

and
P(s?(p €, 23, M), (I, = Pic) MoGaesl /[0S e (K)] > 1) < en™ > (Angca/[nSn¢(K)]) [0S, ()]

for some ¢ > 0. (3) is similar to (i). L]

References

1. Donald, S.G.; Newey, W.K. Choosing the number of instruments. Econometrica 2001, 69,
1161-1191.

2. Nagar, A.L. The bias and moment matrix of the general k-class estimators of the parameters in
simultaneous equations. Econometrica 1959, 27, 575-595.

3. Liu, X.; Lee, L.F. Two stage least squares estimation of spatial autoregressive models with
endogenous regressors and many instruments. Econ. Rev. 2013, 32, 734-753.

4. Benirschka, M.; Binkley, J.K. Land price volatility in a geographically dispersed market. Am. J.
Agric. Econ. 1994, 76, 185-195.

5. Anselin, L.; Bera, A. Spatial Dependence in Linear Regression Models with an Introduction to
Spatial Econometrics. In Handbook of Applied Economic Statistics; Ullah, A., Giles, D.E., Eds.;
Marcel Dekker: New York, NY, USA, 1998; pp. 237-289.

6. Case, A. On the use of spatial autoregressive models in demand analysis. Discussion Paper
135, Research Program in Development Studies, Woodrow Wilson School, Princeton University:
Princeton, NJ, USA, 1987.



Econometrics 2013, 1 114

7. Case, A. Spatial patterns in household demand. Econometrica 1991, 59, 953-965.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Case, A. Neighborhood influence and technological change. Reg. Sci. Urban Econ. 1992,
22,491-508.

Case, A.; Hines, J., Jr.; Rosen, H. Budget spillovers and fiscal policy independence: Evidence from
the states. J. Public Econ. 1993, 52, 285-307.

Besley, T.; Case, A. Incumbent behavior: Vote-seeking, tax-setting, and yardstick competition.
Am. Econ. Rev. 1995, 85, 951-963.

Kelejian, H.H.; Prucha, I.LR. A generalized spatial two-stage least squares procedure for estimating
a spatial autoregressive model with autoregressive disturbances. J. Real Estate Financ. Econ.
1998, 17, 99-121.

Drukker, D.M.; Egger, P.; Prucha, .LR. On two-step estimation of a spatial autoregressive model
with autoregressive disturbances and endogenous regressors. Econ. Rev. 2013, 32, 686-733.
Kelejian, H.H.; Prucha, I.LR. Estimation of simultaneous systems of spatially interrelated cross
sectional equations. J. Econom. 2004, 118, 27-50.

Kelejian, H.H.; Prucha, .LR. HAC estimation in a spatial framework. J. Econom. 2007, 140,
131-154.

Lee, L.E.; Yu, J. Efficient GMM estimation of spatial dynamic panel data models with fixed effects.
Working paper, 2012.

Chamberlain, G. Asymptotic efficiency in estimation with conditional moment restrictions. J.
Econom. 1987, 34, 305-334.

Kelejian, H.H.; Prucha, .LR. On the asymptotic distribution of the Moran [ test statistic with
applications. J. Econom. 2001, 104, 219-257.

Kelejian, H.H.; Prucha, I.LR. A generalized moments estimator for the autoregressive parameter in
a spatial model. Int. Econ. Rev. 1999, 40, 509-533.

Hahn, J.; Hausman, J. A new specification test for the validity of instrumental variables.
Econometrica 2002, 70, 163—189.

Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Boston,
MA, USA, 1988.

Liu, X.; Lee, L.F. GMM estimation of social interaction models with centrality. J. Econom. 2010,
159,99-115.

Lee, L.FE.  Asymptotic distributions of quasi-maximum likelihood estimators for spatial
autoregressive models. Econometrica 2004, 72, 1899—-1925.

White, H. Estimation, Inference and Specification Analysis; Cambridge University Press: New
York, NY, USA, 1994.

(© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).



	Introduction
	Properties of the GS2SLS and CGS2SLS Estimators
	Approximated MSE and Optimal K
	Monte Carlo Study
	Conclusions
	Notations
	Lemmas
	Proofs

