
Journal of

Actuator Networks
Sensor and

Article

A Statecharts-Based Approach for WSN Application
Development

Ismo Hakala ∗,† and Xinyu Tan †

Kokkola University Consortium Chydenius, University of Jyväskylä, P.O. Box 567, FI-67701 Kokkola, Finland;
tan.xinyu@chydenius.fi
* Correspondence: ismo.hakala@chydenius.fi
† These authors contributed equally to this work.

Received: 1 July 2020; Accepted: 21 September 2020; Published: 25 September 2020
����������
�������

Abstract: Wireless Sensor Network (WSN) software development challenges developers in
two main ways: through system programming, which requires expertise in hardware and
network management; and application programming, which requires domain-specific knowledge.
However, domain programmers often lack WSN programming expertise. Likewise, system-specific
programmers may find it difficult to understand domain-specific requirements. As a result,
domain programmers often refrain from using WSN technology in domain-specific applications.
Therefore, we propose a Finite State Machine (FSM)-based approach with an affiliated framework
to decouple application functionality from WSN details. Instead of the traditional flat FSM,
we use statecharts formalism because of its relaxed definition of system states. In this paper,
we compare the statecharts paradigm against two basic WSN sensor node programming frameworks.
The result exhibits that statecharts are an advanced paradigm in WSN application development.
It motivated us to develop a statecharts framework. In our framework, we choose not to use the
typical solution which converts statecharts to programming code. Instead of that, we implement a
statecharts middleware associated with action libraries to interpret and actuate raw statecharts
on an operating system. This approach allows domain programmers to concentrate on WSN
application behavior, and system-specific programmers to focus on developing WSN services. We also
introduce our statecharts middleware and present a living example with performance evaluation.

Keywords: statecharts; WSN; programming framework; wireless sensor; WSN application

1. Introduction

The Internet of Things (IoT) represents the tendency toward a future of ubiquitous intelligence.
A European Commission study [1] estimated that the market value of IoT in the European Union
would exceed one trillion euros in the next decade. Wireless Sensor Network (WSN) is a widely used
communication solution that composes IoT units from multiple sub-units. This technology allows
smart devices to collaborate and appear as one IoT object over the Internet.

In WSN application development, decoupling the system complexity and the domain-specific
application is an increasing topic of study. This method leaves low-level implementation and network
management to WSN system programmers and concentrates domain experts on developing application
behavior according to domain specifications. Early studies attempted to establish a WSN-oriented
Operating System (OS), such as TinyOS [2] and Contiki [3], that integrated hardware drivers,
kernel functions, and network management services. These operating systems often provided
system-specific interfaces. Application programmers must program using system-specific language or
variants (e.g., C and nesC [2]). Nevertheless, WSN OS application development still requires decent
programming skills and knowledge of the host OS.

J. Sens. Actuator Netw. 2020, 9, 45; doi:10.3390/jsan9040045 www.mdpi.com/journal/jsan

http://www.mdpi.com/journal/jsan
http://www.mdpi.com
https://orcid.org/0000-0002-0048-3212
https://orcid.org/0000-0002-2476-1520
http://www.mdpi.com/2224-2708/9/4/45?type=check_update&version=1
http://dx.doi.org/10.3390/jsan9040045
http://www.mdpi.com/journal/jsan

J. Sens. Actuator Netw. 2020, 9, 45 2 of 19

To further decouple applications from system complexity, some research uses middleware to
link applications and operating systems by introducing highly abstract interfaces for application
programming. This alternative solution bypasses the traditional way of coding with system-specific
languages. Examples include Structured Query Language (SQL) and SQL-alike languages solutions
(e.g., SINA [4], TinyDB [5], and Cougar [6]). Some other solutions transplant high-level programming
languages to nodes via middleware, such as Python of PyFUNS [7] and Java of Magnet OS [8].
Moreover, Graphical User Interface (GUI) programming experience is a recent middleware tendency
to practice visualized programming, such as [9,10].

A typical WSN application responds to internal and external events and is thus event-driven.
Therefore, for also being event-driven, a Finite State Machine (FSM) is an ideal model to present
WSN applications. A state machine describes how the functionality of a system relates to the state in
which it exists at the time and how the system states change in response to events. This scheme of
reacting to event e on state a if condition c is met, then transitioning to state b, well-fits the human
thinking pattern. For example, SenOS [11] innovatively applies state-transition-table-represented
applications, and Oasis [9] installs FSM-represented physical phenomena contexts as sensor
node applications. Nevertheless, an FSM is composed of all possible combinations of states regarding
the valid event input sequences. Hence, when it represents a “beyond simple” application, the state
machine tends to end up with many states and transitions. Practically, the applications running
in sensor nodes are usually simple, which justifies the use of FSM-based approaches. However,
system complications may arise if data processing, accumulating, or filtering of multiple sensors
are involved (e.g., applications in the cluster head or the gateway). Programmers may find such
FSMs being difficult to maintain. Thus, to alleviate this problem and to effectively represent a more
complicated WSN application context, we propose a variant of Harel’s statecharts formalism [12].
Harel’s statecharts formalism extends FSM model by introducing a relaxed state definition which
allows hierarchical and orthogonal composition of states, history states, and entry and exit actions
of states. In addition, inspired by Object State Model (OSM) [13], our statecharts variant accepts
both global and local variables. These variables are useful for storing the system historical state
and bridging data exchanges between operations. The hierarchical state structure allows for a
super-state encapsulating the cross-functional sub-state machines. This preserves the rest of state
machine from the interference of state transitions occurring inside a super-state. The orthogonal region
regulates the independency and concurrency between sub-state machines. Furthermore, the graphical
logical relationships between states, events, and actions confirm the adage that “a picture is worth a
thousand words”.

Statecharts are often used as a tool to guide the coding progress. Alternatively, an advanced usage
is to input statecharts to compatible code generators, such as implemented in [14]. However, the code
produced using the code generator is highly platform-dependent, difficult to maintain, and potentially
deviates from the original intentions. Inspired by SenOS [11,15], we propose using statecharts as a
context that describes the scenarios of invoking actions over associated event occurrences. Therefore,
a statecharts application effectively serves as a manual that guides an operating system’s response
to events. To support this mechanism, we implemented a statecharts middleware that includes a
statecharts interpreter and an action library implementation. As a result, the raw statecharts context
running on board, is reflected by the scenario of invoking specific actions over event occurrence schema.

When using this approach, a developer begins by plotting the application on a Graphic
User Interface (GUI) design software. This software provides WSN-oriented action libraries,
including commonly used actions and events. The design is textually represented in JavaScript Object
Notation (JSON) [16] format because it is object-based. Before distributing a statecharts application,
its JSON scripts are further compressed to a binary expression to reduce the size. The application can
be distributed to the wireless sensors via cable or radio channels. The compressed binary scripts are
actuated in the middleware upon an operating system. Thus, it is decoupled from the hosting platform.

J. Sens. Actuator Netw. 2020, 9, 45 3 of 19

Therefore, it is easier to perform on-the-fly application management operations via middleware
remote protocols.

Statecharts formalism is a familiar model to experts from different domains, such as industrial
automation engineers. A novice can use the statecharts approach to program a WSN application
without much difficulty. This approach also allows college students to experience IoT technology
without advanced embedded programming courses. Moreover, statecharts’ actions also instruct system
programmers in which platform-dependent functionalities need to be implemented.

This paper contributes to the literature by demonstrating that statecharts are an advanced
paradigm in WSN domain-specific programming and by introducing a statecharts-supported
framework. We offer a real-life case study using the statecharts approach and performance evaluation.

The sections of this paper continue as follows. In Section 2, we review related studies and their
approaches to programming WSN applications. In Section 3, we discuss basic WSN programming
frameworks and compare them to the statecharts paradigm. We introduce the statecharts approach
and affiliated framework in Section 4. The statecharts approach is evaluated with a living example
in Section 5. It is followed by a discussion and concluding remarks in Section 6.

2. Related Works

IoT technology has potential in many fields, including environmental monitoring [17], medical
surveillance [18,19], and military surveillance [20]. Developing domain-specific IoT end-devices
requires the participation of domain experts other than WSN programmers. As a result, it attracts
many research groups proposing programming approaches for WSNs which, in turn, empowers
domain engineers to customize their applications easily.

Bensaleh et al. [21] suggested categorizing WSN development approaches into low-level and
high-level. Low-level approaches program application behavior using a step by step instruction sheet
(i.e., imperative code). High-level approaches model development steps and frameworks associated
with descriptive languages and aim to ease the development process.

Many early works proposed low-level approaches that provided WSN-oriented operating systems
with node-level abstract interfaces. The applications of these OSes are often programmed with
system-specific languages and their dialects. Although most WSN operating systems (e.g., Contiki,
Mantis OS [22], openWSN [23], and SOS [24]) use C language, some apply C dialects. They are,
for example, nesC of TinyOS, LiteC++ of LiteOS [25], C++ of RIOT [26], and Ansi C of uC/OS-III [27].
Other OSes apply alternative programming languages through middleware, such as Java of Megnet OS,
instruction stack alike language of Maté [28] and Agilla [29], and python of PyFUNS.

Macro-programming is another popular low-level approach: it organizes and operates network
devices as one or more groups. For example, TinyDB, SINA, and Cougar treat the WSN network
as a database. They apply Structured Query Language (SQL) alike languages to access wireless
sensor information. Ambient awareness [30] and service discovery [9] techniques allow efficient
information exchanges in neighbor nodes. Moreover, a group of nodes can be addressed through
cluster-based abstract interfaces, such as Hood [31], abstract region [32], and EnviroTrack [33].
Furthermore, SAN-logic [34], WSN Virtualization [35], and Khalid et al. [36] access WSN sensing units
via sensor virtualization.

Application development with low-level approaches typically provide interfaces that use
imperative programming languages designed for WSN specialists use. As a result, domain
programmers with insufficient expertise will have to invest much time in learning when applying
low-level approaches.

High-level approaches include design process modularization, model-based user interfaces with
highly abstraction, and facilitated frameworks. Model-Driven Development (MDD) [37,38] and
Model-Driven Engineering (MDE) [39] approaches are proposed to involve domain-specific experts
in WSN application development. Aided by automatic code generation technology, system-specific
programmers provide code generation models used in the development, including platforms, network

J. Sens. Actuator Netw. 2020, 9, 45 4 of 19

management, Quality of Service (QoS), and sensor services. Thus, domain programmers can use
descriptive modeling languages (e.g., Domain-Specific Language (DSL) [40] and MARTE (Modeling
and Analysis of Real-Time and Embedded systems) profile [41]) to instruct the code generator to
produce platform-specific programs. Depending on the code generator’s platform configuration,
programs can be coded by C, nesC [40], or Python [10]. However, the generated programs tend to
lack platform heterogeneity support. Furthermore, the automatic code generator appears to be a
black box to domain programmers. Therefore, the yielded code could potentially deviate from the
original design.

Other high-level approaches actuate descriptive code in nodes directly by implanting interpretive
middleware in the node system. Their applications instruct the system to execute function models
in response to event occurrences. For example, Kerasiotis et al. [42] packs system services into
function blocks. These functions blocks are linked by assembly-alike instruction stack and distribute to
the nodes as mobile agents.

The FSM computational model is also a strong candidate for WSN application development
approaches. It not only has visual programming schemes and shows clean logical relationships
between functional modules, but it also has an event-driven paradigm intuitively well-fitting in WSN
application cases. Applying FSM as a programming model, SenOS represents an application’s behavior
in a state transition table, which executes system library functions as reactions to associated events.
As a result, SenOS applications can be reconfigured on-the-fly. Nevertheless, this approach seems
lacking support of variables and action parameters. Moreover, state transition tables are not flexible or
efficient because they are typically sparse and waste the sensor node’s limited memory resource.

OSM integrates descriptive language to achieve a statecharts-alike paradigm and uses the
relaxed state definition alongside the in-state variables. OSM’s approach effectively expresses a
practical problem in a compact state machine. OSM equips two-level code generators to produce a
platform-dependent code in C. As a result, OSM applications are compromised in portability.

Inspired by SensOS and OSM, our proposed middleware accepts a strategy that actuates the
raw statecharts on board. We also provide a GUI design software with an action library collection
for visual programming experience. We believe that this will allow novice programmers to use WSN
applications easily.

3. Wireless Sensor Programming Frameworks

Depending on the hosting operating system, a WSN application programming framework
falls into thread-based and event-driven models. For instance, TinyOS and Contiki native support
event-driven modeling and extensively support thread-based modeling through middleware; SOS [24]
supports event-driven modeling while LiteOS and Mantis OS support thread-based modeling.

This section demonstrates a simple case, which is extracted from our real-life application
of the SmartHome application. We first present the programs using thread-based modeling and
event-driven modeling in C language (some pseudo-system functions used for easier understanding).
Then, we demonstrate our statecharts design with this case. The case scenario consists of sampling
a motion-sensor detection result in 5 s period for 10 min and performs associated data-handling
procedures (e.g., send to gateway).

3.1. Thread-Based

Thread-based is a familiar programming framework for programmers, as it is supported by many
computational operating systems, such as Linux and its large number of variants. The program is
processed in a logic flow sequence. A thread-based modeled program has advantages in understanding
and maintenance. However, a single-threaded program is impractical due to difficulties in handling
concurrent event occurrences. Fortunately, many operating systems provide multi-threaded solutions.
In a multi-threaded supported operating system, multiple threads can co-exist concurrently. Because
of this, multi-thread programming often requires pre-allocating memory stack space for context saving.

J. Sens. Actuator Netw. 2020, 9, 45 5 of 19

The amount of preserved memory is empirical; i.e., it needs to be sufficient to avoid a stack overflow
problem yet not too much to leave unnecessary redundant memory. Furthermore, these operating
systems also provide threading management interfaces, typically create, terminate, suspend, and resume.

Listing 1: Thread-based solution

1 #define N 120
2 bool flag_motion_detected = false;
3
4 void motion_thread(void)
5 {
6 motion_activate ();
7 while (! motion_is_detected ());
8
9 flag_motion_detected = true;

10 motion_deactivate ();
11 }
12
13 void main_thread(void)
14 {
15 short buf[N];
16 int i = 0;
17 Thread_t th;
18 Timer_t tmr;
19
20 do {
21 thread_create (&th , motion_thread);
22 set_timer (&tmr , 5 * CLOCK_SECOND);
23 buf[i] = 0;
24
25 while (! timer_is_expired (&tmr));
26
27 if (flag_motion_detected) {
28 buf[i] = 1;
29 flag_motion_detected = false;
30 }
31 else {
32 motion_deactivate ();
33 thread_terminate (&th);
34 }
35
36 if (++i == N) {
37 /* handle buffer */
38 /* ... */
39 i = 0;
40 }
41 } while (1);
42 }
43
44 void main(void)
45 {
46 Thread_t th;
47 thread_create (&th , main_thread);
48 /* ... */
49 }

The programming strategy under thread-based modeling in the given case is to create two threads.
In the Listing 1 snippet, the main_thread is dispatched (in line 47) to the scheduler. It provides an
endless loop in 5 s. At the beginning of the loop, a motion_thread is created (in line 21) to monitor the
motion sensor. The buffer records a 0 as no motion is detected by default. If a motion signal is detected,
the global flag is set to the situation (in line 9). When the timer expires (in line 25), the flag determines
the motion detection result (in line 27). If a motion is detected, it records a 1 to the buffer. Otherwise,

J. Sens. Actuator Netw. 2020, 9, 45 6 of 19

it means that the motion thread is still alive and needs to be killed. Eventually, the buffer will be
handled when it is full (in line 36–40).

There are sensor hardware-specific functions used in the code snippet, including motion_activate
(in line 6), motion_deactivate (in lines 10 and 32), and motion_is_detected (in line 7). The programmer
needs to implement them according to the thread-based code modeling.

Listing 1 shows clear logic relationships between the functional sections. However,
the programming procedure also reveals that practicing a thread-based framework requires significant
knowledge of the operating system. For example, the programmer needs to understand the multiple
thread concurrency mechanism as well as thread management. A flow control technique is performed
to control program behavior based on history. Herein, the flag (in line 27) is used to determine the
motion detection result, therefore branching the program’s next moves.

3.2. Event-Driven

An event-driven framework is a natural pattern fitting in WSN application scenes, as they
usually wait for the internal or external stimuli to react correspondingly. The schema typically
invokes associated actions in responding to the event occurrence. The actions are de facto callback
functions assigned to related events. Furthermore, they are event blocking and run-to-complete.
Therefore, a programmer should avoid implementing long-lived actions as such actions potentially
prevent incoming events and lead to program malfunction. Practicing event-driven modeling
requires a programmer to deconstruct the program into actions then assign them to associated events.
The sequential order of executing assigned actions depends on the timing of event occurrence. It is
unambiguous to observe from the code and causes potential logic conflict.

Listing 2 snippet applies event-driven modeling to implement the given case. It begins with
starting the first cycle by setting a 5-second timer and assigning a timeout event to timeout_callback (in
line 33). The motion sensor is activated, and motion_callback is assigned to a motion-detected event (in
line 34). When a motion-detected event is triggered, the flag is set to record this occurrence (in line 9).
On the other hand, invoked by a timer-expiring event, a timeout_callback handles the buffer, reactivates
the motion sensor depending on the flag status (in line 22), and starts a new cycle.

Alike Section 3.1, event-driven example code also requires the implementation of sensor hardware
functions, including motion_activate (in lines 23 and 34) and motion_deactivate (in line 10. Contrarily,
the implementation needs to adapt to event-driven modeling.

Listing 2 shows that stack management needs to be considered to reserve data. Because all
actions share one stack in an event-driven framework, the context is not preserved after the action’s
exit. One must pre-allocate global memory space for sharing data between actions (in lines 3–5).
Moreover, flow control is once again involved, similar to what was discussed in Section 3.1. The
program determines a motion-detected event occurrence by checking flag_motion_detected (in line 17).

3.3. Statecharts

Statecharts formalism is an FSM variant, designed to present a state machine in a
compact representation. Statecharts are well suited to solve WSN-related problems due to
their event-based nature. The visualized presentation of statecharts supports the design of the
application well.

When plotting statecharts, we use rounded rectangles boxes denoting state, while expressing
the hierarchy relations by encapsulation. An arrow indicates a transition between states with the
same depth. The arrow originates from the source state and terminates in the destination state.
An arrow is labeled with an event and optionally a square bracketed condition. The Mealy
machine-alike actions are listed after the event and conditions separated by a slash. On event
occurrence, the system state transits when the condition is met. The state machines of statecharts are
contained in a rectangle frame boxing a statecharts region. Only one first-level state machine is allowed

J. Sens. Actuator Netw. 2020, 9, 45 7 of 19

in a region. It ensures the independence of the statecharts. A dotted end arrow denotes a default state.
A state machine is initialized to be in the default state if not otherwise specified.

Listing 2: Event-based solution

1 #define N 120
2
3 bool flag_motion_detected = false; {
4 short buf[N];
5 int i; {
6
7 void motion_callback(void)
8 {
9 flag_motion_detected = true;

10 motion_deactivate ();
11 buf[i] = 1;
12 }
13
14 void timeout_callback(void)
15 {
16 if (++i == N) {
17 /* handle buffer */
18 /* ... */
19 i = 0;
20 }
21
22 if (flag_motion_detected) {
23 motion_activate(motion_callback);
24 flag_motion_detected = false;
25 }
26
27 set_timer (5 * CLOCK_SECOND , timeout_callback);
28 buf[i] = 0;
29 }
30
31 void main(void)
32 {
33 set_timer (5 * CLOCK_SECOND , timeout_callback);
34 motion_activate(motion_callback);
35 buf[i] = 0;
36 /* ... */
37 }

Both regions and states allow the declaration of variables and activities. The scope of variables is
bound by the domain of the state or region. An activity is functionality with live time, such as “beep”
or “take average temperature over time”. An activity is activated when entering a state or region and
is deactivated when leaving one. Compared to an activity, an action is an operation that ideally takes
zero executive time. It applies to states and transitions. A state allows actions both in entering a state
and exiting a state, and a transition executes actions after the event is validated.

Abstract actions and activities used in statecharts are independent of the platform and
implemented by system-specific programmers. In using a statecharts model, one is capable of
programming wireless sensors with little knowledge of them.

Designing statecharts begins with identifying states of the system. In the given case, shown in Figure 1,
the system is in a Motion sensing (state 1) state of sampling motion data after the initialization state
(not shown). This state repeats periodically, driven by a timer-expired event evtTimer. On event occurrences,
the event guard validates the transition. Therefore, evtTimer triggered transition on the right is taken when
the buffer is not full, judging by condition [i < N − 1]; otherwise, the bottom transition is taken. Hosting
by Motion-sensing state, a sub-state machine reflects motion detection results and acts accordingly. In each
sampling cycle, it is evident that no motion is detected as at the beginning, as in No motion (state 2) state.
Detecting a motion event moves a sub-state machine to Motion (state 3) state and records a 1 in the buffer.

J. Sens. Actuator Netw. 2020, 9, 45 8 of 19

Motion sensing app
VAR: const N = 120
 int i = 0
 bit[N] buf
 Timer T
ACTIVITY: motion_sensor()

Motion sensing (state 1)
EN: setTimer(5*CLK_SEC, T)
EX: i++

No motion (state 2)
EN: buf[i] = 0
ACTIVITY: motion_sensing()

Motion (state 3)

evtMotion/buf[i] = 1

evtTimer[i < N - 1]

evtTimer[i == N - 1]/
/* handle buffer */
i = 0

Figure 1. Statecharts demonstrating motion sensing.

In this example, there are two sensor hardware-specific actions/activities from the action library.
The motion_sensor() activity initializes motion-sensor functionality when entering Motion-sensor app
region, then destroys the motion-sensor process when leaving the region. Likewise, motion_sensing()
activity enables motion detection progress when entering No motion (state 2) state, and disables
when leaving it. The actions and activities from the action library are implemented in advance
by system-specific programmers. Moreover, to implement domain-specific actions/activities, the
system-specific can swiftly develop them without domain-specific knowledge.

The statecharts paradigm reacts to events by transiting the system from one state to another state.
A valid event invokes corresponding actions during state transition. This mechanism of statecharts
supports event-driven paradigm. In contrast to thread-based frameworks, event-driven frameworks
align with WSN application scenarios; however, traditional event-driven frameworks do not clearly
communicate how systems respond to event sequences (i.e., multiple events may occur in different
orders or simultaneously). Moreover, the executive order of all functional modules in statecharts is
presented clearly in a ”thread-based way.”

Statecharts exhibit a coherent relationship between states and events. They do not require a
thorough understanding of the platforms or operating systems. Furthermore, the graphical syntax of
statecharts visualizes the problem, aiding in afterward validation and troubleshooting.

In the example, the reader may observe that the statecharts influence the hosting platform and
surroundings only through action libraries’ actions. This mechanism effectively divides domain
specifications and system specifications. The system experts would extend existing libraries on
domain programmers’ requirements. Contrarily, other system-specific language approaches, like the
afore-mentioned thread-based and event-driven examples, require deeper cooperation between
domain-specific and system-specific programmers to accomplish an application program.

4. Statecharts Approach

The statecharts approach aims to improve the WSN application development experience by
distinguishing domain-specific programmers and system-specific programmers. Figure 2 demonstrates
collaboration between a domain-specific programmer and a system-specific programmer. A domain
programmer designs a statecharts application using the statecharts editor. The application uses abstract
actions from the action abstract interface library to actuate WSN sensor nodes. Meanwhile, a system
programmer implements action library collections in the statecharts middleware. The implemented
actions will be automatically synchronized to the statecharts framework database. However, there are
always application-specific actions unaccounted for by common library collections. The domain
programmer and the system programmer would collaborate to design the application-specific
abstract interfaces. Thus, the system programmer would implement these functions in the middleware,
while the domain programmer would be back to the statecharts design.

J. Sens. Actuator Netw. 2020, 9, 45 9 of 19

Motion sensing app
VAR: const N = 120
 int i = 0
 bit[N] buf
 Timer T
ACTIVITY: motion_sensor()

Motion sensing (state 1)
EN: setTimer(5*CLK_SEC, T)
EX: i++

No motion (state 2)
EN: buf[i] = 0
ACTIVITY:
 motion_sensing()

Motion (state 3)

evtMotion/
buf[i] = 1

e
v
tT

im
e
r[i <

 N
 - 1

]

evtTimer[i == N - 1]/
/* handle buffer */
i = 0

Statecharts framework

Common interfaces
Network service
Senser service
···
System service

Domain
programmer

Statecharts middleware

Action common
library
implementation

call synchronize

System
programmer

Application specific
abstract interfaces

Application specific
library
implementation

Collaborate

Statecharts editor Action abstract
interface library

Network service
Senser service
···
System service

Legend:
desgin

implement

Figure 2. The statecharts approach.

Statecharts showcase logical relationships between events and actions in a visual format. It helps
domain experts without a strong programming background to understand applications quickly.
So they can participate in the application design progress. After all, applications serve domain-specific
requirements, and the domain experts know the best of them. In contrast, traditional application
development approaches often employ system-specific programming languages, which only some
group members may understand. This problem may yield potential risks when validating collected
data because the application may not be understandable to the domain experts.

Because Statecharts applications are interpreted and actuated in middleware as descriptive scripts,
they are independent of the platform. Therefore, an application can be distributed across different
platforms, while platform heterogeneity is handled by middleware. Moreover, deployed applications
are re-configurable by application context modification.

We implemented an affiliated framework for the statecharts approach. The framework includes
a statecharts editor, an abstract action interface library, and a statecharts compressor. To actuate
statecharts applications in nodes, we implemented a statecharts middleware upon platforms as a
run-time environment.

4.1. Statecharts Editor

The statecharts editor is a web-based application (Figure 3), which is implemented to aid in the
statecharts design process. A programmer can plot the statecharts in the canvas while the editor
automatically suggests events and actions that can be used. The statecharts editor holds a list of actions
and events that are implemented in the action library. The list is automatically updated once new
actions being implemented by the system programmers.

Listing 3: Statecharts file capture

1 {
2 "/REGION": {
3 "property": {
4 "alias": "Door legacy",
5 "id": 2 },
6 "/INITSTATE": 0,
7 "/VAR": [
8 { "display": "const SenID = 58",
9 "id": 0,

10 "type": "const",

J. Sens. Actuator Netw. 2020, 9, 45 10 of 19

11 "initial": 58 }
12],
13 "/ACTIVITY": [
14 { "id": 4866,
15 "display": "sensor_acitivity(SenID)",
16 "parameter": [{"id": 0}] }
17],
18 "/STATE": [
19 { "property": {
20 "alias": "State0",
21 "id": 0 },
22 "/TR": [
23 { "/TARGET": 0,
24 "/ACTION": [
25 { "id": 4870,
26 "display": "sensor_submit_gateway(SenID)",
27 "parameter": [{"id": 0}] }
28],
29 "/EVENT": [
30 { "alias": "evt_sensor_activity[id == SenID]",
31 "id": 33795,
32 "condition": [
33 { "display": "evtVal (0) == SenID",
34 "comparison": "==",
35 "lexp": [{ "evtVal": 0 }],
36 "rexp": [{ "id": 0 }] }
37 ...

Figure 3. Statecharts editor snippet.

Once a statecharts application design is completed, it is saved in an object-based JSON format.
In this format, statecharts objects maintain the same hierarchical order as its graphical presentation.
Listing 3 depicts a snippet of a door sensor application from one of our real-life cases. In this format,
the statecharts components are labeled by a leading slash with a capitalized label name. The components
may contain several attributes and objects. Statecharts editor can also load a statecharts JSON file and
present it visually in the canvas.

Being string-based, JSON is considerably heavy for sensor nodes, since they are limited in
the resource. To this end, a statecharts compressor converts a statecharts context from JSON to a
binary-based representative. It significantly trims the size of context (e.g., the original Listing 3 text is

J. Sens. Actuator Netw. 2020, 9, 45 11 of 19

1627 bytes, compressed to a 39 bytes binary-based format). Eventually, the compacted statecharts are
distributed by using Over-The-Air (OTA) protocol to the sensor nodes.

4.2. Statecharts Middleware

Statecharts application context uses descriptive language, but operating systems usually accept
system-specific programming language. Therefore, it requires a specialized middleware between them
as a liaison. Figure 4 shows the middleware implemented to interpret statecharts application context
to a series of scenarios of actions invoking over events occurrences. The middleware reacts to the
events and invokes corresponding actions from the action library regarding associated statecharts
application context.

app1 ...app2 appn
event queue statecharts queue
e1 e2 en...

dispatcher

sequencer

action library

task scheduler

push

action sequence

action abstract

action task

run task

poll

actions complete

next action

task

event manager
transition context new state

transitions

next app

statecharts
middleware

StateOS

Figure 4. StateOS middleware.

Statecharts middleware uses a statecharts queue to manage installed applications. The multiple
applications’ concurrency is attained by actively switching between the statecharts. Each statecharts
application has a data structure that stores relative context, such as current state and transition progress.

An event queue pushes events to the event manager assigning them to transition candidates in the
statecharts queue. Validated transitions are forwarded to the dispatcher, which initiates transition progress.
During this progress, incoming events are placed in the event queue. The dispatcher interprets the
transition context and extracts the abstract statements and actions from the context. These statements
and actions are given to the sequencer in an executive order.

The sequencer invokes the action library’s associated actions and ensures that they are run-to-the-end
without being interrupted by other actions. When an action is complete, it invokes the next action
in the sequence. Upon completing all actions, the sequencer indicates the dispatcher completes the
transition process and refreshes the state configuration.

This process is repeated until all statecharts in the queue are processed. When complete, the event
manager checks the event queue for the events that occurred during the procedure.

4.2.1. Action Library

The actions of statecharts describe the computational behavior of an application.
The comprehensiveness of actions in the action library defines statecharts applications’ limitations. Actions
in the action library are categorized as network actions, data processing actions, sensor service actions, and

J. Sens. Actuator Netw. 2020, 9, 45 12 of 19

system actions. Using these actions, a domain programmer can develop statecharts applications for most
WSN cases.

Application-specific actions can be added to the action library. Domain-specific programmers
define the interfaces and behaviors of these actions and outsource their implementation to
system programmers. Their collaboration would be smooth and sufficient.

4.2.2. File System

To managing statecharts application, statecharts middleware implements a file system that
saves statecharts to different media by choice. For example, the file system can work with
hardware self-programming functions to save larger statecharts applications in ROM/flash memory to
save spaces. On the other hand, response-time-sensitive applications are run directly from the ROM
memory to achieve better performance.

4.2.3. OTA

The statecharts Over-The-Air (OTA) distribution module allows automatic software distribution
and updating. The OTA module can efficiently transmit statechart applications to the remote nodes
with a low energy cost because of statecharts application’s feasible size.

In our solution, a new sensor node queries an application list from its predecessor. The list is
composed based on the sensors installed and their job description, including the application’s name,
version, and digital signature. If a node lacks the listed applications, it acquires them from
its predecessor. Also, if the predecessor lacks the required application, it contacts higher level
predecessors until it finds the application.

4.2.4. Supported Platform

Statecharts middleware was designed to support multiple platforms; however, it is currently
only implemented for StateOS, a WSN OS based on Hakala and Tikkakoski’s former work [43].
StateOS applies a cross-layer design to reduce messaging overhead effectively. It applies
micro-kernel architecture, in which a hybrid task scheduler (inspired by [44]) is implemented. There are
two task queues in the scheduler, as preemptive queue and cooperative queue. They both apply
cooperative ordering manner in their respective queues. The preemptive queue tasks are privileged to
preempt cooperative queue tasks. This scheduling strategy preserves sufficient real-time capability for
WSN application while occupies only one extra memory stack for storing task context. In contrast,
traditional preemptive scheduling requires reserving a memory stack for each task or thread. Moreover,
StateOS also provides macro-based abstract flow control interfaces, which support both event-based
and multi-thread models.

5. SmartHome Application and Evaluation of the Statecharts Approach

The SmartHome application is an example of how the statecharts approach can be used in a
daily life application. This application aims to provide in-house information regarding senior people’s
well-being to home-care nurses [45]. The application’s design adopts an IoT architecture, including
a wireless sensor network, a gateway, and cloud services. The application was developed step by
step over three years. The statecharts approach was introduced to our development process for
group communication purposes. By using statecharts, our domain experts understand the WSN
application easily. Furthermore, they can make suggestions and validate whether the application
meets the domain-specific requirements.

One objective of the SmartHome application [46] was to recognize the participant’s daily
movement patterns. To obtain the participant’s movement data, we implemented wireless sensor
nodes in the participant’s apartment. Each node was equipped with a passive infrared (PIR) sensor.
We deployed these nodes in each room of the apartment, monitoring the activity of the participant.

J. Sens. Actuator Netw. 2020, 9, 45 13 of 19

The design of the application is similar to the example provided in Section 3. Figure 5 shows
our sensor application statecharts. In the statecharts region, we declare some global variables and
activate a motion-sensor service. Thus, the statecharts are in wait sensor ready state (i.e., it is a default
state to the region), which waits for the evtMotionReady event. The motion-sensor service triggers the
evtMotionReady event, which transits the statecharts to the Motion-sensing super-state.

Smart home motion app
VAR: const ID = 70
 const N = 120
 int i = 0
 bit[N] motion
 Timer T
 Time ts
ACTIVITY: motion_sensor()

Motion sensing
EN: setAlarm(5*CLK_SEC, T)
EX: i++

No motion
EN: motion[i] = 0
ACTIVITY: motion_sensing()

Motion

evtMotion/
motion[i] = 1

evtAlarm
[evtVal(0)==T AND i<N-1]

evtAlarm
[evtVal(0)==T AND i==N-1]/
upload_data(ID, ts, motion)
getNwkTIme(ts)
i = 0

Wait sensor ready
EX: getNwkTime(ts)

evtMotion-
Ready

Figure 5. Motion-sensing statecharts.

The Motion-sensing super-state is recursive and periodically records motion-sensing data and
uploads them to a gateway. The no motion state is a default sub-state of Motion-sensing super-state,
which initializes the motion-data buffer and activates a motion-sensing activity. When a motion activity
is sensed, we record the new motion status in the buffer and deactivate the motion-sensing activity by
transiting the statecharts to the motion state.

This motion statecharts application is compressed (to 154 bytes) and downloaded to a WSN
sink (as an access point to WSN). The sink initiates OTA protocol distributing the application to
all motion-sensor nodes, as shown in Figure 6. The collected motion data from different sensor
nodes is accumulated, encoded, and compressed in the sink and upload to the Internet using a
LoRa [47] gateway.

Figure 6. Motion-sensing hardware.

Evaluation of the Statecharts Approach

To evaluate the statecharts application’s performance, we compare the SmartHome motion
activity application to an equivalent thread-based C program. Both programs are examined on
the same platform, including the same operating system, StateOS. A difference is that statecharts
application is actuated upon middleware, while the flat-coded program runs on StateOS directly.
Therefore, the executive time and the use of data memory of both approaches can be evaluated related
to each other.

Table 1 presents the executive time measurements of both programs. In general, the executive
time of responding to an event in statecharts approaches is two to three times slower than flat-coded

J. Sens. Actuator Netw. 2020, 9, 45 14 of 19

approaches. Nevertheless, we argue that since both approaches have an executive time in milliseconds,
the difference is negligible (especially considering that a typical wireless sensor active period less
than one percent of its lifetime). Also, in some situations (e.g., the wait sensor ready stage shown
in Table 1), because the relationship between the state and event is already established in the
statecharts context, it negates the need for some of the statecharts’ steps to register the event in
the event management module. In contrast, the flat-code approach must always register the pending
event to the event handler. Therefore, sometimes the statecharts approach is somewhat fast than the
flat-code approach.

Table 1. Execution time comparison.

Stage Statecharts (us) Flat-Code (us) Description

Initialization 1005 690 Initializes sensor

Wait sensor ready 19 358 Maintains suspension until evtMotionReady
event occurs

evtMotionReady 413 233 Responds to evtMotionReady event

Motion sensing 987 243 Activates motion sensor and alarm timer

evtMotion 833 260 Responds to evtMotion event

evtAlarm (No motion) 1156 736 Responds to evtAlarm event when no motion
detected

evtAlarm (Motion) 872 482 Responds to evtAlarm event when motion is
detected

Both programs are stored in flash memory, the size of statecharts scripts is 154 bytes compared to
1268 bytes with the compiled flat-coded program. Statecharts scripts are descriptive and compressed
in a compact format. It is generally smaller than the equivalent machine code. Statecharts scripts
can be executed directly from flash memory but with an executive speed trade-off. Sometimes,
in a performance preferred application, the statecharts scripts can be imaged and performed in
data memory.

The data memory footprint of the statecharts is evaluated by recording the high water marks
of memory usage in different stages. Table 2 shows that if the scripts are executed in flash
memory, the statecharts consume less memory than the flat-coded program. Nevertheless, in the
SmartHome application, we run statecharts in data memory to achieve better event response time.
In this case, the statecharts actually use more memory compared to the flat-coded program.

Statecharts memory footprint mainly consists of three parts: variables, a control block,
and statecharts scripts. A control block is a 16 bytes only data structure saving the statecharts’
status and context. On the other hand, flat-coded programs need to allocate more memory to manage
the contexts of related tasks and events by using the platform provided interfaces.

Table 2. Memory footprint evaluation.

Stage
Flat-Code Statecharts (Bytes)

(Bytes) Scripts excl. 1 Scripts incl. 2

Total Variable Control Total Scripts Total

Wait sensor ready 88 40 16 56 154 210

Motion sensing 88 56 16 72 154 226

Motion detected 136 104 16 120 154 274
1 The statecharts are actuated in flash memory, so the scripts are not included in data memory. 2 The statecharts
are actuated in data memory, so the scripts’ in-memory image is taken to account in data memory.

J. Sens. Actuator Netw. 2020, 9, 45 15 of 19

The power consumption of a WSN application is related to the CPU active duty circle. Because the
statecharts approach is about three times slower than the flat-code approach, practicing the statecharts
approach will consume more energy to actuate an application. However, a typical WSN application
is designed to sleep over 99% of the time. The extra consumed energy by longer executive time
is affordable. The radio activity consumes a bigger portion of energy compared to CPU. The size of a
statecharts application is about nine times smaller than the flat-code one. So it consumes less energy to
transmit a statecharts application to another device over radio frequency.

The evaluation results reveal that the statecharts approach has a latency trade-off. Considering a
typical WSN low-power radio takes tens of milliseconds to transmit a message [48]. The statecharts
approach’s millisecond-level executive time is sufficient in most of WSN applications. The statecharts
control block can be considered a memory stack assigned to thread in a multi-threaded system.
In multi-threaded OSes, it is empirical to assign at least 128 bytes memory stack for each thread to
prevent stack overflow (e.g., freeRTOS [49] and Mantis OS). Therefore, statecharts’ 16 bytes control
block is favorable to WSN restricted memory resources.

Furthermore, to evaluate the usefulness of the statecharts approach, we compared the statecharts
middleware against some of the well-known and state-of-the-art approaches in Table 3. In general,
a high-level approach is user experience-oriented and provides a descriptive programming model
with affiliated frameworks. Therefore, compared to low-level approaches, the statecharts approach,
as a high-level approach, is more friendly to novice programmers.

Typically, many high-level approaches use descriptive language to program applications and use
code generators to produce the system-specific programs. As we argued in Section 2, the generated
programs are platform-depended, challenging to understand, and potentially deviating against the
original design. Compared to the code-generating approaches, the statecharts application actuates
the platform in a “what you see is what you get” paradigm by running the raw statecharts context
directly on the device. Statecharts are an event-driven paradigm which better suits for WSN cases.
Furthermore, the statecharts visual formalism would enhance user experience even better.

Table 3. Comparing the statecharts approach to other approaches

Approach Level Scripts Paradigm Code Visual
Language Generator Programming

Statecharts middleware high bit-wise JSON statecharts no yes

SenOS high STT 1 FSM no no

OSM high OSM lang. OSM model yes no

PyFUNS low python instruction stack yes yes

SenNet [40] high DSL UML 2 yes no

Kerasiotis’ approach [42] high instruction stack function blocks no no

Modesene [37] high DSML 3 MDD yes no

WSN Virtualization [35] low java UML model no no

TinyDB high SQL-alike database no no

OASiS [9] high TinyGALS [50] FSM no no
1 STT is short for State transition table. 2 UML is short for Unified Modeling Language. 3 DSML is short for
Domain-Specific Modeling language.

6. Discussion and Conclusions

In this paper, we have argued that our statecharts approach effectively eases WSN
application development. The development procedure is decoupled into domain-specific tasks and
system-specific tasks. The system programmers were dedicated to providing quality action libraries

J. Sens. Actuator Netw. 2020, 9, 45 16 of 19

to be used in statecharts. Aided by the statecharts framework, the domain programmers developed a
statecharts application to fulfill the field requirements.

Statecharts have a graphical syntax. The logical relationships between function modules are
presented visually. Therefore, the studying curve of statecharts is smoother than in transitional
programming approaches. Furthermore, the state-machine variants, such as FSMs and statecharts,
are widely used instruments in scientific and industrial fields. The domain programmers from those
fields could more easily implement a statecharts approach.

Team collaboration is utterly essential presently. A statecharts application is intelligible to all team
members and requires little explanation. Thus, a team-wide discussion about a statecharts application can
be conducted swiftly. It is beneficial if the field requirements are proposed by those without a programming
background. The statecharts approach has the potential for early-stage IoT programming education. It does
not require comprehensive knowledge of hardware, programming languages, or operating systems to
practice IoT applications.

The evaluation results in Section 5 revealed that using the statecharts approach has an executive
time trade-off about three times greater than in “flat coding”. It is easy to understand that actuating a
statecharts application requires extra steps compared to a system-specific application. Nonetheless,
the difference in event response time using the statecharts approach is on the millisecond scale.
It is sufficiently real-time for most WSN cases. Moreover, managing statecharts applications often
involve extra context memory space compared to a system-specific program. The engaged context
memory (16 bytes per application) is, in fact, smaller than a thread memory stack size in multi-thread
OSes (e.g., typically 128 bytes in freeRTOS and Mantis OS). The statecharts application context is
usually in stasis; therefore, the data addressing and reading speed is vital to overall performance.
Depending on platforms, a statecharts application can be stored in the data memory (best performance
but a limited resource), the program memory (mediocre performance but a sufficient resource),
or other media. The choice relies on the application’s preference to achieve better performance
or compromise to budget data memory.

So far, our statecharts framework is still preliminary and under development. The editor and
action libraries are preliminary. As shown in Section 5, motion-sensor actions are developed as
application-specific functions rather than common sensor services. As we further develop the
statecharts framework, the action library is expected to become more comprehensive for better WSN
application usage.

This paper focuses on proposing a WSN programming approach. We only briefly introduced
the statecharts notations and supported framework. We will present the details of our statecharts
semantics and supported middleware in future publications. At the moment, our statecharts approach
accepts only the statecharts middleware combined with StateOS. It is one of our future objectives to
port statecharts middleware to other platforms (e.g., Arduino [51]).

Author Contributions: Conceptualization, I.H.; supervision, I.H.; software, X.T.; writing—original draft, X.T.;
writing—review & editing, I.H.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: We declare that there is no conflict of interest.

References

1. Stefania, A.; David, B.; Martin, C.; Mike, C.; Philip, C.; Gabriella, C.; Sergio, G.; Giorgio, M.; Domenico, R.;
Richard, S. Definition of a Research and Innovation Policy Leveraging Clou Computing and IoT Combination.
Study Prep. Eur. Comm. Commun. Netw. Content Technol. 2013, 95. [CrossRef]

2. Levis, P.; Madden, S.; Polastre, J.; Szewczyk, R.; Whitehouse, K.; Woo, A.; Gay, D.; Hill, J.; Welsh, M.;
Brewer, E.; et al. Tinyos: An operating system for sensor networks. In Ambient Intelligence; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 115–148.

http://dx.doi.org/10.2759/38400

J. Sens. Actuator Netw. 2020, 9, 45 17 of 19

3. Dunkels, A.; Gronvall, B.; Voigt, T. Contiki-a lightweight and flexible operating system for tiny networked
sensors. In Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks,
Tampa, FL, USA, 16–18 November 2004; pp. 455–462.

4. Srisathapornphat, C.; Jaikaeo, C.; Shen, C.C. Sensor information networking architecture. In Proceedings of
the 2000 International Workshop on Parallel Processing, Toronto, ON, Canada, 21–24 August 2000; pp. 23–30.

5. Madden, S.R.; Franklin, M.J.; Hellerstein, J.M.; Hong, W. TinyDB: An acquisitional query processing system
for sensor networks. ACM Trans. Database Syst. (TODS) 2005, 30, 122–173. [CrossRef]

6. Demers, A.; Gehrke, J.; Rajaraman, R.; Trigoni, N.; Yao, Y. The cougar project: A work-in-progress report.
ACM Sigmod Rec. 2003, 32, 53–59. [CrossRef]

7. Bocchino, S.; Fedor, S.; Petracca, M. Pyfuns: A python framework for ubiquitous networked sensors.
In European Conference on Wireless Sensor Networks; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–18.

8. Barr, R.; Bicket, J.C.; Dantas, D.S.; Du, B.; Kim, T.D.; Zhou, B.; Sirer, E.G. On the need for system-level
support for ad hoc and sensor networks. ACM SIGOPS Oper. Syst. Rev. 2002, 36, 1–5. [CrossRef]

9. Kushwaha, M.; Amundson, I.; Koutsoukos, X.; Neema, S.; Sztipanovits, J. Oasis: A programming
framework for service-oriented sensor networks. In Proceedings of the 2007 2nd International Conference
on Communication Systems Software and Middleware, Bangalore, India, 7–12 January 2007; pp. 1–8.

10. Serna, M.A.; Sreenan, C.J.; Fedor, S. A visual programming framework for wireless sensor networks in smart
home applications. In Proceedings of the 2015 IEEE Tenth International Conference on Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP), Singapore, 7–9 April 2015; pp. 1–6.

11. Hong, S.; Kim, T.H. Senos: State-driven operating system architecture for dynamic sensor node
reconfigurability. In International Conference on Ubiquitous Computing; ACM: New York, NY, USA, 2003;
pp. 201–203.

12. Harel, D. Statecharts: A visual formalism for complex systems. Sci. Comput. Program. 1987, 8, 231–274.
[CrossRef]

13. Kasten, O.; Römer, K. Beyond event handlers: Programming wireless sensors with attributed state machines.
In Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, Boise,
ID, USA, 15 April 2005; p. 7.

14. YAKINDU STATECHART TOOLS. Available online: https://www.itemis.com/en/yakindu/state-machine/
(accessed on 17 August 2020).

15. Kim, T.H. Design and Implementation of a State-Driven Operating System for Highly Reconfigurable Sensor
Networks. Int. J. Distrib. Sens. Netw. 2013, 2013, 7.

16. JSON. Available online: https://www.json.org (accessed on 17 August 2020).
17. Suryadevara, N.K.; Mukhopadhyay, S.C.; Kelly, S.D.T.; Gill, S.P.S. WSN-based smart sensors and actuator for

power management in intelligent buildings. IEEE/ASME Trans. Mechatron. 2014, 20, 564–571. [CrossRef]
18. Liu, L.; Stroulia, E.; Nikolaidis, I.; Miguel-Cruz, A.; Rincon, A.R. Smart homes and home health monitoring

technologies for older adults: A systematic review. Int. J. Med. Inform. 2016, 91, 44–59. [CrossRef]
19. Rashidi, P.; Mihailidis, A. A survey on ambient-assisted living tools for older adults. IEEE J. Biomed.

Health Inform. 2012, 17, 579–590.
20. Ðurišić, M.P.; Tafa, Z.; Dimić, G.; Milutinović, V. A survey of military applications of wireless sensor

networks. In Proceedings of the 2012 Mediterranean conference on embedded computing (MECO), Bar,
Montenegro, 19–21 June 2012; pp. 196–199.

21. BenSaleh, M.S.; Saida, R.; Kacem, Y.H.; Abid, M. Wireless Sensor Network Design Methodologies: A Survey.
J. Sens. 2020, 2020. [CrossRef]

22. Abrach, H.; Bhatti, S.; Carlson, J.; Dai, H.; Rose, J.; Sheth, A.; Shucker, B.; Deng, J.; Han, R. MANTIS:
System support for multimodal networks of in-situ sensors. In Proceedings of the 2nd ACM International
Conference on Wireless Sensor Networks and Applications, San Diego, CA, USA, 19 September 2003; ACM:
New York, NY, USA, 2003; pp. 50–59.

23. Watteyne, T.; Vilajosana, X.; Kerkez, B.; Chraim, F.; Weekly, K.; Wang, Q.; Glaser, S.; Pister, K. OpenWSN:
A standards-based low-power wireless development environment. Trans. Emerg. Telecommun. Technol. 2012,
23, 480–493. [CrossRef]

24. Han, C.C.; Kumar, R.; Shea, R.; Kohler, E.; Srivastava, M. A dynamic operating system for sensor nodes.
In Proceedings of the 3rd International Conference on Mobile Systems, Applications, and Services, Seattle,
WA, USA, 6–8 June 2005; pp. 163–176.

http://dx.doi.org/10.1145/1061318.1061322
http://dx.doi.org/10.1145/959060.959070
http://dx.doi.org/10.1145/509526.509528
http://dx.doi.org/10.1016/0167-6423(87)90035-9
https://www.itemis.com/en/yakindu/state-machine/
https://www.json.org
http://dx.doi.org/10.1109/TMECH.2014.2301716
http://dx.doi.org/10.1016/j.ijmedinf.2016.04.007
http://dx.doi.org/10.1155/2020/9592836
http://dx.doi.org/10.1002/ett.2558

J. Sens. Actuator Netw. 2020, 9, 45 18 of 19

25. Cao, Q.; Abdelzaher, T.; Stankovic, J.; He, T. The liteos operating system: Towards unix-like abstractions for
wireless sensor networks. In Proceedings of the 2008 International Conference on Information Processing in
Sensor Networks (ipsn 2008), St. Louis, MO, USA, 22–24 April 2008; pp. 233–244.

26. Baccelli, E.; Hahm, O.; Günes, M.; Wählisch, M.; Schmidt, T.C. RIOT OS: Towards an OS for the Internet of
Things. In Proceedings of the 2013 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Turin, Italy, 14–19 April 2013; pp. 79–80.

27. Labrosse, J.J.; Torres, F. uC/OS-III: The Real-Time Kernel and the NXP LPC1700; Micrium Press: Weston,
FL, USA, 2010.

28. Levis, P.; Culler, D. Maté: A tiny virtual machine for sensor networks. ACM Sigplan Not. 2002, 37, 85–95.
[CrossRef]

29. Fok, C.L.; Roman, G.C.; Lu, C. Agilla: A Mobile Agent Middleware for Self-Adaptive Wireless Sensor
Networks. ACM Trans. Auton. Adapt. Syst. 2009, 4. [CrossRef]

30. Dedecker, J.; Van Cutsem, T.; Mostinckx, S.; D’Hondt, T.; De Meuter, W. Ambient-oriented programming.
In Proceedings of the Companion to the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, San Diego, CA, USA, 16–20 October 2005; ACM:
New York, NY, USA, 2005; pp. 31–40.

31. Whitehouse, K.; Sharp, C.; Brewer, E.; Culler, D. Hood: A neighborhood abstraction for sensor networks.
In Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services, Boston,
MA, USA, 6–9 June 2004; pp. 99–110.

32. Welsh, M.; Mainland, G. Programming Sensor Networks Using Abstract Regions; NSDI: Bostion, MA, USA, 2004;
Volume 4, p. 3.

33. Abdelzaher, T.; Blum, B.; Cao, Q.; Chen, Y.; Evans, D.; George, J.; George, S.; Gu, L.; He, T.;
Krishnamurthy, S.; et al. Envirotrack: Towards an environmental computing paradigm for distributed
sensor networks. In Proceedings of the 24th International Conference on Distributed Computing Systems,
Tokyo, Japan, 26 March 2004; pp. 582–589.

34. Wu, Y.; Rowe, A. Logic-based programming for wireless sensor-activator networks. In Proceedings of the
2011 IEEE/ACM Second International Conference on Cyber-Physical Systems, Chicago, IL, USA, 12–14 April
2011; pp. 163–173.

35. Patkar, K.; Prasad, V. Software Framework for Wireless Sensor Network Virtualization. In Proceedings of
the 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India,
27–29 November 2019; pp. 1136–1143.

36. Khalid, Z.; Khalid, U.; Sarijari, M.A.; Safdar, H.; Ullah, R.; Qureshi, M.; Rehman, S.U. Sensor virtualization
Middleware design for Ambient Assisted Living based on the Priority packet processing. Procedia Comput. Sci.
2019, 151, 345–352. [CrossRef]

37. Kifouche, A.; Hamouche, R.; Kocik, R.; Rachedi, A.; Baudoin, G. Model driven framework to enhance sensor
network design cycle. Trans. Emerg. Telecommun. Technol. 2019, 30, e3560.

38. Tei, K.; Shimizu, R.; Fukazawa, Y.; Honiden, S. Model-driven-development-based stepwise software
development process for wireless sensor networks. IEEE Trans. Syst. Man Cybern. Syst. 2014, 45, 675–687.
[CrossRef]

39. Doddapaneni, K.; Ever, E.; Gemikonakli, O.; Malavolta, I.; Mostarda, L.; Muccini, H. A model-driven
engineering framework for architecting and analysing wireless sensor networks. In Proceedings of the 2012
Third International Workshop on Software Engineering for Sensor Network Applications (SESENA), Zurich,
Switzerland, 2 June 2012; pp. 1–7.

40. Salman, A.J.; Al-Yasiri, A. SenNet: A programming toolkit to develop wireless sensor network applications.
In Proceedings of the 2016 8th IFIP International Conference on New Technologies, Mobility and Security
(NTMS), Larnaca, Cyprus, 21–23 November 2016; pp. 1–7.

41. Becker, L.B.; Basso, F.P.; Fröhlich, A.A.; Paulon, A. Model-driven development of WSN applications.
In Proceedings of the 2013 III Brazilian Symposium on Computing Systems Engineering, Niteroi, Brazil,
4–8 December 2013; pp. 161–166.

42. Kerasiotis, F.; Koulamas, C.; Papadopoulos, G. Developing wireless sensor network applications based on
a function block programming abstraction. In Proceedings of the 2012 IEEE International Conference on
Industrial Technology, Athens, Greece, 19–21 March 2012; pp. 372–377.

http://dx.doi.org/10.1145/605432.605407
http://dx.doi.org/10.1145/1552297.1552299
http://dx.doi.org/10.1016/j.procs.2019.04.048
http://dx.doi.org/10.1109/TSMC.2014.2360506

J. Sens. Actuator Netw. 2020, 9, 45 19 of 19

43. Hakala, I.; Tikkakoski, M. From vertical to horizontal architecture: A cross-layer implementation in a sensor
network node. In Proceedings of the First International Conference on Integrated Internet ad Hoc and
Sensor Networks, Nice, France, 30–31 May 2006; ACM: New York, NY, USA, 2006; p. 6.

44. Laukkarinen, T.; Kaseva, V.A.; Suhonen, J.; Hamalainen, T.D.; Hannikainen, M. HybridKernel: Preemptive
kernel with event-driven extension for resource constrained wireless sensor networks. In Proceedings of the
2009 IEEE Workshop on Signal Processing Systems, Tampere, Finland, 7–9 October 2009; pp. 161–166.

45. Klemets, J.; Määttälä, J.; Hakala, I. Integration of an in-home monitoring system into home care nurses’
workflow: A case study. Int. J. Med Inform. 2019, 123, 29–36. [CrossRef] [PubMed]

46. Jansson, J.; Hakala, I. Managing sensor data streams in a smart home application. Int. J. Sens. Netw. 2020,
32, 247–258. [CrossRef]

47. LoRa. Available online: https://www.lora-alliance.org (accessed on 17 August 2020).
48. IEEE Standard for Low-Rate Wireless Networks. IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011);

IEEE: Toulouse, France, 2016; pp. 1–709.
49. freeRTOS. Available online: https://www.freertos.org (accessed on 24 September 2020).
50. Cheong, E.; Liebman, J.; Liu, J.; Zhao, F. TinyGALS: A programming model for event-driven embedded

systems. In Proceedings of the 2003 ACM symposium on Applied computing, Melbourne, FL, USA,
9–12 March 2003; pp. 698–704.

51. Arduino. Available online: https://www.arduino.cc/ (accessed on 17 August 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijmedinf.2018.12.006
http://www.ncbi.nlm.nih.gov/pubmed/30654901
http://dx.doi.org/10.1504/IJSNET.2020.106603
https://www.lora-alliance.org
https://www.freertos.org
https://www.arduino.cc/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Wireless Sensor Programming Frameworks
	Thread-Based
	Event-Driven
	Statecharts

	Statecharts Approach
	Statecharts Editor
	Statecharts Middleware
	Action Library
	File System
	OTA
	Supported Platform

	SmartHome Application and Evaluation of the Statecharts Approach
	Discussion and Conclusions
	References

