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Abstract: A Bayesian framework is presented for finite element model-updating using experimental
modal data. A novel likelihood formulation is proposed regarding the inclusion of the mode
shapes, based on a probabilistic treatment of the MAC value between the model predicted and
experimental mode shapes. The framework is demonstrated by performing model-updating for
the Metsovo bridge using a reduced high-fidelity finite element model. Experimental modal
identification methods are used in order to extract the modal characteristics of the bridge from
ambient acceleration time histories obtained from field measurements exploiting a network of
reference and roving sensors. The Transitional Markov Chain Monte Carlo algorithm is used to
perform the model updating by drawing samples from the posterior distribution of the model
parameters. The proposed framework yields reasonable uncertainty bounds for the model parameters,
insensitive to the redundant information contained in the measured data due to closely spaced sensors.
In contrast, conventional Bayesian formulations which use probabilistic models to characterize the
components of the discrepancy vector between the measured and model-predicted mode shapes
result in unrealistically thin uncertainty bounds for the model parameters for a large number of
sensors.
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1. Introduction

The evaluation of the actual dynamic characteristics of structures, such as modal frequencies,
modal damping ratios and mode shapes, through vibration measurements, as well as the development
of high-fidelity finite element (FE) models, has been attracting an increasing research effort worldwide.
Measured response data of structures mainly under ambient vibrations offer an opportunity to study
quantitatively and qualitatively their dynamic behavior. These vibration measurements can be used
for estimating the modal properties of structures, as well as for updating the corresponding FE models
used to simulate their behavior [1,2]. The information for the calibrated FE models and their associated
uncertainties is useful for checking design assumptions, for validating the assumptions used in model
development, for improving modeling and exploring the adequacy of the different classes of FE
models, and for carrying out more accurate robust predictions of structural response. These models are
representative of the initial structural condition of the structure and can be further used for structural
health-monitoring purposes [3–7].

Bayesian methods for ambient (operational) modal identification [8–18] and structural model
updating [19–31] are used to develop high fidelity FE models of structures using modal properties
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identified from ambient vibration measurements. Due to the large size of civil infrastructure, the mode
shapes are assembled from a number of sensor configurations that include optimally-placed reference
sensors as well as moving sensors [32]. The modal properties are then integrated within Bayesian
model-updating formulations to calibrate the parameters of large-scale FE models, as well as their
associated uncertainty. The goal is to develop accurate and reliable models of the actual structures that
are proven to closely simulate their behavior.

As far as the computational part is concerned, for complex posterior distributions, stochastic
simulation algorithms such as Transitional Markov Chain Monte Carlo (TMCMC) [33] can be
conveniently used to sample from the posterior distribution for parameter estimation, model selection
and uncertainty propagation purposes. These methods require a large number of forward model
runs which can increase the computational effort to excessive levels if one simulation for a
high-fidelity large-order FE model requires several minutes or even hours to complete. For that
purpose, fast and accurate component mode synthesis (CMS) techniques, consistent with the FE
model parameterization [34,35], are used to achieve drastic reductions in computational effort.
Further computational savings are achieved by adopting a parallelized version of the TMCMC
algorithm to efficiently distribute the computations in available multi-core CPUs [36,37].

A novel likelihood function formulation is introduced in this work, which treats mode shapes
not as full vectors, but as scalars using features between the measured and model-predicted mode
shapes such as the MAC value. Instead of following the conventional Bayesian approach of assigning
a multivariable Gaussian distribution to the error vector quantifying the discrepancy between the
measured and model predicted mode shapes, a truncated Gaussian distribution is proposed for the
probabilistic modeling of the scalar MAC value between the model predicted and experimental mode
shapes. This effectively reduces the number of data points in the likelihood and leads to different
uncertainty quantification results compared to the classic vector-based likelihood formulation. It is
demonstrated that the proposed formulation has certain desired properties which can not be obtained
under the vector-based formulation for the likelihood.

The capabilities of the proposed modal-based Bayesian model-updating methodology are
demonstrated by calibrating the parameters of a high-fidelity FE model developed for the Metsovo
bridge, using modal properties experimentally identified from ambient vibration data. The FE model
is parametrized with respect to the stiffnesses of the deck, piers and soil components of the bridge.
Ambient acceleration time histories from multiple points along the bridge deck are used to extract
the modal properties of the bridge experimentally, and the identified modal properties are used
as data in the Bayesian model updating methodologies in order to perform inference about the
model parameters. In order to explore the effect of soil–structure interaction, two classes of models
are examined and compared using Bayesian model selection [26,38]. Comparisons between the
vector-based and the proposed MAC-based likelihood formulations demonstrate the advantages of
the MAC-based likelihood formulation.

This work is structured as follows. Section 2 presents the Bayesian inference framework for
FE model parameter estimation using modal properties. Section 2.1.1 reviews existing likelihood
formulations, while Section 2.1.2 present the new formulation for building the likelihood based on
features between experimental data and model predictions. The use of model reduction techniques to
alleviate the computational burden encountered with sampling techniques is summarized in Section 2.2.
Section 2.3 briefly outlines the whole procedure of parameter estimation and uncertainty propagation
using the TMCMC sampler. The field structure is introduced in Section 3, along with the unreduced
and reduced FE models of the structure, and the experimental modal identification procedure. Section 4
presents the results of model updating based on the experimentally-identified modes and demonstrates
the advantages of the proposed MAC-based likelihood formulation. Conclusions are summarized in
Section 5.
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2. Bayesian Parameter Estimation Using Modal Data

To apply the Bayesian formulation for parameter estimation of linear FE models, we consider that
the data D consists of the squares of the modal frequencies, ω̂2

r , and the mode shapes φ̂
r
∈ RN0,r ,

r = 1, . . . , m, experimentally estimated using vibration measurements, where m is the number
of identified modes and N0,r is the number of measured mode shape components for mode r.
Consider also a parameterized linear FE model class M̃ of a structure and let θ ∈ RNθ be a vector of
free structural model parameters to be estimated using the set of modal properties identified from
vibration measurements.

Let ωr(θ) and φ
r
(θ) ∈ RN0,r be the r-th modal frequency and mode shape at N0,r measured DOFs,

respectively, predicted by the model for a given value θ of the model parameters. The squares of
the modal frequencies ω2

r (θ) and the mode shape components φ
r
(θ) = Lr ϕ

r
(θ) ∈ RN0,r are computed

from the full mode shapes ϕ
r
(θ) ∈ Rn that satisfy the eigenvalue problem:

[K(θ)−ω2
r (θ)M(θ)]ϕ

r
(θ) = 0, (1)

where K(θ) ∈ Rn×n and M(θ) ∈ Rn×n are the global stiffness and mass matrices respectively of the
FE model of the structure, n is the number of model DOFs, and Lr ∈ RN0,r×n is an observation matrix,
usually comprised of zeros and ones, that maps the n model DOFs to the N0,r observed DOFs for mode
r. For a model with large number of DOFs, N0,r � n.

The likelihood p(D|θ, M̃) is the probability of observing the measured data D under the model
M̃ for parameters equal to θ. It is used in Bayes rule to update the posterior distribution p(θ|D, M̃) of
the model parameters θ as follows:

p(θ|D, M̃) =
p(D|θ, M̃) p(θ|M̃)

p(D|M̃)
, (2)

where p(θ|M̃) is the prior distribution of the model parameters and p(D|M̃) is the evidence of the
model class, selected so that p(θ|D, M̃) integrates to one.

2.1. Likelihood Formulation

The likelihood formulation is of critical importance in Bayesian inference. To build the likelihood,
one needs to assume a probabilistic relation between the model predictions and experimental data in
order to account for unavoidable model error as well as experimental or measurement error. There is
not just one way to do that, and different likelihood formulations can lead to different results. Therefore,
Bayesian inference is subjective in the sense that different likelihood models can be tried using the
same data, and the inference results might differ significantly. Prediction error equations, which relate
the model predictions with the experimental data probabilistically, are used to formulate the likelihood.
Depending on the nature of the data, different prediction error equations can be used for different
subsets of the entire data set.

For the modal frequencies, the most common choice is the uncorrelated Gaussian error assumption
for each modal frequency (e.g., [39,40]). Specifically, the prediction error equation for the r-th modal
frequency is taken as:

ω̂2
r = ω2

r (θ) + εωr , (3)

where εωr is the prediction error for the r-th modal frequency taken to be Gaussian with zero mean
and standard deviation σωr ω̂2

r . The unknown parameter σωr is included in the parameter set θ to
be estimated from the data. This formulation for the modal frequencies assumes that each modal
frequency is uncorrelated with the rest. Then, the likelihood term for the r-th modal frequency is the
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probability of observing the measured frequency given specific values of the model parameters θ,
derived from Equation (3) in the form:

p(ω̂2
r |θ) = N(ω̂2

r ; ω2
r (θ), σ2

ωr ω̂4
r ), (4)

where N(x; µ, σ2) denotes the univariate Gaussian PDF evaluated at point x with mean µ and
variance σ2.

However, as far as the mode shapes are concerned, the prediction error formulation can be
more complex due to the fact that they are vectors with multiple components. Again we make the
assumption that all mode shapes are uncorrelated with each other and therefore we can treat each
mode shape individually, just like the modal frequencies. Two formulations are presented next.
The first one is a review of existing formulations, while the second one is a novel formulation based on
features between model predicted and experimentally identified mode shapes.

2.1.1. Formulation Using Probabilistic Models for Mode Shape Vectors

An often-used formulation for the prediction error is to assume that the discrepancy vector
between the measured mode shape vector and the model predicted mode shape vector follows a
zero-mean multivariable Gaussian distribution with a specified covariance matrix. The prediction
error equation for the r-th mode shape is then

φ̂
r
= βr(θ)φr

(θ) + εφ
r
, (5)

where εφ
r

is the prediction error vector for the r-th mode shape taken to be Gaussian with zero mean

and covariance matrix σ2
φ

r
Σφ

r
, where the matrix Σφ

r
specifies the possible correlation structure between

the components of the prediction error vector of the r-th mode shape, the unknown scalar σ2
φ

r
is

included in the parameter set to be estimated, and

βr(θ) = φ̂
T
r

φ
r
(θ) /

∥∥∥φ
r
(θ)
∥∥∥2

(6)

is a normalization constant such that the measured mode shape φ̂
r

at the N0,r measured DOFs is
closest to the model mode shape βr(θ)φr

(θ) predicted by the particular value of θ, and ||z||2 = zTz is
the usual Euclidean norm. The scalar βr(θ) is introduced in Equation (6) to account for the fact that
the measured modeshape φ̂

r
is normalized to have Euclidean norm equal to one, while the model

predicted modeshape φ
r
(θ) is mass normalized. The scalar βr(θ) is derived by minimizing the distance

||φ̂
r
− βr(θ)φr

(θ)|| between the measured mode shape and the scaled version of the model predicted
mode shape.

It is important to note in this approach that the number of data points used for each mode shape
is equal to the number of measured DOFs N0,r for that particular mode. For a spatially uncorrelated
model for the prediction error εφ

r
(diagonal Σφ

r
matrix) each mode shape component counts as a new

independent data point in the likelihood. From the Bayesian Central Limit Theorem, the posterior
uncertainty is expected to reduce without bounds as the number of mode shape components is
increased. However, as the number of measured DOFs increases, the sensors become very close
to one another, providing almost the same information content that should not further reduce
the posterior uncertainty of the model parameters. The closeness of the sensors depends on the
wavelength of the considered measured mode shape. Two sensors are close and are expected to
provide redundant information if their distance is a fraction of the wave length of the corresponding
mode shape. Therefore, a spatially uncorrelated model for the prediction error vector εφ

r
of the mode

shape would not yield the expected behavior regarding posterior uncertainty as the number of mode
shape components increases.
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A remedy to this is to introduce a correlation model between the components of the prediction
error vector of the mode shape, leading to a non-diagonal covariance matrix Σφ

r
. However, a correlation

function should be postulated to describe the spatial correlation between two mode shape components
(sensors) as a function of their distance, where the closer two sensors get the more they are correlated.
Several correlation functions exist in the literature [41]. The problem is that one cannot know
beforehand which correlation function is the proper one for the particular application at hand.
This decision of the correlation function might turn out to be extremely difficult to make in practice,
because in practical situations one normally has slight to none available information regarding the
correlation nature of the prediction error vector. Selecting the proper correlation function might be
challenging and failure to do so could easily lead to erroneous results as was demonstrated in [41].
Finding the proper correlation function is not the goal of this work. More on that issue can be found
in [41–43]. Herein two cases of correlation models are examined: uncorrelated and exponentially
correlated models.

For the simplest case of uncorrelated mode shape prediction error vectors the covariance matrix
simplifies to a diagonal matrix:

Σφ
r
= ||φ̂

r
||2/N0,r I, (7)

with I being the N0,r × N0,r identity matrix, while for the exponentially correlated model the identity
matrix I is replaced by the correlation matrix Rr whose (i, j)-th element is given by the exponential
correlation function:

Rr(i, j) = exp(−xr(i, j)/λr), (8)

where xr(i, j) is the Euclidean distance between the i-th and j-th mode shape components (sensors) for
the r-th mode, and λr is the correlation length for the r-th mode which is a parameter to be identified.

Using Equation (5), the likelihood term for the r-th mode shape is the probability of observing
the measured mode shape for given model parameters θ, given by

p(φ̂
r
|θ) = N(φ̂

r
; βr(θ)φr

(θ), σ2
φ

r
Σφ

r
(θ)), (9)

where N(x; µ, Σ) denotes the multivariate Gaussian PDF evaluated at point x with mean vector µ and
covariance matrix Σ. Following the work of Papadimitriou et al. [44] which was based on the same
prediction error Equation (5), the likelihood function in Equation (9) can be expressed in terms of the
MAC values between the measured and model predicted mode shapes.

Slightly different prediction error equations for the mode shapes have been proposed in the
literature (e.g., [39,40]), including versions that do not require the use of the mode correspondence [4,6].
In all these alternatives, the likelihood formulation for the mode shapes is based on a probabilistic
description of individual components of a vector and thus they fall into the category discussed in
this subsection.

2.1.2. Formulation Using Probabilistic Models for MAC Values

The previous formulation uses the mode shapes as full vectors in the likelihood function.
Herein we propose a novel formulation for including the mode shapes in the likelihood function which
is based on the MAC value between the experimental and model predicted mode shape. The MAC
value, defined as MAC(u, v) = uTv/(||u|| ||v||) between two vectors u and v, is the most common
way to measure the similarity between two mode shape vectors. It is a scalar measure which varies
from 0 to 1 with a value of 1 indicating a perfect match. The scaling of the mode shapes is not important
for the MAC value which means that no normalization is needed for either the experimental or model
predicted mode shape.

In the new formulation the experimental mode shape is not compared with the model predicted
mode shape in an element-wise fashion, but rather based on its MAC value. This reduces the number
of data points used in the likelihood for each mode shape from N0,r to just 1. Therefore, instead of



J. Sens. Actuator Netw. 2020, 9, 27 6 of 25

calculating the probability of observing the experimental mode shape vector given the model predicted
mode shape vector (for some given model parameter values), we calculate the probability of their
MAC value taking a value of 1, implying that they match perfectly.

In contrast to the previous vector formulation of the likelihood, the MAC value is a univariate
quantity and therefore requires a univariate distribution to model it. Taking into account the fact
that the MAC value is strictly bounded in the interval [0, 1], a Truncated Gaussian distribution is
used, although there are many other choices of candidate distributions. The Gaussian distribution is
preferred because of its known properties. This leads to the following prediction error equation for
the MAC value of the r-th mode shape:

ˆMACr = MACr(θ) + εMACr , (10)

where MACr(θ) = MAC(φ̂
r
, φ

r
(θ)) is the model-predicted MAC value, defined as the MAC value

between the experimental r-th mode shape and the model predicted r-th mode shape for the given
values of the model parameters θ. The term εMACr is the error in the r-th MAC value (analogous
to the error in the r-th frequency), assumed to follow a univariate zero-mean Gaussian distribution
with standard deviation equal to σMACr . The standard deviation σMACr is a measure of “how far” the
observed MAC value ˆMACr can be from the model-predicted MAC value MACr(θ) due to model
and experimental errors. This can be thought of as completely analogous to the error term for the
modal frequencies in (3). The resulting Gaussian with mean MACr(θ) and standard deviation σMACr

is truncated in 0 and 1 which results in the Truncated Gaussian distribution.
An important issue that should be addressed when using MAC values is the fact that although

the MAC is a scalar value, it depends on the number of mode shape components used. This needs to
be taken into account in the formulation in order to avoid erroneous results. For example, if only two
components of a mode shape are used, there is a chance that the MAC value turns out to be very close
to 1 (provided that those two components match well between the two mode shapes). However, if a
large number of components is used, due to small errors in each component there is the chance that the
MAC value is significantly lower than 1, which would mean that the case with two components would
yield a larger MAC value. However, the case of large number of components components is expected
to be much more informative than the case of two components since the more components we have
the better we know the actual geometry of the mode shape. This naturally leads to the conclusion that
the number of mode shape components must be taken into account, assigning higher preference to
MAC values calculated with more components than MAC values calculated with less components.

One way to account for this in a Bayesian framework is through manipulation of the MAC value
standard deviation parameter σMACr . We seek a formula through which to define σMACr that depends
on the number of mode shape components N0,r. Although there is not only one way to achieve this,
the following formula is used:

σMACr = σ
′
MACr

(
1 +

1√
N0,r

)
, (11)

where σ
′
MACr

is the parameter to be inferred from data. The first term in Equation (11) describes
the uncertainty present in the MAC value that exists independently of the number of sensors. This
uncertainty exists even for a large number of sensors and is due to model and experimental errors in
the individual components and can not be reduced further. The second term in Equation (11) depends
on the number of sensors and gets smaller as the number of sensors is increased, which reduces the
standard deviation of the MAC value. This way more weight (less uncertainty) is given to MAC values
calculated with more sensors. These are modeling choices within the Bayesian framework, much like
the choice of Gaussian PDFs for the likelihood, independent data, etc. Alternative formulations could
also be postulated. In particular, the two terms in Equation (11) can be weighted differently but this
falls outside the scope of the present work.
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Then the likelihood term for the MAC value of the r-th mode shape is the probability of observing
a MAC value of 1 for given values of the model parameters θ (indicating a perfect match between the
experimental and model predicted mode shapes), given by the Truncated Gaussian PDF:

p( ˆMACr = 1|θ) = TN(1; MACr(θ), σ2
MACr

, 0, 1), (12)

where TN(x; µ, σ2, a, b) denotes the Truncated Gaussian PDF evaluated at point x with mean µ, variance
σ2 and truncation limits a and b.

2.1.3. Likelihood Formulation Combining Modal Frequencies and Mode Shapes

The parameter set θ of the structural model class M̃ is augmented to include the parameters σωr

and σφ
r

or σ
′
MACr

related to the prediction error models. For simplicity, in order to avoid having too
many parameters, the three prediction error parameters are assumed to be the same for all modes and
therefore their dependence on r is dropped.

The total likelihood function is easily calculated as the product of the individual likelihoods for
the frequencies and mode shapes, given their independence. For the vector formulation of the mode
shapes the likelihood is:

p(D|θ, M̃) =
m

∏
r=1

p(ω̂2
r |θ)

m

∏
r=1

p(φ̂
r
|θ), (13)

where p(ω̂2
r |θ) and p(φ̂

r
|θ) are given by (4) and (9) respectively. For the MAC formulation of the mode

shapes the likelihood is:

p(D|θ, M̃) =
m

∏
r=1

p(ω̂2
r |θ)

m

∏
r=1

p( ˆMACr = 1|θ) (14)

where p(ω̂2
r |θ) and p( ˆMACr = 1|θ) are given by (4) and (12), respectively.

2.2. Computational Tools

The transitional Markov chain Monte Carlo algorithm (TMCMC) [33] is used for estimating
the parameters of FE models by drawing samples from the posterior probability density function
of the model parameters. Markov chain Monte Carlo algorithms, including TMCMC used in this
work, require a moderate to very large number of repeated system analyses to be performed over
the space of uncertain parameters. Consequently, the computational demands depend highly on the
number of system analyses and the time required for performing a system analysis. For FE models
with large number of DOFs, this can increase substantially the computational effort to excessive
levels. Computational savings are achieved by adopting parallel computing algorithms to efficiently
distribute the computations in available multi-core CPUs [36,37,45].

In addition, fast and accurate CMS techniques [46], consistent with the finite element model
parameterization, are integrated with Bayesian techniques to reduce efficiently and drastically the
FE model and thus reduce the computational effort [34,35]. CMS techniques are widely used to
analyze structures in a reduced space of generalized coordinates. CMS involves dividing the structure
into a number of substructures (components), obtaining reduced-order models of the substructures
keeping a fraction of the substructure modes, and then assembling a reduced order model for the entire
structure using the kept substructure modes and interface degrees of freedom between substructures.
Additional substantial reductions can be achieved by reducing the number of interface DOF using
characteristic interface modes through a Ritz coordinate transformation [34]. However, for methods
involving re-analyses due to variations in the values of the uncertain model parameters the reduction
for computing the system modes has to be repeated for each re-analysis. This gives rise to a substantial
computational overhead that arises from the model reduction at component level, and from assembling
the component mass and stiffness matrices to form the reduced global system mass and stiffness
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matrices. The main objective in methods involving re-analyses of models with varying properties is to
completely avoid the re-analysis at the component level as well as the re-assembling of the reduced
global matrices at the system level.

It has been shown that when the partition of the structure into substructures is guided by
certain parameterization schemes, the reduced global mass and stiffness matrices derived using CMS
techniques can be represented exactly by an expansion of these matrices in terms of scalar functions of
the model parameters, with coefficient matrices computed and assembled once from a single CMS
analysis of a reference structure [34,47,48]. This representation allows one to re-compute the reduced
global stiffness and mass matrices for different values of the model parameters from these expansions,
avoiding expensive re-analyses involved in CMS procedure. Dramatic reduction in computational
effort has been reported without compromising the accuracy in the modal properties predicted by the
reduced model.

The reduction achieved by applying the CMS technique in the FE model of the Metsovo bridge is
described in Section 3.3.

2.3. Outline of Procedure

Given the parameterized FE model of a structure, a parameterized reduced FE model is first
obtained using CMS. This amounts to forming the reduced global stiffness and mass matrices as a
function of the model parameters θ. The TMCMC sampler was used to sample from the posterior
PDF in Equation (2), where the likelihood function is given either by Equations (4), (9) and (13)
for the vector-based formulation or by Equations (4), (12) and (14) for the MAC-based formulation.
The modal properties involved in the likelihood function are computed for each TMCMC sample in
the model parameter space using the reduced FE model. Specifically, for each one of the two likelihood
formulations presented in Sections 2.1.1 and 2.1.2, the reduced stiffness and mass matrices are used
in Equation (1) to predict the modal properties ωr(θ) and φ

r
(θ) for different values of the model

parameter set θ. The sample points θ(j), j = 1, . . . , N, obtained from the TMCMC sampler populate
the posterior PDF of the model parameters. These samples are subsequently used to depict the
uncertainties in the model parameters and propagate uncertainties in output Quantity of Interest (QoI)
by providing estimates of the modal frequencies ωr(θ) and MAC values MAC(φ̂

r
, φ

r
(θ)), j = 1, . . . , N,

using Equation (1) for the reduced FE model. Results of uncertainty quantification are expressed in
terms of marginal distributions for the model parameters, as well as useful simplified measures of
uncertainty, such as mean and credible intervals of the output QoI.

3. Application to Metsovo Bridge

3.1. Description of Bridge

The ravine bridge of Metsovo (Anthohori–Anilio tunnel) of Egnatia Motorway is crossing the
deep ravine of Metsovitikos river, 150 m over the riverbed. A picture of the bridge is shown in Figure 1.
This is the highest bridge of the Egnatia Motorway, with the height of the tallest pier equal to 110 m.
The total length of the bridge is 537 m. The bridge has 4 spans of length 44.78 m, 117.87 m, 235 m,
140 m and 3 piers of which the closest to the left side of the bridge (Figure 1), with height of 45 m,
supports the boxbeam superstructure through pot bearings (movable in both horizontal directions),
while the other two piers, with heights 110 m and 35 m, connect monolithically to the structure.

3.2. Finite Element Model of Bridge

The detailed geometry of the bridge is complicated because the deck and the piers have variable
cross-sections and the deck is also inclined. A high fidelity FE model of the bridge is created using
three-dimensional tetrahedral quadratic Lagrange finite elements. The model takes into account the
potential soil-structure interaction by modeling the soil with large blocks of material and embedding
the piers and abutments into these blocks. The nominal values of the moduli of elasticity of the deck
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and piers are selected to be the values used in design: 37 GPa for the deck and 34 GPa for the piers.
The nominal value of the soil is taken to be 1 GPa. The largest size of the elements in the mesh is of the
order of the thickness of the hollow deck cross-section. The size of the FE mesh is chosen to predict the
first 20 modal frequencies and mode shapes of the bridge with sufficient accuracy. Several mesh sizes
were tried, and an accuracy analysis was performed in order to find a reasonable trade-off between the
number of degrees of freedom (DOF) of the model and the accuracy in the predicted modal frequencies.
A mesh of 830,115 DOFs was kept for the bridge-soil model. This mesh was found to cause errors of
the order of 0.1–0.5% in the first 20 modal frequencies, compared to the smallest possible mesh sizes
which had approximately 3 million DOFs.

Figure 1. Picture of the Metsovo bridge.

The intent is to build a high fidelity model that could, in future studies, be extended locally to
incorporate nonlinear mechanisms activated during strong motion or deterioration phenomena. In this
study the focus is to update a baseline linear model using low-intensity vibration measurements.
In future studies, the availability of higher-intensity vibration measurements will provide data for
improving modeling and updating parameters of nonlinear models introduced to represent localized
nonlinear phenomena activated due to large vibrations or deterioration due to various damage
mechanisms. Simplified beam models, although adequate for design purposes, are inadequate to
use for setting up digital twins of structures so that are reliable under various operating conditions.
Simplified modeling, for example with beam elements, does not offer an adequate representation
of the system dynamics over the dynamic range activated by various operational conditions. Such
simplified models are often inadequate for monitoring purposes and involve large model errors even
for operational conditions under which the structure may be assumed to behave linearly.

3.3. Model Reduction Using CMS

The time required for a complete run of the FE model is approximately 2 min on a 8-core 3.20 GHz
computer. Due to the thousands of forward model runs for different values of the model parameters
that are required by the Bayesian computational tools, it is necessary to reduce the time required for a
single model run. Model reduction is used to reduce the model size and thus the computational effort
to manageable levels. Specifically, the parameterization-consistent CMS technique [34,35] based on the
Graig-Bampton method [46] is applied to the bridge-soil FE model.

For this, the bridge is divided into 16 physical components with 15 interfaces between the
components. Specifically, the deck is divided into six components or substructures of length 120 m,
120 m, 60 m, 50 m, 117 m and 70 m each. One component is assigned to each one of the three
piers. Two components are introduced for the left and right abutments of the bridge. Five more
components are introduced for the large solid blocks representing the flexibility of the soil at the
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connections with the three piers and the two abutments. This partition into component is one of
the many alternative ones, introduced herein to demonstrate the capabilities of CMS technique for
model reduction. Usually the partition of the structure into components is guided by the purpose of
the analysis or the structural health monitoring goals. For example, components may be introduced to
monitor and select models of nonlinearities activated by various operational conditions in isolated
(localized) parts of a structure. The partition of a structure into components facilitates monitoring of
the structural health, allowing the identification of the location and severity of sparse damage within a
small subset of substructures.

For each component, it is selected to retain all modes that have frequency less than ωmax = ρωc,
where ωc = 3.52 Hz is the cut-off frequency selected to be equal to the 20th modal frequency of the
nominal FE model. The ρ values affect the computational efficiency and accuracy of the CMS technique.
For ρ = 5 selected for most components, a total of 170 internal DOFs out of the 814,080 are retained
for all 16 components. The total number of DOFs of the reduced model is 16,205 which also includes
16,035 interface DOFs. It is clear that more than an order of magnitude reduction in the number of
DOFs is achieved using CMS. The largest fractional error between the modal frequencies computed
using the complete FE model and the ones computed using the CMS technique for ρ = 5 falls below
0.2%. Thus a very good accuracy is achieved.

The large number of the interface DOFs can be reduced by retaining only a fraction of the
constrained interface modes [34,49]. For each interface, only the modes that have frequency less
than ωmax = νωc are retained, where ν is user and problem dependent. For ν = 200 selected for
most interfaces, the largest fractional error for the lowest 20 modes of the structure falls below 0.43%.
In particular, for ν = 200 and ρ = 5 the reduced system has 1891 DOFs from which 170 generalized
coordinates are fixed-interface modes for all components and the rest 1721 generalized coordinates
are constrained interface modes [34]. A trade-off was made between reducing the model as much
as possible (fewer kept DOFs) and keeping the accuracy of the predicted modal frequencies as close
as possible to those of the unreduced model. It should be noted that further reductions are possible
using an enhanced substructuring technique where the dynamics contribution of several kept modes
is replaced by their static contribution [47].

Thus, using CMS a drastic reduction in the number of DOFs is obtained which can exceed two
orders of magnitude, without sacrificing the accuracy with which the lowest 20 modal frequencies
are computed. The time to solution for one run of the reduced model is of the order of a few seconds
which should be compared to approximately 2 min required for solving the unreduced FE model.

Moreover, for nonlinear models of structures, especially models where local nonlinearities
are mainly activated, the model reduction techniques can also be applied to reduce the models
of components of the structure that behave linearly under various operational conditions [35,48].

3.4. Experimental Modal Identification

The testing system consist of a movable array of servo-accelerometers that are usually being
installed on the bridge deck (sidewalks or pavement surface) or inside the box beam internal voids
to measure the vibrations (accelerations) of the bridge under ambient excitations. The available
measurement system consisted of five triaxial and three uniaxial accelerometers paired with a 24-bit
data recording system, a GPS module for synchronization between sensors, and a battery pack.
The system is wireless and can be easily moved from one location in the structure to another.
The recorder can connect with a laptop through wired (Ethernet) or wireless (Wi-Fi) connection
to be set up in the desired way (sampling rate, recording duration, repeater recordings etc) or view
the measurements while they are being recorded for quality checking. Given the limited number
of sensors and the large length of the deck, the entire length of the deck was covered in 13 sensor
configurations, shown in Figure 2. For each configuration the recording lasted 20 min at a sampling
rate of 100 Hz. Each triaxial sensor was positioned on the bridge sidewalks such that it measures along
the transverse, vertical and longitudinal directions of the bridge deck. One triaxial and three uniaxial
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sensors (one vertical and two horizontal transverse) remained in the same position throughout the
measurements, in order to provide common measurement points amongst different configurations
such as to enable the assembling of the total mode shape from partial mode shape components
measured from the different configurations [30,32]. The use of more than one reference sensors per
direction guarantees the redundancy of the measuring scheme in case one sensor is placed at the
node of the modeshape. The wireless feature of the measurement system allows the execution of all
recordings over the 13 sensor configurations in a single day. The recorded responses are mainly due to
road traffic, which ranged from light vehicles to heavy trucks, and environmental excitation such as
wind loading, which classifies this case as ambient (operational) modal identification.

Figure 2. Measured locations in the bridge. Solid grey circles represent the locations of the triaxial
sensors measuring along the longitudinal, transverse and vertical direction of the bridge deck.
Solid blue circle shows the location of the reference triaxial sensor. Solid blue rectangle denotes
the locations of the two uniaxial sensors measuring along the transverse direction. Solid blue triangle
denotes the location of uniaxial sensor measuring along the vertical direction.

The Bayesian operational modal analysis methodology [9,10] is used to estimate the modal
frequencies, mode shapes and damping ratios for each sensor configuration. The mode shapes are
assembled from the local mode shapes of each configuration using the methodology proposed by
Au [32]. The full mode shapes are produced at all 159 sensor locations covered by the 13 sensor
configurations. The components along the longitudinal direction of the bridge deck are ignored.
Only the components along the transverse and vertical direction of the bridge deck are processed.
The output-only vibration measurement for some of the 13 sensor configurations were not reliable
enough to estimate the mode shape components at higher modes. As a result, it was not possible to
assemble the mode shapes for more than 12 modes. Thus these mode shapes were excluded from
the analysis. Specifically, the first 20 modal frequencies and modal damping ratios of the bridge
were identified, along with 11 mode shapes. The mode shapes of all the modes up to the 12th were
identified, except the 10th mode which was very poorly identified and also excluded from the date set.
Table 1 presents the mean and standard deviation of the experimentally identified modal frequencies
for all 20 identified modes of the Metsovo bridge. It also compares the identified frequencies and
mode shapes with those predicted by the nominal FE model. In particular, the experimental and
nominal model predicted mode shapes are compared using their MAC value which is a scalar measure
of correlation between two mode shapes ranging from 0 to 1, with a value of 1 indicating perfect
correlation. The identified mode shapes are shown in Figures A1–A4 of Appendix A and compared
with the corresponding mode shapes predicted by the nominal FE model of the bridge. From both the
MAC values of Table 1 and mode shapes of Figures A1–A4 it can be clearly seen that the mode shapes
predicted by the nominal FE model match very accurately the corresponding experimentally identified
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mode shapes with MAC values higher than 0.95 for the 11 identified mode shapes (except mode 9
which has a MAC value of 0.87). However, there appears to be a significant mismatch between the
experimental and nominal FE model modal frequencies which indicates that a finite element model
updating should be performed in order to achieve a closer fit between the model predicted and the
experimentally identified modal frequencies.

Table 1. First 20 experimentally identified modal frequencies of the the Metsovo bridge compared
with the modal frequencies predicted by the nominal FE model of the bridge. MAC values between
identified and model predicted mode shapes are also shown.

Mode Experimental Nominal Model Mode Shape
Frequency (Hz) Frequency (Hz) MAC Value

1 0.306 0.293 0.991
2 0.603 0.574 0.955
3 0.623 0.619 0.978
4 0.965 0.849 0.935
5 1.047 1.050 0.969
6 1.139 1.070 0.965
7 1.428 1.388 0.972
8 1.697 1.578 0.966
9 2.005 1.690 0.878
10 2.303 1.966 0.85
11 2.367 2.156 0.972
12 2.590 2.317 0.971
13 2.723 2.500
14 3.086 2.745
15 3.127 2.815
16 3.480 2.876
17 3.861 2.950
18 4.058 3.320
19 4.210 3.381
20 4.410 3.521

4. Model Updating Results

The FE model of the bridge–soil system is parameterized using three parameters associated with
the modulus of elasticity of the deck (θ1), piers (θ2) and soil (θ3). The model parameters multiply the
nominal values of the corresponding moduli of elasticity for the deck (37 GPa ), the piers (34 GPa)
and the soil (1 GPa). The nominal values for the deck and piers are reasonable estimates since they
are the moduli of elasticity of the concrete used in design and therefore their updated values of θ1

and θ2 are expected to lie close to 1. However, as far as the soil is concerned, its nominal value
is only a rough estimate, based on soil property measurements conducted at the site of the bridge.
Therefore, its nominal value should be dealt with a large uncertainty in the model updating procedure.
These modeling considerations regarding the initial parameter uncertainties are taken into account
in the Bayesian framework through the prior PDF. It should be noted that a simplified uniform
parameterization involving a small number of parameters is considered in order to avoid possible
unidentifiability issues and enable the comparison between the two different likelihood formulations.

4.1. Model Updating Using Modal Frequencies Only

First, the FE model of the bridge-soil system is updated using only a subset of the experimentally
identified modal frequencies. This approach allows one to use the rest of the frequencies in order
to validate the updated model by checking its predictive capabilities with data that was not used in
the updating. Specifically, the first 15 identified modal frequencies are used to estimate the model
parameters and their uncertainty, while the other five modal frequencies are used in order to validate
the updated model. For 11 out of the 20 modes we use mode correspondence through the MAC values
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to associate the experimentally identified and model predicted modal properties. It was found that the
i-th experimentally identified mode corresponds to the i-th mode predicted by the model. For modes
higher than 12 for which there no mode shape identified from experimental data, we match the modal
frequencies based only on the number of mode identified or predicted by the FE model, with modal
frequencies arranged in an ascending order.

4.1.1. Flexible-Soil Model

The prior distribution for the parameters are assumed to be uniform with bounds in the domain
[0.5, 1.5] × [0.5, 1.5] × [0.1, 1000] for the deck, pier and soil parameters respectively, and in the domain
[0.001, 1] for the prediction error parameter σω . The domain for the soil parameter was deliberately
chosen much larger in order to account for the large uncertainty in the values of the soil stiffness and
be able to explore the full effect of the soil stiffness on the model behavior.

Model updating results are obtained using the parallelized TMCMC algorithm [33,36] for the
bridge–soil FE model. The TMCMC is used to generate samples from the posterior PDF of the
structural model and prediction error parameters. These samples represent the posterior PDF and
therefore our updated state of knowledge about the parameters given the experimental data. After the
posterior samples are drawn the parameter uncertainty is propagated to the predictions of the first
20 modal frequencies of the bridge. This is done in order to check the fit of the updated model with
the experimental frequencies that were used to perform the model updating, but also with the next
five modal frequencies that were not included in the data set. In all TMCMC runs, the following
selection is made: TolCov = 1.0, β = 0.2 [33]. The number of samples used per TMCMC stage are
1000, resulting in a total runtime of approximately 10 minutes using the reduced 1.891 DOF model in a
8-core 3.20 GHz computer.

The TMCMC samples which represent the posterior PDF are visualized through their marginal
distributions and two-dimensional (2D) projections in Figure 3. The sample statistics are shown in
Table 2. The posterior parameter uncertainty is propagated through the model using the samples to
yield the robust model predictions of the lowest 20 modal frequencies. The fit is shown in Figure 4.
The predicted modal frequencies are normalized with respect to the experimentally-identified frequencies
for comparison convenience. Therefore, values close to 1 are close to the experimental frequencies.
The improvement achieved by the updated model compared to the nominal model is evident. For most
modes the experimental frequency lies within the predicted 5–95% interval or very close to it, and in all
cases the error is of the order of 3–4% which should be compared to the error of the nominal model which
is of the order of 10% to 20% for some modes. This is a strong indication of the need for model updating
in order to improve the accuracy and predictive capability of the updated model.

Regarding the parameters, it can be seen that the updated values of the deck and pier parameters
lie close to 1 as expected, and slightly below it. The mean values for the deck and pier stiffness
parameters are estimated to be approximately 0.95 and 0.98 times their nominal values with
uncertainties of the order of 5% and 12% respectively. From the (θ1 − θ2) 2D projection of Figure 3 it
is evident that a negative correlation exists between the deck and pier stiffnesses. This is reasonable
since an increase in the stiffness of the deck can be counterbalanced by a decrease in the stiffness of the
piers such that the modal frequency values are maintained, and vice versa.

As far as the updated soil stiffness is concerned, the only (but important) new information that is
acquired by the model updating is that its value can be arbitrarily large, as long as it exceeds a threshold.
The threshold value appears to be approximately 70 which is the minimum value that the updated soil
parameter can attain, as seen from its posterior marginal distribution in Figure 3. A value of 70 implies
a soil modulus of elasticity of 70 GPa which is more than double of the updated (and nominal) value
of the pier modulus of elasticity (34 GPa). The soil parameter can increase substantially above this
value without affecting the fit with the experimental data, that is, without causing any variation in
the predicted modal frequencies of the model. Considering that the uniform prior bound for the soil
stiffness was set to [0.1, 1000] it is obvious that lower values which would attribute to the soil some
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flexibility similar to that of the piers are not preferred. In addition, the large posterior uncertainty in
soil property indicates that the modal frequencies are insensitive to the values of the soil modulus of
elasticity for these high values of the soil property. This insensitivity is due to the low vibration levels
recording from ambient operational conditions of the bridge.

Figure 3. Posterior marginal distributions and 2D sample projections of model parameters. θ1: deck,
θ2: piers, θ3: soil, σ: prediction error, log-evidence = 2.527.
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Figure 4. Uncertainty propagation to the first 20 modal frequencies compared with the experimental
frequencies and nominal model predictions.
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Table 2. Quantiles of posterior samples for all parameters. The x% quantile for a parameter is defined
as the level that corresponds to x% of the values of the parameter over all TMCMC samples, arranged in
increasing order, to fall below this level.

θ1 θ2 θ3 σ

5% Quantile 0.919 0.844 70.428 0.044
50% Quantile 0.968 0.981 110.23 0.065
95% Quantile 1.029 1.115 150.20 0.105

4.1.2. Two-Parameter Stiff-Soil Model

The results obtained from the flexible-soil model suggest that the bridge appears to be fixed
to the ground and the modal properties predicted by the model are insensitive to the soil modulus
of elasticity. This leads to introducing a second model, which corresponds to eliminating the soil
parameter by fixing its value to a large value as suggested by its posterior marginal distribution of
Figure 3, simulating the very stiff soil conditions which were found from the first model. Therefore,
the new two-parameter model has as parameters the modulus of elasticity of the deck (θ1) and piers
(θ2), while the soil parameter is fixed to 100.

The posterior samples for the two-parameter model are visualized using their marginal
distributions and 2D projections in Figure 5. The sample statistics are shown in Table 3. The posterior
parameter uncertainty is propagated through the model using the samples to yield the robust model
predictions of the lowest 20 modal frequencies. The fit is shown in Figure 6. Note that in Figure 6
the predictions of the nominal model are closer to the experimental due to the increase of the soil
parameter to the fixed value of 100 in order to simulate the stiff-soil conditions, which led to an increase
of the modal frequencies of the nominal model. It can be seen that, as expected, the model updating
results both in terms of the updated values of the parameters and in terms of the fit with the data are
almost identical to the results obtained from the three-parameter model in Figure 4.

Figure 5. Posterior marginal distributions and 2D sample projections of model parameters. θ1: deck,
θ2: piers, σ: prediction error, log-evidence = 2.550.
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Table 3. Quantiles of posterior samples for all parameters.

θ1 θ2 σ

5% Quantile 0.908 0.835 0.044
50% Quantile 0.965 0.966 0.065
95% Quantile 1.022 1.108 0.108

This is also confirmed using the Bayesian model selection framework [38] to compute the evidence
p(D|Mi) for the two models, taking into account both the complexity of the models in the form of the
number of its parameters and the fit they achieve with the data in order to obtain a trade-off between the
two. The TMCMC algorithm provides the values of the evidence of each model as a by-product of the
algorithm. Therefore, by performing model updating on both models they can be easily compared using
their evidence values. The log-evidence for the three-parameter flexible-soil model was found to be 2.52,
which is slightly less than the evidence value 2.55 of the two-parameter stiff-soil model. Bayesian model
selection slightly rewards the stiff-soil model for having one less parameter than the flexible-soil model.
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Figure 6. Uncertainty propagation to the first 20 modal frequencies compared with the experimental
data and nominal model.

4.2. Model Updating Using Modal Frequencies and Mode Shapes

Next we also include the mode shapes into the dataset used for model updating. Both the
vector-based (Section 2.1.1) and the MAC-based (Section 2.1.2) formulations of the likelihood are
used to update the deck and pier model parameters of the two-parameter FE model. Regarding the
vector-based likelihood formulation, two cases of mode shape component correlation are examined,
namely the uncorrelated and exponentially correlated cases. For the exponentially correlated case,
two correlation lengths are examined: λr = 100 m and λr = 500 m for all r values.

A crucial aspect of the analysis is to examine the effect of the number of mode shape components
(sensors) used in the likelihood function on the model parameter uncertainty and uncertainty in
model predictions. In order to study this effect, five different sensor configurations are considered
with 8, 14, 26, 52, 105 measured DOF. For each configuration the sensors are selected to be uniformly
spread along the bridge deck. In addition, the configuration with a larger number of measured DOF
includes the measured DOF contained in configurations with smaller number of DOF. In this way,
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the information contained in the data of a configuration with a given number of measured DOF,
includes the information contained in the data of a configuration with smaller number of DOF. In each
sensor configuration case, half of the DOF are transverse (sensors measuring in the transverse direction)
and half are vertical. The longitudinal DOF were not included due to their negligible contribution in
the identified mode shapes compared to the transverse and vertical components. The transverse and
vertical DOF were selected to be in the same point, that is, eight DOF correspond to four different pairs
of transverse and vertical DOF in the same point. The case of 52 DOF corresponds to the complete set
of measured DOF in the one side of the bridge, while the case of 105 DOFs corresponds to measured
DOFs on both sides of the bridge. Due to the type of the vertical and transverse mode shapes, the mode
shape components at one side of the bridge provide exactly the same information as the mode shape
components at the opposite side of the bridge. So the case of 105 measured DOFs should not be
expected to provide additional information as compared to the case of 52 sensors.

Figures 7 and 8 show the posterior parameter uncertainty for the deck and pier parameters of the
model as a function of the number of sensors, for each case of likelihood formulation. The posterior
uncertainty for each parameter is shown in terms of the 5%, 50% and 95% quantiles of the marginal
posterior samples obtained from the TMCMC algorithm for the corresponding parameter.

It should be noted that the vector-based likelihood formulations for the mode shapes (uncorrelated
and the two exponentially correlated models with spatial correlation lengths of 100 and 500) result in a
steady reduction in the posterior uncertainty of both model parameters (deck and pier parameters),
as the number of mode shape components used in the likelihood is increased. This is in agreement
with the Bayesian theory of parameter estimation, which suggests that as the number of data points
used in the likelihood is increased the posterior uncertainty is reduced. Indeed, in the vector-based
formulations, the mode shapes are treated as vectors of size equal to the number of their used
components. Therefore, the total number of data points used in the likelihood is increased as we use
more of the identified mode shape components.

However, as more mode shape components are used, the locations of the sensors become
increasingly closer to each other. The shorter characteristic length corresponding to the lowest 10
identified mode shapes is approximately 130 m as one can observe from Figures A1–A4 of Appendix A.
As the number of sensors increase to 25 or higher, the shortest distance between sensors becomes a
fraction of the characteristic length of the identified mode shapes and so there is redundant information
contained in the measured mode shape data. In fact no new information is expected from sensors
placed at a distance that is sufficiently smaller than the characteristic length of a mode shape. Especially
in the case of 52 and 105 DOFs (which correspond to the entire set of identified mode shape components
in one side and both sides of the bridge) we do not expect the inclusion sensor information from the
second side to further reduce the posterior uncertainty. This is because the identified mode shape
components at the two sides of the bridge are almost identical, and therefore including the second side
does not provide any new information about the transverse and vertical mode shapes. The same holds
true to a lesser degree for the other cases of DOFs because the sensors are getting closer as we use
more of them and contain very similar information. So we would expect the posterior uncertainty to
initially reduce as we increase the number of sensors, but only up to a certain point, and then remain
practically constant as we include more sensors due to the redundant information provided from the
closely spaced sensors or sensors placed at opposite sides of the bridge.

This expected behavior is opposite to what is observed using the vector-based formulations of
the likelihood for the mode shapes. Even adding the sensors at the second side of the bridge (which
provide identical information with the sensors in one side) seems to further reduce the posterior
parameter uncertainty for both the deck and pier parameters. Correlated prediction error models have
been suggested to alleviate this situation, and have been successful in some cases, but these correlated
prediction error models are very difficult to postulate correctly in practice and could otherwise lead to
erroneous results [41].
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Figure 7. Deck parameter posterior uncertainty versus number of sensors. The MAC case corresponds
to the MAC-based likelihood formulation, while “uncorrelated”, “correlated 100” and “correlated 200”
cases correspond to vector-based likelihood formulations with exponential spatially correlated
prediction error given by Equation (8) with λr = 0, 100 and 200 respectively.
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Figure 8. Pier parameter posterior uncertainty versus number of sensors. Description of curves as in
Figure 7.

A totally different behavior is observed under the MAC-based likelihood formulation for the mode
shapes. The posterior uncertainty does decrease at first, but then it stabilizes and is practically unaffected
by the inclusion of more sensors after some point. Specifically, we see that when the number of sensors
increase from 8 to 14 and 26, there is a reduction in the uncertainty, but after that point the uncertainty
gets stabilized and is not affected by doubling the number of sensors to 52 and eventually to 105. This
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happens because in the MAC-based formulation the mode shapes are not utilized as vectors, but as
scalar MAC values, reducing the effective number of independent data points for each mode shape to
one, instead of as many as the number of mode shape components. It is also important to note that the
overall parameter uncertainty is much larger compared to the vector-based formulations indicating that
no significant information gain occurs by further increasing the number of sensors.

A quantitative assessment is given in Table 4 which shows the 5–95% credible interval for
the posterior PDF of the deck and pier model parameters for different number of sensors under
the vector-based (uncorrelated) and MAC-based likelihood formulations. It can be seen that the
vector-based (uncorrelated) formulation keeps reducing the posterior uncertainty of the model
parameters as the number of sensors increase, whereas the uncertainty is maintained for the
MAC-based likelihood formulation for 26, 52 and 105 sensors.

Table 4. Deck and pier posterior uncertainty (90% credible interval) versus the number of sensors for
the vector-based (uncorrelated) and MAC-based formulations of likelihood.

NDOF Uncorrelated MAC

Deck Pier Deck Pier

8 0.070 0.087 0.104 0.241
14 0.056 0.083 0.100 0.216
26 0.041 0.064 0.091 0.190
52 0.032 0.045 0.088 0.191

105 0.021 0.033 0.087 0.186

Uncertainty Propagation to Modal Frequencies and MAC Values

The uncertainty in the model parameter values is propagated to modal frequencies in Figure 9 and
MAC values in Figure 10. Results are presented for the vector-based (uncorrelated) and MAC-based
formulations using 105 DOFs for the mode shapes (sensors on both sides of the bridge). The modal
frequency predictions in Figure 9 are normalized with respect to the experimental modal frequencies.

The larger posterior parameter uncertainties obtained with the MAC-based likelihood formulation
result in larger uncertainties in the predicted modal frequencies compared to the uncertainties predicted
by the vector-based (uncorrelated) likelihood formulation. The experimental frequencies are included
within the 5–95% credible intervals predicted by the MAC-based likelihood formulation for 10 out
of the 15 modes (the black horizontal line crosses the 5–95% interval except for 5 modes), while the
modal frequency predictions obtained from the uncorrelated model do not include the experimental
frequencies within the 5–95% credible intervals, except from only three modes (4-th, 6-th and 15-th
modes). Therefore, the predictions obtained from the vector-based likelihood formulation have more
error associated with them compared with those obtained from the MAC formulation, when checking
against the experimentally identified modal frequencies. Thus, the MAC-based likelihood formulation
has better predictive capabilities than the vector-based likelihood formulation, in the sense that the
predicted uncertainty bounds either fully contain or are closer to the experimental modal frequencies.

The predicted MAC values presented in Figure 10 have also larger uncertainties as expected
under the MAC formulation, but the difference is not as obvious as in the modal frequencies (except
for mode shapes 11 and 12 which have large uncertainties in their MAC value). The MAC values are
well above 0.95 (with the exception of mode shape 9 which has a MAC value of 0.88), indicating a
very close match between the experimental and model predicted mode shapes. Note that the MAC
values obtained from the nominal model (green circles in Figure 10) are contained within the credible
intervals of the vector-based likelihood formulation. This indicates that the mode shapes are highly
insensitive to changes in the values of the two model parameters. However, it was demonstrated that
inclusion of the mode shapes in the likelihood function does play an important role in the resulting
posterior uncertainty of the model parameters, thereby affecting the uncertainty in the predicted
modal frequencies.
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Figure 9. Posterior robust predictions for the modal frequencies normalized by the experimental modal
frequencies under the vector-based (uncorrelated) and MAC-based formulations for the likelihood.
Vertical lines (with three circles) for each mode number show the 5%, 50% and 95% quantiles.
The isolated green circles show predictions from the nominal FE model.
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Figure 10. Posterior robust predictions for the mode shapes compared with the experimental mode
shapes using the MAC value, under the vector-based (uncorrelated) and MAC-based formulations for
the likelihood. Vertical lines (with three circles) for each mode number show the 5%, 50% and 95%
quantiles. The isolated green circles show predictions from the nominal FE model.

Based on the uncertainty results for the model parameters presented in Figures 7 and 8, it is
expected that the uncertainty in the modal frequencies and mode shapes presented in Figures 9 and 10
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will be unaffected for the MAC-based likelihood formulation when the number of sensors is reduced
from 102 to 54 or 27. However, for the vector-based likelihood formulation the uncertainty in the modal
frequencies and MAC values is expected to increase due to the increase in the parameter uncertainties
in Figures 7 and 8 when the number of sensors is reduced from 102 to 54 or 27.

5. Conclusions

A Bayesian framework was presented for FE model updating of structures using experimentally
identified modal frequencies and mode shapes. A novel way for including the mode shapes into the
likelihood formulation was proposed by assigning a probability model to the MAC values between
the experimentally identified and model predicted mode shapes, summarizing the information in the
mode shapes in scalar features instead of vectors as it is conventionally done in existing formulations.
The MAC-based likelihood formulation provides uncertainty bounds of the model parameters which
are consistent with expectations as the number of sensors increases, while the vector-based likelihood
formulation fail to properly account for the redundant information contained in the mode shape
components, especially for relatively closely spaced sensors. The merits of the new likelihood
formulation in relation to existing formulations were explored by updating the FE model of the
Metsovo bridge. A high fidelity FE element model of hundreds of thousand of DOF was developed
to accurately model the dynamic behavior of the bridge. TMCMC was used to perform the model
updating, while model reduction techniques were effectively employed to drastically reduce the
computational effort to manageable levels.

It was demonstrated that the model-updating results obtained from the MAC-based likelihood
formulation differ significantly from the ones obtained by classical vector-based likelihood
formulations. Specifically, the posterior parameter uncertainty was found to be stabilized as the
number of sensors in the mode shapes are increased or the distance between sensors is relatively less
than the characteristic lengths of the identified mode shapes, or as extra mode shape components (at the
opposite side of the bridge), containing redundant information, are added. In contrast, the uncertainty
in the model parameters for the classical vector-based likelihood formulation is decreasing as the
number of sensors increases, which is counter-intuitive since it does not take into account the
redundant information contained in measurements. This decrease in uncertainty is observed for
spatially uncorrelated and exponentially correlated prediction error models considered in this study.
Propagating the uncertainty in modal frequencies and MAC values, it is demonstrated that the
MAC-based likelihood formulation provides wider uncertainty bounds that contain the experimental
data. In contrast, the uncertainty bound predicted by the vector-based likelihood formulation fail to fit
the experimental data since there is a significant distance of the experimental data from the predicted
uncertainty bounds.
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Appendix A. Supplementary Data

Figure A1. Comparison between the experimentally identified (left column) and nominal FE model
predicted (right column) mode shapes of the Metsovo bridge. Modes 1–3.

Figure A2. Comparison between the experimentally identified (left column) and nominal FE model
predicted (right column) mode shapes of the Metsovo bridge. Modes 4–6.

Figure A3. Comparison between the experimentally identified (left column) and nominal FE model
predicted (right column) mode shapes of the Metsovo bridge. Modes 7–9.
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Figure A4. Comparison between the experimentally identified (left column) and nominal FE model
predicted (right column) mode shapes of the Metsovo bridge. Modes 10–12.
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