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Abstract: In regression we can delete outliers based upon a preliminary estimator and
re-estimate the parameters by least squares based upon the retained observations. We study
the properties of an iteratively defined sequence of estimators based on this idea. We relate
the sequence to the Huber-skip estimator. We provide a stochastic recursion equation for the
estimation error in terms of a kernel, the previous estimation error and a uniformly small
error term. The main contribution is the analysis of the solution of the stochastic recursion
equation as a fixed point, and the results that the normalized estimation errors are tight and
are close to a linear function of the kernel, thus providing a stochastic expansion of the
estimators, which is the same as for the Huber-skip. This implies that the iterated estimator
is a close approximation of the Huber-skip.
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1. Introduction and Main Results

Outlier detection in regression is an important topic in econometrics. The idea is to find an estimation
method that is robust to the presence of outliers, and the statistical literature abounds in robust methods,
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since the introduction of M-estimators by Huber [1], see also the monographs Maronna, Martin, and
Yohai [2], Huber and Ronchetti [3], and Jurečková, Sen, and Picek [4]. Recent contributions are
the impulse indicator saturation method, see Hendry, Johansen, and Santos [5] and Johansen and
Nielsen [6], and the Forward Search, see Atkinson, Riani, and Cerioli [7].

The present paper is a contribution to the theory of the robust estimators, where we focus on the
Huber [1] skip-estimator that minimizes

n∑
i=1

ρ(yi − β′Xi),

where the objective function, ρ, is given by

ρ(z) =
1

2
min(z2, c2) =

1

2
(z21(|z|≤c) + c21(|z|>c)).

This estimator removes the observations with large residuals, something that, at least in the analysis
of economic time series, appears to be a reasonable method.

It is seen that ρ is absolutely continuous with derivative ρ′(z) = z1(|z|≤c), but ρ′(z) is neither monotone
nor absolutely continuous, which makes the calculation of the minimizer somewhat tricky, and the
asymptotic analysis rather difficult.

Thus the estimator is often replaced by the Winsorized estimator, which has convex objective function

ρ1(z) =
1

2
z21(|z|≤c) + c(|z| − 1

2
c)1(|z|>c)

with derivative

ρ′1(z) = z1(|z|≤c) + csign(z)1(|z|>c),

which is both monotone and absolutely continuous and hence a lot easier to analyse, see Huber [1]. Note,
however, that the function ρ1 replaces the large residuals by ±c, instead of removing the observation.
This is a less common method in time series econometrics.

An alternative simplification is formulated by Bickel [8], who suggested applying a preliminary
estimator β̂n0 and define the one-step estimator, β̂n1, by linearising the first order condition. He also
suggested iterating this by using β̂n1 as initial estimator for β̂n2 etc., but no results were given.

In the analysis of the Huber-skip, derived from ρ, we shall replace β by a preliminary estimator in
the indicator function, which leads to eliminating the outlying observations, and run a regression on the
retained observations. We shall do so iteratively and study the sequence of recursively defined estimators
β̂nm. We prove under fairly general assumptions on regressors and distribution that for (m,n) → ∞,
the estimator β̂nm has the same asymptotic expansion as the Huber-skip, and in this sense β̂nm, which is
easy to calculate, is a very good approximation to the Huber-skip.

One-step M-estimators have been analysed previously in various situations. Apart from Bickel [8],
who considered a situation with fixed regressors and weight functions satisfying certain smoothness
and integrability conditions, Ruppert and Carroll [9] considered one-step Huber-skip L-estimators.
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Welsh and Ronchetti analysed the one-step Huber-skip estimator when the initial estimator is the least
squares estimator, as well as one-step M-estimators with general initial estimator but with a function
ρ with absolutely continuous derivative [10]. Recently Cavaliere and Georgiev analysed a sequence of
Huber-skip estimators for the parameter of an AR(1) model with infinite variance errors in case the
autoregressive coefficient is 1 [11]. Johansen and Nielsen analysed one-step Huber-skip estimators for
general n1/2 consistent initial estimators and stationary as well as some non-stationary regressors [6].

Iterated one-step M-estimators are related to iteratively reweighted least squares estimators. Indeed
the one-step Huber-skip estimator corresponds to a reweighted least squares estimator with weights
of zero or unity. Dollinger and Staudte considered a situation with smooth weights, hence ruling out
Huber-skips, and gave conditions for convergence [12]. Their argument was cast in terms of influence
functions. Our result for iteration of Huber-skip estimators is similar, but the employed tightness
argument is different because of the non-smooth weight function.

Notation: The Euclidean norm for vectors x is denoted |x|. We write (m,n) → ∞ if both m and n
tend to infinity. We use the notation oP(1) and OP(1) implicitly assuming that n → ∞, and P→ means
convergence in probability and D→ denotes convergence in distribution. For matrices M we choose the
spectral norm ||M || = max{eigen(M ′M)}1/2, so that ||x|| = |x| for vectors x.

2. The Model and the Definition of the One-step Huber-skip

We consider the multiple regression model with p regressors X

yi = β′Xi + εi, i = 1, . . . , n, (2.1)

and εi is assumed independent of (X1, . . . , Xi, ε1, . . . , εi−1) with known density f,which does not have to
be symmetric. These assumptions allow for both deterministic and stochastic regressors. In particularXi

can be the lagged dependent variables as for an autoregressive process, and the process can be stationary
or non-stationary.

We consider estimation of both β and σ2. Thus we start with some preliminary estimator (β̂n0, σ̂
2
n0)

and seek to improve it through an iterative procedure by using it to identify outliers, discard them
and then run a regression on the remaining observations. The technical assumptions are listed in
Assumption A, see §2.2 below, and allows the regressors to be deterministic or stochastic and stationary
or trending.

The preliminary estimator (β̂n0, σ̂
2
n0) could be a least squares estimator on the full sample, although

that is not a good idea from a robustness viewpoint, see Welsh and Ronchetti [10]. Alternatively, the
initial estimator, β̂n0, could be chosen as a robust estimator, as for instance the least trimmed squares
estimator of Rousseeuw [13], Rousseeuw and Leroy [14] (p. 180). When the trimming proportion is
at most a half, this convergences in distribution at a usual n1/2-rate, see Vı́šek [15–17], and as σ̂2

n0 we
would choose the least squares residual variance among the trimmed observations, bias corrected as
in (2.7) below.
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The outliers are identified by first choosing a ψ giving the proportion of good, central observations
and then, because f is not assumed symmetric, introducing two critical values c and c so∫ c

c

f(v)dv = ψ and
∫ c

c

vf(v)dv = 0. (2.2)

This can also be written as τ0 = ψ and τ1 = 0, where τk are the truncated moments

τk =

∫ c

c

vkf(v)dv for k ∈ N0. (2.3)

If f is symmetric we find c = −c = c̄ and τ2k+1 = 0, k ∈ N0. Observations are retained based
on (β̂n0, σ̂

2
n0) if their residuals yi − β̂

′
n0Xi are in the interval [cσ̂n0, cσ̂n0] and otherwise deleted from

the sample.
The Huber-skip, β̂nH , is defined by minimizing

1

2

n∑
i=1

[(yi −X ′iβ)21(cσ≤yi−X′iβ≤cσ) + c21(yi−X′iβ≤cσ) + c21(cσ≤yi−X′iβ)],

for a given σ. If the minimum is attained at a point of differentiability of the objective function, then the
solution solves the equation

β̂nH = (
n∑
i=1

XiX
′
i1(cσ≤yi−X′iβ̂nH≤cσ)

)−1
n∑
i=1

Xiyi1(cσ≤yi−X′iβ̂nH≤cσ)
= gn(β̂nH). (2.4)

We apply this to propose a sequence of recursively defined estimators (β̂nm, σ̂
2
nm) by starting with

(β̂n0, σ̂
2
n0) and defining for m,n = 1, 2, . . .

Sn,m−1 = {i : cσ̂n,m−1 ≤ yi −X ′iβ̂n,m−1 ≤ cσ̂n,m−1}, (2.5)

β̂nm = (
∑

i∈Sn,m−1

XiX
′
i)
−1

∑
i∈Sn,m−1

Xiyi, (2.6)

σ̂2
nm = ψτ−12 (

∑
i∈Sn,m−1

1)−1
∑

i∈Sn,m−1

(yi −X ′iβ̂n,m)2. (2.7)

Thus, the iterated one-step Huber-skip estimators β̂nm and σ̂2
nm are the least squares estimator of yi

on Xi among the retained observations in Sn,m−1 based upon β̂n,m−1 and σ̂2
n,m−1. The bias correction

factor ψτ−12 in σ̂2
nm is needed to obtain consistency.

Note that if β̂n,m−1 and σ̂n,m−1 are regression- and scale-equivariant, then the updated estimators β̂nm
and σ̂nm are also regression- and scale-equivariant. Indeed, if yi is replaced by syi + X ′id for all i for a
scalar s > 0 and a vector d, then β̂n,m−1 and σ̂n,m−1 are replaced by sβ̂n,m−1 + d and sσ̂n,m−1 so that the
sets Sn,m−1 are unaltered, which in turn lead to regression- and scale-equivariance of β̂nm and σ̂nm.
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2.1. Asymptotic Results

To obtain asymptotic results we need a normalisation matrix N for the regressors. If Xi is stationary
then N = n−1/2Ip. If Xi is trending, a different normalisation is needed. For a linear trend component
the normalisation is n3/2 and for a random walk component it is n. We assume that N has been chosen
such that matrices Σ and µ exist for which

Σ̂n = N ′
∑n

i=1XiX
′
iN

D→ Σ
a.s.
> 0, µ̂n = n−1/2N ′

∑n
i=1Xi

D→ µ.

Note that Σ and µ may be stochastic as for instance when Xi is a random walk and N = n−1.
The estimation errors are denoted

ûnm =

{
N−1(β̂nm − β)

n1/2(σ̂nm − σ)

}
, (2.8)

and the recursion defined in (2.5), (2.6), and (2.7) can expressed as

ûnm = Gn(ûn,m−1). (2.9)

We introduce coefficient matrices

Ψ̂n1 =

(
ψΣ̂n 0

0 2τ2

)
, Ψ2 =

(
ξ1Σ̂n ξ2µ̂n

ζ2µ̂
′
n ζ3

)
, (2.10)

where
ξn = (c)nf(c)− (c)nf(c), n = 0, . . . , 3 and ζn = ξn − ξn−2τ2/ψ, n = 2, 3, (2.11)

and τ2 is defined in (2.3), and define

Γ̂n = Ψ̂−1n1 Ψ̂n2 =

(
ψ−1ξ1Ip ψ−1ξ2Σ̂

−1
n µ̂n

(2τ2)
−1ζ2µ̂

′
n (2τ2)

−1ζ3

)
. (2.12)

Here (Γ̂n, Ψ̂n1, Ψ̂n2)
D→ (Γ,Ψ1,Ψ2), where the limits are defined similarly in terms of Σ and µ.

When f is symmetric we let c = −c = c̄ and find ζ2 = ξ2 = 0, so that Γ is diagonal. Moreover
from ξ2k+1 = 2c2k+1f(c), we find ξ1/ψ = 2cf(c)/ψ, and ζ3/(2τ2) = c3f(c)/τ2 − cf(c)/ψ and therefore
Γ = diag{2cf(c)/ψIp, cf(c)(c2/τ2 − 1/ψ)}.

Finally, we define a kernel

Kn = Ψ̂−1n1
∑n

i=1

{
N ′Xiεi

n−1/2(ε2i − σ2τ2/ψ)

}
1(cσ≤εi≤σc). (2.13)
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The analysis of the one-step estimator in Johansen and Nielsen [6] shows that, by linearising Gn, the
one-step estimation errors ûnm satisfy the recursion equation

ûnm = Gn(ûn,m−1) = Γ̂nûn,m−1 +Kn +Rn(ûn,m−1), (2.14)

for some remainder term Rn(ûn,m−1). In this notation it is emphasized that the remainder term
is a function of the previous estimation error ûn,m−1, see Lemma 5.1 in the Appendix for a
precise formulation.

It will be shown in Section 3 that if max |eigen(Γ)| < 1 a.s. so that Γ is a contraction, then

ûnm − (I1+p − Γ̂n)−1Kn
P→ 0 for (m,n)→∞,

that is, for any η and ε > 0 there exist m0 and n0 such that for m ≥ m0 and n ≥ n0 it holds that

P(|ûnm − (I1+p − Γ̂n)−1Kn| ≥ η) ≤ ε.

We therefore define ûn∗ = (I1+p − Γ̂n)−1Kn and note that it satisfies the equation

ûn∗ = Γ̂nûn∗ +Kn, (2.15)

and in this sense the estimation error of (β, σ) has the same limit distribution as the fixed point of the
linear function u 7−→ Γ̂nu+Kn.

Moreover it follows from Johansen and Nielsen [19] that, for the case of known σ = 1 and symmetric
density, the Huber skip has the stochastic expansion

β̂nH = (Ip, 0)(I1+p − Γ̂n)−1Kn + oP(1)

and hence the same asymptotic distribution as (Ip, 0)ûn∗.

Finally it holds that
n1/2(β̂nH − β̂nm)

P→ 0 for (n,m)→∞.

Finally the asymptotic distribution of Kn, and therefore ûn∗, is discussed in Section 4.

2.2. Assumptions for the Asymptotic Analysis

The assumptions are fairly general, in particular we do not assume that f is symmetric.

Assumption A Consider model (2.1). Assume

(i) The density f has continuous derivative f ′ and satisfies

(a) supv∈R{(1 + v4)f(v) + (1 + v2)|f ′(v)|} <∞,
(b) it has mean zero, variance one, and finite fourth moment,

(c) c, c are chosen so τ0 = ψ and τ1 = 0

(ii)For a suitable normalization matrix N → 0, the regressors satisfy, jointly,
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(a) Σ̂n = N ′
∑n

i=1XiX
′
iN

D→ Σ
a.s.
> 0,

(b) µ̂n = n−1/2N ′
∑n

i=1Xi
D→ µ,

(c) maxi≤n E|n1/2N ′Xi|4 = O(1).

(iii) The initial estimator error satisfies

(N−1(β̂n0 − β), n1/2(σ̂n0 − σ)) = OP(1).

3. The Fixed Point Result

The fixed point result is primarily a tightness result. Thus, for the moment, only tightness of the kernel
Kn is needed, and it is not necessary to establish the limit distribution, which is discussed in Section 4.
The first result is a tightness result for the kernel, see (2.13).

Theorem 3.1 Suppose Assumption A(ib, iic) holds. Then Kn, see (2.10) and (2.13), is tight, that is,

Kn = Ψ̂−1n1
∑n

i=1

{
N ′Xiεi

n−1/2(ε2i − σ2τ2/ψ)

}
1(cσ≤εi≤σc) = OP(1).

The proof follows from Chebyshev’s inequality and the details are given in the appendix.
The next result discusses one step of the iteration (2.14), and it is shown that the remainder term

Rn(u) in (2.14) vanishes in probability uniformly in |u| ≤ U.

Theorem 3.2 Let m be fixed. Suppose Assumption A holds for the initial estimator ûn,m−1, see (2.8).

Then, for all U > 0, it holds that

ûnm = Γ̂nûn,m−1 +Kn +Rn(ûn,m−1),

where the remainder term satisfies

sup
|u|≤U

|Rn(u)| = oP(1).

The proof involves a chaining argument that was given in Johansen and Nielsen [6], although there
the result was written up in a slightly different way as discussed in the appendix.

The iterated estimators start with an initial estimator (β̂n0, σ̂n0) with tight estimation error, see
Assumption A(iii). This is iterated through the one-step equation (2.14) and defines the sequence of
estimation errors ûnm. We next show that this sequence is tight uniformly in m.

Theorem 3.3 Suppose Assumption A holds and that max |eigen(Γ)| < 1 a.s. so that Γ is a contraction.

Then the sequence of estimation errors ûnm is tight uniformly in m

sup
0≤m<∞

|ûnm| = OP(1).

That is, for all ε > 0 there exist U > 0 and n0 > 0, so that for all n ≥ n0 it holds that

P( sup
0≤m<∞

|ûnm| > U) < ε.
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The proof is given in the appendix, but the idea of the proof is to write the solution of the recursive
relation (2.14) as

ûnm = Γ̂mn ûn0 +
m∑
`=1

Γ̂`−1n {Kn +Rn(ûnm)}. (3.1)

Then, if the initial estimator ûn0 takes values in a large compact set with large probability, it follows
from (3.1), by finite induction, that also ûnm takes values in the same compact set for all m, and therefore
ûnm is tight uniformly in m.

Finally we give the fixed point result. Theorem 3.4 shows that the estimator has the same limit
distribution as the solution of equation (2.15), ûn∗ = (Ip+1 − Γ̂n)−1Kn, which is a fixed point of the
linear function u 7→ Γ̂nu+Kn.

Theorem 3.4 Suppose Assumption A holds and that max |eigen(Γ)| < 1 a.s. so that Γ is a contraction.

Then

ûnm − ûn∗ = ûnm − (Ip+1 − Γ̂n)−1Kn
P→ 0 for (m,n)→∞.

That is, for all ε and η > 0, an n0 > 0 and m0 > 0 exist so that for all n ≥ n0 and m ≥ m0 it holds

P(|ûnm − (Ip+1 − Γ̂n)−1Kn| > η) < ε.

Using
∑m

`=1 Γ̂`−1n = (Ip+1 − Γ̂n)−1(Ip+1 − Γ̂mn ) we find from (3.1) that

ûnm − (Ip+1 − Γ̂n)−1Kn = Γ̂mn (ûn0 − (Ip+1 − Γ̂n)−1Kn) +
m∑
`=1

Γ̂`−1n Rn(ûn,m−`). (3.2)

From (3.2) it can be seen that |ûnm−(Ip+1−Γ̂n)−1Kn| is the sum of two terms vanishing in probability,
where the first decreases exponentially. The details are given in the Appendix.

In the special case where σ is known, then ûnm reduces to b̂nm = N−1(β̂nm − β) and Γ = ψ−1ξ1Ip,

and β̂nH becomes a fixed point of the mapping gn defined in (2.4). The estimator b̂n∗ = (ψ −
ξ1)
−1Σ̂−1n

∑n
i=1N

′Xiεi1(cσ<εi≤cσ) appears as the leading term for other robust estimators, such as the
Least Trimmed Squares estimator discussed later on.

A necessary condition for the result is that the autoregressive coefficient matrix Γ is contracting.
Therefore Γ is analyzed next.

Theorem 3.5 The autoregressive coefficient matrix Γ in (2.12) has p− 1 eigenvalues equal to ξ1/ψ and

two eigenvalues solving

λ2 − (
ζ3
2τ2

+
ξ1
ψ

)λ+
1

2τ2ψ
(ζ3ξ1 − ζ2ξ2µ′Σ−1µ) = 0,

where the coefficients ζn and ξn are given in (2.11).

Further results can be given about the eigenvalues of Γ for symmetric densities, where ξ2 = 0, and
Γ = diag(ξ1ψ

−1Ip, ζ3/(2τ2)). Note that the quantities (c, τ, ξn, ζn) all depend on ψ, see (2.2), (2.3),
and (2.11). If f is symmetric, we show below, (a), that ξ1 < ψ and a condition, (c), is given for ζ3 < 2τ2,
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in which case the eigenvalues of Γ are less than one, and Γ is a contraction. Finally (d) shows that Γ is a
contraction if f is log-concave.

Theorem 3.6 Suppose f is symmetric with third moment, f ′(c) ≤ 0 for c > 0, and limc→0 f
′′(c) < 0.

Then

(a) 0 < ξ1/ψ < 1 for 0 < ψ < 1 while limψ→0 ξ1/ψ = 1 and limψ→1 ξ1/ψ = 0;

(b) 0 < ζ3/(2τ2) for 0 < ψ < 1 and limψ→0 ζ3/(2τ2) = 1 and limψ→1 ζ3/(2τ2) = 0;

(c) if [c{log
∫ c
0
f(x)dx}′]′ < 0 for c > 0 then ζ3/(2τ2) < 1 for 0 < ψ < 1;

(d) {log f(c)}′′ < 0⇒ [c{log f(c)}′]′ < 0⇒ [c{log
∫ c
0
f(x)dx}′]′ < 0.

The condition [c{log
∫ c
0
f(x)dx}′]′ < 0 is satisfied for the Gaussian density that is log-concave and by

t-densities that are not log-concave but satisfy [c{log f(c)}′]′ < 0. In the robust statistics literature,
Rousseeuw uses the condition [c{log f(c)}′]′ < 0 when discussing change-of-variance curves for
M-estimators and assumes log-concave densities [18].

A consequence of Theorem 3.6 is that if f is symmetric, the roots of the coefficient matrix Γ are
bounded away from unity for ψ0 ≤ ψ ≤ 1 for all ψ0 > 0. The uniform distribution on [−a, a] provides
an example where Γ is not contracting since in this situation ξ1 = ψ over the entire support. However,
the weak unimodality condition f ′(c) ≤ 0 in Theorem 3.6 is not necessary, as long as the mode at the
origin is large in comparison with other modes.

4. Distribution of the Kernel

It follows from Theorem 3.4 that ûn∗ = (Ip+1− Γ̂n)−1Kn has the same limit as ûnm, and we therefore
find the limit distribution of the kernel Kn in a few situations.

4.1. Stationary Case

Suppose the regressors are a stationary time series. Then the limits Σ and µ in Assumption A(ia, ib)

are deterministic and (Σ̂n, µ̂n)
P→ (Σ, µ). The central limit theorem then shows that

Kn
D→ Np+1(0,Φ), (4.1)

where

Φ =

[
ψ−2σ2τ2Σ

−1 (2ψτ2)
−1σ3τ3Σ

−1µ

(2ψτ2)
−1σ3τ3µ

′Σ−1 4−1σ4{τ4τ−22 − ψ−1}

]
. (4.2)

As a consequence, the fully iterated estimator has limit distribution

ûn∗ = (Ip+1 − Γ̂n)−1Kn
D→ (Ip+1 − Γ)−1Np+1(0,Φ). (4.3)
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In the special case where the errors are symmetric, we find

N−1(β̂n∗ − β) =
1

(ψ − ξ1)
Σ−1

n∑
i=1

N ′Xiεi1(|εi|≤σc) + oP(1)
D→ Np{0,

σ2τ2
(ψ − ξ1)2

Σ−1},

n1/2(σ̂2
n∗ − σ2τψ/ψ) = {1− ζ3(2τ2)−1}−1

n∑
i=1

n−1/2(ε2i − σ2τ2ψ
−1)1(|εi|≤σc) + oP(1)

D→ Np{0,
σ4τ 22 (τ4 − ψ−1τ 22 )

(2τ2 − ζ3)2
},

noting that ψ > ξ1 and ζ3 > 2τ2 are satisfied for symmetric, unimodal distributions by Theorem 3.6(a, b).

The limiting distribution of N−1(β̂n∗ − β) is also seen elsewhere in the robust statistics literature.
First, Vı́šek [15] (Theorem 1, p. 215) analysed the least trimmed squares estimator of

Rousseeuw [13]. The estimator is given by

β̂
LTS

n = arg minβ∈Rp

∑int(nψ)
i=1 r2(i)(β),

where r2(1)(β) < · · · < r2(n)(β) are the ordered squared residuals ri = yi − X ′iβ. The estimator has the
property that it does not depend on the scale of the problem. Vı́šek argued that in the symmetric case,
the least trimmed squares estimator satisfies

N−1(β̂
LTS

n − β) =
1

(ψ − ξ1)
Σ−1

n∑
i=1

N ′Xiεi1(|εi|≤cσ) + oP(1), (4.4)

that is, the main term is the same as for β̂n∗, and it follows from Theorem 3.4 that because β̂
LTS

n and β̂n∗
have the same expansions we have

|N−1(β̂nm − β̂
LTS

n )| P→ 0

for (m,n) → ∞. Thus β̂nm can be seen as an approximation to the LTS estimator when there are
no outliers.

Second, Jurečková, Sen, and Picek [4] (Theorem 5.5, p. 176) considered a pure location problem with
regressorXi = 1 and known σ = 1, and found an asymptotic expansion like (4.4) for the Huber-skip, and
Johansen and Nielsen [19] showed the similar result for the general regression model. A consequence of
this is that the iterated 1-step Huber-skip has the same limit distribution as the Huber-skip, and because
β̂nm and β̂nH have the same expansion, it follows from Theorem 3.4 that

n1/2|β̂nm − β̂nH |
P→ 0 for (m,n)→∞, (4.5)

so the iterated estimator is in this sense an approximation to the Huber-skip.



Econometrics 2013, 1 63

4.2. Deterministic Trends

As a simple example with i.i.d. errors, consider the regression

yi = β1 + β2i+ εi,

where εi ∈ R satisfies Assumption A(i). Define the normalisation

N =

(
n−1/2 0

0 n−3/2

)
.

Then Assumption A(ii) is met with Xi = (1, i)′ and

Σ =

(
1 1/2

1/2 1/3

)
, µ =

(
1

1/2

)
, (4.6)

and maxi≤n E|n1/2N ′Xi|4 ≤ 4. The kernel has a limit distribution given by (4.1), where the matrix Φ

in (4.2) is computed in terms of the Σ and µ derived in (4.6).
If the errors are autoregressive, the derivation is in principle similar, but involves a notationally tedious

detrending argument. The argument is similar to that of Johansen and Nielsen [6] (Section 1.5.1),
and (4.5) holds.

4.3. Unit Roots

Consider as an example the autoregression yi = βyi−1 + εi, i = 1, . . . , n. If β = 1 then Xi = yi−1 =

y0 +
∑i−1

s=1 εs and we have to choose N = n−1. By the functional Central Limit Theorem

n−1/2
∑int(nu)

i=1


εi

εi1(cσ≤εi≤σc)

(ε2i − σ2τ2/ψ)1(cσ≤εi≤σc)

 D→

 Wx,u

W1,u

W2,u

 ,

where the limit is a Brownian motion with zero mean and variance

ΦW =

 σ2 σ2τ2 σ3τ3

σ2τ2 σ2τ2 σ3τ3

σ3τ3 σ3τ3 σ4{τ4 − τ 22 /ψ}

 .
Thus the limit variables Σ and µ in Assumption A(i) are

Σ =

∫ 1

0

W 2
x,udu, µ =

∫ 1

0

Wx,udu,
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while the kernel has limit distribution

Kn
D→ Ψ−11

( ∫ 1

0
Wx,udW1,u

W2,1

)
,

and (4.5) holds. Thus, when the density of εi is symmetric, β̂n∗ has limit distribution

n(β̂n∗ − β)
D→

∫ 1

0
Wx,udW1,u

(ψ − ξ1)
∫ 1

0
W 2
x,udu

.

When ψ → 1 then ξ1 → 0 and τ2 → 1 so W1,u and Wx,u become identical and the limit distribution
becomes the usual Dickey–Fuller distribution. See also Johansen and Nielsen [6] (Section 1.5.4) for a
related and more detailed derivation.

5. Discussion of Possible Extensions

The iteration result in Theorem 3.4 has a variety of extensions. An issue of interest in the literature
is whether a slow initial convergence rate can be improved upon through iteration. This would open up
for using robust estimators converging for instance at a n1/3 rate as initial estimator. Such a result would
complement the result of He and Portnoy, who find that the convergence rate cannot be improved in a
single step by this procedure that applies least squares to the retained observations [20].

The key is to show that the remainder term of the one-step estimator in Theorem 3.2 remains small in
an appropriately larger neighbourhood. The proof of Theorem 3.4 then applies the same way leading to
the same fixed point result. The necessary techniques are developed by Johansen and Nielsen [21].

A related algorithm is the Forward Search of Atkinson, Riani, and Cerioli [7,22]. This involves
finding an initial set of “good” observations using for instance the least trimmed squares estimator of
Rousseeuw [13] and then increase the number of “good” observations using a recursive test procedure.
The algorithm involves iteration of one-step Huber-skip estimators, see Johansen and Nielsen [23].
Again the key to its analysis is to improve Theorem 3.2, in this instance to hold uniformly in the cut-off
fraction ψ, see Johansen and Nielsen for details [21].

Another algorithm of interest would be to analyse algorithms such as Autometrics of Hendry and
Krolzig [24] and Doornik [25], which involves selection over observations as well as regressors.

In practice it is not a trivial matter to compute the least trimmed squares estimator of
Rousseeuw [13]. A number of algorithms have been suggested in the literature, see for instance Hawkins
and Olive [26]. Algorithms based on a “concentration” approach start with an initial trial fit that is
iterated towards a final fit. It is possible that the abovementioned results will extend to shed some further
light on the properties of such resampling algorithms.
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Appendix

Proof of Theorem 3.1. The process

K̃n =
n∑
i=1

{
N ′Xiεi

n−1/2(ε2i − σ2τ2/ψ)

}
1(cσ≤εi≤cσ)

is a martingale, we find that

EK̃nK̃
′
n =

(
σ2τ2

∑n
i=1 E(N ′XiX

′
iN) σ3τ3

∑n
i=1 E(N ′Xi)

σ3τ3
∑n

i=1 E(N ′Xi)
′ σ4(τ4 − τ 22ψ−1)

)
.

Due to assumptions (iic), (iiib) this is bounded in n. Chebyshev’s inequality gives P(|K̃n| > C) ≤
C−2E|K̃n|2. Thus, both K̃ and Ψ̂−1n1 , and hence their product, are tight.

The key to proving Theorem 3.2 is to understand the remainder terms of the moment matrices. This
was done by Johansen and Nielsen [6]. As that paper was concerned only with the convergence of the
1-step estimator, the main Theorem 1.1 simply stated that the remainder terms vanish as n → ∞. A
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more detailed result can, however, be extracted from the proof. To draw that out, let a and b be the
scale and location coordinates of u = (b, a), respectively, and define, for gi, hi ∈ (1, Xi, εi), the product
moment matrices

S̃gh(u) =
n∑
i=1

gih
′
i1{(σ+n−1/2a)c<εi−X′iNb≤(σ+n−1/2a)c}.

Lemma 5.1 Suppose Assumption A holds. Define the remainder terms R11(u), Rxx(u), Rx1(u), Rxε(u),

and Rεε(u) by the equations

n−1S̃11(u) = ψ +R11(u),

N ′S̃xx(u)N = ψΣ̂n +Rxx(u),

n−1/2N ′S̃x1(u) = ψµ̂n +Rx1(u),[
N ′S̃xε(u)

n−1/2{S̃εε(u)− σ2τ2ψ
−1S̃11(u)}

]
=

n∑
i=1

{
N ′Xiεi

n−1/2(ε2i − σ2τ2ψ
−1)

}
1(cσ<εi≤cσ)

+

(
ξ1Σ̂n ξ2µ̂n

σζ2µ̂
′
n σζ3

)(
b

a

)
+

{
Rxε(u)

Rεε(u)

}
,

where, for notational convenience, the dependence of n in the remainder terms is suppressed. Then for

all U > 0 and n→∞ it holds that

sup|u|<U{|R11(u)|+ |Rxx(u)|+ |Rx1(u)|+ |Rxε(u)|+ |Rεε(u)|} = oP(1). (5.1)

Proof of Lemma 5.1. Theorem 1.1 in Johansen and Nielsen [6] states that |R11(u)|, |Rxx(u)|,
|Rx1(u)|, |Rε(u)|, |Rεε(u)| vanish when u is evaluated at û = {N−1(β̂ − β), n1/2(σ̂ − σ)} under
the assumption that û = OP(1), as n → ∞. The proof of that result then progresses by noting that
assumption û = OP(1) means that for all ε > 0, a U exists so P(|u| ≥ U) < ε and therefore it
suffices to prove that (5.1) holds. Therefore the proof of that theorem continues to prove precisely the
statement (5.1), which is the desired result here.

Proof of Theorem 3.2. The updated estimator (β̂nm, σ̂
2
nm) is defined in (2.6) and (2.7) in terms

of the initial estimator (β̂n,m−1, σ̂
2
n,m−1), and we express them in terms of Sgh = S̃gh(ûn,m−1) where

ûn,m−1 = {N−1(β̂n,m−1 − β), n1/2(σ̂n,m−1 − σ)}, as follows

N−1(β̂nm − β) = (N ′SxxN)−1N ′Sxε,

n1/2(σ̂2
nm − σ2) = ψτ−12 (S11)

−1n1/2{Sεε − SεxN(N ′SxxN)−1N ′Sxε − σ2τ2ψ
−1S11}.

For ûn,m−1 = (b̂n,m−1, ân,m−1) we get, by inserting the definitions from Lemma 5.1,

b̂nm = {ψΣ̂n +Rxx(ûn,m−1)}−1{
n∑
i=1

(N ′Xiεi)1(cσ<εi≤cσ) + ξ1Σ̂nb̂n,m−1 + ξ2µ̂nân,m−1 +Rxε(ûn,m−1)}.
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Since
∑n

i=1(N
′Xiεi)1(cσ<εi≤cσ) is tight by Theorem 3.1, ûn,m−1 is OP(1), and the remainders are

vanishing by Lemma 5.1 for n→∞, then

b̂nm = (ψΣ̂n)−1
n∑
i=1

(N ′Xiεi)1(cσ<εi≤cσ) + (ψΣ̂n)−1(ξ1Σ̂nb̂n,m−1 + ξ2µ̂nân,m−1) +Rb,n(ûn,m−1),

where sup|u|<U |Rb,n(u)| = oP(1). From n1/2(σ̂2
nm−σ2) = (σ̂nm+σ)n1/2(σ̂nm−σ) = 2σânm(1+oP(1))

we find that a similar argument shows

ânm = (2στ2)
−1n−1/2

n∑
i=1

(ε2i −ψ−1σ2τ2)1(σc<εi≤σc) + (2τ2)
−1(ζ2µ̂

′
nb̂n,m−1 + ζ3ân,m−1) +Ra,n(ûn,m−1),

where sup|u|<U |Ra,n(u)| = oP(1).

Proof of Theorem 3.3. We want to show that for all ε > 0 there exists U > 0, and n0 so that for
n ≥ n0 it holds

P( sup
0≤m<∞

|ûnm| ≤ U) ≥ 1− ε. (5.2)

From the recursion (2.14) we find the representation

ûnm = Γ̂mn ûn0 +
∑m

`=1 Γ̂`−1n {Kn +Rn(ûn,m−`)}. (5.3)

The spectral norm and the Euclidean norm are compatible, |Mx| ≤ ||M || |x|, see Varga [27]
(Theorem 1.5). Therefore it holds

|ûnm| ≤ ||Γ̂mn || |ûn0|+ (|Kn|+ max
0≤`≤m−1

|Rn(ûn`)|)
∑m

`=1 ||Γ̂`−1n ||.

By assumption a δ exists so that the spectral radius max |eigen(Γ)| < δ < 1 with large probability.
Because Γ̂n

D→ Γ, then n0 > 0 and δ < δ0 < 1 exist so that for all n ≥ n0 then max |eigen(Γ̂n)| <
δ0 < 1 with probability larger than 1 − ε/2. Then Gelfand’s formula, Varga [27] (Theorem 3.4), shows
there is an m0 > 0 so for all m > m0 then ||Γ̂mn || ≤ δm0 . This in turn implies for some c > 1, that
max0≤m<∞ ||Γ̂mn || <

∑∞
`=0 ||Γ̂`n|| < c, and hence

|ûnm| ≤ c{|ûn0|+ |Kn|+ max
0≤`≤m−1

|Rn(ûn`)|}. (5.4)

Because it is assumed that ûn0 is tight, and the sequence {Kn} is tight by Theorem 3.1, and
max|u|≤U1 |Rn(u)| = oP(1) by Theorem 3.2, then constants U0 > η/2, n0 > 0 exist so that for n ≥ n0,

the set

An = (max |eigen(Γ̂n)| < δ0) ∩ (c|û0| ≤ U0) ∩ (c|Kn| ≤ U0) ∩ (c max
|u|≤3U0

|Rn(u)| ≤ η/2) (5.5)

has probability larger than 1− ε.
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An induction over m is now used to show that sup0≤m<∞ |ûnm| ≤ 3U0 on the set An. As
induction start, for m = 0, then |ûn0| ≤ c−1U0 < 3U0 by the tightness assumption to û0 and
c > 1. The induction assumption is that max0≤`≤m−1 |ûn`| ≤ 3U0. This implies that on the set
An then cmax0≤`≤m−1 |Rn(ûn`)| ≤ cmax|u|≤3U0 |Rn(u)| ≤ η/2. Thus, the bound (5.4) becomes
|ûnm| ≤ 2U0 + η/2 ≤ 3U0. It follows that max0≤`≤m |ûn`| ≤ 3U0. This proves (5.2) for U = 3U0.

Proof of Theorem 3.4. We want to show that for all η, ε > 0 there is an n0 and m0 so that for n ≥ n0

and m ≥ m0 it holds that
P(|ûnm − (Ip+1 − Γ̂n)−1Kn| > η) < ε. (5.6)

In order to show (5.6), note that on the setAn we find
∑m

`=1 Γ̂`−1n = (Ip+1− Γ̂mn )(Ip+1− Γ̂n)−1 where
(Ip+1 − Γ̂n)−1 =

∑∞
`=0 Γ̂`n. Therefore equation (5.3) shows that

ûnm − (Ip+1 − Γ̂n)−1Kn = Γ̂mn {ûn0 − (Ip+1 − Γ̂n)−1Kn}+
∑m

`=1 Γ̂`−1n Rn(ûn,m−`).

To bound this, note first that ||(Ip+1 − Γ̂n)−1|| = ||
∑∞

`=0 Γ̂`n|| ≤
∑∞

`=0 ||Γ̂`n|| < c. Thus on the set An,
see (5.5), it holds that

|ûnm − (Ip+1 − Γ̂n)−1Kn| ≤ ||Γ̂mn ||(c−1U0 + U0) + c max
0≤`≤m−1

|Rn(ûn`)| ≤ ||Γ̂mn ||2U0 + η/2.

Now, for m ≥ m0 then ||Γ̂mn || ≤ δm0 . Since δm0 declines exponentially, m0 can be chosen so large that it
also holds that ||Γ̂mn ||2U0 ≤ η/2. Thus P(|ûnm − (Ip+1 − Γ̂n)−1Kn| ≥ η) < ε, for m ≥ m0 and n ≥ n0,
which proves (5.6).

Proof of Theorem 3.5. The matrices Γ and Γ− λIp+1 are of the form(
aIp b

c′ d

)
,

and the result follows from the identity

a det

(
aIp b

c′ d

)
= det

(
Ip 0

−c′ a

)
det

(
aIp b

c′ d

)
= det

(
aIp b

0 ad− c′b

)
= ap(ad− c′b).

Proof of Theorem 3.6. (a) For c > 0 then f(x)1(|x|≤c) ≥ f(c)1(|x|≤c) because f is symmetric and
non-increasing. Integration gives

ψ =

∫ c

−c
f(x)dx ≥ 2cf(c) = ξ1,



Econometrics 2013, 1 70

where equality holds for f(x) = f(c) for |x| ≤ c, by continuity of f. This is, however, ruled out
by assuming limc→0 f

′′(c) < 0. It holds limc→0 c
−1 ∫ c

0
f(x)dx = f(0) and limc→0 ξ1/(2c) = f(0) so

limc→0 ξ1/ψ = 1. Similarly,
∫∞
0

f(x)dx = 1 and limψ→1 cf(c)→ 0 so limψ→1 ξ1/ψ = 0.

(b) We find

g(c) = ζ3/(2τ2) = ξ3/(2τ2)− ξ1/(2τ0) =
2cf(c){

∫ c
0
(c2 − x2)f(x)dx}
τ2τ0

> 0. (5.7)

For c → 0, or ψ → 0, we find the approximations for k = 0, 1 : τ2k = 2
∫ c
0
x2kf(x)dx ≈

2c2k+1f(0)/(2k + 1), which show that g(c)→ 1.
For c→∞, or ψ → 1, we find τ0 → 1, τ2 → 1 and g(c) ≈ 2cf(c)(c2 − 1)→ 0 because f is assumed

to have finite third moment.
(c) Using cτ ′0 = 2cf(c) we find from (5.7) that g(c) < 1 if

h(c) =
cτ ′0
τ0

(c2τ0 − τ2)− τ2 =
2cf(c)

τ0
{
∫ c

0

(c2 − x2)f(x)dx} − τ2 < 0,

and because the limit for c→ 0 is zero it is enough to show that h′(c) < 0.

We find

h′(c) = (
cτ ′0
τ0

)′(c2τ0 − τ2) +
cτ ′0
τ0

(2cτ0 + c2τ ′0 − τ ′2)− τ ′2 = (
cτ ′0
τ0

)′(c2τ0 − τ2),

because the extra term vanishes:

cτ ′0
τ0

(2cτ0 + c2τ ′0 − τ ′2)− τ ′2 = 2c2f(c) + c3
{2f(c)}2

τ0
− 2c3f(c)2f(c)

τ0
− 2c2f(c) = 0.

Because c2τ0 − τ2 > 0 and (
cτ ′0
τ0

)′ = [c{log
∫ c
0
f(x)dx}′]′ < 0 by assumption we find g(c) < 1.

(d) First, assume {log f(c)}′′ < 0 and f ′(c) < 0 for c > 0. Then

[c{log f(c)}′]′ = {log f(c)}′ + c{log f(c)}′′ = f ′(c)

f(c)
+ c{log f(c)}′′ < 0.

Secondly, assume [c{log f(c)}′]′ < 0. Denote F(c) =
∫ c
0
f(x)dx. Then

[c{log F(c)}′]′ = {cf(c)}
′F(c)− c{f(c)}2

{F(c)}2
=

f(c)

{F(c)}2
L,

where L = [1 + c{log f(c)}′]F(c)− cf(c). Since f(c) ≥ 0 and F(c) > 0 for c > 0 it has to be argued that
L < 0. Now limc→0 L = 0 so it suffices to argue that L′ < 0 for c < 0. But L′ = [c{log f(c)}′]′F(c),
which is negative by assumption.
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