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Abstract: The paper addresses the problem of localization based on hybrid received signal strength
(RSS) and time of arrival (TOA) measurements, in the presence of synchronization errors among
all the nodes in a wireless network, and assuming all parameters are unknown. In most existing
schemes, in fact, knowledge of the model parameters is postulated to reduce the high dimensionality
of the cost functions involved in the position estimation process. However, such parameters depend
on the operational wireless context, and change over time due to the presence of dynamic obstacles
and other modification of the environment. Therefore, they should be adaptively estimated “on
the field”, with a procedure that must be as simple as possible in order to suit multiple real-time
re-calibrations, even in low-cost applications, without requiring human intervention. Unfortunately,
the joint maximum likelihood (ML) position estimator for this problem does not admit a closed-form
solution, and numerical optimization is practically unfeasible due to the large number of nuisance
parameters. To circumvent such issues, a novel two-step algorithm with reduced complexity is
proposed: A first calibration phase exploits nodes in known positions to estimate the unknown
RSS and TOA model parameters; then, in a second localization step, an hybrid TOA/RSS range
estimator is combined with an iterative least-squares procedure to finally estimate the unknown target
position. The results show that the proposed hybrid TOA/RSS localization approach outperformed
state-of-the-art competitors and, remarkably, achieved almost the same accuracy of the joint ML
benchmark but with a significantly lower computational cost.

Keywords: localization; hybrid positioning; ranging; wireless sensor networks; time of arrival;
received signal strength

1. Introduction

Location estimation plays a key role in many applications, and is today attracting a great interest
from both industry and academia. This process is sustained by the increasing widespread use of
interconnected smart devices, which have the potential to enable seamless position capabilities at
significantly reduced development costs. Indeed, besides the undisputed importance of the ultimate
localization accuracy, the low-complexity requirement has been recently regarded as a fundamental
need in most resource-constrained operational contexts, such as body area networks and wireless
sensor networks (WSNs). In this respect, the design of localization solutions able to exploit the received
radio frequency signals in an opportunistic way, without requiring any additional hardware, is of great
practical interest.

Several approaches have been proposed in the literature to tackle the problem of node localization
by leveraging information extracted from existing terrestrial technologies [1–6]. Among others,
range-based solutions have been widely employed in popular terrestrial localization systems, especially
in WSNs, where they are preferred to range-free techniques [7,8] thanks to their reduced complexity.
Range information can be obtained by exploiting different characteristics of the received signals, namely
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received signal strength (RSS) [9–16], time (difference) of arrival (TOA/TDOA) [17–20], and angle
of arrival (AOA) [21–25]. Hybrid approaches combining different types of measurements have also
been proposed. For instance, references [26–32] investigated novel localization schemes based on
the combined use of RSS and AOA measurements, which are able to achieve improved estimation
performance. Although interesting, these techniques require enhanced hardware and processing
capabilities that are usually not available on-board low-cost sensor nodes employed in typical WSN
deployments; more precisely, AOA-based methods are not appealing in such contexts owing to the
increased complexity and costs associated with multiple antennas.

TOA/RSS solutions better fit the requirements of low-cost contexts, thanks to their simplicity
and ready availability, and the hybrid (joint) approach is interesting for its improved accuracy [33–42].
A theoretical study of the localization performance achievable using joint TOA/RSS measurements
has been conducted in [33]. By providing the exact expression of the Cramér–Rao lower bound
(CRLB), authors showed that such hybrid schemes can offer significant improvements in the estimation
accuracy with respect to the case where RSS-only or TOA-only measurements are used. In [34], authors
addressed the problem of target localization in presence of mixed line-of-sight (LOS)/non-line-of-sight
(NLOS) scenarios. In a first step, the algorithm classifies all the links as either LOS or NLOS according
to a parametric Nakagami distribution; then, the position is estimated through a weighted least
squares (WLS) approach that considers the sole TOA measurements for those links identified as
LOS and the RSS measurements for the NLOS paths. A novel algorithm to tackle the problem of
target localization in adverse NLOS environments has been proposed in [35]. In this work, authors
tried to mitigate the detrimental effects of NLOS biases on both RSS and TOA measurements by
recasting the original (non-convex) problem as an approximated generalized trust region sub-problem.
The ultimate target position estimate is then obtained by applying a bisection procedure based on
an iterative squared range WLS approach. In [36], same authors addressed the more challenging
scenario in which all paths are in NLOS. By assuming a partial knowledge of the NLOS biases affecting
the collected measurements, the highly-dimensional localization problem can be approximated to a
min-max problem in which the NLOS biases are treated as known nuisance parameters. Similarly
to [35], the final target location is estimated by resorting to a robust bisection procedure within a
generalized trust region framework.

It is worth noting that almost all the aforementioned localization schemes based on hybrid
TOA/RSS measurements require that a partial or even perfect knowledge of the model parameters
is available. Moreover, in most cases all the nodes in the network are implicitly assumed to be
perfectly synchronized among each other. Although these assumptions are typically used to reduce
the high dimensionality of the cost functions involved in the position estimation process, in practical
WSN deployments, nodes are not synchronized to the same clock and all the model parameters are
unknown, hence the need to be adaptively estimated “on the field”. Furthermore, in most operational
scenarios, such as indoor environments and urban areas, the presence of dynamic obstacles (people,
vehicles, etc.) introduces significant modifications in the surrounding environments, leading to
channel characteristics that are non-stationary over time. Therefore, to address the problem of target
localization in real applications, a preliminary calibration phase aimed at estimating the unknown
channel parameters at run-time should be performed. On the one hand, such a procedure must be
as simple as possible in order to suit multiple real-time re-calibrations even in low-cost applications;
on the other hand, it must be fully automatic, that is, it should not require any external assistance,
including human interventions and frequent configurations—for this reason, such a feature can be
also called self-calibration.

In this paper, we address the problem of target localization based on the combined use of TOA
and RSS measurements under the realistic case of self-calibrated parameters. This work is motivated
by the analysis conducted in [43], where it is highlighted the biased nature of the distance estimates
obtained via RSS-only ranging in case of self-calibrated channel parameters. The main objective of this
paper is to investigate how a dynamic estimation of the TOA and RSS model parameters will impact
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the ultimate position estimation performance of joint TOA/RSS range-based localization. To this
aim, we extended our previous work [44] by considering, in addition to the hybrid TOA/RSS range
estimator proposed therein, a preliminary self-calibration stage and a final position estimation stage.
In particular, differently from [44] where all the parameters are assumed to be known, in this paper,
we consider the more realistic case where the model parameters are estimated “on the field” according
to a self-calibration procedure (described in Section 3.1). Moreover, we explicitly address the problem
of nodes synchronization by including the clock offsets in all the considered models, as opposed to [44],
where nodes are assumed to be synchronized. Our results show that using estimated parameters in
place of the ideal (true) ones introduces detrimental non-linear effects that cannot be easily mitigated,
and may lead to localization errors that can be significantly bigger than those obtained assuming a
perfect knowledge of the environment; nonetheless, the provided algorithm is able to perform the
whole localization task in a real environment and in a fully automatic (unsupervised) way.

Summarizing, the paper provides a two-fold contribution. First, we formalize the hybrid
TOA/RSS localization problem in presence of synchronization errors among all the nodes in the
network, and derive the corresponding joint maximum likelihood (ML) estimator of target position
and nuisance parameters. As we will see, such an estimator does not admit a closed form solution;
moreover, due to the large number of nuisance parameters in the final cost function, a numerical
optimization is practically unfeasible. To circumvent such issues, as a second contribution we design a
novel two-step algorithm with reduced complexity to solve the joint TOA/RSS range-based localization
problem; more specifically, we split the original problem into two separated phases:

• a first calibration phase carried out by the different nodes in the network to estimate all the
unknown RSS and TOA model parameters, including the synchronization offsets;

• a second localization step that leverages the combination of hybrid TOA/RSS ranging and iterative
least squares (ILS) approach to estimate the unknown target position.

It is worth highlighting that the proposed approach, in each of the two separated phases involved
in the localization task, exploits cooperation between nodes with known positions (anchors) and the
node to be localized (blind node). More precisely, anchors need to exchange their collected TOA/RSS
measurements and to communicate the time instants they start to transmit to the blind node. In this
respect, we assume that all nodes in the network are equipped with low-power radio technologies
(e.g., based on IEEE 802.15.4 standard, such as ZigBee, 6LoWPAN, etc.) that enable communications in
a range of a few meters, while still preserving the required power efficiency.

The rest of the paper is organized as follows. In Section 2 we provide the problem formulation
and discuss the resolution of the joint estimation problem using both TOA and RSS measurements.
In Section 3 we derive in details the proposed two-step localization approach with self-calibration.
Section 4 is devoted to the performance assessment of the proposed approach also in comparison to
natural competitors. We conclude the paper in Section 5.

2. Hybrid TOA/RSS Localization: Formulation and Resolution Approaches

We consider, as a reference scenario, a WSN deployed over a given area with N ≥ 3 static
anchor nodes located at known positions xi = [xi yi]

T , i = 1, . . . , N, with T denoting the transpose
operator, and a static blind node (also called target) with unknown position xb = [xb yb]

T . In the
following, we assume that the target is properly equipped to extract both RSS and TOA information
from the signals transmitted by the anchors. Moreover, we address the case in which the involved
links are in LOS. It should be recognized that multipath and NLOS biases are main sources of errors
that severely penalize the achievable localization performance, especially when operating in harsh
environments, such as urban canyons or indoor areas. However, as we have seen in Section 1, most
of the papers addressing this topic assume that a partial or even perfect knowledge of the TOA/RSS
models parameters is available, so that nodes can quantify the detrimental effects of NLOS biases
and try to mitigate them. Conversely, in this work, we steered our focus on the more realistic case
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of self-calibrated network, that is, the unknown model parameters are estimated adaptively “on
the field”. We anticipate that, even under the “more simplistic” assumption of LOS propagation,
the hybrid TOA/RSS localization problem is highly non-linear and does not admit a closed-form
solution, due to the presence of a very large number of nuisance parameters. Despite the relevance of
the considered setup, to the best of our knowledge no practical solutions to this problem are available
in the literature. For this reason, in this paper, we address the LOS-only localization problem, leaving
the extension to the more challenging case of NLOS propagation as a future work. Starting from the
set of N received signals (one from each anchor), the main goal is to estimate the target unknown
position xb based on RSS and TOA measurements, whose models are discussed in the following.

2.1. RSS Model

Let ri,b, with i = 1, . . . , N, denotes the average power (in dB) that the blind node measures based
on the signal transmitted by the i-th anchor. According to the widely-used path loss model [45], each
ri,b can be explicitly expressed as:

ri,b = P0 − 10α log10
‖xi − xb‖

d0
+ ni,b, (1)

where ‖·‖ is the Euclidean distance operator, α > 0 denotes the path loss exponent regulating the slope
of the decaying power law, and P0 is the power at reference distance d0; in the following, we assume
d0 = 1 m without loss of generality. As to ni,b, it represents the normally-distributed (in dB) shadowing
term having zero-mean and variance σ2

r . It is worth noticing that fast signal variations related to
small-scale fading effects can be mitigated by averaging ri,b over time ([11,46,47], see also [48] for
details concerning the computational aspects); hence, Equation (1) is a sufficiently general model to
represent the average received power as only affected by the shadowing component (ni,b), as also
demonstrated by the extensive experimental campaigns conducted in [45,49–51]. Following the above
model, we have that:

ri,b ∼ N (P0 − 10α log10 ‖xi − xb‖, σ2
r ), (2)

where N (µ, σ2) denotes the Gaussian probability density function (pdf) with mean µ and variance σ2,
and the shadowing variance σ2 (expressed in dB) does not depend on the range.

The parameters P0, α and σ2
r describing the statistical characterization of the RSS measurements

ri,b typically depend on the specific environment at hand. A value of α = 2 is commonly used to
represent free space propagation, while α > 2 is typical for most realistic outdoor and indoor scenarios.
As we have seen in Section 1, most of the existing hybrid TOA/RSS estimators assume that such values
are perfectly known a priori. Although this assumption is reasonable to carry out theoretical analyses
aimed at understanding the fundamental behaviors and limits of the proposed techniques, in practical
WSN deployments all the model parameters are unknown and must be estimated “on the field”.

2.2. TOA Model

For the purposes of this paper, we assume that anchors and blind nodes are not perfectly
synchronized to the same clock, as is typical in real scenarios. More precisely, the TOA information
measured by the blind node based on the signal transmitted by the i-th anchor can be modeled as:

ti,b =
‖xi − xb‖

c
+ tb − ti + wi,b, (3)

with c denoting the speed of light, while ti and tb are the offsets of the i-th anchor and target clocks with
respect to an ideal one, respectively. The additive term wi,b represents the TOA measurement error and
is modeled as a zero-mean Gaussian random variable with variance σ2

t , the latter reflecting the specific
receiver precision [52]. It is worth noting that Equation (3) implicitly assumes the transmit time is
known. We recall that the proposed approach exploits cooperation between anchors and blind nodes.
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Therefore, such an information can be actually provided to the blind node by the i-th transmitting
anchor. Although the TOA Model (3) neglects the presence of multipath and the drift of the clocks,
it is widely-adopted in different WSN applications and several experiments have shown that it is a
reasonable approximation in many cases [40–42,52,53].

According to Model (3), it thus follows that:

ti,b ∼ N
(
‖xi − xb‖

c
+ tb − ti, σ2

t

)
. (4)

As aforementioned, state-of-the-art approaches typically assume that the model parameters are
known. In the specific case of the TOA Model (3), it is also customary to assume that all the nodes in
the network are perfectly synchronized to the same clock, that is, the offsets ti and tb are often even set
to zero.

2.3. Joint Maximum Likelihood Position Estimation

Let rb = [r1,b · · · rN,b]
T and tb = [t1,b · · · tN,b]

T denote the RSS and TOA observation vectors
collected at the blind node exploiting the signals from the N anchors. For the sake of notation, we can
arrange the set of unknown RSS model parameters as:

β = [P0 α σ2
r ]

T , (5)

and, similarly, we can stack the unknown TOA parameters as:

θ = [t1 · · · tN tb σ2
t ]

T . (6)

Using Equation (2), (4), the joint TOA/RSS likelihood function can be written as:

Λ(rb, tb|xb, β, θ) =
N

∏
i=1

fr(ri,b|xb, β) ft(ti,b|xb, ti, tb, σ2
t )

=
1

(2πσrσt)N e
− 1

2σ2
r σ2

t
∑N

i=1

[
(ri,b−P0+10α log10 ‖xi−xb‖)2σ2

t +(ti,b−
‖xi−xb‖

c −tb+ti)
2σ2

r

]
, (7)

where fr( ·) and ft( ·) denote the pdfs of the RSS and TOA measurements, respectively. It is worth
noting that Equation (7) represents the actual likelihood under the assumption that both RSS and TOA
information are measured from independent sources. Indeed, the experimental campaigns conducted
in [52,53] clearly show that measurements extracted from the same signal are weakly correlated; hence,
assuming independence in Equation (7) is not detrimental to generality.

The hybrid TOA/RSS ML estimation problem can be written as:{
x̂b, β̂, θ̂

}
= arg max

xb ,β,θ
Λ(rb, tb|xb, β, θ) = arg min

xb ,β,θ
L(rb, tb|xb, β, θ), (8)

with L( ·) an equivalent transformation of the negative log-likelihood, i.e.,

L(rb, tb|xb, β, θ) =
N

∑
i=1

[
(ri,b − P0 + 10α log10 ‖xi − xb‖)2σ2

t + (ti,b −
‖xi − xb‖

c
− tb + ti)

2σ2
r

]
, (9)

which depends on the desired blind node position xb, but also on all the nuisance parameters related
to the measurement models in Equation (1), (3), respectively.
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2.4. Resolution Approaches

As it can be noticed, the function in Equation (9) is highly non-linear and does not admit a
closed-form solution. Moreover, due to the large number of nuisance parameters, a direct minimization
of Equation (9) would require an impracticable multidimensional numerical optimization. A possible
workaround is to split the problem into two separated phases: (i) calibration and (ii) localization.
Although suboptimal, this approach is more adequate to the limited computational capabilities of
common resource-constrained WSN nodes; furthermore, we recall (see Section 1) that assuming β and
θ are known or can be determined once and for all is not reasonable in real operating scenarios due to
possible macro-variations of the environments over time; therefore, an automatic self-calibration step
at run-time must be provided.

More specifically, in the calibration phase, we exploit knowledge of the anchors positions and
a set of anchor-to-anchor and anchor-to-blind measurements to estimate the unknown nuisance
parameters, as will be explained in Section 3.1. Once estimates of the nuisance parameters are available
from the calibration phase, the optimization problem in Equation (8) can be reduced to a problem of
position-only estimation (localization phase). For the case at hand, however, still the latter task cannot
be performed in closed-form. Therefore, one has to resort to a numerical optimization algorithm
(e.g., gradient-based iteration) or to a two-dimensional grid search [54]. It should be noticed that
both these approaches have some drawbacks. In particular, the first one suffers from the well-known
problem of local minima and, depending on the choice of the initial point, wrong or even missing
convergence may be experienced. The second one is computationally much more expensive, especially
when the area of interest can be large and medium- to fine-grained resolutions are needed; thus, it is
indeed not preferable for low-cost WSN nodes due to its super-linear (quadratic) complexity growth.

The simpler alternative of a range-based localization task is thus considered here, that is,
we further split the localization problem into two separated steps: (ii-a) ranging and (ii-b) position
estimation. In doing so, we can leverage the hybrid TOA/RSS range estimator derived in [44]—which
is available in closed-form—to perform distance measurements between the blind node and each
anchor node. Once the set of N distance estimates is available at the blind node, the ultimate position
estimation task can be then accomplished by resorting to a multilateration approach based on the
well-established ILS procedure. Differently from other numerical optimization routines, the ILS has
received significant attention thanks to its ability to achieve convergence in a small number of iterations,
and is indeed widespread adopted in all commercial global navigation satellite system (GNSS)
receivers [55]. Moreover, compared to (linearized) multilateration based on pairwise subtraction
of the range measurement equations, significantly greater accuracy is achieved without major increase
in computational complexity [8]. Indeed, several optimized variants of ILS have also been proposed
in literature, which make ILS amenable to practical implementation even on resource-constrained
devices, such as low-cost WSN nodes [56,57]. Although the whole localization procedure is suboptimal
with respect to the initial ML estimation problem in Equation (8), we will show that the achievable
performance of the proposed algorithm can be very close to the ones obtained via a two-dimensional
grid search.

3. Proposed Localization Algorithm with Self-Calibration

In this section, we explain the proposed two-step localization algorithm in details. We start by
describing the calibration phase, which is performed by both anchors and blind nodes to estimate the
unknown TOA/RSS channel parameters. Such estimates are then used in the localization phase in
part to correct the synchronization errors affecting all the TOA measurements (anchor-to-anchor and
anchor-to-blind), and in part to compute the N distances among the blind node and each anchor in the
network. In this respect, it is important to observe that, differently from the case where both β and θ

are assumed to be known (deterministic), the accuracy of the range estimates will also depend on the
uncertainty affecting the TOA/RSS parameter estimation. More precisely, σ2

r and σ2
t will influence the

ultimate distance estimation in a twofold fashion: directly, in all the anchor-to-blind measurements,
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and indirectly through estimation of the models parameters. As formally demonstrated in [44] for
the case of RSS-only ranging, this injects severe non-linear effects that can dramatically affect the
achievable performance. In the final step, range estimates are then fed, together with a coarse estimate
of the blind position obtained in the calibration phase, to the ILS procedure which provides the
final position estimate x̂b. In Figure 1, we provide a block diagram illustrating the main steps of the
proposed localization solution.

+

+

+

+ +

Figure 1. Block diagram of the proposed hybrid time of arrival (TOA)/received signal strength (RSS)
range-based localization with self-calibration.

3.1. TOA/RSS Parameters Estimation Using Self-Calibration

To formalize the calibration problem, we start by considering an abstract representation of the
scenario at hand, as depicted in Figure 2.

Figure 2. A typical wireless sensor network (WSN) localization problem, with anchors and blind
nodes not synchronized to the same clock. Dashed and solid arrows indicate anchor-to-anchor and
anchor-to-blind measurements, respectively.
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As it can be seen, there are different point-to-point communication links—either anchor-to-anchor
or anchor-to-blind—from which both RSS and TOA measurements can be obtained. This general
scenario can be representative of different operational environments (indoor or outdoor) as well as
of different types of WSN applications (e.g., monitoring, rescue, etc.). As we have seen in Section 2,
in practical WSN deployments not only the RSS and TOA model parameters are typically unknown,
but they can also change over time owing to some macro-variation in the considered environment;
therefore, an automatic procedure to estimate such parameters at run-time must be devised. To this aim,
in the following we consider a self-calibration procedure that requires the sole knowledge of anchors’
positions, thus fulfilling the low-complexity requirements of conventional sensor networks [14,47,58].

In the first step of the calibration phase, we resort to the sole TOA anchor-to-anchor measurements
in order to estimate the synchronization offsets ti, i = 1, . . . , N. According to the TOA model in
Equation (3), we observe that the vector ta ∈ RN(N−1)×1 of measurements among the anchors can be
written as:

ta = Qθa + q + wa, (10)

with θa = [t1 t2 · · · tN ]
T denoting the vector of the unknown clock offsets, and:

q =



‖x1 − x2‖/c
...

‖x1 − xN‖/c
...
...

‖xN − x1‖/c
...

‖xN − xN−1‖/c


∈ RN(N−1)×1, (11)

is a known vector. As to wa, it represents the N × (N − 1) vector of measurements errors defined as:

wa = [w1,2 · · · w1,N · · · wN,1 · · · wN,N−1]
T . (12)

In the following, we assume that wa ∼ N (0N(N−1),1, σ2
t IN(N−1)) is a Gaussian random vector

with 0n,m and IK denoting the n×m matrix of zeros and the K-dimensional identity matrix, respectively.
Clearly, the set of measurements between anchors is independent from those received by the blind
node, that is, wa is independent of the wi,bs. Moreover, the known matrix Q ∈ RN(N−1)×N is given by:

Q =



−1 1 0 · · · · · · 0
...

...
−1 0 · · · · · · 0 1
1 −1 0 · · · · · · 0
...

...
0 −1 0 · · · 0 1
...

...
1 0 · · · · · · 0 −1
...

...
0 · · · · · · 0 1 −1,



(13)
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and, as intuition might suggest, its role is practically to perform the time difference between the offsets
of all anchor pairs. By posing t̃a = ta − q, it follows that the likelihood function associated with the
anchor-to-anchor TOA measurements can be expressed as:

`(t̃a; θa, σ2
t ) =

1

(2πσ2
t )

N(N−1)
2

e
− 1

2σ2
t
‖t̃a−Qθa‖2

. (14)

It is a simple matter to show that the ML estimate of σ2
t is given by:

σ̂2
t = min

θa

‖t̃a −Qθa‖2

N(N − 1)
=

t̃T
a P⊥Q t̃a

N(N − 1)
, (15)

where P⊥Q is the (orthogonal) projection matrix onto the orthogonal complement of the space spanned
by the columns of Q. At this point, it should be noticed that the ML estimate of θa (namely the
minimizer for θa in the previous formula) can be uniquely determined only when Q is a full-rank
matrix. From the definition in Equation (13), it is not difficult to see that Q has rank N − 1; therefore,
we can estimate θa using a Least Squares (LS) approach as:

θ̂a = Q† t̃a + τ1N , (16)

where τ ∈ R, Q† denotes the Moore-Penrose generalized inverse of Q, and 1N represents the
N-dimensional vector of ones.

The RSS model parameters can be estimated following the same procedure described in [14],
where it is shown that ML estimation of the unknown vector β reduces to a simple linear regression.
More precisely, we start by observing that the vector ra ∈ RN(N−1)×1 of RSS measurements among the
anchors can be written as:

ra = Hβa + na (17)

where βa = [P0 α]T and na denotes the N × (N − 1) vector of shadowing effects defined as:

na = [n1,2 · · · n1,N · · · nN,1 · · · nN,N−1]
T . (18)

Similarly to the TOA model, na ∼ N (0N(N−1),1, σ2
r IN(N−1)) is a Gaussian random vector

independent of the ni,bs. Moreover, we observe that H = [1N(N−1) v] ∈ RN(N−1)×2 is a known
matrix with:

v =



−10 log10 ‖x1 − x2‖
...

−10 log10 ‖x1 − xN‖
...
...

−10 log10 ‖xN − x1‖
...

−10 log10 ‖xN − xN−1‖


∈ RN(N−1)×1. (19)

The likelihood function associated with the anchor-to-anchor RSS measurements can be
expressed as:

`(ra; βa, σ2
r ) =

1

(2πσ2
r )

N(N−1)
2

e
− 1

2σ2
r
‖ra−Hβa‖2

. (20)

As it can be noticed, Equation (20) has the same structure of the likelihood in Equation (14); hence,
the ML estimate of σ2

r can be easily computed by considering Equation (15) with t̃a and Q replaced by
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ra and H, respectively. As to P0 and α, their final estimates (after some algebraic manipulations) are
given by [14]:

P̂0 = r̄a + α̂v̄ (21)

α̂ = −cov(ra, v)
s2

v
, (22)

where x̄ represents the sample mean of x (i.e., v̄ = 1
N(N−1) ∑

N(N−1)
i=1 vi), s2

v = 1
N(N−1) ∑

N(N−1)
i=1 (vi − v̄)2

denotes the sample variance of v, and cov(ra, v) is the sample covariance between ra and v. From these
compact expressions, it follows that the ML estimate of σ2

r can be obtained as:

σ̂2
r =

1
N(N − 1)

‖ra − P̂01N(N−1) + α̂v‖2. (23)

The last step of the calibration phase involves the estimation of the blind node synchronization
offset tb. To this aim, we start by considering the set of N anchor-to-blind TOA measurements, which
we recall are given by:

ti,b =
‖xi − xb‖

c
+ tb − ti + wi,b i = 1, . . . , N. (24)

At this point, it should be noticed that part of the synchronization errors in the above observations
can be corrected by exploiting the estimates of the anchors offsets obtained through Equation (16).
More precisely, we can define a new set of measurements:

t̃i,b = ti,b + t̂i ≈
‖xi − xb‖

c
+ tb + wi,b i = 1, . . . , N, (25)

where the synchronization errors due to the anchors clock offsets are assumed to be substantially
compensated. In this respect, we remark that this approximation is only introduced at the design stage
for the sake of mathematical tractability, while the actual algorithm performance will be evaluated in a
realistic scenario which accounts for the residual effects of non-ideal calibrations. By multiplying both
sides of Equation (25) by c, the following system of non-linear equations is obtained:

ρ̂1,b = ‖x1 − xb‖+ db + cw1,b

ρ̂2,b = ‖x2 − xb‖+ db + cw2,b
...

ρ̂N,b = ‖xN − xb‖+ db + cwN,b

, (26)

where ρ̂i,b denotes the pseudorange between the blind node and the i-th anchor estimated based on
the TOA measurement t̃i,b, while db represents the blind clock offset expressed in distance. In Equation
(26), three equations are indeed sufficient to solve (in the least-squares sense) for the three unknowns
xb = [xb yb]

T and db, but using more anchors (N > 3) provides additional information that can lead in
turn to better accuracy. To efficiently solve this (over-determined) non-linear system, an ILS procedure
can be employed. The basic idea behind this approach consists in iteratively updating the estimates of
the unknowns parameters xb and db; more precisely, we first differentiate the (noise-free versions of
the) pseudorange. The term pseudorange is usually adopted in the range-based localization literature
by analogy with the global positioning system (GPS) system, where range estimates can be obtained
up to the synchronization offset between the (synchronous) satellite constellation and the user receiver,
which in fact leads to the same problem as in Equation (26).
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Calculations in Equation (26) obtain the system:

δρi,b =
(xi − xb)δxb + (yi − yb)δyb

ρi,b − db
+ δdb i = 1, . . . , N, (27)

where xb, yb, and db are treated as known and set equal to the current guess, and ρi,b denotes the
pseudorange resulting from the current guess of the unknown parameters, while the increments δxb,
δyb and δdb are considered as the sole unknowns. The new system in Equation (27) can then be solved
by resorting to a LS approach:

δxb
δyb
δdb

 =



x1 − xb
ρ1,b − db

y1 − yb
ρ1,b − db

1

x2 − xb
ρ2,b − db

y2 − yb
ρ2,b − db

1

...
...

...
xN − xb

ρN,b − db

yN − yb
ρN,b − db

1



† 
δρ1,b
δρ2,b

...
δρN,b,

 , (28)

where the obtained solutions are used to update the estimates of the sought parameters xb and db.
More precisely, the algorithm computes the difference ∆i between the pseudoranges ρi,b calculated on
the basis of the new guesses [(xb + δxb) (yb + δyb) (db + δdb)]

T and the estimated ρ̂i,b; then, ∆i is set
as the new δρi,b for the next iteration. An error metric is evaluated from the absolute values of δxb,

δyb and δdb, namely ε =
√

δx2
b + δy2

b + δd2
b. The algorithm stops when ε is lower than a predefined

threshold or when a maximum number of allowed iterations has been reached. The ILS algorithm
is widely-used in commercial GNSS receivers (e.g., GPS) to retrieve the user position from a set
of pseudoranges measured with respect to all the visible satellites. Remarkably, such an iterative
procedure is robust against the problem of local minima and is able to achieve fast convergence (usually,
less than 10 iterations are required).

It should be noticed that the outcomes of this last calibration step include, in addition to the
estimated blind clock offset t̂b = d̂b/c, also an estimate of the unknown blind position x̂b. However,
we do not consider the latter as the ultimate estimate since it has been computed on the basis of the sole
TOA information, which is known to provide very poor localization performance in some operational
scenarios, in particular at short distances and for narrowband signals (and in fact motivates research
on hybrid positioning). Therefore, in the following we will consider x̂b as a coarse initial estimate
that will be used only to initialize a different ILS procedure employed in the final localization step,
as described in the next section.

3.2. Hybrid TOA/RSS Range-Based Localization

In this section, we propose a two-step localization algorithm based on hybrid TOA/RSS range
measurements between the blind node and all the anchors in the network. We first address the
problem of range estimation by resorting to an adaptive variant of the hybrid estimator derived in [44].
Differently from such a previous work, in which all the parameters are assumed to be known, in this
paper we consider the more realistic case where the model parameters have been estimated “on the
field” according to the self-calibration procedure described in Section 3.1. Moreover, we explicitly
address the problem of nodes synchronization by including the clock offsets in all the considered
models, as opposed to [44] where nodes are assumed to be perfectly synchronized.

To formalize the hybrid range estimation problem, we recast the ML formulation in Equation (8)
as a function of the sole unknown distances di,b = ‖xi − xb‖, i = 1, . . . , N, i.e.,

d̂i,b = arg min
di,b

L′(ri,b, ti,b|di,b), (29)
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with L′( ·) an equivalent transformation of the negative log-likelihood, i.e.,

L′(ri,b, ti,b|di,b) = (ri,b − P̂0 + 10α̂ log10 di,b)
2σ̂2

t +

(
ti,b −

di,b

c
− t̂b + t̂i

)2
σ̂2

r , (30)

where we replaced the unknown TOA/RSS model parameters with their estimates obtained in the
preliminary calibration phase. The hybrid TOA/RSS ML estimator is then obtained by imposing the
first-order optimality condition:

∂L′(ri,b, ti,b|di,b)

∂di,b
= 0, (31)

which yields:
σ̂2

t
di,b

(ri,b − P̂0 + â log di,b)â− σ̂2
r
c

(
ti,b −

di,b

c
− t̂b + t̂i

)
= 0, (32)

where we introduced â = 10α̂
log 10 to simplify the notation. Similarly to Equation (9), Equation (32) still

does not admit any closed-form solution in di,b. We can re-arrange Equation (32) as:

log di,b = − γ̂2

â2 d2
i,b +

γ̂2c(ti,b − t̂b + t̂i)

â2 di,b −
ri,b − P̂0

â
, (33)

where γ̂ = σ̂r
cσ̂t

. It can be noticed that the right-hand side of the above equation is quadratic in the
unknown di,b. Following the same idea of [44], we relax such a quadratic function to an affine function
of the form mdi,b + q, with m and q unknown parameters to be determined from a simple linear
regression. Denoting with m∗ and q∗ the optimal (in the ordinary LS sense) values resulting from the
linear fitting, it follows that Equation (33) reduces to:

log di,b = m∗di,b + q∗. (34)

Based on the above relaxation, the closed-form expression of the hybrid TOA/RSS range estimator
for m∗ < 0 is given by:

d̂i,b =
1
φ

W0(φeη), (35)

where W0( ·) denotes the principal branch of the Lambert W-function [59] and, in turn,

φ =
γ̂2

â2

[
c(t̂b − t̂i − ti,b) + δ

]
, η =

γ̂2

â2

[
â

γ̂2 (P̂0 − ri,b) + δ̃

]
, (36)

with δ = A + B and δ̃ = A2 + B2

2 − (B − A)2

3 , where A and B are design parameters representing the
extrema of the interval [A, B] used for the linear regression. The expression of the hybrid estimator for
the case of m∗ > 0 requires only minor modifications; for the sake of conciseness, we omit it here and
refer the interested reader to [44] for further details.

A few comments are now in order. First, we observe that the estimator d̂i,b provided in Equation
(34) is only a function of the edges of the interval [A, B], which are thus two design parameters
that can regulate the algorithm performance. Second, it is interesting to notice that W0(y) grows as
slow as log y− log log y; therefore, the Lambert W-function can be efficiently computed by resorting
to a look-up table that stores its values only in correspondence of integer arguments, without any
appreciable difference in the obtained results. This nice property makes the hybrid estimator amenable
to practical implementation even on low-cost nodes where only few kilobytes of memory are available
for storage of local data.



J. Sens. Actuator Netw. 2019, 8, 31 13 of 21

The final positioning step will be performed by exploiting the N distance estimates d̂i,b,
i = 1, . . . , N obtained by the blind node during the previous ranging phase. More precisely, we can
set up the following system of nonlinear equations:

d̂1,b = ‖x1 − xb‖+ n1,b

d̂2,b = ‖x2 − xb‖+ n2,b
...

d̂N,b = ‖xN − xb‖+ nN,b

, (37)

where ni,b denotes the generic error associated to the range estimation process. As it can be noticed, all
the equations in Model (37) depend on the sole unknown blind position xb. To solve such a system,
we consider a simpler variant of the ILS procedure applied to Equation (26), but without offsets in the
range equations. In particular, we first differentiate the range equations to obtain the linearized system:

δdi,b =
(xi − xb)δxb + (yi − yb)δyb√

(xi − xb)2 + (yi − yb)2
i = 1, . . . , N, (38)

where δxb and δyb are regarded as the sole unknowns, while now we set the initial guess for xb and yb
equal to the coarse estimate x̂b = [x̂b ŷb]

T as obtained in the last step of the calibration phase. The LS
solution of Equation (37) can be then computed as:

[
δxb
δyb

]
=



x1 − xb
d1,b

y1 − yb
d1,b

x2 − xb
d2,b

y2 − yb
d2,b

...
...

xN − xb
dN,b

yN − yb
dN,b



† 
δd1,b
δd2,b

...
δdN,b

 , (39)

and is used to update the current estimate [xb yb]
T . In this case, the algorithm computes the difference

∆i between the estimated ranges d̂i,b and the predicted ranges di,b calculated on the basis of the current
guess [xb + δxb yb + δyb]

T . Then, δdi,b is set equal to ∆i for the next iteration. Again, the algorithm

stops when the error
√

δx2
b + δy2

b falls below a predefined threshold or when a maximum number of
iterations has been exceeded.

As already discussed above, the ILS algorithm is robust against local minima and exhibits
fast convergence. In other words, it can be considered a valid alternative to optimization routines
(unfeasible for problem in Equation (8)) and, at the same time, a much lighter solution compared to a
two-dimensional grid search.

4. Performance Assessment

In this section, we evaluate the performance of the proposed algorithm by means of Monte Carlo
simulations. We consider, as a reference scenario, a WSN deployed over an area of 20 × 20 m;
in particular, the N anchors are distributed in the space so as to provide a good coverage in
terms of connectivity, while the blind node is randomly located within the considered area and
its position varies in each simulation trial. We consider for the RSS measurements the parameter
P0 = −30 dB, while for the path-loss exponent the two cases α = 2 and α = 4 are evaluated. As to the
synchronization offsets tis and tb, they are generated according to a uniform distribution in the interval
[bmin/c, bmax/c] where bmin = 0.5 m and bmax = 3 m represent the equivalent offsets expressed in
terms of distances, respectively. In this analysis, we assume without loss of generality that both RSS
and TOA measurements have the same accuracy, i.e., σr = cσt = σ. Thus, all measurements have the



J. Sens. Actuator Netw. 2019, 8, 31 14 of 21

same variance σ2, i.e., neither measurement has better “quality” than the other. This is not always the
case, of course, but this choice has the advantage of reducing the parameter space for the simulations
to the most interesting case: in fact, in [44] it is shown that if TOA and RSS variances are (significantly)
different, then one of the two sources of information always dominates; hence, the hybrid estimator
boils down to the TOA-only or RSS-only estimator, accordingly. For the assessment we consider
values of σ ranging from 3 to 6, which are representative of several operational scenarios of WSNs,
from outdoor open spaces to propagation environments full of obstructions (e.g., people, furniture, ...).

The proposed hybrid estimator is computed using A = −1 and B = 37 as in [44], and it is
compared against the most natural competitor algorithms based on Newton–Raphson iterations,
given in [53] and in the following labeled as NR1 and NR2. The basic difference among the NR1
and NR2 methods consists in the number of Newton–Raphson iterations performed to compute
the distance estimate. More precisely, the NR1 algorithm uses a single iteration, while the NR2
algorithm employs two iterations. Even though such algorithms were originally designed for range
estimation, the ultimate blind node position can be easily retrieved by resorting to the ILS procedure in
Equation (39) based on the N distance estimates obtained during the ranging phase. For comparison
purposes, we also report the performance of the (range-free) joint ML position estimator in Equation
(8), obtained via a two-dimensional grid search. We, however, remark that the latter cannot be taken
as a direct competitor since it is not available in closed-form; hence, it will be considered only as a
benchmark. Moreover, we also compare the performance of the hybrid estimators against the more
traditional algorithms based only on RSS or TOA information, denoted by “RSS-only” and “TOA-only”,
respectively. To assess the ultimate algorithms performance, we consider the mean square error (MSE)
metric, computed from the position error based on 1000 trials.

We start the analysis by investigating the computational complexity of all the considered
approaches. More specifically, we have recorded the runtimes of the estimators executed on the
same hardware platform, for a network with N = 8 anchors. A grid of P = 200 evaluation points per
dimension is considered for the joint ML estimator. A comparison between the average runtimes of
the different estimators (normalized to the fastest one, that is the NR-based method,) is provided in
Figure 3.

Normalized averaged runtime
0 20 40 60 80

NR1/NR2 + ILS

Proposed TOA/RSS + ILS

Joint ML

3.10

1

68.12

Figure 3. Averaged runtimes of the considered localization approaches.

As expected, the joint ML requires by far the longest runtime due to the two-dimensional search
involved in the solution of Equation (8). Remarkably, the proposed hybrid TOA/RSS approach has
only slightly higher complexity compared to NR, while it is significantly less complex than the optimal
joint ML.

In Figure 4, we report the MSEs of all the considered algorithms as function of the measurement
error σ for α = 2 and N = 8. The solid curves represent the ideal estimation performance obtained
by assuming that the TOA/RSS model parameters θ and β are perfectly known a priori, while the
dashed curves show the corresponding versions with the unknown parameters replaced by their
estimates obtained from the preliminary calibration phase presented in Section 3.1. The obtained
results clearly show that the proposed hybrid estimator outperforms the state-of-the-art competitors
for all the considered range of σ and, remarkably, can achieve almost the same accuracy of the joint
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ML benchmark, but at a significantly reduced computational cost. To better highlight the obtained
results, in Figure 5 we depict the considered 20 m× 20 m network with N = 8 anchors for a given
position of the target, together with a graphical representation of the estimated circular error probable
(CEP) (the CEP is usually defined as the radius of the circle, centered in the average estimated position,
which is expected to include 50% of the estimated positions) resulting from the application of the
proposed hybrid TOA/RSS approach for the two specific cases of σ = 3 and σ = 6.
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Figure 4. Mean square error (MSEs) of the considered estimators as function of the measurement error
σ for α = 2 and N = 8: ideal vs. estimated parameters.
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Figure 5. Graphical representation of the considered network for N = 8 and for a fixed target position.
Shaded circles represent the circular error probable (CEP) of the proposed two-step localization
approach for σ ∈ {3, 6}.
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As expected, the actual performance in the more realistic case of self-calibrated algorithms are
much worse compared to that obtained under ideal knowledge of the models parameters, especially
for high values of σ. To corroborate such results, we investigate the performance of the self-calibration
procedure adopted to estimate the unknown TOA/RSS model parameters. In Figure 6, we depict the
estimation errors obtained during the calibration phase for the two values of the measurement error
σ ∈ {3, 6}, which are representative of a “low-noise” and “high-noise” scenarios, respectively.

σ = 3 σ = 6

es
ti
m
at
io
n
er
ro
r
[d
B
]

0

5

10

15

P0

σ = 3 σ = 6

es
ti
m
at
io
n
er
ro
r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
α

σ = 3 σ = 6

es
ti
m
at
io
n
er
ro
r
[m

]

0

5

10

15

20

25

30

c(tb − t1)

σ = 3 σ = 6

es
ti
m
at
io
n
er
ro
r
[m

]

0

0.5

1

1.5

2

2.5

3

3.5

4

cσt

σ = 3 σ = 6

es
ti
m
at
io
n
er
ro
r
[d
B
]

0

0.5

1

1.5

2

σr

Figure 6. Estimation errors obtained during the calibration phase for σ ∈ {3, 6} with α = 2 and N = 8.

The obtained performance is in agreement with the findings in [43] (which however addressed
the specific problem of RSS-only ranging): in fact, higher values of σ amplify the errors in the model
parameters estimation and, in turn, introduce severe non-linear effects that are detrimental to the final
positioning task. From this analysis, it clearly emerges that in practical WSN deployments—where the
true values of the environmental parameters are unknown—the ultimate localization accuracy is also
affected by the quality of the parameter estimation task.

To further investigate how a realistic calibration affects the localization process, in Figure 7 we
report the algorithms performance as a function of the number of anchors N, now for the case α = 4
and σ = 4. As it can be noticed, for a sufficient number of anchors N, almost all the algorithms exhibit
a satisfactory localization accuracy, in spite of the presence of a quite high noise level σ. Interestingly,
for N ≥ 12 the dashed-curves (estimated parameters) closely attain the ideal ones (known parameters).
Again, the proposed hybrid TOA/RSS position estimator offers the best performance, with an MSE
below 10 m for almost all the considered span of N. These results are reasonable since for higher values
of N the increasing amount of information collected within the network enables a much more accurate
estimation of the unknown models parameters (through the self-calibration procedure proposed in
Section 3.1); conversely, as N decreases, the algorithms performance experience a rapid degradation
until achieving unacceptable results for a number of anchors N < 6. In addition to a higher amount
of information in the network (anchor-to-blind measurements scale linearly with N, anchor-to-anchor
measurements scale quadratically with N), increasing the number of anchors N also leads to a better
coverage of the considered area, resulting in turn into more favorable geometric conditions for the
estimation of the unknown blind position. To quantify the impact of a better distribution of the anchors
in the space, in Figure 8 we evaluate the horizontal dilution of precision (HDOP) for each different
number of anchors N.
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Figure 7. MSEs of the considered algorithms as function of the number of anchors N for α = 4 and
σ = 4. (left) Ideal TOA/RSS parameters and (right) estimated TOA/RSS parameters.
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Figure 8. Horizontal dilution of precision (HDOP) as function of the number of anchors N.

As it can be seen, increasing the density of anchors from 8 to 14 yields an accuracy improvement
in terms of HDOP of about 40%.

As concerns the poor performance of the NR-based methods, it can be attributed to the fact that
the hybrid TOA/RSS ranging problem is solved via a suboptimal approach based on Newton–Raphson
iterations. More precisely, from the closed-form expressions of the estimators provided in [53], it can
be noticed that the Newton–Raphson procedure is initialized with a coarse range estimate obtained
using the sole TOA measurement; hence, it is reasonable to expect that the performance of both NR1
and NR2 approaches heavily depend on the accuracy of such data. Such theoretical considerations are
in agreement with the performance of the NR1 method, whose performance curves are superimposed
to the ones provided by the TOA-only estimator, hence are not visible in the figures, meaning that in
the considered scenario one iteration of the Newton–Raphson method is indeed not sufficient to find a
good approximate solution to the joint TOA/RSS ML problem.

To complete the analysis, in Figure 9 we show the empirical cumulative distribution functions
(ECDFs) of the algorithms localization errors for the case α = 2, σ = 4 and assuming a number of
anchors N = 8. As it can be noticed, a perfect knowledge of the models parameters would lead to
positioning errors that are always below 7 m for all the hybrid estimators; conversely, in case of a
realistic self-calibration, all the algorithms suffer evident impairments in the achieved performance,
with errors that can even reach 20 m (tails of the ECDFs). Remarkably, the proposed hybrid estimator
closely follows the joint ML benchmark, with a position error that is lower than 5 m in 98% of the cases.
As a confirmation, in Figure 10, we report the ECDFs of the localization errors for the challenging case
of σ = 6.
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Figure 9. Empirical cumulative distribution function (ECDF) of the considered algorithms for the case
α = 2, σ = 4 and N = 8. (left) Ideal TOA/RSS parameters and (right) estimated TOA/RSS parameters.
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Figure 10. ECDF of the considered algorithms for the case α = 2, σ = 6 and N = 8. (left) Ideal
TOA/RSS parameters and (right) estimated TOA/RSS parameters.

As it could be expected, the obtained performance are generally worse than the ones in the
previous case, especially for the RSS-only and TOA-only estimators which cannot mitigate the negative
effects of an increased noise. Nevertheless, the proposed hybrid estimator still outperforms all the
competitors, achieving localization performance that remains very close to the one provided by the
joint ML. Notice also that for some percentile the joint ML has inferior performance; this is partially
due to the fact that it is obtained by a numerical optimization of a non-linear function, which may
not always terminate at the absolute maximum. Furthermore, in [44] it is shown that the hybrid
TOA/RSS range estimator achieves a smaller MSE than the joint ML estimator (this is because of
the bias-variance trade-off, i.e., it has been possible to design an estimator that is slightly biased but
overall has a reduced value of MSE.); hence, this may, in turn, impact on the corresponding localization
accuracy assessed here.

5. Conclusions

In this paper, we have addressed the TOA/RSS hybrid localization problem in presence of
synchronization errors among all the nodes in the network and other missing information on the
channel parameters. In fact, although many works assume knowledge of such parameters to reduce the
high dimensionality of the cost functions involved in the position estimation task, such an information
is not available in practice; moreover, parameters change over time due to the presence of dynamic
obstacles and other modification of the environment; hence, automatic re-calibration is needed.
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To circumvent the limitations of joint ML estimation—which is not available in closed-form and is
practically unfeasible via numerical optimization due to the large number of nuisance parameters—we
have designed a novel two-step algorithm with reduced complexity. In a first calibration phase, nodes
in known positions are exploited to estimate the unknown RSS and TOA model parameters; then,
in a second localization step, an hybrid TOA/RSS range estimator is combined with an iterative
least-squares procedure to finally estimate the unknown target position. The results show that the
proposed localization approach can outperform state-of-the-art competitors and, remarkably, achieve
almost the same accuracy of the joint ML benchmark, but with significantly lower computational cost.
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