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Abstract: The increasing demand for location-dependent services in wireless sensor networks
(WSNs) calls for solutions capable of handling the diversified demands and the unique challenges
presented in WSNs. In most applications, nodes need to determine their locations in a reliable
manner while operating under stringent constraints in computation, communication, and energy
resources. This paper offers a novel solution to bridge the gap between the high accuracy demand
and low resources available for range-based localization. We propose KickLoc, a fully distributed
scheme, which considers the uncertainty of the distance measurements to minimize localization errors
introduced from the range measurement, and leverages information from all neighboring nodes for
better position estimations. Our work is evaluated via extensive simulations, with comparisons to
other well-known localization schemes, and the Cramér-Rao lower bound (CRLB). In addition,
we implement and evaluate the proposed system on sensor platforms with different range
measurement mechanisms. The results show that this localization solution outperforms existing
methods in various scenarios, while remains lightweight and suitable for small, low resources WSNs.

Keywords: wireless sensor network; radio signal strength (RSS); cooperative localization; information
fusion

1. Introduction

A set of miniature, battery-powered wireless devices with various sensors, micro-controllers,
and radio transceivers forms a wireless sensor network, which is typically organized as an ad-hoc
network [1]. This technology allows for numerous and ever-increasing applications from animal
habitat monitoring to industrial process surveillance. Deploying massive amount of sensor nodes
to monitor large areas on the ground, in the air, or underwater has recently become feasible [2,3].
For many applications, the information collected from the sensor node requires or benefits from
accurate timing and localization service. Therefore, it is crucial to solve the localization problem in
WSNs with minimal resource requirements.

In a wireless sensor network, a small subset of nodes in the network, called beacon nodes,
are initially aware of their own location, i.e., of their coordinates relative to a network-wide coordinate
system, which can be achieved by manual deployment, or leveraging extra localization hardware,
e.g., equipped with a GPS receiver. All other nodes, called unknown nodes, are not aware of their
locations at the time of the deployment. For a wireless sensor network, a localization algorithm
should be flexible to be able to handle various possible scenarios, i.e., an algorithm that works both
indoor and outdoor, for mobile and static networks and both in sparse and dense topologies ideally,
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without requiring changes to the current network stack. In this paper a fully distributed localization
system that meets all the aforementioned requirements is presented.

There are several fundamental challenges when solving range-based localization problems in
WSNs [4,5]:

• Sparse and unevenly deployed beacon nodes. Due to the extra hardware cost on the beacon nodes,
typically the beacon to total nodes ratio is designed to be low. Worst still, the beacons sometimes
are not evenly placed, especially in the case of a randomly deployed network. In the proposed
system, unknown nodes can be used as beacons with some precision.

• The noisy nature of most range measurements. Most range measurements commonly used in WSNs
(e.g., the Received Signal Strength Indicator (RSSI), time of arrival (TOA), acoustic, etc.) are
measured in a physical medium that inevitable introduces errors. The proposed scheme is
designed to work regardless of the methods used to measure the range between the sensor
nodes. The highly noisy RSSI measurement is usually used as it is directly available from
most transceivers with no additional cost. The proposed system considers the uncertainty of
the range measurements to minimize errors from the measurement noise when performing
position estimation.

• Scalability of the network. A growing number of massive WSNs has recently emerged [2,3],
and it can be projected that future WSNs might consist of millions of nodes. In this type of
network, localization system design has to be scalable and cost-efficient with both small and large
scale systems.

• Inherent nonlinearity of range-based localization. Pythagorean formula provides a link between
Euclidean distances and Cartesian coordinates, but also introduces an inherent nonlinear
components of range-based localization, and then brings in extra complexities in terms of
computation and analysis.

An outline of the paper is as follows: Section 2 describes the related work on localization in
WSNs. The proposed system is detailed in Section 3. Section 4 presents our simulation and a
detailed performance evaluation. In Section 5, localization performance of the proposed algorithms
are evaluated in different sensor platforms. Finally, concluding remarks are made in Section 6.

2. Related Work

Localization in WSNs has galvanized vast research efforts in the past decades [4–12]. However,
it remains a puzzling problem due to the constraints of sensor networks. Therefore, researchers
have been searching for innovative solutions to achieve inexpensive, robust, accurate, and practical
localization for WSNs. Range-based, distributed systems are of particular interest, as they are truly
scalable, robust, and energy efficient. Kalman filter based localization schemes also stands out as they
work well with noisy sensor measurements under limited resources. In the following, a review about
relevant researches in range-based, distributed localization and Kalman filter based localization are given in
Sections 2.1 and 2.2, respectively.

2.1. Range-Based, Distributed Localization

In [6] Niculescu and Nath present a localization system named DV-distance, which introduces a
range-based method to calculate multi-hop distance estimates from beacons to unknowns, and then
perform multilateration [13] using these multi-hop distances to localize the unknowns in the network.
The work described in [9] (N-hop Multilateration) uses an iterative least square mechanism to estimate
distances between unknowns and beacons (can be multi-hop away), and then performs multilateration
as well. Both algorithms have no mechanisms to alleviate errors from range measurements. The authors
in [10] improve the multilateration accuracy by applying the iterative weight least squares estimation
(IWLSE) on the distance measurement errors. These methods all solve the localization problem by
applying least-squares approach, but the multilateration sometimes fails when the matrix inverse
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cannot be calculated. In addition, these methods require performing a shortest path routing prior to
the multi-hop distance estimates, while shortest path routing severely suffers from range measurement
errors and leads to underestimate of the actual distances [14]. In terms of memory storage and
transmission cost, information from all the nodes involved in the multilateration are required to be
stored and forwarded on each node.

2.2. Kalman Filter Based Localization

A lot research effort has been put into applying the Kalman filter [15] to the localization
problem [16–23]. Kalman filters have been used extensively for simultaneous mapping and mobile
robot localization in SLAM [24] and CML [25]. The authors of [16] apply a Kalman filter for active
range-based beacons and autonomous underwater vehicle (AUV) localization. In [17], a mobile robot
with built-in GPS is used for range-free adaptive localization leveraging radio connectivity. Similar
to our system, the solution in [17] is also designed to have nodes continuously broadcasting position
estimates and uncertainty in the estimates.

For WSNs, unknown sensor nodes usually do not have the additional odometric measurements
or GPS that are often available for mobile robotic applications. In addition, scalability of the network
and energy consumption is a key factor for the snesor network applications, while mobility power
cost greatly outweigh other consumption in the robotics community, and is the main concern above
all others.

The extended Kalman filter (EKF) [26] is used in non-linear, range-based localization solutions
for WSNs [18,19]. However, relatively high storage and computational power are required in these
two systems as they demand information from multiple nodes simultaneously, which also causes high
localization delay.

EKF has also been used extensively for mobile tracking in mobile sensor networks [21–23]. In [21],
the authors achieve mobile tracking by applying EKF and a least-squares solver (LSQ). The system can
be configured using an active or a passive architecture: the target sensor being tracked either actively
sends broadcasts to beacon neighbors, which aggregate and process the data from neighbors to give
position estimates of the tracked node, and then send back to the tracked node; or passively listens to
neighbor beacons and perform position estimations locally. The LSQ module is applied when the EKF
module is being initialized, or when the EKF module is trapped in a bad state. The authors in [22]
further improves the tracking system in [21] by fine-tuning the parameters of the EKF using an adaptive
covariance-matching scheme. Both systems require simultaneous data transmissions from multiple
neighboring beacons to the target nodes, while our system is applicable, and specifically optimized for
network scenarios where no nodes may have more than one neighboring beacon, and a large amount
of unknowns may have no neighboring beacons at all due to sparse or uneven deployment.

3. Solution Outline

In this paper, a sensor network consists of randomly deployed beacon and unknown nodes,
between which messages are broadcasted via short range RF transceivers. Nodes that are within
transmission range of each other can directly communicate and are therefore called neighbors.

In KickLoc, only one type of message is periodically broadcasted by each node in the network:
it contains each node’s current position estimate and its estimated uncertainty. The algorithm is fully
distributed: each unknown node only communicates with its one hop neighbors throughout the
broadcasting process, and upon receiving an update packet, a node performs a simple computation
without having to store the information from the packet.

3.1. Information Exchange between Nodes

Assume there are m beacon nodes (with known positions) and n unknown nodes (with unknown
positions) in a randomly deployed network. For simplicity, the topologies investigated in this paper are
limited to 2-D, but the proposed solution can be extended to work in 3-D. An example network topology
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with three beacons and three unknowns is illustrated in Figure 1. Each node periodically broadcasts its
own position and precision estimate; each node receiving such a message updates its estimate. An RSSI
value is also obtained with the broadcast message, and therefore a distance measurement with a certain
precision can be obtained from the extracted RSSI. The distance measurement is modelled as a normal
distribution with the true distance as its mean [27]. Next, two different (but closely related) algorithms
are presented to provide updated position and precision estimates upon receiving an update from
a neighbor.

Beacon node

Unknown node

X1 x1, y1( )
X2 x2, y2( )

X3 x3, y3( )

X4 x4 , y4( )

X5 x5, y5( )

X6 x6, y6( )

Figure 1. An example network topology consists of three beacons X1 − X3 and three unknown nodes
X4 − X6. An edge is drawn between each pair of nodes that can directly communicate with each other.

3.2. KickLoc Intuitive Algorithm

At each unknown node i, the algorithm maintains the current position X̂i(x̂i, ŷi) and its standard
deviation (SD) σ̂i. At the start of the algorithm, the SD of an unknown node is set to infinity (in
practice we set it to a large number, 10000 in simulation), and the SD of a beacon node is set to 0.
The initial position estimation of an unknown node is set to be the center of the deployment area.
When an unknown node receives a broadcast message from a neighboring node j, containing that
neighbor’s current position X̂j(x̂j, ŷj) and its SD σ̂j, the distance measurement d̂ji and its SD σ̂ji will
also be obtained from the extracted RSSI. The unknown node can then calculate the expected distance
to the neighbor using their estimated positions:

h(X̂i, X̂j) =
∥∥X̂i − X̂j

∥∥ , (1)

where ‖·‖ is the Euclidean distance function. If there’s any difference between the expected distance
h(X̂i, X̂j) and the distance measurement d̂ji, the receiving node has to update its current position
estimate, which we term “kick” to a more likely position. The new estimated position is an adjustment
from the current estimation. The intuition behind the adjustment is shown in Figure 2.
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Figure 2. Illustrations of the intuition of the position adjustment in two scenarios: (a) when measured
distance d̂ is smaller than expected distance, kick it closer; (b) when measured distance d̂ is larger than
expected distance, kick it further.

The adjustment Kick is defined as:

Kick = α · ∆d · lji, (2)

where,

• ∆d is the residual, which reflects the discrepancy between the expected distance h(X̂i, X̂j) and the
actual measurement d̂ji:

∆d = d̂ji − h(X̂i, X̂j); (3)

• lji is the direction vector of length 1 from node j to node i:

lji =
X̂j − X̂i∥∥X̂i − X̂j

∥∥ ; (4)
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• α is a confidence value determined by the current SD of i’s position estimation and the SD of the
update, which provides an estimate of the accuracy of the update:

α =
σ̂current

σ̂current + σ̂update
. (5)

Intuitively, the higher the confidence in the current estimate (i.e., small σ̂current), the smaller the
coefficient α is and the corresponding adjustment. Similarly, the higher the confidence of the
update (i.e., small σ̂update), the larger the adjustment will be.

• the SD of the update depends both on σ̂ji and σ̂j, where σ̂ji is the SD of the range measurement
between i and j, and σ̂j is the SD of j’s position estimation:

σupdate =
√

σ̂2
ji + σ̂2

j . (6)

After the adjustment Kick is calculated, node i’s a posteriori position estimation and standard deviation
are updated as follows:

X̂post
i = X̂pre

i + Kick, (7)

σ̂i = α · σ̂update + (1− α) · σ̂current. (8)

In a mobile sensor network, this update process can repeat periodically to maintain real-time
localization. The algorithm itself is cost-efficient in terms of computation power, memory and power
consumption, and once a node has a position with a small variance, the node can reduce its duty cycle
for less frequent updates and save energy. In a static sensor network, this process may set to continue
for a preset number of iterations or until all nodes achieve a stable position estimation, which can be
determined by a preset tolerance value ∆, i.e., the process stops when√(

X̂post
i

)2
−
(

X̂pre
i

)2
≤ ∆. (9)

In our simulations, a preset tolerance value (∆ = 0.05) is used unless otherwise specified. Figure 3
shows the algorithm that runs on each unknown node. The beacons only broadcast their positions.

Input:
Upon receipt of a broadcast from a neighbor node j: X̂j(x̂j, ŷj), σ̂j, d̂ji and σ̂ji.

Output:
Node i maintains X̂i(x̂i, ŷi) and σ̂i.

Initialization:
X̂i ← center of the deployment area
σ̂i ← a very large number
set a periodic timer for broadcast

when a broadcast packet is received:
update X̂i and σ̂i using Equations (7) and (8)

when the periodic broadcast timer expires:
broadcast the current X̂i(x̂i, ŷi) and σ̂i
if reached ∆ or reached MAX_ITERATION_NUM

end localization
end if

Figure 3. KickLoc Intuitive algorithm that runs on unknown node i.



J. Sens. Actuator Netw. 2019, 8, 26 7 of 29

3.3. KickLoc Kalman Algorithm

The KickLoc Intuitive algorithm (we call it KI in following sections) is very simple and
parsimonious in terms of computation and memory storage. However, in the intuitive algorithm,
the adjustment for the unknown node is made always on the line determined by the two nodes’
estimated position. This direction may not be the optimal adjustment (i.e., with regard to minimizing
the variance of the position estimate) that can be obtained from the available measurement data (i.e.,
distance measurement d̂), and prior knowledge about node positions (i.e., position estimates of nodes
X̂i and X̂j). An extended Kalman filter can be used to determine the optimal update as we assume both
the measurement model and the estimation states can be described using a Gaussian noise model.

In the KickLoc Kalman version (we call it KK in following sections.), each unknown node i
maintains its current position X̂i(x̂i, ŷi) with its error covariance P̂i, and will update both once it
receives a packet from its neighbor j containing that neighbor’s current position X̂j(x̂j, ŷj) with its
covariance P̂j and the range estimate d̂ji with its variance σ̂2

ji. The new position estimation is the current
position adding an adjustment:

X̂i = X̂i + K · ∆d, (10)

where,

• ∆d is the residual, which reflects the discrepancy between the expected distance h(X̂i, X̂j) and the
actual measurement d̂ji,

∆d = d̂ji − h(X̂i, X̂j) + w. (11)

• the random variable w in Equation (11) represents the distance measurement noise, which is
assumed to be normal:

p(w) ∼ N (0, σ̂2
ji); (12)

• the adjustment K is the gain that minimizes the covariance after the update.

If the estimated distance h(X̂i, X̂j) is linear, then Equation (1) becomes:

h(X̂i, X̂j) = Hi · X̂i + Hj · X̂j, (13)

i.e., the minimization can be accomplished by applying the discrete Kalman filter. The resulting K and
P̂i are given by:

K =
P̂iHi

ᵀ

HiP̂iHi
ᵀ + HjP̂jHj

ᵀ + σ̂2
ji

, (14)

and
P̂post

i = (I−KHi) P̂pre
i . (15)

However, in our application, the estimated distance h(X̂i, X̂j) is non-linear. Specifically in 2-D,
h(X̂i, X̂j) is:

||X̂i(x̂i, ŷi)− X̂j(x̂j, ŷj)|| =
√(

x̂i − x̂j
)2

+
(
ŷi − ŷj

)2. (16)

Hence, Equation (11) has to be linearized in order to apply the extended Kalman filter. The equation
for the linearization of Equation (11) at point p(X̂i, X̂j, v̂) is:

dij ≈ d̂ij + Hi · (Xi − X̂i) + Hj · (Xj − X̂j) + W · (w− ŵ), (17)

where

• Hi is the Jacobian matrix of partial derivatives of h with respect to Xi,

Hi =
[

∂h
∂xi

(X̂i, X̂j, ŵ) ∂h
∂yi

(X̂i, X̂j, ŵ)
]

; (18)
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• Hj is the Jacobian matrix of partial derivatives of h with respect to Xj,

Hj =
[

∂h
∂xj

(X̂i, X̂j, ŵ) ∂h
∂yj

(X̂i, X̂j, ŵ)
]

; (19)

• and W is the Jacobian matrix of partial derivatives of h with respect to w,

V =
[

∂h
∂v (X̂i, X̂j, ŵ)

]
= 1. (20)

After the linearization, the extended Kalman filter can then be applied to minimize the estimation
error, which results in K, X̂i, and P̂i as:

K =
P̂iHi

ᵀ

HiP̂iHi
ᵀ + HjP̂jHj

ᵀ + σ̂2
ji

, (21)

X̂i = X̂i + K · ∆d

= X̂i + K ·
(

d̂ij − h(X̂i, X̂j)
)

,
(22)

P̂post
i = P̂pre

i −KHiP̂
pre
i = (I−KHi) P̂pre

i . (23)

In our application, for two-dimensional coordinates with the estimated distance given by
Equation (16), after solving the partial derivatives of h with respect to Xi and Xj, it can be shown that
Hj = −Hi, hence HjP̂jHj

ᵀ = HiP̂jHi
ᵀ. Therefore Equation (21) can be simplified:

K =
P̂iHi

ᵀ

HiP̂iHi
ᵀ + HjP̂jHj

ᵀ + σ̂2
ji

=
P̂iHi

ᵀ

Hi(P̂i + P̂j)Hi
ᵀ + σ̂2

ji
.

(24)

The covariances P̂i, P̂j and σ̂2
ji are known, the only unknown is Hi that can be easily obtained by

plugging (X̂i, X̂j) in to the partial derivatives of h with respect to Xi, which can be pre-calculated
off-line once for all 2-D application.

Node i will store its updated position X̂i and its precision P̂i by overwriting the previous one,
and will repeat the update process when a new broadcast packet arrives. Using covariance matrix
P̂i and a square matrix with the number of rows and columns equal to D, the dimensionality of the
system, (i.e., D = 2 for a 2D system and D = 3 for 3D.) The SD of node i can be obtained as:

σi =

√√√√ D

∑
m=1

D

∑
n=1

P̂i[m, n]. (25)

At the initial stage of the algorithm, the error covariance P̂ of an unknown node is set to infinity
(P̂ =

(
∞ 0
0 ∞

)
in 2-D), and in practice it is set to a large number (10,000 by default). The error covariance

of a beacon node is set to 0 by default.

4. Simulation

In order to verify and test the performance of the proposed localization system, we build a
simulation environment in MATLAB. We choose not to model the MAC, routing and transport layers,
as typical networking issues in those layers (e.g., the routing algorithm, MAC fairness, etc.) should
not influence the performance of the localization system, assuming that the updates are sufficiently
infrequent to not cause congestion.
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In Section 4.1, the CRLB for multihop wireless sensor network localization is derived when the
measurement distance error variance is not fixed. In Section 4.2, both KickLoc Intuitive algorithm
(KI) and KickLoc Kalman algorithm (KK) are tested in various networks to investigate the number
of nodes that can be localized and the performance of the algorithms. In Section 4.3, we first verify
the convergence of the proposed algorthms, and then compare the localization performance and resource
consumption performance of the Kick-based algorithms with other distributed, range-based localization
systems, namely V-distance [6], N-hop Multilateration [9], and IWLSE [10]. We also compare the
localization precision with the theoretical CRLB derived in Section 4.1.

Two localization performance metrics are used in the comparison: the accuracy of the localization,
which calculates the difference between the ground-truth positions of the nodes and the estimated
positions, and is determined using the mean of the differences; the precision of the localization, which
calculates the uncertainty of the estimated positions, and is determined using the SD of the differences.

Three resource consumption performance metrics are used in the comparison, namely the memory
consumption, computational consumption, and communication cost of the localization system.

All simulations are repeated 50 times unless otherwise specified to minimize the randomness
introduced by the random deployment of nodes, and the randomly generated noise errors.

4.1. CRLB for Localization

The Cramér-Rao lower bound is a theoretical lower bound of the variance of an unbiased
estimator [28]. In this paper we use it as a benchmark for the performance evaluation of the localization
estimator. This benchmark can be applied to any algorithm using range measurements to localize
the unknowns.

The derivation of the CRLB of the variance in the estimated parameters is similar to the derivation
in [29]. In the derivation in [29], the authors used a fixed variance σ2 to represent the variance of each
measurement distance error. In this paper, a diagonal matrix W is used to represent the variance of
each measurement since we assume that the variance of a measurement depends on the distance [10].
If the total number of measurements is M, W will be an M×M matrix:

W = diag

{
1
σ2

i

}
, (26)

where σ2
i is the variance of the ith measurement.

4.1.1. The Cramér-Rao Lower Bound

Suppose θ is an unknown parameter vector to be estimated from observation vector X, which
has a probability density function (PDF) of fX(x). The lower bound of the variance of any unbiased
estimator θ̂ of parameter θ is defined as the inverse of the Fisher Information Matrix (FIM) J(θ).
By definition, the error covariance matrix of θ̂ is:

C(θ̂) = E{(θ̂− θ)(θ̂− θ)ᵀ}, (27)

which is bounded by the CRLB as:
CRLB = [J(θ)]−1, (28)

where the FIM J(θ) is defined as:

[J(θ)]mn = E
{[

∂ ln( fX(X))

∂θm

] [
∂ ln( fX(X))

∂θn

]}
. (29)
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4.1.2. Deriving the CRLB for Multi-Hop Networks

In the context of multi-hop networks, the unknown parameter vector θ to be estimated is a
2A× 1 vector:

θ = [x1, y1, x2, y2, · · · , xA, yA]
ᵀ , (30)

where A is the number of unknown nodes. The measurement vector X is a M× 1 vector of distance
measurements d̂ij. We assume that each measurement d̂ij is white Gaussian, and the mean is the true
distance dij with standard deviation σij.

The measurement probability density function (PDF) is the joint conditional PDF:

fX(X; θ) =
M

∏
k=1

1
σk
√

2π
exp

{
− (xk − µk)

2

2σ2
k

}

=
M

∏
j=1

∏
i∈H(j)

i<j

1
σij
√

2π
exp

{
−
(d̂ij − dij)

2

2σ2
ij

}
,

(31)

where i ∈ H(j) means node i is a neighbor of node j, hence a distance measurement can be obtained
between the two. In matrix form:

fX(X; θ) =

√
det(W)

(2π)M exp
{
−1

2

(
d̂− d

)ᵀ
·W ·

(
d̂− d

)}
. (32)

Therefore the likelihood function is:

L(θ, X) = ln fX(X; θ)

=
1
2

ln
det(W)

(2π)M −
1
2

{(
d̂− d

)ᵀ
·W ·

(
d̂− d

)}
.

(33)

The CRLB can be calculated from Equation (29):

J(θ) = E
{
[∇θ ln fX(X; θ)] [∇θ ln fX(X; θ)]ᵀ

}
. (34)

From Equations (1), (30) and (31):

J(θ) =
[
G′(θ)

]ᵀ ·W · [G′(θ)] , (35)

where G′(θ) is the M× 2A matrix with mnth element as ∂µm
∂θn

. If µm corresponds to dij, since θn is either
xi
′ or yi

′ for some corresponding node i′,

G′(θ)mn =



0, ifi′ 6= i and i′ 6= j
xi−xj

dij
, if θn = xi

xj−xi
dij

, if θn = xj
yi−yj

dij
, if θn = yi

yj−yi
dij

, if θn = yj.

(36)

The CRLB is then given by the inverse of the FIM as in Equation (28). The CRLB for unknown node i’s
localization error becomes:

E
[
(x̂i − xi)

2 + (ŷi − yi)
2
]
> J−1

2i−1,2i−1 + J−1
2i,2i, (37)
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where J−1
i,j denotes the ijth element of the inverse matrix of J. The root-mean-squared error of the

localization, RMS(σ) can be obtained by:

RMS(σ) =

√√√√ 1
A

A

∑
i=1

(
J−1

2i−1,2i−1 + J−1
2i,2i

)
, (38)

which represents the average variance lower bound for the localization error of the entire network.

4.2. KickLoc Verification and Analysis

For meaningful comparisons between different parameter settings, the estimation errors are
normalized to the transmission range (i.e., a relative estimation error of 0.5 means half the transmission
range). We define coverage as the ratio of unknown nodes that can be localized to the total number
of unknown nodes. In DV-distance, N-hop Multilateration and IWLSE, a node can get a position
estimation when it is connected to at least three beacons (one-hop or multi-hop). In KickLoc, unknown
nodes keep updating its position estimation regardless of the number of beacons it is connected to.
In this section, we define four criteria for nodes that can be localized to investigate the trade-off between
coverage and localization error. The four criteria are based on the least number of beacons it requires
for a node to be localized: zero connected beacons, one connected beacon, two connected beacons and three
connected beacons. When evaluating the performance of localization under i connected beacons criterion,
we only consider the performance of the unknown nodes that are connected to at least i beacons (single
or multi-hop). Thus, for three connected beacon criterion, we only measure the performance of nodes that
are connected to at least three beacons, while under the zero beacon criterion, all nodes are considered,
even if completely isolated.

In simulating KickLoc algorithms, each node maintains a list of beacons that it is currently
connected to (even multiple hops away), which is used to determine whether an unknown node is
localized under different criteria (this beacon list is not maintained in the actual implementation, it is
used here for performance analysis purpose). Coverage, relative estimation errors, and convergence
process are investigated while considering different criteria for localization of an unknown node.
In this subsection, a preset number of iterations (20 in simulation) and different criteria of being
localized are used for better observation of convergence process; in all other sections a preset tolerance
value (∆ = 0.05) and three connected beacons criterion are used unless otherwise specified.

4.2.1. Dense Network

The first environment we test is a dense network with the following parameters:

• Total number of nodes (beacons and unknowns): 200
• Area: 100 m × 100 m
• Transmission range: 30 m
• Beacon to total nodes ratio: 0.2
• Standard deviation of the distance measurement d, σij(d): 0.2d (20% of the distance measurement.)

Figure 4 shows an example network topology generated in MATLAB. The simulation with
same parameters (but different randomly generated topologies) is then repeated 100 times, and the
resulting average connectivity (i.e., the average number of neighbors for each node) of the network
is 41.66. In such a dense network, all unknown nodes are connected to 3 or more beacons (albeit
through multi-hop), therefore the coverage is 100% for both algorithms and all beacon number criteria.
Figure 5a shows the cumulative distribution function (CDF) of relative localization errors for the
two algorithms. KI achieves a confidence interval with confidence level 90% for the relative error of
(−0.22, +0.22), and the 50% accuracy is less than 0.11; KK achieves a confidence interval of (−0.48,
+0.48), and the 50% accuracy is less than 0.1. Figure 5b verifies the convergence of KI and KK, as each
algorithm has an initial steep drop and converges after only a few iterations.
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Figure 4. An example network topology generated in MATLAB with 40 beacons and 160 unknowns in
a 100 m × 100 m area.
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Figure 5. (a) CDF of relative localization error for KI and KK in dense networks. (b) Relative localization
error as a function of the number of iterations for KI and KK in dense networks.

4.2.2. Sparse Network

The performance of the algorithms are also investigated in a relatively sparse network with the
number of nodes reduced from 200 to 30, and the transmission range reduced from 30 m to 20 m.

An example network topology is shown in Figure 6. The simulation is again repeated 100 times,
and the resulting average connectivity is 3.07. Under zero connected beacon criterion, KI and KK
both achieve a confidence interval with confidence level 90% for the relative error of (−2.50, +2.50),
and achieve the 50% accuracy of 0.75. Under one connected beacon or more criterion, KI and KK both
achieve a confidence interval with confidence level 90% for the relative error of about (−1.89, +1.89),
and achieve the 50% accuracy of 1.06. The coverage with one connected beacon criterion is 79.42%,
with two connected beacons criterion is 59.13%, and three connected beacons criterion is 47.00%. Figure 7
verifies the convergence of KI and KK with different beacon criteria. Again each algorithm converges
after a limited number of iterations regardless of the beacon criteria.
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Figure 6. An example sparse network topology consists of six beacons and 24 unknown nodes.
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Figure 7. Relative localization error and coverage in sparse networks as a function of number of
iterations for KI and KK with (a) zero connected beacon criterion, (b) one connected beacon criterion,
(c) two connected beacons criterion, and (d) three connected beacons criterion.

The results from both sparse and dense networks verifies the convergence of both KI and KK.
The localization errors in sparse networks are much higher than in dense networks, which is expected
as sparse networks have much lower average connectivity, and therefore unknown nodes are more
likely to be disconnected or far from any beacons, or in a corner. KK is supposed to perform better
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than KI as KI has more relaxed assumptions (i.e., the adjustment is on the line determined by the
two nodes’ position estimation), but actually KK shows very similar results to KI. This is due to
the fact that KK’s performance is affected by the errors generated in the linearization process of
function h(X̂i, X̂j): the measurement function h is non-linear and cannot be accurately estimated by the
linearization. In addition, this transformation error cannot be estimated and therefore it is not reflected
in the estimation error covariance P̂i. Therefore, when a relatively high localization error occurs on
one unknown, it will negatively influence other nodes because this particular node falsely claims a
high precision.

4.3. Performance Evaluation and Comparison

With the aforementioned simulator in MATLAB, a series sets of tests have been performed to
obtain measurements on different performance metrics of the system. We vary network parameters
including the number of nodes, area size, transmission range, beacon to total nodes ratio and distance
measurement error standard deviation to evaluate the localization performance. Table 1 lists a set
of standard parameter values that we choose, from which one value is changed at a time to test the
systems sensitivity to that particular parameter.

Under the standard scenario, the average connectivity of the network is 10.4224, the mean and SD
(µ, σ) of the relative estimation error are (0.4557, 0.4613) for KI, (0.4777, 0.4648) for KK, (0.6179, 0.3674)
for DV-distance, (0.5094, 0.4053) for N-hop Multilateration, (0.5015, 0.4513) for IWLSE. The SD of the
relative estimation error for CRLB is 0.2337. The coverages of the five algorithms are 100%.

Table 1. A set of standard values used in the simulation, and variation ranges for these parameters.

Parameter Standard Value Range

Total number of nodes 100 20–200
Area size (100 m)2 (20 m)2–(200 m)2

Transmission range 20 m 10 m–50 m
Beacon to nodes ratio 20% 5–50%

STD σij(d) 0.2d 0.05d–0.5d

4.3.1. Convergence Verification

In DV-distance, N-hop Multilateration and IWLSE, after the “DV-distance propagation” (though
different approach to get the multi-hop distance), unknown nodes with distance estimates of more
than two beacons can perform multi-lateration (for DV-distance and IWLSE) or bounding box (for
N-hop Multilateration) to obtain their localization estimates. In N-hop Multilateration and IWLSE,
these localization estimates serve as an initial estimate, and an iterative refinement phase follows
to improve the localization performance. In KickLoc algorithms, there’s no need to establish the
“DV-distance propagation” first, as the iterative refinement phase starts at the very beginning of the
process. Since the localization procedure is different for each algorithm, the iteration steps cannot
be directly compared for the different algorithms. To illustrate the convergence trends at different
network densities, Figure 8a shows the average number of iterations for each algorithm as a function
of the number of nodes in the network. All the algorithms converge within five iterations unless it is a
very sparse network. When the network is very sparse, most of the unknown nodes cannot reach the
preset tolerance value (∆ = 0.05 in simulation), hence will keep iterating until reaching the maximum
preset iteration steps (20 in simulation).
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Figure 8. Performance results as a result of changing the number of nodes: (a) average number of
iterations, (b) total number of FLOPs consumed, (c) total messages sent, and (d) total bytes sent.

4.3.2. Localization Accuracy and Precision

For localization performance comparison, a series of simulations are conducted with varying
network parameters summarized in Table 1, namely the number of nodes, beacon to total nodes ratio
and distance measurement error SD.

Number of nodes: Figure 9 indicates that the relative error mean and SD decrease when the
number of nodes increases for all algorithms. Increasing the number of nodes leads to higher
average connectivity when other parameters remain the same, which increases the information
available for localization. DV-distance and IWLSE do not perform well when the number of
nodes is small, because DV-based distance correction works poorly in sparse anisotropic networks.
N-hop Multilateration does not perform well at high number of nodes, because in its refinement
stage, it leverages estimates from all its neighbors without estimation precision information. KickLoc
algorithms have good performance at both low and high number of nodes.
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Figure 9. (a) Average estimation error and coverage, (b) SD as a result of changing the number of nodes.

Area size: when the area size of the network increases, the relative error mean and SD increase
for all algorithms as shown in Figure 10. The result is consistent with results of changing number of
nodes, as they are both changing the density of the network when other parameters are kept the same.
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Figure 10. (a) Average estimation error and coverage, (b) SD as a result of changing the area size.

Transmission range: if we increase the transmission range of the transceivers, the number of
neighbors in the network is increasing, but the distance measurement error also increases, which
results in a trade-off between the benefit from more distance information and the shortcomings of
highly noisy distance information. Figure 11 illustrates that both the DV-based distance correction
used in DV-distance and IWLSE, and leveraging the precision of measurements in KickLoc algorithms
and IWLSE can effectively mitigate the highly noisy distance information. When the transmission
range is very large, N-hop Multilateration works poorly as it does not have a strategy to alleviate the
noisy distance measurement. Note that KK also works poorly with the high measurement error, which
is due to the large linearization error in this scenario.
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Figure 11. (a) Average estimation error and coverage, (b) SD as a result of changing the transmission
range.

Beacon to total nodes ratio: in this scenario we change the beacon ratio from 0.03 (resulting in
3 beacon nodes which is the minimum requirement for 2-D multilateration.) to 0.3. Figure 12 shows
that DV-Distance has a slightly different performance trend from all other algorithms. DV-Distance
only updates position estimations from beacon nodes, therefore it is immune to the large errors from
neighbors when the beacon ratio is small, but it does not benefit from the updates from neighbors
when beacon ratio is large. Kick-based algorithms perform better than the other algorithms when the
beacon ratio becomes very high.
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Figure 12. (a) Average estimation error and coverage, (b) SD as a result of changing the beacon to total
nodes ratio.

Measurement error standard deviation: As expected, each algorithm has an increasing relative
error with an increasing measurement error SD (Figure 13). DV-Distance and N-hop Multilateration
work poorly when the measurement error SD becomes large, mainly because they do not take the
reliability of measurements into account during the process. KickLoc algorithms have much better
performance in both error mean and SD when the measurement error is very high.
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Figure 13. (a) Average estimation error and coverage, (b) SD w.r.t. different measurement error SDs.

4.3.3. Memory Consumption

Wireless sensors are usually constraint by their physical size and unit cost, which in return limits
their memory space for data and code storage. Many commercial sensor platforms have RAM size
smaller than 10 KB, and flash storage less than 1 MB [30]. For instance, the widely-used sensor platform
MICA2 only has 4 KB RAM and 128 KB flash storage; another popular sensor type TelosB has 10 KB
RAM and 1024 KB flash storage. Therefore, the data storage for the localization process must be able
to fit it in the limited memory space of a sensor node. We analyze how much working storage each
method needs (i.e., the maximum amount of memory needed at any point of the process on the node).

Let S denote the amount of working storage an algorithm needs; A denotes all the unknown
nodes in the network, M(i) denotes the number of beacons node i is connected to, albeit multi-hop,
N(i) denotes the number of neighbors of node i, and n(i) denotes the neighbor list of node i.

In DV-distance, node i has to store its own position estimate (x̂i, ŷi) (2 bytes), its own “DV-distance
propagation” (3M(i) bytes), an incoming “DV-distance propagation” from neighbor j (3M(j) bytes),
a distance estimate between node i and j obtained from the extracted RSSI (1 byte), a (M(i)− 1)× 2
matrix A and a (M(i) − 1) × 1 matrix b for the multilateration between beacon nodes (x̂ =

(AᵀA)−1Aᵀb). Therefore DV-distance requires:

SDV−d = max
i∈A

(
6M(i) + 3max

j∈n(i)
(M(j))

)
(39)

bytes of space. Hence the space complexity of DV-distance is

O
(

max
i∈A

(
max
j∈n(i)

(M(j)) + M(i)

))
, (40)

which is determined by M(i) for i ∈ A.
In N-hop Multilateration, node i has to store its own position estimate (x̂i, ŷi) (2 bytes), its own

“DV-distance propagation” (3M(i) bytes), an incoming “DV-distance propagation” from neighbor j
(3M(j) bytes), a distance estimate between node i and j obtained from the extracted RSSI (1 byte),
a bounding box for the initial estimation phase (4 bytes), a (N(i)− 1)× 2 matrix A and a (N(i)−
1)× 1 matrix b for the multilateration between neighbors in the refinement phase. Therefore N-hop
Multilateration requires:

SN−hop =max
i∈A

(
3M(i) +3max

j∈n(i)
(M(j)) +3N(i) +4

)
(41)
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bytes of space. Hence the space complexity of the algorithm is

O
(

max
i∈A

(
max
j∈n(i)

(M(j)) + M(i) + M(j)

))
, (42)

which is collectively determined by M(i) and N(i) for i ∈ A.
In IWLSE, node i has to store its own position estimate (x̂i, ŷi) and estimation standard deviation

(3 bytes), its own “DV-distance propagation” (4M(i) since it added an estimation standard deviation
of the “DV-distance propagation”), an incoming “DV-distance propagation” from neighbor j (4M(j)),
a distance estimate along with a standard deviation between node i and j obtained from the extracted
RSSI (2 bytes), a (M(i)− 1)× 2 matrix A and a (M(i)− 1)× 1 matrix b between beacons in the initial
estimation phase and a (N(i)− 1)× 2 matrix A′ and a (N(i)− 1)× 1 matrix b′ between beacons in
the refinement phase. Therefore IWLSE requires:

SIWLSE =max
i∈A

(
7M(i) +4max

j∈n(i)
(M(j)) +3N(i)−1

)
(43)

bytes of space. Hence the space complexity is the same as N-hop Multilateration.
In KickLoc algorithms, since the algorithm does not need to conduct the “DV-distance

propagation”, and the localization phase does not rely on multi-lateration or bounding box, the memory
storage is not dependent on M(i) or N(i). The bytes required for KI and KK are 12 bytes and 21 bytes
respectively, therefore a space complexity of O(1).

4.3.4. Computational Consumption

To analyze how much computation has been consumed for each sensor node to get localized
is sometimes important as it adds extra burden to the limited battery life and computing resources
available on the sensor node. The computational cost can be evaluated using the Lightspeed toolbox
available in MATLAB [31] which counts the number of floating-point operations (FLOPs) performed.
This FLOP counting tool allows comparisons of numerical algorithms independent of programming
language and machine used, as it manually outputs the minimal number of FLOPs the algorithm needs.
Moreover, this manual flop counting feature allows us to focus on the computational cost generated by
the localization algorithm itself, in isolation from unrelated operations.

To examine how number of FLOPs changes when the network density varies, we change the
number of nodes from 20 to 200, and the resulting total number of FLOPs consumed for each
algorithm is shown in Figure 8b. For 20 nodes, the KickLoc algorithms consume more FLOPs than
other algorithms. From the convergence result in Section 4.3.1, we know that when the network is
very sparse, most of the unknown nodes cannot reach the preset tolerance value, hence will keep
iterate until reaching the maximum preset iteration steps. Some of the unknown nodes cannot even
be localized at all since they do not have connection to more than two beacons, albeit multi-hop.
In DV-distance, N-hop Multilateration and IWLSE, unknown nodes in this case will not initiate the
lateration computation since they do not have enough beacon nodes. In KickLoc algorithms, this can
be achieved if each node maintains a list of beacons that it is currently connected to as we mentioned
in Section 4.2. To preserve the simplicity of the algorithms, we do not use this feature by default, but it
can be enabled if KickLoc is used in very sparse network. For networks larger than 40 nodes, KickLoc
algorithms start to use fewer FLOPs, and show much better scalability than the other algorithms.

4.3.5. Communication Cost

As energy constraint is of great importance in WSNs, and network communication is a major
consumer of the energy consumption, it is very important to minimize the communication cost of the
application. Figure 8c,d show the communication cost both at the packet level and at the byte level at
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different network densities. When the number of nodes is 20, all algorithms except DV-distance have
to go through a long iteration process, as they cannot reach the preset tolerance value. For networks
larger than 40 nodes, all algorithms have increasing communication cost as the number of nodes
increases. The cause of the large difference between the KickLoc and other algorithms is two-fold. First,
KickLoc does not need to conduct the “DV-distance propagation”, which consumes a large amount
of message exchanges. Second, the packet size of both KickLoc algorithms are fixed and very small
(18 bytes for KI and 21 bytes for KK). The difference between DV-distance, N-hop Multilateration and
IWLSE is due to different average iteration steps of N-hop Multilateration and IWLSE as shown in
Figure 8a, and no iteration process for DV-distance. The information exchange method at the packet
level is exactly the same for both KickLoc algorithms, the minor difference in Figure 8c is due to the
slightly different average iteration steps; at the byte level, KI has the smallest communication cost as it
has the smallest packet size.

5. Experiments

In this section, the localization performance of the proposed algorithms are evaluated using both
RSSI and acoustic measurements. Before the performance evaluation, we have made improvements to
the original KickLoc to further reduce the localization error.

5.1. Improvements to KickLoc

In Section 4, it is verified that KickLoc algorithms can achieve reasonable localization with very
low resource consumption. However, after further examining the process of the algorithms, we realise
that the localization results can be further improved by modifications to our original algorithms.

5.1.1. Correction of the Initial Update

In the original KI and KK, we set the initial position estimate of each unknown node at the center
of the deployment space, therefore we are able to handle the initial Kick update just the same as all the
subsequent updates, which is in fact not optimal. For example, in Figure 14, unknown node i will set
its initial estimation at the center of deployment, marked as a black cross. After receiving a broadcast
message from node j, a normal Kick calculation is performed and will result in an updated position
estimation, which can be represented by a grid circle in the illustration. However, in reality, when no
prior information is available on node i, after node j’s message, the position estimation of node i should
be a ring-shaped region determined by node j’s position uncertainty, the distance measurement d and
its noise.
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j

i d

Center of deployment

Position estimation 
before correction

Position estimation 
after correction

Figure 14. Example scenario when unknown node i gets initial broadcast message from neighbor
node j, with a distance measurement of d. The black cross is the center of the whole deployment area.
The grid circle region represents the position estimation using the original KickLoc algorithm. The grey
ring-shaped region represents the position estimation after the correction.

5.1.2. Introduction of Linearization Noise to KK

In Section 4, KK does not always exhibit a better localization result than KI, though it supposes
to provide a more accurate kick. The performance of the EKF system is greatly dependent on the
modelling accuracy of noise in the system. In our application, after the linearzation in Equation (17),
all the higher order terms of the observation noise are ignored. The observation noise can be more
precisely modelled if this new “linearization noise” is taken into account. The residual ∆d can be
rewritten as:

∆d = d̂ji −Hi · (Xi − X̂i)−Hj · (Xj − X̂j)− w− o, (44)

where w represents the distance measurement noise, and o represents the linearization noise. It is
shown in [32] that the linearization noise can be precisely approximated using an adaptive Kalman
filter. To be consistent with the simple design paradigm of this system, a fixed linearization noise that
can achieve comparable result is used.

In the remainder of this section, the performance of the improved KickLoc algorithms (we call
them KI-imp and KK-imp respectively) will be evaluated along with other algorithms.

5.2. RSSI Experiment Evaluation

We use the widely-used TI CC2530 system-on-chip (SoC) [33] to verify the measurement model
we used in the simulation, and also to test the feasibility of implementing our proposed system in a
realistic, resource-limited, sensor platform. Unfortunately, we have only conducted experiments with
small scaled topology, as we have limited number of CC2530 units available. However, it should be
sufficient to serve our purpose as we have shown in the simulation that the system is fully scalable,
and the memory consumption is independent of the network size.

5.2.1. Overview of CC2530 and Contiki OS

The CC2530 SoC is a Texas Instruments solution for 2.4 GHz ZigBee applications. It is designed
to form robust sensor networks with ultra low total unit costs. It has an industry-standard enhanced
8051 MCU, 8-KB RAM, and 256 in-system programmable flash storage. Contiki [34] is a C based,
open source operating system for sensor networks, which is lightweight, portable, yet powerful.
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5.2.2. Experiment Setup

We conduct the experiment on an outdoor grass field. Fifteen CC2530 sensor nodes are randomly
deployed within a 10 m × 10 m rectangular area. Five of them are configured as beacon nodes, and the
rest are configured as unknown nodes. We also program each node to periodically broadcasts its
position estimate and the estimated uncertainty, and locally updates its estimate upon receiving an
update. The process continues until all nodes transmit 100 packets. Although our system is fully
distributed and only keeps the current state, all the logs are stored during the experiment to better
analyze the refining process later off-line. The experiment took place when no people were near
the area.

5.2.3. RSSI Calibration and Measurement Model Fitting

It is well-received that low power ZigBee radios exhibits notoriously high RSSI variability [35,36].
Our calibration results (Figure 15a) also shows high RSSI variability. We fit the RSSI vs. distance
mapping data from our calibration process to the RSSI measurement model we used in our
simulation [37], which results in a path loss exponent n equals to 2.36, and the SD of distance
measurement error to be σij(d) = 0.27d. The fitting result is shown in Figure 15b. Both the raw
data direct mapping and the fitted model are later used in the localization experiment.
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Figure 15. (a) RSSI vs. distance mapping plot with raw calibration data. (b) RSSI vs. distance mapping
plot with a fitted path loss exponent n = 2.36, and the SD of distance measurement error σij(d) = 0.27d.

5.2.4. RSSI Experimental Results

Figure 16 demonstrates the position estimate and the estimated uncertainty on each unknown
node at the end of the experiment for one random generated topology described in Section 5.2.2
when using KK algorithm. The same experiment was conducted multiple times, and the proposed
algorithms are shown to be effective in that the position estimate of an unknown always fall in the
estimated bounds as long as the unknown can be localized. Figure 17 summarizes the resulting mean
localization errors for all the localization algorithms under the two measurement models. Interestingly,
the results show that the fitting model that we used in the simulation actually improves the localization
accuracy for all the algorithms tested. KickLoc again achieves higher localization accuracy despite the
high RSSI variability on the ZigBee radios.

Figure 16 shows the final estimation results of one run using KK. The real position of the unknowns
are shown as the red dots, and the position estimates are marked by the black crosses. The estimated
uncertainty of an unknown is shown by an ellipse (circles when using KI), and the semi-axes of the
ellipse are 3σ of the estimated uncertainty distribution (modeled as Gaussian), in x and y directions.
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Figure 16. The position estimate and the estimated uncertainty on each unknown node at the end of the
experiment for one random generated topology described in Section 5.2.2 when using KK algorithm
under RSSI measurements. The ground-truth position of the unknowns are represented by red dots,
and current position estimates are represented by black crosses. The estimated uncertainty of each
unknown is represented by an ellipse (circles when using KI), and the semi-axes of the ellipse are 3σ of
the estimated uncertainty distribution (modeled as Gaussian), in x and y directions.
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Figure 17. Mean localization errors for all the localization algorithms under the two RSSI measurement
models.

5.3. Acoustic Experiment Evaluation

Simulation and experimental results with RSSI have verified that KickLoc is suitable for WSNs
with distance measurement noise that are relatively large and proportional to distance. The system is
designed to work with various distance measurement models, therefore we also test it with an acoustic
platform, which utilizes TOA (time of arrival) measurements that have relatively small noise and the
noise is not dependent of the distance [38].
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5.3.1. Biobotic Sensor Network Platform

In [39], we designed a biobotic sensor network platform for acoustic localization. In the project,
insect biobots equipped with neurostimulation backpacks are the sensor nodes in the network.
RF signals and acoustic signals are combined to obtain a more fine-grained range measurement
and therefore achieve high-accuracy, real-time localization of the biobotic nodes.

A specially designed miniature backpack (Figure 18) is carried by a cockroach. All the components
used to make the backpack are commercially available off-the-shelf. Each biobot is programmed to
periodically buzz and radio broadcast at the same time. As the speed of RF propagation is much faster
than the speed of sound, the range information between the cockroach agents can be approximated
as the multiplication of the TOA (time difference between the receipt of the concurrently emitted RF
and acoustic signal) and the speed of sound. Digital processing and peak detection methods are used
to efficiently determine the TOA from the raw readings. Details about the backpack, and the system
design can be referred to in [39].

Figure 18. A Madagascar hissing cockroach with specially designed CC2530-based miniature backpack
for acoustic ranging and localization application.

5.3.2. Additive Noise Compensation

After obtaining the TOA, the distance between the biobotic sensor nodes can be calculated by
multiplying the speed of sound. An additive constant time noise introduced by internal processing
delays [38,40] has to be compensated for a more accurate TOA estimation.

We conducted the calibrations by placing the transceivers in a room with no obstacles in between,
and the distance between the two was varied from 1 to 5 m. The data collection was repeated 10 times
at each spot. The collected data are then applied to a linear regression to tune the additive internal
delay. Figure 19a shows the real distances and the calculated distances, which verifies the existence of
the additive delay. The linear regression results in a fitted additive delay of 0.68 ms. Figure 19b shows
that after the compensation, the ranging errors decrease significantly (the mean ranging error reduces
by about 20 cm).
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Figure 19. (a) Real distances vs. calculated distances in the calibration. (b) CDF plot of ranging errors
for both before and after the compensation.

5.3.3. Acoustic Experimental Results

Owing to the very limited number of biobotic sensor agents available, a proof-of-concept
implementation with six sensor nodes is performed. Four beacons and two unknown nodes are
randomly deployed in a 5 m × 5 m indoor environment. In this sparse network, other algorithms
(DV-distance, N-hop Multilateration, and IWLSE) cannot perform properly. Therefore we only compare
the results of KI, KK, KI-imp and KK-imp.

Figure 20 demonstrates the position estimate and the estimated uncertainty on each unknown
node at the end of the experiment for one random generated topology when using KK-imp algorithm.
The average localization errors of multiple runs are shown in Figure 21. The Kalman filter based
algorithms perform better than the intuitive algorithms, and the improved version of the original
algorithms also reduces the localization error.
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Figure 20. The position estimate and the estimated uncertainty on each unknown node at the end of
the experiment for one random generated topology when using KK-imp algorithm under acoustic
measurements. The ground-truth position of the unknowns are represented by red dots, and current
position estimates are represented by black crosses. The estimated uncertainty of each unknown is
represented by an ellipse (circles when using KI), and the semi-axes of the ellipse are 3σ of the estimated
uncertainty distribution (modeled as Gaussian), in x and y directions.
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Figure 21. Mean localization errors for all the localization algorithms under acoustic measurements.

6. Conclusions

In this paper, we presented a lightweight localization solution for small, low resources WSNs,
which bridges the gap between high accuracy performance demand in localization and low resources
available in sensor networks. The solution is fully distributed, and achieves high localization
performance by considering the uncertainty of the distance measurements to minimize localization
errors introduced from the range measurement, and fuses information from all neighboring nodes.
Extensive simulations validated the feasibility, performance and robustness of the system. We also
implemented both the intuitive and the Kalman filter based algorithms on TI CC2530 ZigBee SoC
and our customized acoustic platforms. The results show that KickLoc is able to provide consistent
location estimation under different measurement models. In the future, we would like to extend the
system from 2-D to 3-D, and test the system in mobile sensor networks.
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Abbreviations

The following abbreviations are used in this manuscript:

WSN Wireless sensor network
CRLB Cramér-Rao lower bound
RSSI Received signal strength indicator
TOA Time of arrival
IWLSE Iterative weight least squares estimation
AUV autonomous underwater vehicle
LSQ Least squares solver
EKF Extended Kalman filter
RF Radio frequency
SD Standard deviation
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FIM Fisher Information Matrix
PDF Probability density function
CDF Cumulative distribution function
FLOPs Floating-point operations
SoC System-on-chip
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