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Abstract: The representation of structural dynamics in the absence of physics-based models,
is often accomplished through the identification of parametric models, such as the autoregressive
with exogenous inputs, e.g.,, ARX models. When the structure is amenable to environmental
variations, parameter-varying extensions of the original ARX model can be implemented, allowing
for tracking of the operational variability. Yet, the latter occurs in sufficiently longer time-scales
(days, weeks, months), as compared to system dynamics. For inferring a “global”, long time-scale
varying ARX model, data from a full operational cycle has to typically become available. In addition,
when the sensor network comprises multiple nodes, the identification of long time-scale varying,
vector ARX models grow in complexity. We address these issues by proposing a distributed
framework for structural identification, damage detection and localization. Its main features are:
(i) the individual estimation of local, single-input-single-output ARX models at every operational
point; (ii) the long time-scale representation of each individual ARX coefficient via a Gaussian process
regression, which captures dependency on varying Environmental and Operational Conditions
(EOCs); (iii) the establishment of a distributed residual generation algorithm for damage detection,
which produces time-series of well-defined stationary statistics, with detected discrepancies used
for damage diagnosis; and, (iv) exploitation of ARX-inferred mode shape curvatures, obtained via
ARX-inferred global state-space models, of the healthy and damaged states, for damage localization.
The method is assessed via application on two numerical case studies of different complexity, with the
results confirming its efficacy for diagnostics under varying EOCs.

Keywords: structural health monitoring; varying environmental and operational conditions; damage
detection and localization; Gaussian process regression; autoregressive with exogenous inputs;
distributed sensor network; mode shape curvatures

1. Introduction

In the field of condition monitoring, model-based fault diagnosis (FD) [1-3] has been gaining
ground, as a robust means for condition assessment. In contrast to other schemes, which are heavily
dependent on dense instrumentation systems, the existence of a model in analytical and/or numerical
form introduces inter-dependencies between the monitored quantities and, in this way, guarantees a
form of redundancy [4]. When the employed model draws from first principles, e.g., a finite element
representation, then this offers the added benefit of response estimation in unmeasured locations.
The latter is also referred to as “virtual sensing" in recent literature [5,6]. For instance, when structural,
e.g., finite element, models are coupled with observers, such as those that are based on Kalman filtering,
the notion of virtual sensing can be exploited in strain estimation for fatigue assessment [7-11].
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However, it is often non-trivial—or even practically infeasible—to assemble a precise system
model that relies on first principles. Detailed representations using finite/discrete element models or
multibody representations tend to suffer from the curse of uncertainty, tied to the required definition of
modeling parameters, and will typically come with considerable computational toll. This is particularly
true in the modeling of wind turbines components, where, due to the complexity of the involved
geometry and materials, the establishment of a structural model forms an intricate task [12]. For such
components in particular, FD plays an important role, as it could serve for damage prediction and
preventive maintenance. For achieving diagnosis at reduced computation, it is, in this case, desirable
to avoid the utilization of physics-based models. This work exploits availability of a parametric
model structure, which is purely derived from availability of data, in the form of input/output, i.e.,
load /response information.

FD studies have been conducted for a diverse suite of systems including civil [13-15],
mechanical [16,17], wind energy [18-23], and aerospace structures [24-28]. An important challenge in
estimation originates from the exposure of such engineered systems, even if of diverse functionality,
to varying Environmental and Operational Conditions (EOCs) [29-31]. Most engineered system:s,
and structures in particular, are subject to continually changing environments, e.g., temperature and
humidity conditions. Such benign variability effects often dominate the monitored quantities, often
masking the changes induced by actual damage or deterioration [32-34]. In order to account for
this variability in a way that renders detection of actual damage robust, output-only or input-output
schemes may be followed. In the first case, detection relies exclusively on measurements of structural
response, whilst in the second case inference of a model is sought between the system output
(response) and the measured EOCs. Following an output-only scheme, Bernal [35] discusses damage
detection and localization in civil engineering structures in absence of information on the environment.
Figueiredo et al. [36] examine different machine learning alternatives; Harmanci et al. [37] exploit an
output-only autoregressive approach; Sohn et al. [38] and Dervilis et al. [39] successfully test the use of
auto-associative neural networks; while, Limsa & Kullaa [40,41] rely on factor analysis. Numerous
works in the ouput-only front rely on principle component analysis (PCA) for the incorporation
of EOCs [42]. Applications in FD for structures include damage identification in the form of both
detection [43-45] and localization [46,47].

In this work, we propose an input-output scheme for tackling dependence of structural properties
on EOC variability. Regression often forms a main tool to this end, targeting the construction of an
input/output dependence function, which can be then complemented with a probabilistic treatment
of the estimation error for robust outlier detection [48,49]. Alternatively, time-series representations
can be adopted as models of the underlying dynamics, while explicitly incorporating dependence on
influencing factors, such as EOCs. Different formulations exist to this end. Linear Parameter Varying
(LPV) models utilize a two-stage approach for capturing this dependence. Firstly, local (or frozen)
models are computed, which correspond to specific EOC configurations, and secondly, the parameters
of the identified models are interpolated to provide a single global model [50,51], operating across EOCs.
Another option lies in adoption of Functionally Pooled (FP) time-series models, which are further
described in Kopsaftopoulos et al. Kopsaftopoulos et al. [52] and Sakellariou and Fassois [53]. Here,
the AR coefficients are modeled as explicit functions of the EOC vector, which could for instance
pertain to airspeed and angle of attack for parameters met in aerospace applications. A functional
basis is used comprising bivariate polynomials, resulting as tensor products from corresponding
univariate polynomials (Chebyshev, Legendre, Jacobi, and other families). Spiridonakos et al. [54]
and Spiridonakos and Chatzi [55] have introduced a Polynomial Chaos basis instead in order to span
the functional subspace expressing the dependence of the AR models on the EOCs [56,57] tackling
variability in structural components. A further alternative pertains to use of Random Coefficient
(RC) models, where the time-dependent coefficients follow a multivariate Gaussian mixture model
(GMM), allowing for significant flexibility in uncertainty representation [58,59]. To further separate
effects, which operate on different temporal scales, Avendafio-Valencia et al. [51] propose a hierarchical
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time-series model. This adopts an LPV-AR representation for capturing influences on short-term
dynamics, e.g., azimuth of the rotor for operating wind turbines, while long-term influences stemming
from effects such as temperature, are tackled by means of Gaussian process regression (GPR) [60].
The framework is demonstrated on the tracking of the response of the Humber bridge under long-term
influence that is induced by varying acting averaged wind speeds.

Based on the above, a two-stage algorithmic process is proposed in this work, with the aim (i)
to construct a data-driven model of the structure, able to reliably reconstruct the response across the
full range of operation of the system in its healthy state and (ii) reliably detect and possibly localize
damage, via use of a suitably defined Residual Generation Algorithm (RGA) [1,61-64] featuring
appropriately selected detection thresholds. The first step requires training across a sufficient number
of structural response samples that sufficiently span the "global" system response. A GP-ARX model
is then constructed, which is valid across the whole range of operating conditions of the structure.
Once the model is put in place, a RGA is formulated as the difference between the measured response
and the noise-free part of the GP-ARX model. It is demonstrated that the RGA follows a GP-AR
model: this allows for delivering the theoretical statistical thresholds and defining the range of values
within which the “healthy” state lies, as a function of the EOC variable vector. Any systematic
deviation from the predefined threshold zone is then a safe alert for the presence of damage. It is
shown that damage detection can be accomplished even by a single GP-ARX model, e.g., a single
response measurement sensor. Localization, which inevitably depends on the available sensor network,
proceeds by calculating the differences between the mode shape curvatures (MSCs) of the healthy and
the damaged structure.

The paper is organized, as follows: Section 2 defines the problem and delivers the theoretical
difference equation between a single input-output pair, including the dependence of the input-output
delay with respect to the structural response type monitored. Section 3 describes the structural
identification stage, formulates the RGA and establishes the damage detection and localization
procedure. The method is assessed in Section 4, via two numerical investigations of different complexity,
namely a spring-mass-damper system and a shear frame reflecting a common representation of a
structural system. Finally in Section 5, the results are summarized and directions for further research
are given.

2. Problem Formulation

A linear, viscously damped, operationally varying structural system with n degrees of freedom
(DOFs) may be represented by a second—order vector differential equation of the form

M(&)x(t) + C(E)x(t) + K(E)x(t) = u(t) 1)

where x(t) is the [n x 1] vibration displacement vector, M(&), C(¢) and K(&) are the real [n x n| mass,
viscous damping and stiffness matrices, respectively, and u(t) is the [n x 1] vector of excitations.

The operational variability of the structural matrices may be attributed to diverse environmental
parameters (temperature, humidity, etc.), which are herein represented by a [L x 1] vector { =
[€1,&,...,&)". Tt is assumed that their temporal evolution is sufficiently slow as compared to
the variation of the structural dynamics (e.g., sufficiently lower with respect to the lowest structural
vibration mode). Subsequently, Equation (1) can be considered as a local LTI model that describes
the structure during a small time interval. The two different time-scales are henceforth referred to
as the long time-scale, corresponding to the temporal evolution of ¢ and notated by t;, and the short
time-scale, corresponding, as usual, to the temporal evolution of x(¢) and notated by ¢.

Under this setting, within the short time-scale, the parameter vector { may be considered
as constant, which is, as a realization of a multivariate random process & with joint PDF fz(Z).
Accordingly, Equation (1) may be written as

M(E)x(t) + C(E)x(t) + K(E)x(t) = u(t), with E(w) € Q )
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where () denotes the event space of the random vector Z. The state-space representation of
Equation (2) reads
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Ac(E)0(t) + B(E)u(t) (3a)
H:(2){(t) + Dc(E)u(t) (3b)

&)

<

—
~

=
I

in which the state and input matrices have the standard form

On I,

A®) = | _pi@mk@ —M-(E)CE)

M-1(E)

,Bc(a>—[ 0 ] (4)

and the output and feedforward matrices, H.(E) and D (&), respectively, depend on the type of the
monitored structural response (vibration displacement, velocity, acceleration, strain, etc.) y(f), of size
[s x 1].

A representation of Equation (3) in discrete-time proceeds by adopting an appropriate sampling
period Ts, for which the intersample behaviour of the input can be regarded as constant (e.g., zero-order
hold assumption). Subsequently

B(Z)ulk] (5a)
D(E)ulk] (5b)

for
A(E) = AET, B(E) = [A(E) ~I]A; ' (E)B(E), H(E) = He(E), D(E) =D:(E)  (6)
Equation (5) can be transformed into a modal form as

nlk+1] = A(E)ylk] + T (Z)ulk] (7a)
y[k] = ¥(E)n[k] + D(Z)ulKk] (7b)

with A(Z) corresponding to the diagonal matrix of the eigenvalues of A(Z), II” (E) to the matrix
of modal participation vectors and ¥' (E) to the matrix of mode shapes. It is reminded that, for an
underdamped structure, the diagonal entries of A(Z) arrive in complex conjugate pairs, and so do the
row vectors of IT" (E) and the column vectors of ¥7 (2).

For convenience, we will henceforth assume that the structure is excited by a single input,
e.g., ulk] — u[k]. Subsequently, from Equation (7), the dynamics of a single input-output pair are
described by

gk +1] = A(E)g[k] + O (2)ulk] (8a)
yelk] = o (E)ylk] + do(E)ulk] (8b)

where 3;(Z) and d; are the /-th row and element of ¥(Z) and D(&), respectively. The application of
the Z-transform to Equation (8) yields

-1
1(z) = [2hy ~ AE)| T (E)u(z) %)
do(Z)u(z) (9b)

Ge(z) = u( (10)
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or, as a modal decomposition
o +dy(E) (11)

with Ry ;(E) obviously defined. In deriving a rational expression for G(z), notice that the far right
hand side of Equation (11) can be written as

2n N Z*li, z
GZ(Z) = Z RE,Z(HIZ(Z)AZ( ) +d€(E‘) (12)

for

Az)=(1-ME)z H1-M(E)z ... (1-Ap(E)z )
=1+a1(E)z ' +ap(B)z 2+ + ag (E)z (13)

The polynomial A;(z) in the numerator of Equation (12) corresponds to A(z) with the i-th
eigenvalue removed and it reaches up to order —2n + 1. By combining further (i) the presence of the
unit delay, z~1; and, (ii) the term d/(E), a qualitative rational expression for G(z) can be derived

Goiz) — BE) _ 00(@) + (@) 4 ba(@)z 4t bay() ”
A(z) 14+a1(E)z7 +ap(B)z72 4 -+ 4+ ap,(E)z=2n

with by(E) = dy(E). Based on Equations (10)—(13), it follows that the coefficients of B(z) depend
on both of the eigenvalues and the eigenvectors of A(Z). Also observe that, in the absence of a
feedforward term in Equation (8), then G(z) has a unit input-output delay, since dy(E) = 0. In either
case, the difference equation that describes the structural dynamics of the ¢-th response in discrete-time
stems from Equation (14) as

yelk] + a1 (E)ye[k — 1] + - - - +a2,(E)y [k — 2n]
= bo(Z)ulk] + b1 (E)ulk — 1] + - + bon (E)ulk — 2n] (15)

Under this setting, the problem treated herein is the detection and the localization of damage when

- there is no prior information about the structure,
- input-output measurements are consistently recorded over the short scale (e.g., k), and
- the complete set of Z is available (measurable) over the long time-scale (e.g., ;)

The proposed strategy is of a decentralized nature, in the sense that estimation is first
accomplished on a local basis, by considering all individual input-output data pairs independently,
as dictated by Equation (15). The adopted framework comprises two phases, e.g., the structural
identification phase and the damage detection and localization phase, which are discussed in the
following.

3. The Methodological Framework

3.1. The Structural Identification Phase

For simplicity, it is henceforth assumed that the operational variability is due to a single parameter,
eg,L = 1land 8 — E. Equation (15) indicates that at the healthy state of the structure, an
excitation-response pair can be effectively described in discrete-time by an ARX model of the form [65]

P P
ylk] + Y ai(E)ylk —i] = ) _ bi(E)ulk —i] + e[k] (16)

i=1 i=0
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where y[k] denotes the noise-corrupted structural vibration response of a single DOF, u[k] is the
excitation, a;(Z) and b;(Z) are the coefficients of the AR and exogenous polynomials, of order p,
and e[k] ~ N(0,02(E)) is a zero-mean Gaussian white noise realization that models process and
measurement uncertainty (e.g., model inconsistencies and instrumentation noise). It is noted that, in
Equation (16), by # 0 only when vibration acceleration response measurements are available.
Equation (16) indicates that the ARX(p, p) model accounts for the variability of the response due
to variations of E through the AR and exogenous parameters, a;(E) and b;(E), respectively, as well as
through the noise variance matrix ¢Z(Z). These are herein admitting a GPR representation as

Pa
a;(E) = Y ;iSq;(E) + Pa(B) + € (17a)
j=1
Pb
bi(E) = ) BijSi,;(E) + Py(E) + € (17b)
j=1
2 £
07 (E) = ) 7iiS0,i(E) + Pr (B) + €5 (17¢)
j=1

In light of this parametric representation, the model of Equation (16) is termed as GP-ARX(p, p).
In Equation (17), . (.(E) denotes an appropriate set of basis functions, P(.)(£) ~GP(0,x . (E,&')),
where x(,)(£,E")) is the kernel function, being fully determined by a set of hyperparameters #.),
and ey ~N (0, %2(,))

Upon proper selection of the basis and kernel functions, S(.) () (£) and x(.) (£, E")), respectively,
the representation of the structure through GP-ARX(p, p) models is succeeded through the solution of
an associated identification problem, in which all unknown model parameters are estimated, which
is, the integers p, pa, pp, and p,, the GPR coefficients ajj, Bij and 7y;; in Equation (17), as well as the
vectors of hyperparameters ¢, ¢, and ¢, and the variances O’EZH, Ezb, and 0620. Yet, since the operational
parameter E varies slowly, this problem cannot be treated by pooling a large regression problem over
a set of Q realizations of & [65,66]: in applications involving large infrastructures (bridges, buildings,
wind turbines, etc.), & usually varies seasonally. Thus, it is rather impractical to wait until a full
operational cycle becomes available before estimating a global GP-ARX model.

In contrast, the strategy chosen herein pertains to (i) the estimation of short time-scale ARX(p, p)
models, whenever data become available; (ii) the storage of the estimated AR and exogenous
parameters, the estimated variance and measurement(s) of Z; and, (iii) the GP modelling of all
parameters according to Equation (17), when a full operational cycle is completed. Notice that
the direct modeling of the parameters 4;(Z), b;(Z), and ¢Z(E) in Equation (17), is a process that
can be easily realized in parallel and essentially corresponds to typical data-driven uncertainty
quantification problem.

The short time-scale ARX modelling step is conventionally accomplished: for any given pair of
input-output data at a specific long time-scale instant ¢;, uy, [k] and y, [k], respectively, fork = 1,2,..., N,
the original ARX model is transformed into its linear regression form

yu k] = @1, [k]7 0, + e, [K] (18)

for
ool = [tk —1) . —ylk—pl [k p)] (19)

and
61}[ = [al,tl Déz/t, e Dcp,t, | bO,t, bl,t] e bp,tl]T (20)
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Fork=1,...,N, Equation (18) implies
Yt] = <I>t,6t, + Etl (21)

T T T
where Yi, = [yy[1] ... yu[NI]", @, = [o[[1] ... ¢][(N]]" and By = [e[1] ... ey[N]]".
Minimization of the quadratic least squares criterion provides the estimate

A

-1
b, = (®f @) @l (22)

while the prediction errors are recovered by E;, = Y;, — ‘I’tlét, and their variance is calculated as
02, =ElE
et t f:

This procedure is repeated over the whole range of available operational realizations &, t; =
1,... Q. Under the reasonable assumption that the order of the structural system remains unaltered, the
AR and exogenous polynomial orders, estimated statistically from an arbitrary single realization, can
be maintained the same for every t;. Subsequently, the GPR estimation of each individual parameter
of Equation (17) is taking place while using the hybrid optimization method described in Dertimanis
etal. [67].

3.2. The Damage Detection and Localization Phase

The successful completion of the previous phase provides the availability of s single-input,
single-output GP-ARX,(p, p) models, for £/ = 1,...,s, where s corresponds to the number of available
DOFs’” measurements. These models are capable of tracking the evolution of the structural response
of the relative DOF during the healthy structural state, for the whole expected range of variations in
Z. In establishing an effective damage detection scheme, a residual generation algorithm (RGA) is
formulated as shown in Figure 1, for every AFS-ARX model. The RGA is a computational machine
that operates in parallel to the actual structure and issues an alert when abnormal behavior appears,
i.e., different to the one estimated during the structural identification phase.

AFS-ARX [

Figure 1. Layout of the residual generation algorithms for damage detection.

In order to formulate the RGA, the ¢-th AFS-ARX model of Equation (16) is compactly written as

eq[k] (23)
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where g is the backshift operator (i.e., - 'y[k] = y[k — i]) and A(g, E), B,(q, E) the AR end exogenous
polynomials, respectively, of the form,

T+a1(E)g '+ +ap(E)g 7 (24a)
By(q,8) =bo(B) + b1 o(E)g t + -+ by (E)g P (24b)

+

Notice that the first term of the right-hand side of Equation (23) corresponds to the estimated
discrete-time transfer function between the applied excitation and the vibration response at the
monitored DOF of the structure. To this end, the RGA can be simply formulated as the difference

By(g9,2)

T’g[k] = W[k] - A(q,\E)

ulk] (25)

retaining the units of the monitored quantity. In the absence of damage, the residual r,[k] is thus

equal to

rolk] = A(ql:)g i (26)

implying that it follows an GP-AR(p) model of the form

p
relk] + ) ai(E)relk — i = eg K] (27)
i=1

The variance of r;[k] can be calculated by truncating the last expression to an infinite moving
average (MA) model

[ee]

rolk] = eg[k] + ) Hipeo[k — ] (28)
i=1
in which H,; , are the coefficients of the associated Green function [68]. The mean and the variance of
the time-series of Equation (28) are given by

Hr, = E{re[k]} = 0 and o7, (E) = E{r{[K]} = }_ 7,07, (8) (29)

respectively. This means that 99.7% of the damage-free RGA time-series conform to
—30,(E) < rylk] < 30y, (E) (30)

Equations (28)—(30) imply that the quantitative evaluation of the damage detection thresholds
require knowledge of the infinite MA model coefficients #; ;. These are calculated in closed form via
the residue expansion of the transfer function of Equation (27). The reader is referred to Box et al. [68]
[Chapter 3] for further details. Here, it is simply reminded that the AR polynomial should be of
minimum-phase for the whole range of operating conditions (e.g., for all values of the temperature),
in order to ensure the convergence of H, ,,, and that AR roots” amplitudes close to unity result in a
slower the decay rate of H; ;.

Damage localization follows the detection stage and operates on data that are safely considered
as outcomes of the damaged structure, e.g., after the damage time instant detected by the RGAs.
Localization requires the estimation of a new set of simple ARX models, one for each available
input-output data set and it is based on the differences between the mode shape curvatures between
the GP-ARX models and the estimated-based-on-damaged-data ARX ones. For both sets of models,

i,p/
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mode shape curvature estimation proceeds by first establishing the state-space realizations of the
noise-free parts of the GP-ARX and ARX models [69]

C[t+ 1] = AZ[t] + Bult] (31a)
y[t] = HZ[t] + Du]t] (31b)
where
0 1 0 0
0 0 0 0
A= : 0|, B=: (32a)
0 o o0 1 0
—ap —Ap-1 ... —m 1
H=|b,—aby by 1—ay by ... by—mby|, D= [ (32b)

and then transforming Equation (31) to the modal form of Equation (8) via the eigenvalue problem of
the state matrix A. The real part of the estimated row vector 3, (see Equation (8)) contains the values
of the identified mode shapes at the ¢-th sensor location. Gathering together all of the estimated 3,
vectors, the matrix of mode shapes is constructed as

P1
P2 _
=10 =g o) (sxp) (33)
Ps
and its columns correspond to the shapes of each vibration mode. In establishing ¥, attention should
be paid to the proper distinction of structural from “erroneous” modes, as well as to the matching of
eigenvectors associated to the same mode. This is accomplished by applying dispersion analysis [70-72]
and formulating the modal assurance criterion (MAC).
When Y is set up to contain the structural vibration modes from all of the identified ARX models,
the entries of the /-th column of the mode shape curvature matrix are calculated by [73]

5] = [$e)iv1 — 2[’:’?]1’ + [Pelia -

with /1 denoting the distance between two successive measurement nodes. Finally, damage localization
is examined by the difference

AP =iy — i (35)
where ¢}/, and ¢y, correspond to the /-th MSC matrix columns established by the GP-ARX models
and the estimated-based-on-damaged-data ARX ones, respectively.

4. Case Studies

4.1. Damage Detection on a Spring-Mass-Damper System

A simple structural system with six DOFs, as illustrated in Figure 2, is chosen as the first case study.
It is assumed that the stiffness is exponentially dependent on temperature as K;[t;] = 10°3Kr (Tt =Trey)
where t; corresponds to long (e.g., sufficiently lower with respect to the lowest structural vibration
mode) time-scale, K = 5 x 1073 is the thermal coefficient, T, ¢ = 15 °C designates a reference
temperature, and T[t;] a discrete-time stochastic process described as

T(t] = Trer + Tspansin(27tfit;) + wrlt] (36)
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in which Tgpa, =20 °C, f; is the long time-scale frequency and wr[t;] € U(0,2). A stiffness-proportional
damping is adopted as ¢; = 2 x 1073K;. It should be noted that this is a fictitious equation, which is
nonetheless chosen to represent the decrease in stiffness with increasing temperature, met in most civil
engineering works. Figure 3 displays a realization of T[t;] for t; = 1,2,...,365 and f; = 1/365, along
with its sample and kernel-based probability density function, respectively. For this realization, the
induced stiffness and structural vibration modes (natural frequencies and damping ratios) are shown
in Figures 4 and 5, respectively.

x,(9) x(f) x5(f) x4(0)
k; = ky = ks = kg =
) —

k 3 k 7
s "
) ) O O ¢ G O () OO J

Figure 2. 6-degrees of freedom (DOF) structural system with m; = 10% kg, ¢; = 2 x 10?> Ns/m and
temperature-varying stiffness K;.

6 30
o _20¢,
=10t
&~ ot . . . . . . . .
50 100 150 200 250 300 350 -20 0 20 40
# T (° C)
(a) (b)

Figure 3. Spring-mass-damper: a realization of the temperature stochastic process: (a) Time-series.
(b) Sample (blue bars) and associated kernel-based (continuous red line) PDF estimates.

= =
<150 150
e z
-4 4
100§ 100
SN
50 : : 50— : : :
100 200 300 0 10 20 30
t T (° C)
(a) (b)

Figure 4. Spring-mass-damper: structural stiffness for the temperature realization of Figure 3. (a) K;
vs. t;. (b) K; vs. T.

Under a single excitation acting at DOF #3, all instances of the “healthy” structure are discretized
at T, = 0.02 s (F; = 50 Hz) via the zero-order hold principle. Accordingly, the structural vibration
acceleration responses of the discretized instances S;[t;] under independent realizations of zero-mean,
Gaussian white noise excitation (u[k] € N(0,1.87 x 10%), and data length N = 2!4) are obtained,
zero-mean subtracted and noise-corrupted at 1% noise-to-signal-ratio. For the subsequent analysis,
it is assumed that only measurements from DOFs #1, #3, and #5 are available. For these, Figure 6
displays the amplitudes of the estimated frequency response functions, along with their theoretical
counterparts, while Figure 7 shows the driving point FRF at reference temperature.
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Figure 5. Spring-mass-damper: structural vibration modes for the temperature realization of Figure 3:
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Figure 6. Spring-mass-damper: estimated (top row, Welch’s method with Hanning window, Nprr =
211, 50% overlap) and theoretical (bottom row) amplitudes of the frequency response functions at
measured DOFs. Continuous black curves correspond to the long time-varying natural frequencies.
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f (Hz)

Figure 7. Spring-mass-damper: driving point FRF at reference temperature.

The establishment of GP-ARX models for describing the input-output dynamics at measured
DOFs proceeds by (i) determining an appropriate order for the AR and exogenous polynomials;
(ii) estimating ARX models for the whole long time-scale estimation set, consisting of the first 300
realizations (e.g., t; = 1,...,300); (iii) performing GPR modelling for all the associated AR and
exogenous polynomials’ coefficients, as well as the variance of the prediction errors; and, (iv) assessing
the resulted AFS-ARX models by applying the RGA to the validation set.

Model order selection is accomplished by considering the driving point measurement at a
randomly chosen long time instant ¢, € [1,300], e.g., S;[t;]. To this end, ARX(p, p) models with
zero delay are estimated for p = 10,12, ...,50 and compared while using the Bayesian Information
Criterion (BIC) and the Mean Squared Error (RSS), defined as

In (N,
BIC=In(c?) + (2p+1) nl(\] ¢) (37a)
e
1 &
MSE = — Y &2[K] (37b)
Ne k=1

respectively. In Equation (37), N, corresponds to the short time-scale estimation set, herein defined as
the subset of N = 1,..., 16,384 that lies in [1010, 15,565].

The performance of the model order selection criteria is depicted in Figure 8a,b. The BIC and
the MSE both decay slowly and stabilize at high orders (p > 30). To elaborate further on the model
order selection, Figure 8c shows the frequency stabilization diagrams (FSDs), corrected using the
dispersion analysis method described in Dertimanis and Chatzi [71]. The correction is based on the
energy associated to each estimated structural vibration mode and on a low threshold (herein set
as greater than 1% of the mode with the highest energy content) that distinguishes structural from
erroneous, or “artificial” modes [70]. The dispersion-corrected FSD indicates that mode and dispersion
stabilization occurs at p = 38, which is the finally selected order for all three ARX models. Figure 9
illustrates the behaviour of the ARX3(38,38) prediction errors, from where the hypothesis of Gaussian
white noise process can be safely adopted.

Based on these results, ARX;; (38,38) (unit delay), ARX3;(38,38) (zero delay), and
ARX5,(38,38) (unit delay) models are subsequently estimated for t; = 1,...,300 and their parameter
vectors and prediction error variances are stored for the GPR modelling stage. As Table 1 indicates, a
quite satisfying degree of consistency may characterize the parametric identification process, since the

percentage fitness
b y[t] =gl
fit =100 (1 R o > (%) (38)

to the short time estimation data set is sufficiently high.
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Figure 8. Spring-mass-damper: performance of the ARX model order selection criteria: (a) BIC. (b) MSE.
(c) Dispersion-corrected frequency stabilization diagram.
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Figure 9. Spring-mass-damper: performance of the ARX3(38,38) prediction errors: (a) Sample
autocorrelation function. (b) Sample PDF of the normalized (e[k] € N(0,1)) prediction errors.
(c) Normal probability plot of e[k].

Table 1. Spring-mass-damper: statistics of percentage fitness to the short time estimation data set

during ARX modelling.
ARXy 4 (38,38) ARX34(38,38) ARXsy (38,38)
Mt 98.91% 98.93% 98.91%
it 42 %1072 1.9 x 1072 5.0 x 1072

Following the structural identification stage, GPR models in the form of Equation (17) are fitted to
a total number of 228 parameters. It is noted that no modelling is performed for the by parameters:
this is due to the fact that the AFS-ARX; (38, 38) and AFS-ARX5(38,38) models are characterized by
unit delay, while the by parameter of the AFS-ARX3(38,38,0) model is consistently estimated at 0.01
during the structural identification stage, with negligible fluctuations around this value.
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The selected basis functions and GPR orders, determined via an initial trial procedure, are
listed in Table 2, while the percentage fitness results are shown in Figure 10 and Table 3. In general,
sufficiently high fitting to the parameters has occurred, reaching, in many cases, more than 99%.
There exist some AR and eXogenous parameters with low modelling quality, as for example the a3 of
GP-ARX;3(38,38) (Figure 10a, second row) and the bss and b34 of the same model (Figure 10b, second
row); these exhibit wider scattering as compared to others, therefore rendering the fitting process more
demanding. Still, an effective GPR representation for these is succeeded. This can be visualized in
Figure 11, where indicative behaviour of the fitted GPR models is shown. In specific, the associated
plots correspond to AR, eXogenous and variance parameter models with the lowest and highest
percentage fitness.

Table 2. Spring-mass-damper system: GPR basis functions, kernels and orders.

AR Parameters

Quantity

Basis Function Type

Exogenous Parameters Noise Variance

Discrete Fourier

Polynomial
Basis Function Formula

- 27T] — .
S4,j(E) = cos (W’Téa),] =0,2,4,...

Spj(E)=E;,j=0,12,...

S4/(E) = sin (%:)] =1,35,...
Kernel Type Matérn 3/2
"=, V3(E;E))
Kernel Formula k(B Ej) = o? (1 + W)e_ a
Order Pa =23 py =17 po=3
RN LT e
S — o 60
:<l] JUBEAR AN SRNR AN aR
= 40
@ —— S I
0
1 4 7 10 13 16 19 22 25 28 31 34 37
Q;
(a) AR parameters
AN E..
R [ T I ™
23
g = 40
20
0

(b) eXogenous parameters
Figure 10. Spring-mass-damper: GPR modelling results for the AR and the eXogenous parameters of
the associated ARX models.

Table 3. Spring-mass-damper: GPR modelling results for the noise variance of the associated

ARX models.

GP-ARX; (38,38)

GP-ARX;(38,38) GP-ARXs(38,38)

fit

91.56%

83.75% 85.37%
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Figure 11. Spring-mass-damper: actual (black dots) and GPR-estimated (red circles) long time-scale

parameter evolution.

The behaviour of the established GP-ARX models is now assessed using available information
that was not used during the estimation process. In specific, the RGA stage is implemented to two
long time-scale instants, which are chosen from the set t; = 301, ...,365. Notice that this corresponds
to a form of extrapolation, since training was not applied to the whole long time-scale cycle. Figure 12
displays the RGA time-series of the available GP-ARX models for ; = 320 and ¢; = 355. A quite
stable and stationary behaviour is observed, indicating that no damage has occurred within this long
time-scale. Yet, in some cases the associated thresholds might result underestimated, as, for example,
the ones of Figure 12d. This issue is rather attributed to the fact that the inherited uncertainties
associated with the GPR models (e.g., the GPR prediction intervals) are not taken into account.
Despite this inconsistency, the GP-ARX models are still capable of tracking the current state of the
structure, as indicated in Figure 13, where the predicted time-series are plotted over the actual ones for
the RGA of Figure 12d (e.g., the one with the “worst” behaviour).

Finally, Figure 14 illustrates the behaviour of the RGA time-series under damage, during the
long time-scale t; = 320. The latter is introduced as a local stiffness change, which occurs abruptly
at one-third of the total simulation time. The first four rows of the figure display the r;[k]’s for 1%
damage in K3, K3, K5 and K7, respectively, from where the detection effectiveness of the algorithm
even at such low levels is demonstrated. Notice that there’s no correlation of the RGA time-series
amplitudes to the location of damage, since all remain around the same levels. This can be also argued
for the damage severity: the RGA time-series of the last row, which corresponds to 50% damage in Ky,
result with increased amplitudes (around double the ones of the first four rows), yet, again this change
is quite disproportional to the size of the damage (50% over 1%).
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Figure 12. Spring-mass-damper: evolution of the residuals during two long time-scale instants from

the validation set.
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Figure 13. Spring-mass-damper: actual (black curves) and predicted (dashed red curves) time-series
corresponding to the RGA time-series of Figure 12d: (a) total time span. (b) ~ 2 s zoom.

4.2. Damage Detection and Localization on a Shear Frame

The second case study pertains to the six-storey shear frame of Figure 15 under base
(e.g., earthquake) excitation. It is again assumed that the stiffness is exponentially depended on
temperature via the same relationship as in the spring-mass-damper case and that the temperature
varies as in Equation (36). This implies that Figures 3 and 4 are also valid here, with the only difference
being that K; is expressed now on a MN/m scale and that modal damping is kept constant at 2%. The
natural frequencies of the frame are shown in Figure 16.

In deriving the theoretical form of the GP-ARX models to be estimated, the equation of motion of

the frame obeys
MZ(t) + Dz(t) + K(T)z(t) = —M1g(t) (39)

where z(t) is the vector DOFs” displacements relative to the ground motion, e.g., z; = x; — x4
(see Figure 15 and 1 is a column vector filled with ones. The state-space representation of Equation (39)

for absolute acceleration output is
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Figure 14. Spring-mass-damper: RGA time-series evolution during damage at t; = 320.
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Figure 16. Shear frame: structural vibration modes for the temperature realization of Figure 3: (a) f
vs. t;. (b) fy vs. T.
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A(T)E(t) + Beig(t) (40a)
y(t) = He(T)Z(t) (40b)

indicating that the equivalent digital transfer function between the acceleration of the storeys and the
ground acceleration is characterized by unit delay (refer to the analysis of Section 2).

Following the steps of Section 4.1, the “healthy” structure is discretized at T; = 0.02 s (Fs =
50 Hz) via the zero-order hold principle. Accordingly, the structural absolute vibration acceleration
responses under independent realizations of zero-mean, Gaussian white noise base excitation (¥ [k] €
N (0,1.87 x 104), data length N = 214) are obtained and zero-mean subtracted, while it is assumed
that measurements from all DOFs are available. Figure 17 shows the absolute vibration acceleration
FRF of the first story at reference temperature.
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Figure 17. Shear frame: estimated (Welch’s method with Hanning window, Nprr = 211 50% overlap)
absolute vibration acceleration FRF of the first story at reference temperature.

Model order selection is based on the estimation of unit delay ARX(p, p) models for p =
10,12,...,50, while using the excitation and absolute vibration acceleration response of the first
storey at a randomly chosen long time instant. The performance of the model order selection criteria
and the associated dispersion-corrected FSD is depicted in Figure 18, which qualify p = 12 as the best
order. This complies with the theoretical order of Equation (15), a result that is expected due to the
absence of noise-corrupted data. The behaviour of the unit delay ARX(12,12) prediction errors returns
quite similar to the one of Figure 9. The subsequent identification of unit delay ARX;; (12,12) models
fori=1,2,...,6 and f; = 1,...,300 returns very high mean fitness with low dispersion, as shown in

Table 4.
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Figure 18. Shear frame: performance of the ARX model order selection criteria: (a) BIC. (b) MSE.
(c) Dispersion-corrected frequency stabilization diagram.

Table 4. Shear frame: statistics of the percentage fitness to the short time estimation data set during

ARX modelling.

ARX;;(1212)  ARXy (12,12)

ARXj3 (12,12)

ARXy (12,12)

ARXGs , (12,12)

ARXq ,(12,12)

99.98%
46x 1073

99.97%

Hfit
5.7 %1073

Ofit

99.99%
42 x 1073

99.98%
39 %1073

99.98%
3.6x1073

98.98%
3.0x 1073

The GPR modelling phase is carried out using the basis functions, kernels, and orders of Table 5.
Table 6 and Figure 19 show the percentage fitness, confirming the efficacy of the GPR models in
fitting of the AR and eXogenous parameters. The poor results of the ARX model variances are again
attributed to the noise-free data used during the identification case. The typical behaviours of the GPR

models are illustrated in Figure 20.
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Table 5. Shear frame: GPR basis functions, kernels, and orders.

Quantity AR Parameters Exogenous Parameters Noise Variance
Basis function type polynomial discrete Fourier
Basis function formula as in Table 2 as in Table 2
Kernel type Matérn 3/2
Kernel formula as in Table 2
Order pa=3 pp =3 po =16

Table 6. Shear frame: GPR modelling results for the noise variance of the associated ARX models.

ARX;;,(1212) ARXp;(1212) ARX3;(12,12) ARXy,(1212) ARXs;(12,12)  ARXg, (12,12)
fit 16.42% 16.49% 16.70% 16.79% 16.83% 16.74%

sensor #
O A W N o

sensor #
O A W N o

(b) eXogenous parameters

Figure 19. Shear frame: GPR modelling results for the AR and the eXogenous parameters of the
associated ARX models.

Figure 21 displays the short time-scale temporal evolution of the RGA time-series for t; = 305
under no damage. All of the residuals are stationary and within the specified thresholds, which herein
result a bit overestimated, due to the low modelling quality of the respective GPR models for the ARX
variances. In contrast, for the same short time-scale instant, Figure 22 illustrates the same quantities
under damage, introduced as a 1% stiffness change in Kj, occurring abruptly at one-third of the total
simulation time. One can here observe that there might be an indication about the location of the
damage, by observing the descending dispersion from rq [k] to r¢[k].
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Figure 20. Shear frame: actual (black dots) and GPR-estimated (red circles) long time-scale

parameter evolution.
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Figure 21. Shear frame: evolution of the residuals during a long time-scale instant from the

validation set.

However, a better interpretation is offered by examining the MSCs differences, as described in
Section 3.2 and Equation (35). These are plotted in Figure 23, from where it follows that the damage is
indeed successfully localized in the differences of the first three modes, whereas the three trailing ones
appear more “noisy” failing to localize the damage in Kj. To investigate this result, Figure 24 presents
the “theoretical” MSCs differences, calculated via the eigenvalue problem of the exact structural
matrices in healthy and damaged states. The close resemblance of the estimated MSCs differences to
their theoretical counterparts is apparent, implying that (i) the reproduction of the modal space via the
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distributed GP-ARX models is to a great extend accurate; and, (ii) a damage may be localized only in
lower modes.
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Figure 22. Shear frame: evolution of the residuals under 1% damage in K;, during a long time-scale
instant from the validation set.
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Figure 23. Shear frame: GP-ARX-based MSCs differences under 1% damage in K;, during a long
time-scale instant from the validation set.
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Figure 24. Shear frame: theoretical MSCs differences under 1% damage in K;, during a long time-scale
instant from the validation set.

5. Conclusions

This study tackles the damage detection and localization problem in structural systems that are
amenable to environmental variations, and for which no prior information is available. The solution
involves the estimation of distributed GP-ARX models for the representation of individual single
input-single output pairs and the subsequent establishment of corresponding RGAs. These operate in
parallel to the monitored system, are characterized by well-defined stationary statistics in the healthy
state over the whole operational regime, and deviate from these in the presence of damage. In the
latter case, localization is achieved by truncating all local GP-ARX models into a global state-space
realization, deriving the modal space and calculating the MSC discrepancies between the healthy and
damaged state-space representations.

The assessment of the method through the case studies indicates that the proposed framework
is capable of detecting and localizing damage at quite low levels (“early” enough). The detection
succeeds, even for a single input-output pair, while localization presumes a proper sensor network.
It would be interesting to relax this requirement and attempt to integrate the damage localization task
into the RGA, by configuring the residuals in some directional, or structured form; this forms current
work of the authors. Nevertheless, it seems that the establishment of RGAs with localization attributes
requires qualitative knowledge of structural dynamics, so that the GP-ARX parameter vector can be
linked to the structural parameters.

Another issue that is observed from the case studies pertains to numerical stability. Indicatively,
in the shear frame paradigm, it is found that some operating points from the validation set result
in unstable GP-ARX models, even if the GPR modelling stage produces very accurate parametric
representations. An alternative approach might lie in investigation of vector GP-ARX models, in order
to bypass the local-to-global state-space realization, which could induce errors. Because vector models
retain a considerably richer structure, an open research question would be the potential of performing
GPR modelling on a reduced parameter space, similarly to what is discussed in [74].

It must be noted that structural damage may appear either as gradual degradation at slow rates
(e.g., crack initiation/propagation), or as faults after “events” (e.g., an earthquake, strong wind/wave
gusts, etc.). Our work is mostly set to treat this latter class: we assume distinct operational points along
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the long time-scale, we estimate the current state of the structure and subsequently forming/updating
the RGA time-series. However, this does not imply that our method is incapable of treating the first
class as well, since it has been demonstrated that the RGA can detect damage early enough, while it can
easily operate in continuous mode, as long as measurements are available. However, the “footprint”
of any gradual degradation on the RGA requires additional research, as mentioned above. Currently,
our RGA does not correlate with damage evolution: it is just a yes/no answer to detection, which
considers the long time-scale structural variability.

The encouraging results on the efficacy of the method suggest further research steps towards
a more realistic SHM context. These include the addition of further free parameters into the GPR
metamodeling stage, related to further environmental and operational parameters (operating points,
boundary conditions, etc.), aside from temperature. The relaxation on the availability and the
stationarity assumption of the input(s) forms a further critical aspect that is frequently encountered in
practice: here, the investigation of scalar/vector GP-AR/ARMA models and their ARIMA counterparts
form a straightforward task, which is not yet adequately treated in existing literature. Finally, an
experimental validation is currently underway by the authors.
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