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Abstract: The large spread of Distributed Energy Resources (DERs) and the related cyber-security
issues introduce the need for monitoring. The proposed work focuses on an anomaly detection
strategy based on the physical behavior of the industrial process. The algorithm extracts some
measures of the physical parameters of the system and processes them with a neural network
architecture called autoencoder in order to build a classifier making decisions about the behavior
of the system and detecting possible cyber-attacks or faults. The results are quite promising for a
practical application in real systems.

Keywords: distributed energy resources; photovoltaic systems; cyber-security; anomaly detection;
neural networks; autoencoder

1. Introduction

1.1. Distributed Energy Resources (DERs)

Under the pressure of environmental problems, electrical grids are moving toward a large
use of Renewable Energy Sources (RES). The uncertainty of RES’s energy production and the high
scalability of some solutions (like solar panels) enable the shift from a centralized production of energy
to a distributed one. With the term Distributed Energy Resources (DERs) we usually refer to a
small or medium-scale unit of power generation which is connected to a larger power grid at
the distribution level. DERs can be represented by generators that have different primary energy
sources such as sun, wind, water movement, traditional thermal cycles and so on, but share electrical
and power electronic technologies in order to convert and inject power to the main electrical grid.
RES-based DERs are uncontrollable or partially controllable sources of energy. This feature implies
the need for strong communication and coordination among the sources. DERs are automated
systems often connected by a telecommunication network to a remote-control system, for example
a Supervisory Control and Data Acquisition (SCADA) system. In this case telecommunication
networks can be composed by multi-layer architectures, which use industrial protocols (like Modbus
or IEC 61850) encapsulated both over internet protocols by using the TCP/IP stack and over a proper
datalink layer such as the Ethernet, either directly if possible, or through independent solutions such
as GOOSE. Moreover these networks are based on different communication media. For these reasons,
DERs are prone to many cyber-vulnerabilities, which can affect the entire electrical power grid.
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1.2. The Need for Anomaly Detection and Aim of the Paper

DERs physical behavior is typically monitored by a human expert. However, given the complexity
and the increasing number of installed units, an anomaly detection system which can mimic human
behavior may be a very important tool to manage the grid. The proposed idea is to develop a Deep
Learning (DL)-based algorithm to monitor the physical behavior of a photovoltaic system connected
to the grid. The aim is not just to identify faults, but all the possible undesired working conditions
which can be caused by a variety of unintentional or intentional manumissions of the system, including
cyber-attacks. In fact, it is possible for these systems to operate with a degradation of performance,
resulting in an economic damage to the owners, or even causing problems to the grid without activating
the proper electrical protections. In this paper, we propose to know which is the proper operating
condition, but not to dispose of examples of malfunctions of the system. In practice, mimicking a
widespread situation in DER environmments, we suppose we have large ground-truth data concerning
normal behavior but no data about faults and cyber-attacks. The proposed approach can be defined
as anomaly detection, or novelty detection, which is the strategy to find out unknown working
conditions that can be also undesired. The paper is structured as follows. Section 2 reports a short
review of the state of the art concerning anomaly detection applied to industrial systems and DERs.
Section 3 presents the details of the proposed anomaly detection algorithm. Section 4 shows the use
case and implemented simulation environment and Section 5 the results. Section 6 contains an analysis
of the obtained results and issues for possible future research and Section 7 the conclusions.

2. State of The Art

2.1. Anomaly Detection in Industrial Control Systems (ICS)

Anomaly detection is an important issue that has been investigated within different research
areas and application domains [1]. The action aimed at identifying all the behaviors that differ in some
way from the normal one is usually called “novelty detection” or “outlier detection” [2,3], for which
refs. [4,5] propose different architectures based on autoencoders and ref. [6] suggests a one-class neural
network-based model. Different approaches have been investigated in the field of security monitoring
of industrial control systems. A survey of Intrusion Detection Systems (IDS) specifically designed
for SCADA systems is proposed in ref. [7], while ref. [8] focuses on the applications in the smart grid
environment. Industrial Control Systems (ICS) present some unique features that distinguish them
from traditional ICT environments: commonly used protocols present many vulnerabilities [9] that can
be exploited by using Man in the Middle (MITM) attacks [10]; and approaches to security based only
on traffic analysis could fail [11]. Anomaly detection in ICS should be faced by considering the physical
behavior of the process. Anomaly can be defined as something that deviates from what is standard,
normal, or expected. In this paper an anomaly is defined as an undesired physical working condition
of the process, a deviation of the process from a known working condition defined as normal, or as an
impossible observation of the state of the process because of an incoherence of the measurements. This
definition includes working conditions caused by either faults or malicious manumissions of control
devices, actuators, and sensors.

In the field of industrial processes and especially in power systems, typical anomaly detection
strategies are based on the dynamic state estimation [12–14], basically composed by using
the equations that describe the physical system, and on the comparison between the forecast behavior
and the real measurements. Even if very efficient, this approach has some drawbacks: implementing
the equations requires knowledge of the exact behavior of the system, i.e., the exact parameters
of the equations; moreover, it could be very hard to write a closed form equation that takes into
account heterogeneous types of parameters, and even if possible, it would require a customized design.
Machine Learning (ML) approaches could be useful to face up such type of problems. A traditional
classification of ML algorithms distinguishes between supervised algorithms, in which a training
dataset containing examples of good and bad behavior is available, and unsupervised algorithms,
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where only a set of unlabeled examples is available. An hybrid case is semi-supervised machine
learning, where there is a dataset containing both labeled and unlabeled data. As highlighted
in the introduction, in the field of cyber-physical systems anomaly detection, it is quite common not
to have a dataset containing examples of bad physical behavior during a cyberattack. So, it is mandatory
to apply an algorithm that can “learn” a behavior considered to be normal and classify new examples.

2.2. DERs Anomaly Detection

Different ML solutions have been investigated to identify anomalies/faults in power generation
systems: in ref. [15] a k-nn supervised algorithm is used to identify faults in the direct-current portion
of a solar power plant composed by many arrays. A Support Vector Machine (SVM) classification
algorithm is used in ref. [16] to detect faults in Power Generation Systems Based on Solid Oxide
Fuel Cells. Artificial Neural Networks (NN) are applied in ref. [17] in order to identify malicious
control of DERs in a grid with high penetration of photovoltaic (PV) generators. An artificial neural
network is used in ref. [18] to solve a regression problem in order to predict the power produced
by a photovoltaic plant and detect anomalies. An algorithm based on an autoencoder to detect faults
within an electric motor is proposed in ref. [19], similarly as in our approach. Photovoltaic systems
are prone to different types of anomalies [20,21] such as short circuited cells and aging, which can
be noticed by the observation of the Voltage-Current characteristics of the panels. While electrical
faults like short circuits must be considered by electrical protections, there are different problems that
produce a degradation of the performance, like partial shading faults, open-circuits faults, soiling
and so on. Moreover, cell aging translates into a loss of efficiency. Cyber-attacks can be carried out
by the exploitation of remote-control capabilities of the inverter, which can cause the reduction of active
power injection or the alteration of reactive power injection, or by bad data injection attack that can
generate wrong decisions at the central control unit. In the first case we should notice a deviation
from the regular behavior while in the second case, if only a small subset of measurements is modified
we should notice the incoherence among the measurements. There are different types of techniques
to detect such type of anomalies/faults; our paper proposes an approach based on the automatic
analysis of data generated by DERs.

3. Proposed Method

The proposed solution uses a deep Neural Network (NN) architecture called autoencoder.
Autoencoders are a type of unsupervised learning algorithms in which the neural network learns
to reconstruct its input after a compression of the data, i.e., a reduction of dimensionality. In practice,
the autoencoder generates a reduced representation of the set of data and tries to reconstruct a
representation of the set of data from the reduced set, which is as close as possible to the input.
The difference between the two sets is the reconstruction error. Autoencoders have many applications
in the field of image processing but their scope can be much wider. In the mathematical theory
of artificial neural networks, the universal approximation theorem states that a feed-forward network
with a single hidden layer containing a finite number of neurons can approximate continuous functions
on compact subsets of Rn [22]. The idea used in this paper is that after training the autoencoder with
physical measures, it will be able to learn the correlations among measures. Our approach follows
the reconstruction-based novelty detection paradigm [3] where a model is trained to reconstruct
normal data with low error. If the input is abnormal, the reconstruction error will be higher. In this
way the magnitude of the error, and a consequent proper threshold, is used to classify new data.

The formalized process is the following. We collect all the available measures (also called features)
at a discrete sampling time so to build a vector that we call state vector (1).

X(t) = {X1(t), X2(t)...Xn(t)} (1)
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The aim is to detect an anomaly by the only static analysis of this vector. The entire dataset,
composed of the state vectors collected over a period of time, which will be used to train the algorithm
is called XTR, while XTEST is another collection of state vectors used in the test phase. Therefore,
for a given dataset, each row contains the measures collected at the same time and each column
the measures of the same type over time. See Equation (2), where X is either XTR or XTEST . Sampling
time go from t1 to tT in this example case.

X =


X1(t1) X2(t1) · · · Xn(t1)

X1(t2) X2(t2) · · · Xn(t2)
...

...
...

...
X1(tT) X2(tT) · · · Xn(tT)

 (2)

3.1. Preprocessing

Each measure varies over time in different ranges and ways. In order to compare the measures,
we must compensate these differences in a preprocessing phase. Considering the i-th column of XTR,
we compute the mean X̄TR

i as in Equation (3) and the standard deviation σTR
i as in Equation (4), for the

training dataset.

X̄TR
i =

∑T
k=1 XTR

i (tk)

tT − t1
(3)

σTR
i =

√
∑T

k=1(XTR
i (tk)− X̄TR

i )2

tT − t1
(4)

Then we normalize each single measure of the training dataset as in Equation (5), so getting
the matrix in Equation (6):

xTR
i (tk) =

XTR
i (tk)− X̄TR

i
σTR

i
(5)

xTR =


xTR

1 (t1) xTR
2 (t1) · · · xTR

n (t1)

xTR
1 (t2) xTR

2 (t2) · · · xTR
n (t2)

...
...

...
...

xTR
1 (tT) xTR

2 (tT) · · · xTR
n (tT)

 (6)

3.2. Training Phase

Each state vector xTR(t) = {xTR
1 (t), xTR

2 (t), · · · , xTR
n (t)} is sent to the autoencoder as input and it

is reconstructed as output. We call x̃TR(t) = {x̃TR
1 (t), x̃TR

2 (t), · · · , x̃TR
n (t)} the vector reconstructed

by the autoencoder starting from the input xTR(t). We define the reconstruction error as in Equation (7)

eTR(tk) =
1
n ∑n

i=1(xTR
i (tk)− x̃TR

i (tk))
2

eTR =


eTR(t1)

eTR(t2)
...

eTR(tT)


(7)

During the training phase the autoencoder is trained to reconstruct its input so to minimize
the error in Equation (7). Details about this action are reported in the remainder of the paper.
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The next step is to decide a threshold to build a classifier to be used in the Test Phase. For this
purpose we compute the mean ēTR(t) and standard deviation σTR

e of the error on the training dataset
as in Equations (8) and (9)

ēTR =
∑T

k=1 eTR(tk)

tT − tk
(8)

σTR
e =

√
∑T

k=1(eTR(tk)− ēTR)2

tT − tk
(9)

Finally we set the threshold as in Equation (10), where h is a constant empirically defined.

E = ēTR + hσTR
e (10)

This structure to define the threshold is due to the hypothesis of a normal distribution of the error.
If the probability density function of the error is Gaussian, Equation (10) allows the setting of a defined
percentage of vectors of the training dataset as normal. For example, if h is set to 3, 99.73% of the training
vectors will be defined as normal. The choice will be analyzed and discussed in the Results section.

3.3. Test Phase

During the test phase, each test state vector at generic instant tk is normalized by using the mean
and standard deviation of the training dataset, as shown in Equation (11)

xTEST
i (tk) =

XTEST
i (tk)− X̄TR

i
σTR

i
(11)

So getting (12):
xTEST(tk) = {xTEST

1 (tk), xTEST
2 (tk), · · · , xTEST

n (tk)} (12)

Then the vector (12) is sent to the autoencoder. The reconstruction vector is Equation (13).

x̃TEST(t) = {x̃TEST
1 (t), x̃TEST

2 (t), · · · , x̃TEST
n (t)} (13)

The error between input and output is computed as in Equation (14)

eTEST(tk) =
1
n ∑n

i=1(xTEST
i (tk)− x̃TEST

i (tk))
2

eTEST =


eTEST(t1)

eTEST(t2)
...

eTEST(tT)


(14)

The classification is made by comparing the error with the threshold E in Equation (10) as
indicated in Equation (15)

eTEST(tk) > E→ anomaly
eTEST(tk) < E→ normal

(15)

To summarize, the classifier is therefore built in two phases. During the training phase (Figure 1)
the autoencoder learns to reconstruct vectors representing the normal behavior in an optimal way
by setting the parameters of the neural network. This operation is done in this paper through a
gradient descent, an iterative learning algorithm that uses several hyperparameters to update a model.
At each iteration the model should be improved by updating the internal model parameters. Two
hyperparameters that will be used in the performance evaluation are the batch size and number
of epochs. The batch size controls the number of training samples (i.e., the number of rows
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in the matrix (6)) to use before the model’s internal parameters are updated. In practice, after the
end of the batch, the input is compared with the output and the error is computed. Starting from
the error the update algorithm is used to move down along the error gradient. The training dataset
can be divided into one or more batches and this number is one parameter affecting the system
performance analyzed in the Results section. The number of epochs defines the number of times that
the learning algorithm will use the entire training dataset. An epoch is composed of one or more
batches. The number of epochs should be large enough so that the learning algorithm can run until
the error has been sufficiently minimized. The number of epochs is the second hyperparameter studied
in the Results. After the training phase, a threshold E is set.

Figure 1. Training phase.

In the test phase (Figure 2) the state vectors are sent to the autoencoder, and the reconstruction
error is used to classify vectors.

Figure 2. Test phase.

4. Materials and Methods

The use case of this paper is a typical small-scale photovoltaic system connected to the grid
at the distribution level. From an electrical point of view it is composed of solar panels, a DC-DC
boost electronic converter controlled by the maximum power point tracking algorithm, a DC link
and a current source inverter. The inverter acts also as a server sending information to and receiving
commands from a control unit, which can be represented by a SCADA in the case of a microgrid or
by a distribution management system in the case of distribution grid. The system is also equipped with
different sensors that collect heterogeneous types of measurements. We categorize all the collectible
information in five groups:

• Alternating Current (AC) side electrical information: active and reactive power, voltages
(Root Mean Square, RMS), currents (RMS), frequencies, total harmonic distortion (THD)

• Direct-Current (DC) side electrical information: voltages and currents
• PV information: voltage, current, temperature of the cells
• Environmental information: irradiance, temperature of the air
• Electronic information: maximum power point, dc/dc converter duty cycle
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As said, we would like to detect anomalies by the only observation of the collected measures.
In order to validate the proposed approach, we set up a simulation environment. The physical behavior
of the photovoltaic system is simulated by using MATLAB/Simulink software, as shown in Figure 3.

Figure 3. Simulated environment on Simulink.

The scheme takes into account the heat exchange between the panels and the environment (in red
in the left part of Figure 3) starting from the external data of solar irradiance and the temperature
of the air. This is simulated by a radiation heat transfer coming from the sun, a convective heat
exchange with the environment considered to be an ideal temperature source, and a thermal inertia
of the photovoltaic panels. The legenda, taken directly in Simulink, concerning this part is reported
in Figure 4.

Figure 4. Legenda of thermal scheme.

Then we implemented an electromagnetic electrical model, the portion between the PV Array
and the Inverter in Figure 3, starting from the blocks already present in the software. The grid
is modeled by a small low voltage portion with some loads, and a transformer connected to the medium
voltage distribution. We extract 22 features composing vector (1), which represent the physical
parameters that are measured in many commercial solutions, especially in microgrids. The list
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of these features is reported in Table 1. The green boxes in Figure 3 are the points where we extract
the measures listed in Table 1 from the system. Concerning the boxes that indicate the points where
multiple measures are extracted: “PV_Meas” refers to X4 and X5, i.e., Vpv and Ipv; “AC measures” block
is the point where we extract the measures from X9 to X22. X8 is measured within the MPPT converter.
The model runs for different working conditions in order to create a large dataset.

Table 1. List and description of the features.

Feature Symbol Description

X1 Irr the solar irradiance hitting the panel
X2 Tair the temperature of the environment
X3 Tpv the temperature of the PV’s cells
X4 Vpv the voltage measured at the terminals of the panel
X5 Ipv the current emitted by the panel
X6 Vdc the voltage measured at the DC link
X7 Ic the average current in the DC capacitor
X8 δ the dutycycle of the DC/DC converter
X9 Va the voltage of phase a (AC side)
X10 Vb the voltage of phase b (AC side)
X11 Vc the voltage of phase c (AC side)
X12 Ia the current of phase a
X13 Ib the current of phase b
X14 Ic the current of phase c
X15 fa the frequency of phase a
X16 fb the frequency of phase b
X17 fc the frequency of phase c
X18 THDa the total harmonic distortion of the voltage on phase a
X19 THDb the total harmonic distortion of the voltage on phase b
X20 THDc the total harmonic distortion of the voltage on phase c
X21 Q the reactive power emitted by the inverter
X22 P the active power emitted by the inverter

We simulated three types of faults/cyber-attacks that have different impact on the measures:

• Reduction of active power injection
• Short circuit of some cells of the solar panel
• Bad data injection

In the first case, we use the remote-control capabilities of the inverter: the action implies a
minor active power injection to the grid compared to the possible available power considering
environmental conditions. In the second case, we consider a typical fault that can happen in a
solar panel, which affects the performance of the panel itself. In the third case, we modify only one
feature for sample, by changing its value of a percentage ranging from 25 to 50% of the original value,
in order to create an unfeasible state vector. For instance, the injected power is modified maintaining
unchanged voltage and current measures. A bad data injection attack can be dangerous for DERs
because it can induce a wrong decision in a remote-control system.

The classification is performed offline on the test dataset. The autoencoder, implemented in Python
by using Keras library [23], is a multilevel neural network (NN) architecture that uses input and output
layers composed of the same number of neurons and a series of hidden layers whose dimension
is strictly lower than the dimension of input and output layers. Neurons are fully connected,
which means that each single neuron acts as an input for all the neurons of the following layer.
The activation function of each neuron is a sigmoid. During the training phase, all the parameters
of the neurons (i.e., the weights of the connections) are set by using the gradient descent technique.
The impact on the performance of the following two hyperparameters, whose meaning is mentioned
in Section 4, is evaluated in the following:
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• Batch size
• Epochs

The variation of these hyperparameters can strongly influence the model learned by the NN.

5. Results

5.1. General Description

We extracted a training dataset composed of 7200 vectors, corresponding to about 30 days
of operation under different weather conditions, and 3 test dataset composed of about 800 vectors
corresponding to some hours of operation (because of a smaller sampling time with respect
to the training set) in normal and abnormal conditions. Tests are made in order to evaluate the influence
of different elements so to improve the efficiency of the detection method. We focused on the choice
of the threshold E in Equation (10), on the neural network architecture, and on the hyperparameters
used to train the NN.

5.2. Threshold E

As indicated in Equation (10) we set the threshold E as the mean error plus h times the standard
deviation of the error computed on the training dataset. As expressed in Section 4 the choice
is theoretically fully justified if the probability density function of the error is Gaussian because, in this
case, the area below the curve within the range identified by (ēTR − σTR

e ) and (ēTR + σTR
e ) is always

equal to 0.6827, by (ēTR − 2σTR
e ) and (ēTR + 3σTR

e ) equal to 0.9545, by (ēTR − 3σTR
e ) and (ēTR + 3σTR

e )

equal to 0.9973, and so on, allowing h to control the probability that the random variable error eTR

is within the range defined by (ēTR + hσTR
e ). Supposing that the distribution of eTEST is the same

of the one of eTR, h would allow the setting of a defined percentage of vectors as normal. Fixing
the structure of the autoencoder with a single hidden layer of dimension 15, and low epochs (10)
and high batch size (256), Figure 5 reports the histogram of the normalized errors, the curve that
approximates the related probability density function, and the corresponding normal curve with
the same mean and standard deviation (red line). The shapes are qualitatively similar by changing
hidden layer dimension, epoch and batch size.

Figure 5. Distribution of errors computed on training dataset.
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We can notice that even if the distribution is different from the Gaussian, the proposed structure
for the choice of the threshold may be still applied even if the selection of the h value must be heuristic.
h can still select a percentage of vectors as normal, even if more coarsely than in the Gaussian case.
In Figure 5 two values of the threshold are reported; the choice of h = 5 has the intention to maintain a
small number of false positives. To analyze numerically the effect on the performance we varied h
from 3 to 7, as reported in Table 2. The motivation is that above h = 3 and beyond h = 7 results show
that the performance decreases significantly. The acronyms TN, FN, FP and TP stand, respectively,
for True and False Negative, and False and True Positive. Accuracy is the proportion of true results.

Table 2. Impact of the choice of the threshold on accuracy.

Power Reduction Short Circuited Cells Bad Data Injection

h = 3
Accuracy: 0.729
TN: 221 FN: 0

FP: 216 TP: 361

Accuracy: 0.772
TN: 243 FN: 1

FP: 183 TP: 379

Accuracy: 0.497
TN: 125 FN: 15
FP: 339 TP: 225

h = 4
Accuracy: 0.948
TN: 396 FN: 0
FP: 41 TP: 361

Accuracy: 0.842
TN: 412 FN: 113
FP: 14 TP: 267

Accuracy: 0.714
TN: 314 FN: 51
FP: 150 TP: 189

h = 5
Accuracy: 0.995
TN: 433 FN: 0
FP: 4 TP: 361

Accuracy: 0.68
TN: 424 FN: 230

FP: 2 TP: 130

Accuracy: 0.839
TN: 440 FN: 89
FP: 24 TP: 151

h = 6
Accuracy: 1

TN: 437 FN: 0
FP: 0 TP: 361

Accuracy: 0.547
TN: 426 FN: 365

FP: 0 TP: 15

Accuracy: 0.839
TN: 456 FN: 105

FP: 8 TP: 135

h = 7
Accuracy: 1

TN: 437 FN: 0
FP: 0 TP: 361

Accuracy: 0.536
TN: 426 FN: 374

FP: 0 TP: 6

Accuracy: 0.841
TN: 463 FN: 111

FP: 1 TP: 129

These preliminary results highlight important aspects: the best threshold’s choice depends on
the specific case because some physical anomalies produce higher errors that are more easily separable.
For examples, anomalies that involve the modification of a high number of measures cause a higher
reconstruction error. Therefore, setting a high value for the threshold E (through a higher h) reduces
the number of false positives. On the contrary, anomalies that induce a small amount of measures
to change cause a lower reconstruction error, consequently the threshold E should be maintained lower
(through a lower h), even if this choice raises the number of false positives. If we want to avoid to loose
generality, we must fix a threshold that is a compromise. On the first phase, we set h = 5.

5.3. Autoencoder Architecture

Subsequently, fixing h = 5, the impact of the NN architecture on the accuracy has been
investigated. We tried different combinations of depth and number of neurons for hidden layer.
For example, considering Table 3, “22-15-22” refers to an architecture composed of a single hidden layer
whose dimension is 15 and an input and output layer each composed of 22 neurons corresponding
to the number of features in Table 1, while “22-18-15-18-22" refers to an architecture composed
of 3 hidden layers whose dimensions are 18, 15 and 18, respectively. The layers are fully connected,
which means that each single neuron of a layer acts as an input for each neuron of the following layer.

The number of neurons of the most compressed layer impacts on the accuracy more than the number
of hidden layers. In the presented results, in some cases, the depth of the NN impacts negatively on
the accuracy, but we can say, in general that the depth does not bring significant changes in the performance.
A possible explanation is that the dimension of the smallest hidden layer is the element that
mostly affects the reduced representation of the system and, consequently, the capability to learn
the correlation between measures. If this dimension is too large, the autoencoder just reproduces its
input; on the contrary, if the dimension is too small, the NN loses important information.
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Table 3. Impact of the NN architecture on accuracy.

Power Reduction Short Circuited Cells Bad Data Injection

22-18-22 0.994 0.660 0.820
22-15-22 0.995 0.687 0.839
22-10-22 0.995 0.680 0.824

22-15-10-15-22 0.995 0.612 0.825
22-18-15-18-22 0.995 0.661 0.830

22-21-(...)-13-(...)-22 0.995 0.659 0.830

5.4. Training Parameters

Finally, we investigated the gradient descent’s hyperparameters, focusing on batch size
and epochs. After the previous phases, we fixed the threshold to h = 5 and the NN architecture
to 22-18-15-18-22. We compared the results by using different learning hyperparameters. The first test
focuses on the batch size, fixing the number of epochs to 10. Results are reported in Table 4

Table 4. Impact of the batch size on accuracy.

Power Reduction Short Circuited Cells Bad Data Injection Mean Accuracy

Batch size: 256 0.995 0.650 0.837 0.827
Batch size = 64 0.993 0.702 0.820 0.838
Batch size = 32 0.992 0.789 0.825 0.869
Batch size = 16 0.992 0.819 0.801 0.870
Batch size = 1 0.992 0.801 0.801 0.864

The second test refers to the number of epochs. We fixed the batch size to 32 and we evaluated
the impact on accuracy by varying the epochs (Table 5).

Table 5. Impact of the epochs on accuracy.

Power Reduction Short Circuited Cells Bad Data Injection Mean Accuracy

Epochs = 10 0.992 0.789 0.825 0.868
Epochs = 50 0.992 0.814 0.809 0.872

Epochs = 100 0.992 0.840 0.808 0.880
Epochs = 200 0.992 0.834 0.788 0.871

There is a relevant impact of hyperparameters on the accuracy concerning anomalies caused
by Short Circuited Cells and Bad Data Injection. More times the training samples are passed
to the autoencoder during training phase, more accurate is the model fitted by the NN.
The identification of anomalies that produces lower errors benefits from a more suitable model
built around training samples.

6. Discussion and Future Research Issues

The previous chapter proposed a performance evaluation of the proposed algorithm to detect
different anomalies. One of the main problem is to adapt the algorithm to perform well under
different conditions. Setting specific parameters for each anomaly brings to significantly better results;
however, if the algorithm can perform well with only specific anomalies, than it betrays its aim.
The previous section allows getting a compromise. Concerning future research, it would be our intention
to elaborate on the error distribution so finding out alternatives for the computation of the threshold E.
A major investigation over the NN architecture can bring better results. This paper analyzed
separately the impact of the threshold, of the architecture and of the gradient descent hyperparameters.
Actually, these three elements are bounded: for example, the choice of the best threshold cannot
be considered a totally separated problem with respect to the other two elements. In order to find
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a real optimal solution, we must consider all these elements at the same time. We could proceed
by a brute-force strategy by trying all the possible combinations for discrete steps. Nevertheless, this
would result in a huge amount of data. A better solution would be to implement a multi-parametric
optimization during the design of the NN.

Many papers in the literature use supervised ML algorithms in order to detect anomalies.
Supervised algorithms usually perform well in classification problems, but these methods cannot
be exploited without disposing of labeled datasets. An idea may be comparing our approach with
anomaly detection algorithms based on One-Class Support Vector Machine. A cyber-physical anomaly
detection may be a complementary tool to traditional Intrusion Detection Systems that could be based
on network traffic analysis. Many industrial protocols send measures on plain text to a centralized
control system; an element that scans the network traffic and that can also perform a deep packet
inspection could act together with the proposed scheme to detect possible anomalies.

7. Conclusions

The paper presents a novel approach to detect anomalies within a photovoltaic system connected
to the grid. ML algorithms and in particular Deep Learning architectures may be fundamental tools
for this kind of applications. The results show that the proposed method can be valid; still, further
investigation has to be done to increase the efficiency and to generalize the proposal to different
scenarios in DER application field.
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