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Abstract

:

In energy detection for cognitive radio spectrum sensing, the noise variance is usually assumed given, by which a threshold is set to guarantee a desired constant false alarm rate (CFAR) or a constant detection rate (CDR). However, in practical situations, the exact information of noise variance is generally unavailable to a certain extent due to the fact that the total noise consists of time-varying thermal noise, receiver noise, and environmental noise, etc. Hence, setting the thresholds by using an estimated noise variance may result in different false alarm probabilities from the desired ones. In this paper, we analyze the basic statistical properties of the false alarm probability by using estimated noise variance, and propose a method to obtain more suitable CFAR thresholds for energy detection. Specifically, we first come up with explicit descriptions on the expectations of the resultant probability, and then analyze the upper bounds of their variance. Based on these theoretical preparations, a new method for precisely obtaining the CFAR thresholds is proposed in order to assure that the expected false alarm probability can be as close to the predetermined as possible. All analytical results derived in this paper are testified by corresponding numerical experiments.
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1. Introduction


Cognitive radio [1,2,3,4] is a potential technology to realize flexible and efficient usage of frequency spectrum, and is a promising approach in dealing with the spectrum scarcity in future wireless communication networks. However, a key step to make it a reality is to effectively address some estimation issues, such as transmitter power estimation [5] and monitoring in wireless networks. Spectrum sensing is among the most important ones, which aims to detect whether licensed spectrum is accessible. Some existing spectrum sensing methods in the literature are by way of matched filtering, waveform-based sensing [6], cyclostationary-based sensing [7,8], and energy detection [9,10,11,12], etc. Clearly, energy detection is the most popular way to perform spectrum sensing.



In this paper, the energy detection scheme is carried out under the framework shown in Figure 1, which is a generation of the detection scheme described in [13]. The similar part is that the input signal x(t) is first passing a Band-Pass Filter (BPF) and next the signal is digitized by an analog to digital converter (ADC), then, a simple square and average device is used to estimate the received signal energy. For a real input signal, the estimated energy, u=1M∑k=1Mxk2, is then compared with a threshold, λ, to decide if a signal is present (H1) or not (H0). The threshold for energy detection used in [13] is constructed using the information of noise variance and signal-to-noise ratio. In the proposed framework shown by Figure 1, the noise variance is estimated from another available channel, σ^n2=1N∑k=1Nnk2, and then the estimated noise variance is used to construct the detection threshold. This setting of detection is more applicable, since the real complicated noise is derived from various sources and thus its variance may change from time to time. Though the method using estimated noise variance to construct the threshold has been proposed in the literature, e.g., [14,15,16,17], they did not analyze the effect caused by using the estimation variance. An interesting double threshold detection method is presented in [18] using exact noise variance to separate three cases of detection: spectrum free, spectrum occupied and not certain. In this paper, we will calculate the expectation of the detection event by using the estimated variance and thus a much more accurate threshold may be derived for detection.



The threshold is determined typically based on two principles: constant false alarm rate (CFAR) and constant detection rate (CDR), which will be further explained in Section 2. In both cases, the noise variance (power) is generally supposed to be known to determine the threshold, as shown in [19,20]. However, noise variance may vary significantly in both temporal and spatial dimension due to the fact that the total noise is composed of thermal noise, receiver noise, and environmental noise. Generally, one may take the estimated noise variance, to some certain extent, as the noise variance in the calculation of the threshold in energy detection accordingly. The following two examples are given in [13] for practical performance of energy detection. One example is that a certain channel is reserved for special applications by spectrum regulators. The special channel can only be used to estimate noise variance, and can never be used by a secondary user. For instance, channel 37 (from 608 to 614 MHz) in FCC is used in very few occasions but for radioastronomy. Another example is the detection of DTV pilot signals, in which the noise variance can be estimated from some frequency bin not corresponding to the pilot frequency under the low SNR scenario. In both examples, a threshold is computed from the estimated noise variance based on CFAR or CDR principles. Then, the threshold is used in the subsequent detection to determine whether a signal is present or not by comparing with the detected energy from the channel of interest or from the known pilot frequency bin.



What are the encountered problems for detection using estimated noise variance? For CFAR principle, the resultant false alarm rate P^fa may not be guaranteed as the preassigned level Pfa. Since the resultant rate P^fa is actually a random variable. Indeed, the estimated noise variance σ^n2 is a random variable. Thus the CFAR threshold, denoted by λ^fa, using variance σ^n2 is also a random variable, which implies that the resulted probability of false alarm for energy detection, denoted as P^fa, is also a random variable. Obviously, it is generally impossible to expect that P^fa equals the preassigned Pfa. Let us show a simple example here for demonstration of the theoretical results. Let M=60, N=30, if we want to set a threshold by the standard energy detection method (replacing the noise variance by its estimation) to guarantee EP^fa=0.05, the preassigned false alarm rate to set the threshold should be cautious and it is found by Theorem 1 that it should be approximately Pfa0=0.00033955, which is much smaller than the desired rate 0.05. However, if the sample number N increases to 100, the preassigned false alarm rate could be Pfa0=0.0129. As the sample number N increases, the preassigned rate approaches to 0.05 itself.



In this paper we analyze the difference between Pfa and EP^fa. It is found in [13] that the expectation of P^fa, which is actually calculated using an approximated random variable therein, is greater than Pfa for some predesigned Pfa, say, 0.01, which is shown in Figure 2 therein. Hence, to make a proper choice of the threshold, it is critical to answer the following questions:




	
What is the expectation of P^fa?



	
What is the variance of P^fa? (equivalently, the second moment of EP^fa2)



	
What is the limitation of EP^fa for a fixed Pfa as N, the number of samples used to estimate the noise variance, and M, the number of samples used to perform detection, tend to infinity?








Although a part of these issues, e.g., the first and third for the case of M=N, have been tackled and initially studied in [13]. Yet, the study failed to find an explicit form for EP^fa, which leaves a large space for further advance. Motivated by this, we investigate the problems by explicitly describing EP^fa and establishing an upper bound for EP^fa2, which well answers the first issue and the second partly. Moreover, with an approximation of EP^fa based on an estimated distribution of the resulted threshold λ^fa, the third question is analyzed for some special cases. Nevertheless, some new CFAR thresholds for energy detection are proposed by confirming that EP^fa equals to the predesigned false alarm probability Pfa.



The rest of this paper is organized as follows. The model setting and hypothesis testing of energy detection by a known noise variance is introduced in Section 2, where the CFAR thresholds are derived in an exact way and an approximating way, respectively, by assuming Gaussian signals. Section 3 numerically investigates the selection of CFAR based on an estimated noise variance to set a CFAR threshold. In Section 4, we analyze some basic statistical properties of the resulted probability of false alarm P^fa given by (21) along with P˜^fa, the estimated case given by (24). Specifically, we come up with explicit descriptions for the expectations of P^fa and P˜^fa by Theorems 1 and 3, respectively, and some discussions on the corresponding properties. In Section 5, upper bounds on EP^fa2 and EP˜^fa2 are derived by Theorems 5 and 6, respectively, due to the difficulty in finding the exact explicit forms by any known special functions. In Section 6, new CFAR thresholds are proposed, aiming to assure that EP^fa or EP˜^fa equals to the predetermined false alarm probability Pfa. Concluding remarks and future research are listed in Section 7. All analytical results derived in this paper are regarding CFAR thresholds. However, as a matter of fact, similar results also hold for the CDR case.




2. Model Setting and Hypothesis Testing with Known Noise Variance


Spectrum sensing is an important task for a secondary user in a cognitive radio network in order to determine whether a licensed band is currently occupied by a primary user or not. This is can be formulated into a binary hypothesis testing problem: [13,20]:


x(k)=n(k),H0(vacant),s(k)+n(k),H1(occupied),



(1)




where s(k), n(k), and x(k) represents the primary user’s signal, the noise, and the received signal, respectively. The noise is assumed to be Gaussian random process of zero mean and variance σn2, whereas the signal is also assumed to be iid Gaussian random process of zero mean and variance of σs2. The signal to noise ratio is defined as the ratio of signal variance to the noise variance


SNR=σs2/σn2.



(2)







The test statistics generated from the energy detector as shown in Figure 1 are


u=1M∑k=1Mxk2.



(3)







Under the hypotheses H0 and H1, the test statistic u is a random variable whose probability density function (PDF) is chi-square distributed. Let us denote a chi-square distributed random variable X with M degrees of freedom as X∼χM2, and recall its PDF as


fχ(x,M)=12M/2Γ(M/2)xM/2−1e−x/2,for x>0,0,otherwise,



(4)




where Γ(·) denotes Gamma function, given in (15).



Clearly, under hypothesis H0, Mu/σn2∼χM2; and Mu/σt2∼χM2 under H1 with σt2=(1+SNR)σn2. Thus, the PDF of test statistics u, given by test, is


fu(x)∼σn2Mfχ(xσn2M,M),underH0;σt2Mfχ(xσt2M,M),underH1.



(5)




When M is sufficiently large, we can approximate the PDF of u using Gaussian distribution:


f˜u(x)∼N(σn2,2σn4/M),underH0;N(σt2,2σt4/M),underH1.



(6)







For a given threshold λ, the probability of false alarm is given by


Pfa=prob[u>λ|H0]=ΓM2,Mλ2σn2,



(7)




where Γ(a,x) is the upper incomplete gamma function in (16). In addition, its approximating form of Pfa corresponding to distribution (6) for large M is


P˜fa=Qλ−σn2σn2/M/2,



(8)




where Q(·) is defined in (14).



If the required probability of false alarm rate (Pfa) is predetermined, the threshold (λfa) can be set accordingly by


λfa=2σn2MΓ−1M/2,Pfa,



(9)




where Γ−1(a,x) is the inverse function of Γ(a,x). Furthermore, for the approximation case:


λ˜fa=σn21+Q−1(Pfa)M/2,



(10)




where Q−1(x) is the inverse function of Q(x).



Similarly, under hypothesis H1, for a given threshold λ, the probability of detection is given by


Pd=prob[u>λ|H1]=ΓM2,Mλ2σt2,



(11)




where Γ(a,x) is the upper incomplete gamma function. So, we derive the threshold to achieve a target probability of detection at the required signal level or SNR:


λd=2σn2(1+SNR)MΓ−1M/2,Pd.



(12)




Furthermore, the corresponding approximating case is


λ˜d=σn2(1+SNR)1+Q−1(Pd)M/2.



(13)







The probability of false alarm is fixed to a small value (e.g., 5%) if it is required to guarantee a reuse probability of the unused spectrum, and meanwhile the detection probability should be maximized as much as possible. This is referred to as constant false alarm rate (CFAR) principle [13,19]. On the other hand, if it is required to guarantee a non-interference probability to the primary users, the probability of detection should be set to a high level (e.g., 95%) and the probability of false alarm should be minimized as much as possible. This is called the constant detection rate (CDR) principle [13,19]. By the similarity of (9) and (12), it is clear that the derivation of the threshold values for CFAR and CDR are similar, so the analytic results derived by assuming CFAR based detection can be applied to CDR based detection with minor modifications and vice versa. From now on, we will mainly focus on the discussion of CFAR threshold, since similar conclusions follow directly by minor changes.



Let us introduce some special functions and related notations for ease of reading. The complement of the standard normal distribution function is often denoted as Q(x), i.e.,


Q(x)=∫x∞12πe−t22dt,



(14)




and is simply referred to as Q-function, in the context of engineering. This represents the tail probability of the standard Gaussian distribution. The Gamma function and regularized upper incomplete Gamma function are defined as


Γ(k)=∫0∞tk−1e−tdt,



(15)






Γ(k,x)=1Γ(k)∫x∞tk−1e−tdt



(16)




for k>0, respectively. The more complicated Beta function and Beta distribution function are respectively listed below


B(a,b)=∫01ta−1(1−t)b−1dt,



(17)






B(x,a,b)=1B(a,b)∫0xta−1(1−t)b−1dt.



(18)




for a>0, b>0 and x∈[0,1]. A well-known relation between Beta and Gamma function is


B(a,b)=Γ(a)Γ(b)Γ(a+b).








We simply use Q−1(x), Γ−1(k,x) and B−1(x,a,b) to present the inverse functions of Q(x), Γ(k,x) and B(x,a,b) respectively.




3. Energy Detection Performance Using Estimated Noise Variance


As already mentioned in the introduction, the exact noise variance is generally unavailable; even historic records are sometimes out of use, due to timely changes of thermal conditions and environmental conditions, and so on. So, practically the threshold values in (9) and (12), or the approximating cases (10) and (13), are usually calculated from an estimated noise variance σ^n2 to a certain extent. In this section, we numerically study the performance of energy detection by replacing the noise variance in these formulas by an estimated noise variance σ^n2. Specifically, we investigate the difference EP^fa−Pfa by numerical experiments.



We want to find out the performance of energy detection by simply replacing the exact noise variance σn2 in (9) and (12) with the estimated noise variance σ^n2, i.e., calculate the thresholds as


λ^fa=2σ^n2MΓ−1M/2,Pfa,



(19)






λ^d=2σ^n2(1+SNR)MΓ−1M/2,Pd,



(20)




and then by (7) and (11) respectively the resulted performance probabilities are


P^fa=prob[u>λ^fa|H0]=ΓM2,Mλ^fa2σn2,



(21)






P^d=prob[u>λ^d|H1]=ΓM2,Mλ^d2σt2.



(22)







Similarly, in the approximating case, the CFAR threshold λ˜fa by replacing with the estimated noise variance σ^n2 is


λ˜^fa=σ^n21+Q−1(Pfa)M/2,



(23)




which is corresponding to (10). Thus the resulted performance probability is


P˜^fa=prob[u>λ˜^fa]=Qλ˜^fa−σn2σn2/M/2.



(24)







Due to the CFAR and CDR principles having an essentially similar structure, we actually investigate the CFAR case only, i.e., by formulas (19) and (21) to check the evolvement of EP^fa as the predetermined Pfa varying from 0 to 1, or for a fixed Pfa as the number of samples tends to infinity. A technical treatment of estimating EP^fa in the following experiments is replacing it by the corresponding empirical average P^¯fa over a class of sample paths.



Example 1.

We first investigate the difference between EP^fa and the predesigned Pfa as Pfa changes along the interval [0,1] with M and N fixed. In model (1), let σn2=1 and M=60. Consider a given false alarm rate Pfa, we use N=30 iid Gaussian noises to estimate the variance σ^n2, and then substitute σ^n2 in (19) to derive the threshold λ^fa. The energy detection performance by the obtained threshold λ^fa is evaluated by the corresponding false alarm probability P^fa by (21). As aforementioned, it is important to check whether EP^fa=Pfa. In order to estimate EP^fa, repeat independently the aforementioned procedure and calculation for 600 times to calculate the average false alarm probability


P^¯fa=1600∑i=1600P^fa(ωi)








to serve as an empirical approximation of EP^fa, where P^fa(ωi) denotes the calculated probability along the i-th sample path ω(i). We let Pfa=0,0.05,…,1, totally 21 points, to do an experiment. The result is shown in Figure 2a, where P^¯fa is plotted by ’+’. We see that P^¯fa>Pfa when Pfa is close to 0, while P^¯fa<Pfa when Pfa is near 1.





Example 2.

This time we investigate the difference between EP^fa and the predesigned Pfa with a fixed Pfa as M=N tends to infinity. Still let σn2=1 in model (1). With the same procedure of Example 1 to calculate P^¯fa by 600 independent sample paths. We let Pfa=0.05 and 0.95 respectively, and M=N=1,2,…,100 to do an experiment. The result is shown in Figure 2b, where P^¯fa for Pfa=0.05 is plotted by thick line, and Pfa=0.95 by ordinary line. We see that P^¯fa>Pfa when Pfa=0.05, and P^¯fa<Pfa when Pfa=0.95. Furthermore, it seems that P^¯fa, and thus EP^fa, for a fixed Pfa has a limitation as M=N tends to infinity.





The phenomena discovered by these numerical experiments will be explained in the next two sections by developing an exact formula for EP^fa and an upper bound for its variance. Nevertheless, the case for approximating CFAR threshold has also been analyzed meanwhile.




4. Calculations of EP^fa and EP˜^fa


In this section, we will derive explicit formulas for the expectation of P^fa given by (19) and (21) with respect to predesigned false alarm probability Pfa, and the expectation of P˜^fa given by (23) and (24). Moreover, some basic properties are deduced analytically and numerically, which further explains some discoveries in the former section.



Denote Y=1N∑k=1NYk2 as the estimated noise variance from the reference channel (Ch0) known to be vacant, where N is the number of samples used to estimate noise variance. Denote u by (3) as the energy detection test statistics from the channel of interest (Ch1). Here we assume the number of samples, as aforementioned, used to perform spectrum sensing is M.



Notice that the estimated noise variance, Y=1N∑k=1NYk2, is a random variable itself, the probability of false alarm or detection is conditioned on one observation of the random variable, e.g., y. Let us consider the case of CFAR. By (7) and (19), the probability of false alarm can be written as


P^fa=prob[u>λ^fa]=ΓM2,yσn2Γ−1M/2,Pfa,



(25)




where λ^fa is the threshold value calculated from (19) by given false alarm probability Pfa, and y is a realization of random variable Y.



Since P^fa given by (25) is a random variable depending on y, it is natural to consider its expectation with respect to y. Let us summarize a theoretical result regarding EP^fa as a theorem below.



Theorem 1.

When using estimated threshold λ^fa of CFAR given by (19) for model (1), we have


EP^fa=BNN+2x,N2,M2,



(26)




where x=Γ−1M/2,Pfa and Beta distribution B(x,a,b) is defined by (18).





Proof of Theorem 1.

By integrating (25) over the PDF of Y, the expected probability of false alarm can be derived as


EP^fa=EΓM2,yσn2Γ−1M/2,Pfa=∫0∞ΓM2,tNΓ−1M/2,Pfafχt,Ndt,



(27)




where we use the fact t=Ny/σn2∼χN2 in the second step. Letting x=Γ−1M/2,Pfa, we derive


EP^fa=∫0∞ΓM/2,tx/Nfχt,Ndt=∫0∞1Γ(M/2)∫tx/N∞sM/2−1e−sds12N/2Γ(N/2)tN/2−1e−t/2dt.



(28)




Differentiating by x, we have


d(EP^fa)dx=−1Γ(M2)Γ(N2)2N/2∫0∞txNM/2−1e−txNtNtN/2−1e−t/2dt=−xM/2−1(1/N)M/2Γ(M2)Γ(N2)2N/2∫0∞tM+N2−1e−xN+12tdt.



(29)




Introduce transformation u=xN+12t. By the fact that x>0, we proceed as


d(EP^fa)dx=−xM/2−1(1/N)M/2Γ(M2)Γ(N2)2N/2·1xN+12M+N2∫0∞uM+N2−1e−udu=−xM/2−1(1/N)M/22N/2xN+12M+N2·Γ(M+N2)Γ(M2)Γ(N2)=−xM/2−1(1/N)M/2(1/2)N/2B(M2,N2)xN+12M+N2,



(30)




where B(M2,N2) is Beta function in (17). Integrating (30) over (x,∞), by noticing EP^fa=0 for x=∞ in (27), we derive


EP^fa=∫x∞uM/2−1(1/N)M/2(1/2)N/2B(M2,N2)uN+12M+N2du.



(31)




Let w=2uN. The integral turns to be


EP^fa=1B(M2,N2)∫2xN∞wM2−1(w+1)M+N2dw=1B(M2,N2)∫0NN+2xsN2−1(1−s)M2−1ds=BNN+2x,N2,M2,



(32)




where B(x,a,b) is the Beta distribution function in (18). In the second step, we use the transformation w=1s−1.  □





Based on Theorem 1, we conclude a further theoretical discovery as the following theorem, which is actually being pointed out in the numerical experiments of the former section.



Theorem 2.

There exists a p0∈0,1 such that


EP^fa>Pfafor Pfa∈(0,p0),EP^fa<Pfafor Pfa∈(p0,1),



(33)




where EP^fa is defined by (27), and can be calculated by (26).





Proof. 

Let Pfa=p to be brief. Introduce a function ψ(p)=EP^fa−p. By (26), we have


ψ′(p)=dBNN+2x,N2,M2dx·dxdp−1=1B(N2,M2)NN+2xN2−12xN+2xM2−1·2NΓ(M/2)x1−M2ex(N+2x)2−1=C(M,N)ex(N+2x)M+N2−1,



(34)




where C(M,N)=Γ(M+N2)Γ(N2)NN22M2. By the fact x=Γ−1M/2,p, i.e., p=Γ(M/2,x), we have used the following calculation


dxdp=1dpdx=−Γ(M/2)xM2−1e−x








in the above second step. Note x=∞ when p=0, so ψ′(0)>0 by (34). Note further x=0 if p=1, by (34) we have ψ′(1)>0. Together with the fact that ψ(0)=ψ(1)=0, we know that ψ′ is negative somewhere.



To find more information about the sign of ψ′(x), we recall the famous Stirling’s approximation formula for Gamma function (see page 400 of [21]):


Γ(n+1)=2πnneneλn



(35)




where 112n+1<λn<112n, and an inequality (see page 88 of [21]):


1+1nn+α≤e≤1+1nn+β,



(36)




where α≤1ln2−1=0.4427⋯ and β≥12.



By (35), we get


C(M,N)=eθM+N−2N−2(M+N−2)M+N2−1NN2(N−2)N2−1eM2








with θ∈−6M−1(6(M+N)−11)(6N−12),−6M+1(6(M+N)−12)(6N−11). Thus,


ψ′(p)=eθM+N−2N−2(M+N−2)M+N2−1NN2(N+2x)M+N2(N−2)N2−1ex−M2−1.











By (36),


NN−2N2−1=1+2N−2N−22<e.








Together with the facts that eθ<1 and


N(N−2)(M+N−2)<1








for M≥6, we declare that the derivative of ψ(p) at p, corresponding x=M2−1, i.e., ψ′Γ−1(M2,M2−1)<0.



On the other hand, by noticing the increase rates of function ex and (N+2x)M+N2 in (34), we know that ψ′(p) at most has two zeros in (0,1). Hence, we conclude that ψ′(p) starts as a positive value ψ′(0)>0, then decreases to a negative minimum, and finally increases to a positive value ψ′(1)>0. This means that ψ(p) starts as 0 increases to a positive maximum, and then decreases to negative minimum, finally increases to 0, which is just the assertion desired.  □





Now let us consider the counterparts for the approximating threshold of CFAR criterion, i.e., the expectation of P˜^fa given by (23) and (24).



Theorem 3.

When using estimated threshold λ˜^fa of CFAR given by (23) for model (1), we have


EP˜^fa=QxN/2A(x)−QN2,



(37)




where A(x)=x2+x2M+M+N2 and x=Q−1Pfa.





Remark 1.

Based on Theorem 3, we now consider the limitation of EP˜^fa as M and N tend to infinity for fixed Pfa. By (37), for a fixed x=Q−1Pfa, we have


limM,N→∞EP˜^fa=Qx1+μ.



(38)




if M=μN. Thus, if M=N tends to infinity, we derive the discovery in [13]:


limM=N→∞EP˜^fa=Qx2.



(39)




These properties also hold for EP^fa since the distribution of P^fa tends to be the distribution of P˜^fa.





Proof of Theorem 3.

Integrating (24) with respect to y, and noticing that y∼N(σn2,2σn4/N), we have


EP˜^fa=∫RQy(1+Q−1(Pfa)/M/2)−σn2σn2/M/212πσn2/N/2e−(y−σn2)24σn4/Ndy.



(40)




Letting x=Q−1(Pfa) and t=(y−σn2)/σn2. we derive


EP˜^fa=∫RQ(tM/2+(t+1)x)N/22πe−Nt24dt.



(41)




For simplicity, introduce α=M/2 and β=N/2. Differentiating P˜¯fa over x, we get


d(EP˜^fa)dx=∫R∂Q(αt+tx+x)∂xβ2πe−(βt)22dt=−∫Rt+12πe−(αt+tx+x)22β2πe−(βt)22dt=−β2π∫R(1+t)exp−12[x2+2xt(x+α)+At2]dt,



(42)




where A(x)=(x+α)2+β2 and hereafter denote A sometimes for brief. It follows


d(EP˜^fa)dx=−β2π∫R(1+t)exp−12At+x(x+α)A2+(βx)2Adt=−β2πe−(βx)22A∫R1+u−x(x+α)Ae−A2u2du=−β2πe−(βx)22A1−x(x+α)A∫Re−A2u2du=−β2πe−(βx)22A1−x(x+α)A·2πA=−β2πe−(βx)22Aαx+α2+β2AA=−12πe−(βx)22A·βxA′.



(43)




In the second step we use the transformation u=t+x(x+α)A to simplify the expression.



Now integrating (43) over (x,∞), and by the fact that EP˜^fa=0 for x=∞ in (40), we find


EP˜^fa=∫x∞12πe−(βv)22A(v)·βvA(v)′dv=∫x∞12πe−(βv)22A(v)dβvA(v).



(44)







Let us study the function ϕ(x)=βxA(x) before introducing a transformation. Clearly,


limx→−∞ϕ(x)=−β,limx→∞ϕ(x)=β,ϕ′(x)=1AA(αx+α2+β2).








Note A>0 and denote x0=−α2+β2α, we derive ϕ′(x)<0 for x<x0, and ϕ′(x)>0 for x>x0. Thus, ϕ(x) has one unique minimum at x0. Hence, ϕ(x) increases from the minimum to −β as x→−∞, and increases from the minimum to β as x→∞.



Now introduce a transformation for (44) as w=ϕ(v). Based on the above analysis for function ϕ(·), if the integration region [x,∞)⊆[x0,∞), then the region for w turns to be [ϕ(x),β); otherwise, the region for v can be divided into two monotonic parts as [x,x0] and [x0,∞), and thus, the regions for w are [ϕ(x),ϕ(x0)] and [ϕ(x0),β). Then, for the case x≥x0, by the fact that P˜¯fa=0 for x=∞ in (41), we proceed (44) as


EP˜^fa=∫ϕ(x)β12πe−w22dw=Q(ϕ(x))−Q(β).



(45)




For the case x<x0, similarly,


EP˜^fa=∫ϕ(x)ϕ(x0)+∫ϕ(x0)β12πe−w22dw=Q(ϕ(x))−Q(β).








These finish the proof.  □





Corresponding to Theorem 2, we also have:

Theorem 4.

There exists a p˜0∈0,12 such that


EP˜^fa>Pfafor Pfa∈(0,p˜0),EP˜^fa<Pfafor Pfa∈(p˜0,1),



(46)




where EP˜^fa can be calculated by (37). Furthermore, the critical point p˜0 is close to 12 for large M,N.





Remark 2.

By Theorem 4, we know that EP˜^fa=Pfa at a point close to p=12. This property holds for EP^fa since the distribution of P^fa tends to that of P˜^fa.







Proof. 

Let Pfa=p to be brief. Introduce a function


φ(p)=EP˜^fa−p=QxN/2A(x)−QN2−Q(x),








where x=Q−1(p). So, we have


dφdp=−12πe−(βx)22A·βxA′·dxdp−1=αx+α2+β2AAβex2(x+α)22A−1,








where x=Q−1(p), A=(x+α)2+β2, α=M/2, and β=N/2. Clearly, x=∞ is corresponding to p=0, thus, φ′(0)>0. Together with the facts that φ(0)=0 and φ(12)=−Q(β)<0, we know that there exists a p˜0∈(0,12) such that φ(p˜0)=0. When x<0, corresponding to p>12, clearly,


βA<1








for x<0, we have Qxβ/A−Q(β)<0, and thus φ(p)<0 for p>12, which finishes the proof of the first assertion.



By (38), i.e.,


limM=μN→∞EP˜^fa=Qx1+μ,








we have


limM=μN→∞φ(p)=Qx1+μ−Q(x).








Thus, for large M and N, we know that the zero of φ(p), i.e., p˜0, is close to p=12, which is corresponding to x=0. This finishes the second assertion.  □





Now let us do some numerical experiments to detect the practicality of these theoretical results. Under the same setting of Example 1, we plot P^¯fa by ’+’, and EP^fa and EP˜^fa as the predesigned Pfa∈[0,1] in Figure 3a. We see that EP^fa serves better as the mean value of P^¯fa than EP˜^fa, which coincides with the fact that the latter is an approximating case. If M,N is sufficiently large, EP˜^fa approximates EP^fa close as desired. Let us analyze more deeply the graphs in Figure 3a by the discovery in Remark 1. Let M=μN, the approximation of EP^fa and EP˜^fa is Q(Q−1(Pfa)/1+μ) when M=μN is large. Clearly, Q(Q−1(12)/1+μ)=12 by noticing Q−1(12)=0. Graphically, this means the curves of EP^fa and EP˜^fa with respect to Pfa∈[0,1] pass across the diagonal line in Figure 4 around Pfa=12 for sufficiently large M,N. If M>>N, i.e., μ close to 0, then Q(Q−1(Pfa)/1+μ)≈Pfa. In this case, the graphs of EP^fa and EP˜^fa with respect to Pfa∈[0,1] is close to the diagonal line.



On the other hand, in Figure 3b we plot P^¯fa, EP^fa and EP˜^fa under the same setting of Example 2 for Pfa=0.05. Again, we see that EP^fa serves better as the mean value of P^¯fa than the approximation EP˜^fa. As M=N changes from 1 to 100, EP^fa and EP˜^fa seem tend to the value of the upper straight line in Figure 3b, i.e., Q(Q−1(0.05)/2)=0.1124⋯, which justifies the observation in Remark 1.



In conclusion, the theoretical discoveries in the above four theorems and two remarks have been verified in these numerical experiments.




5. Upper Bounds of EP^fa2 and EP˜^fa2


After the calculations of EP^fa and EP˜^fa, it is meaningful to have some information about the average deviations of P^fa and P˜^fa from their expectations. Technically, it is found very difficult to find explicit forms for EP^fa2 and EP˜^fa2 by existing special functions. We have to try to find some upper bounds instead. By the facts that P^fa∈[0,1] and P˜^fa∈[0,1], we have obvious upper bounds as


EP^fa2≤EP^fa≤1andEP˜^fa2≤EP˜^fa≤1.








Thus, the more sharp upper bounds of EP^fa2 and EP˜^fa2 should be less than EP^fa and EP˜^fa respectively. For this target, let us list two propositions and two lemmas for technical preparation.



From the proofs of Theorems 1 and 3, we actually have the following two general results respectively.



Proposition 1.

For a real differentiable function ψ:[0,∞)→[0,∞),


ddx∫0∞Γ(m,tψ(x))1Γ(n)tn−1e−tdt=−1B(n,m)ψm−1(x)ψ′(x)(1+ψ(x))m+n=1B(n,m)1−ϕ(x)m−1ϕ(x)n−1ϕ′(x),



(47)




where ϕ(x)=11+ψ(x) and m>0, n>0.





Proposition 2.

For two real differentiable functions ψ(x) and φ(x),


ddx∫RQ(tψ(x)+φ(x))e−t22dt=−exp−φ2(x)2(1+ψ2(x))φ(x)1+ψ2(x)′.



(48)









We need two more inequalities regarding Gaussian and Gamma distributions respectively as follows. The proofs have been listed in Appendix A.



Lemma 1.

For k≥1 and x>0,


Γ2(k,x)≤Γ(k,21kx).



(49)









Lemma 2.

For ∀x∈(−∞,+∞),


Q2(x)<Q(2x).



(50)









By Proposition 1 and Lemma 1, we develop an upper bound for EP^fa2 in the following.



Theorem 5.

Let x=Γ−1M/2,Pfa, then an upper bound for EP^fa2 is


B(P^fa2)=ΔBNN+21+2/Mx,N2,M2.



(51)









Remark 3.

Note that


0<NN+21+2/Mx<NN+2x








for x>0, we know that the upper bound in (51) for EP^fa2 is really lower than EP^fa.





Proof of Theorem 5.

By (25), we find an upper bound for the the expectation of squared probability of false alarm as


EP^fa2=EΓ2M2,yσn2Γ−1M/2,Pfa=∫0∞Γ2M/2,tx/Nfχt,Ndt,



(52)




where we use the notations: t=Ny/σn2 and x=Γ−1M/2,Pfa. By Lemma 1, for a∈(0,1) we derive


EP^fa2=∫0∞Γ2M/2,tx/Nfχt,Ndt≤∫0∞Γ(M/2,22/Mtx/N)tN/2−1e−t/22N/2Γ(N/2)dt=ΔB(P^fa2).



(53)




In order to use Proposition 1, introduce a transformation u=t/2. Then, we proceed (53) as


B(P^fa2)=∫0∞ΓM/2,21+2/Mtx/NuN/2−1e−uΓ(N/2)du.



(54)




Clearly, corresponding to Proposition 1, ψ(x)=21+2/MxN in (54). Thus, by Proposition 1, we derive


B(P^fa2)=BNN+21+2/Mx,N2,M2.








  □





By Proposition 2 and Lemma 2, we develop an upper bound for EP˜^fa2 in the following.



Theorem 6.

Let x=Q−1Pfa, then an upper bound for EP˜^fa2 is


B(P˜^fa2)=ΔQ2βxβ2+2(x+α)2−Q(β),



(55)




where α=M/2 and β=N/2.





Remark 4.

Note that


2βxβ2+2(x+α)2>βxβ2+(x+α)2>0








for x>0, we know that the upper bound in (55) for EP˜^fa2 is really lower than EP˜^fa for Pfa∈[0,12].





Proof of Theorem 6.

Letting x=Q−1(Pfa), t=(y−σn2)/σn2, and recalling the notations α=M/2 and β=N/2. By (24), we derive


EP˜^fa2=∫RQ2(αt+xt+x)β2πe−β2t22dt.



(56)




By Lemma 2, we proceed as


EP˜^fa2≤∫RQ2(αt+xt+x)β2πe−β2t22dt=ΔB(P˜^fa2).



(57)




Introduce transformation u=βt, and thus t=uβ. Hence, we derive


B(P˜^fa2)=∫RQ2(α+x)uβ+xe−u222πdu.



(58)




Clearly, corresponding to Proposition 2, ψ(x)=2(α+x)/β and φ(x)=2x. By the fact


limx→+∞φ(x)1+ψ2(x)=limx→+∞2βxβ2+2(x+α)2=β








and Proposition 2, we have the formula (55).  □





Now let us do two numerical experiments corresponding to examples in Section 3 to check how the two upper bounds work. The average squared false alarm probability is calculated over 600 sample paths by


P^2¯fa=1600∑i=1600P^fa2(ωi)








to serve as an empirical approximation of EP^fa2, where P^fa(ωi) denotes the calculated probability along the i-th sample path ω(i). Under the same setting of Example 1, we plot P^2¯fa by ’+’, B(P^fa2) and B(P˜^fa2) as Pfa changes from 0 to 1 in Figure 4a. It seems that B(P^fa2) is the better one, especially in the case Pfa>12. Under the same setting of Example 2, by letting Pfa=0.05 we plot P^2¯fa, B(P^fa2) and B(P˜^fa2) for M=N=1,…,100 in Figure 4b. The two upper bounds seem not quite satisfied since both of them do not tend to P^2¯fa as M (or N) tends to infinity.




6. New Thresholds Based on EP^fa and EP˜^fa


In this section we derive new thresholds to guarantee the expectation EP^fa=Pfa or in the approximation formula version, EP˜^fa=Pfa, by the help of Theorems 1 and 3, respectively.



The threshold λ^fa given by (19) constructed by using estimated noise variance is actually a random variable itself. This leads to the fact that the resulted false alarm probability P^fa given by (21) is generally different from the predesigned probability Pfa. It is found in Theorem 1 that the expected value of P^fa is probably different from the predesigned probability Pfa. For instance, let Pfa=0.05 and M=60, N=30 as in Example 1, by Theorem 1,


EP^fa=B3030+2Γ−130,0.05,15,30=0.2065⋯








for the threshold given by (19), i.e., λ^fa=2σ^n2MΓ−130,0.05, where σ^n2 is estimated by N=30 independent observations. Obviously, the resulted expectation EP^fa=0.2065⋯ is much bigger than the predesigned false alarm probability Pfa=0.05. This means the threshold is selected too low to guarantee the predesigned false probability Pfa=0.05 in an average sense. If we want the expectation EP^fa=0.05, the preassigned probability Pfa0 for energy detection should be suitably smaller. Next we analyze how small the preassigned probability Pfa0 should be and then derive a new threshold to guarantee EP^fa=Pfa.



For a given alarm level Pfa, say 0.05, in order to derive a threshold to guarantee EP^fa=Pfa, it is found that the x in (26) should be


x=N21B−1(Pfa,N/2,M/2)−1








by solve the target equation. Then by x=Γ−1M/2,Pfa0 described in Theorem 1, the preassigned initial threshold for energy detection should be Pfa0=ΓM/2,x. In other words, due to the fact that the noise variance is estimated by finite samples of noise, if we still want the false alarm rate less than Pfa, we may need to be more cautious to select the threshold for energy detection. For the simple example discussed above, i.e., M=60, N=30, if we want EP^fa=0.05, the preassigned false alarm rate should be approximately Pfa0=0.00033955, which is much smaller than the desired rate 0.05. However, if the sample number N increases to 100, the preassigned false alarm rate could be Pfa0=0.0129. As the sample number N increases, the preassigned rate approaches to 0.05 itself.



It is plotted in Figure 5a how the cautious preassigned false alarm rate Pfa0 should be under the setting M=60 and N=30,100, for the sequence Pfa=0,0.05,…,1. It is clearly shown in the figure that the preassigned false alarm rate Pfa0 should be much smaller than the value Pfa is designed to be. As the sample number N for estimation increases, the preassigned false alarm rate Pfa0 approaches to the value of Pfa.



Consequently, by the value of x the derived new threshold is given by


λ^fanew=2σ^n2Mx=Nσ^n2M1B−1(Pfa,N/2,M/2)−1,



(59)




where B−1(x,a,b) denotes the inverse function of B(x,a,b). By formula (26), we have


E(prob[u>λ^fanew])=Pfa.








This means by this new threshold the expected false alarm probability is just the predesigned false alarm probability Pfa. Hence, this new threshold is more accurate to serve as CFAR threshold for energy detection when using estimated noise variance.



Similarly, for a given alarm level Pfa, say 0.05, we derive a threshold to guarantee EP˜^fa=Pfa. Denote γ=Q−1(Q(β)+Pfa). It can be solved by (26) that


xnew=αγ2+βγΔβ2−γ2








with γ=Q−1(Q(β)+Pfa), Δ=α2+β2−γ2, α=M/2 and β=N/2. Observe that Q(γ)=Q(β)+Pfa>Q(β), it follows that γ<β. Then by x=Q−1Pfa0 stated in Theorem 3, it is clear that the preassigned false alarm rate should be Pfa0=Q(xnew). It is plotted in Figure 5b how the cautious preassigned false alarm rate Pfa0 should be under the setting M=60 and N=30,100, for the sequence Pfa=0.05,0.10,…,0.95. It is clearly shown in the figure that the preassigned false alarm rate Pfa0 should be much smaller than the value Pfa is designed to be. As the sample number N for estimation increases, the preassigned false alarm rate Pfa0 approaches to the value of Pfa.



Consequently, by the value of xnew the derived new threshold is given by


λ˜^fanew=σ^n21+xnewM/2.



(60)




Then, by Theorem 3, we have


E(prob[u>λ˜^fanew])=Pfa.








Hence, this new threshold is much more accurate in an average sense than the empirical threshold simple replacement for energy detection when using estimated noise variance.




7. Conclusions


When using noise variance to set a CFAR threshold of energy detection for spectrum sensing, the derived threshold itself is a random variable. Thus, the resulted probability of false alarm is probably different from the predetermined false alarm probability Pfa. In this paper, we analyze some basic statistical properties of the resulted probability of false alarm P^fa given by (21) and its approximating case P˜^fa given by (24), and then some more suitable CFAR thresholds of energy detection are proposed. Specifically, we first deduce explicit descriptions for the expectations of P^fa and P˜^fa by Theorems 1 and 3 respectively in Section 4, and then some straightforward properties are established. These actually answer the first question we proposed in the introduction. Second, two upper bounds of EP^fa2 and EP˜^fa2 are derived by Theorems 5 and 6 respectively in Section 5, due to the difficulty to find exact explicit forms by known special functions. These answer the second question proposed in the introduction partially as well. Third, with the help of Theorem 3, the limitation of EP^fa or EP˜^fa for M=μN as M or N tends to infinity is analyzed in Remark 1, which answers partly the third question in the introduction. Finally, new CFAR thresholds are proposed by assuring that EP^fa or EP˜^fa equals the predetermined false alarm probability Pfa in Section 6. All analytical results derived in this paper are regarding the CFAR threshold. However, as a matter of fact, similar results hold for the CDR case.



For further consideration, it is of interest to describe explicitly EP^fa2 and EP˜^fa2. This means that a more cautious thresholds setting is possible. Observe that the CFAR and CDR thresholds are considered separately in this paper, it is crucial to consider CFAR and CDR thresholds synchronously in energy detection to achieve low false alarm probability and high detection probability simultaneously.
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Appendix A


Proof of Lemma 1.

Clearly, 21k∈(1,2), and we use a instead of 21k below for brief.



Define ϕ(x)=Γ2(k,x)−Γ(k,ax). Clearly,


ϕ(0)=0,limx→+∞ϕ(x)=0,



(A1)




and


ϕ′(x)=−2Γ(k,x)xk−1e−xΓ(k)+a(ax)k−1e−axΓ(k)=2xk−1e−xΓ(k)e(1−a)x−Γ(k,x)=Δ2xk−1e−xΓ(k)ϕ1(x).



(A2)




We use the fact ak=2 in the above second step. Clearly, ϕ1(0)=0 and limx→∞ϕ1(x)=0. Let us point out a basic fact: for k>0 and x>k+1,


Γ(k,x)<1Γ(k)xke−x,



(A3)




which can be proved by basic calculus. Thus, for x>k+1, we have


ϕ1(x)>e(1−a)x−1Γ(k)xke−x=e−xe(2−a)x−1Γ(k)xk,



(A4)




which means ϕ1(x)>0 when x>x0 with a sufficiently large point x0. Now let us consider the derivative of ϕ1 below.


ϕ1′(x)=(1−a)e(1−a)x+xk−1e−xΓ(k)=e−xxk−1Γ(k)−(a−1)e(2−a)x=Δe−xϕ2(x).



(A5)




We find that ϕ2(0)=−(a−1)<0 and limx→∞ϕ2(x)=−∞. Due to the fact that ϕ1(x) has positive value for x>x0, starting at ϕ1(0)=0, we know that its derivative ϕ1′(x) must be positive somewhere between 0 and x0, and thus for ϕ2(x). This assertion holds for the i-th derivative of ϕ2(x), denoted as ϕ2(i)(x), if the order of the first term is positive. This is because the starting points are all ϕ2(i)(0)=0.



If k is a positive integer, then the (k−1)-th and k-th derivatives are


ϕ2(k−1)(x)=1−(a−1)(2−a)k−1e(2−a)x,ϕ2(k)(x)=−(a−1)(2−a)ke(2−a)x<0.








Notice further that ϕ2(k−1)(0)=1−(a−1)(2−a)k−1>0 and limx→∞ϕ2(k−1)(x)=−∞, we know that ϕ2(k−1)(x) starts at a positive value and then decreases monotonically to −∞. This further means that ϕ2(k−2)(x) starts from 0 to a positive local maximum and then decreases monotonically to −∞, and so on until ϕ2′(x). Thus, ϕ2(x) increases piecewise monotonically from ϕ2(0)<0 to a positive maximum and then decreases to −∞. Then ϕ1′(x) changes its sign twice, i.e., from negative to positive and then negative. Hence, ϕ1(x) decreases from 0 to a negative minimum and then increases to positive maximum and then decreases to 0. This further holds for ϕ′(x), which means the sign of ϕ′(x) changes from negative to positive once. Finally, we know that ϕ(x) decreases from ϕ(0)=0 to a negative minimum and then increases to 0. This means ϕ(x)<0 as desired.



When k is not an integer, the [k]-th and ([k]+1)-th derivatives are


ϕ2([k])(x)=(k−1)⋯(k−[k])xk−[k]−1Γ(k)−(a−1)(2−a)[k]e(2−a)x,ϕ2([k]+1)(x)=(k−1)⋯(k−[k]−1)xk−[k]−2Γ(k)−(a−1)(2−a)[k]e(2−a)x<0.








Notice further that ϕ2([k])(0)=+∞ and limx→∞ϕ2([k])(x)=−∞, we know that ϕ2([k])(x) decreases monotonically from +∞ to −∞ as x moves from 0 to ∞. The rest of the reasoning is similar to the above case.  □





Proof of Lemma 2.

Define ψ(x)=Q2(x)−Q(2x). Clearly,


limx→−∞ψ(x)=0,limx→+∞ψ(x)=0,



(A6)




and


ψ′(x)=−2Q(x)12πe−x22+22πe−x2=12πe−x22−2Q(x)ex22=Δ12πe−x2ψ1(x).



(A7)







Let us study ψ1(x) first. Obviously, ψ1(0)=2−1>0. By the facts that Q(−∞)=1 and ex22→x→−∞+∞, we have limx→−∞ψ1(x)=−∞. Notice further the monotonicity of Q(x) and ex22 as x→−∞, the sign of function ψ1(x) changes once from negative to positive as x moves from −∞ to 0.



It is left to consider the sign of ψ1(x) when x>0. By the following inequality


Q(x)<1x2πe−x22



(A8)




for x>0, we derive


Q(x)ex22<1x2π.








Hence, for ψ1(x)>0, it is sufficient to require


2−2x2π>0,








which is equivalent to x>1π. This means ψ1(x)>0 for x>1π. Now only the case for 0<x≤1π is left. This can be analyzed directly as following: for 0<x≤1π,


ψ1(x)>2−ex22≥2−e12π=1.4142⋯−1.1725⋯=0.2417⋯>0.








Here the approximating calculation in the last step is carried out by Matlab.



In conclusion, ψ1(x) changes its sign once from negative to positive as x moves from −∞ to ∞. Thus, by (A7), ψ′(x) change from negative to positive as x moves from −∞ to ∞, and the sign changes only once. This means ψ(x) has only one local minimum. Together with (A6), the assertion follows directly.  □
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Figure 1. Energy detector using estimated noise variance by available similar channel. The noise variance is estimated by σ^n2=1N∑k=1Nnk2 from the other available similar channel. Then the empirical average energy u=1M∑k=1Mxk2 is detected by principle constant false alarm rate (CFAR) or constant detection rate (CDR) with the threshold λ^ using the estimated noise variance σ^n2. 
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Figure 2. Plots of Examples 1 and 2. (a) Average false alarm probability P^¯fa>Pfa vs. Pfa = 0, 0.05, …, 1. (b) P^¯fa vs. M = N = 1, 2, …, 100 
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Figure 3. The plot of P^¯fa by ’+’, EP^fa and EP˜^fa under setting of Pfa = 0, 0.05, …, 1 and M = N = 1, 2, …, 100. (a) The plot of P^¯fa by ’+’, EP^fa and EP˜^fa vs Pfa = 0, 0.05, …, 1. (b) The plot of P^¯fa, EP^fa and EP˜^fa vs. M=N=1,2,…,100, under Pfa = 0.05. 
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Figure 4. The plot of approximation of EP^fa2 and EP˜^fa2 and their upper bounds. (a) The plot of P^2¯fa by ’+’, B(P^fa2) and B(P˜^fa2) vs. Pfa = 0, 0.05, …, 1. (b) The plot of P^2¯fa by ’+’, B(P^fa2) and B(P˜^fa2) vs. M=N=1,…,100. 
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Figure 5. The plot of preassigned false alarm rate Pfa0 to guarantee EP^fa=Pfa and EP˜^fa=Pfa by Theorems 1 and 3 respectively. (a) Preassigned rate derived by Theorem 1 to guarantee EP^fa=Pfa. (b) Preassigned rate derived by Theorem 1 to guarantee EP˜^fa=Pfa. 






Figure 5. The plot of preassigned false alarm rate Pfa0 to guarantee EP^fa=Pfa and EP˜^fa=Pfa by Theorems 1 and 3 respectively. (a) Preassigned rate derived by Theorem 1 to guarantee EP^fa=Pfa. (b) Preassigned rate derived by Theorem 1 to guarantee EP˜^fa=Pfa.



[image: Jsan 08 00028 g005]








© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file4.png
0.9

0.8

0.7

0.6

05

0.4

0.3

0.2

0.1

0.2

0.4 0.6

(a) Example 1

0.8

1L P, =0.95 1

0.8 4

0.6 4

0.4¢ -

0.2r i

or Pf =0.05 T
a

20 40 60 80 100

(b) Example 2





nav.xhtml


  jsan-08-00028


  
    		
      jsan-08-00028
    


  




  





media/file2.png
BPF

Y

05

1 «N .2
N k=1 1%

ADC

Xk

Y

1 «M .2
M k=1 Xk

Y

Y

>
SN

—

ANV

>

Hj





media/file5.jpg
o S i
LR R e B S
(a) Py = 0,005,....1. (B)M =N = 1,2,...100.





media/file3.jpg
o —————————]
(a) Example 1 (b) Example 2





media/file1.jpg
g

1eN g2
& Lol g

B

Hy

BPF

ADC

o2
M I






media/file7.jpg





media/file10.png
fa

Pre—assigned P

0.8r

0.6

047

0.2

—o— N=30
—+— N=100

L/

0.2 0.4 0.6
P

fa

(a) By Theorem 1.

0.8

Pre—assigned Pfa

0.8}

0.6

047

0.2

0.2 0.4 0.6 0.8
P

fa

(b) By Theorem 3.






media/file9.jpg
08!

04

Pre-assigned P,

02|

—=
—— Ne100]

(a) By Theorem 1.

(b) By Theorem 3.






media/file0.png





media/file8.png
0.9
~2
0.8 B(P;,) —————>
0.7 B(F7,)
0.6 +
+
0.5 N
Lt
0.4 N
+
0.3 + 1
+
02 +
0.1
G 1 1 1 1
0.2 0.4 0.6 0.8
0< P <1
a
(a) Pr, = 0,0.05,...,1.

0.25

20 40 60
1< M=N< 100

(b M=N=1,...,100.

80 100





media/file6.png
0.9

0.8

0.7

06

0.5

04

0.3

02

0.1

EPr,

EPq

(a) Py, =0,0.05,...,1.

0.35

0.1

0.05

20 40 60 80 100
1<M=N <100

(b M=N=1,2,...,100.





