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Abstract: The term smart grid (SG) has been used by many government bodies and researchers to refer
to the new trend in the power industry of modernizing and automating the existing power system.
SGs must utilize assets optimally by making use of the information, like equipment capacity, voltage
drop, radial network structure, minimizing investment and operating costs, minimizing energy loss
and reliability indices, and so on. One way to achieve this is to re-route or reconfigure distribution
systems (DSs). Distribution systems are reconfigured to choose a switching combination of branches
of the system that optimize certain performance parameters of the power supply, while satisfying
some specified constraints. In this paper, a blended biased and unbiased weightage (BBUW)
multiple attribute decision-making (MADM) method is proposed for finding the compromised
best configuration and compared it with other decision-making methods, such as the weighted
sum method (WSM), weighted product method (WPM), and the Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS) method. The BBUW method is implemented for two
distribution systems, and the result obtained shows a good co-relationship between BBUW and other
decision-making methods. Further weights obtained from the BBUW method are used for the WSM,
WPM and TOPSIS methods for decision making. Examples of the distribution system are worked out
in this paper to demonstrate the validity and effectiveness of the method.

Keywords: distribution system reconfiguration; TOPSIS; MADM; BBUW method

1. Introduction

The electric power system is a vital part of modern developed societies. Electric power systems
are mainly divided into three parts: generation, transmission and distribution. A distribution system
(DS) is the tail end of the utility, and delivers electrical power to consumers. Due to the competitive
environment and deregulation policies in the power sector, distribution companies are under continuous
stress to curtail operating costs by minimizing active power losses and improving reliability and
other parameters to affect the performance. This has forced power system managers to make use of
innovative practices to contribute to the evolution of the power system into the smart grid. Smart grids
(SGs) are modern, intelligent systems that consist of sensors and monitoring mechanism, such as
information and communication technologies (ICT), to give better performance and to provide good
economic service to consumers. Smart grids should be more reliable, more secure, more economical,
more efficient, more environment friendly and much safer than conventional power systems.

A distribution system is mainly reconfigured for improving the reliability of the system, to balance
the load on the feeders, to get relief from overloads, to minimize the power loss, to improve the voltage

J. Sens. Actuator Netw. 2019, 8, 20; doi:10.3390/jsan8020020 www.mdpi.com/journal/jsan

http://www.mdpi.com/journal/jsan
http://www.mdpi.com
https://orcid.org/0000-0002-1158-2830
http://dx.doi.org/10.3390/jsan8020020
http://www.mdpi.com/journal/jsan
https://www.mdpi.com/2224-2708/8/2/20?type=check_update&version=2


J. Sens. Actuator Netw. 2019, 8, 20 2 of 16

profile, and so on. In distribution systems, air break-type switches or sometimes circuit breakers are
used for shifting the load from one feeder to another during fault conditions to maintain the reliability
of the supply. Some of the switches are normally open (NO), and some are normally closed (NC).
NO switches are known as sectionalizing switches, and NC switches are tie switches.By changing the
position (ON/OFF) of sectionalizing switches and tie switches, the configuration or path can be changed
or modified. Reconfiguration is altering of the topology of a network by changing the open/closed
condition of NO/NC switches. Reconfiguration is done to improve the performance of the distributions
system [1–10] through parameters like losses, reliability indices, voltage profile, and so on.

In ref. [1], feeder reconfiguration is done for loss reduction and load balancing by using the
branch exchange method. In ref. [2], switches were opened one by one starting in a closed mesh, and
the optimal power flow method is used. An algorithm is developed based on optimal flow pattern,
for a single loop formed by closing a normally open switch, and the process is repeated until minimum
loss configuration is reached [3]. A genetic algorithm is used for the first time for minimum loss
reconfiguration methodology in a distribution system [4].

The heuristic method starts with all switches open, and at every step the switch results in the
least increase of the closed objective function [5]. A heuristic-based fuzzy multi-objective algorithm is
proposed [6] to solve the network reconfiguration problem in a radial distribution system. A technique
at the low-voltage and medium-voltage (MV) levels of a distribution network, employed simultaneously
with reconfiguration at both levels, is proposed in [7], and the neural network is adapted for the
network reconfiguration problem. A harmony search algorithm (HSA) is used to solve the network
reconfiguration problem to get the optimal switching combination in the network, which results in
minimum loss [8]. In ref. [9], a reconfiguration methodology considering reliability and power loss
is proposed. The optimal status of the switches in order to maximize reliability and minimize the
real power loss is found using a binary particle swarm optimization (BPSO) algorithm. In ref. [10],
a method is proposed to improve the reliability of the distribution system using the reconfiguration
strategy and a clonal selection algorithm for optimization.

There are several important SG aspects, such as field sensors, ICT technologies and data collection
equipment. Such elements are very relevant for the real feasibility of the considered application in
a distribution system. In fact, they are crucial for the correct operation of network reconfiguration,
measurement uncertainties, meter placement, communication and data collection issues, which can
negatively affect decision-making performance. State estimation, power flow monitoring and control
play a vital role in distribution systems, and in the worst case they can lead to wrong results.

In ref. [11], a method for meter placement for improving the voltage quality and its angle in
a distribution network is proposed. This method uses a bivariate probability index to control relative
errors at each bus voltage and its angle. In ref. [12], the problem of meter placement for distribution
system state estimations is discussed. This method is based on exact calculations of probabilities,
as compared to the method proposed in ref. [11] in which estimated probabilities are used. A power-flow
analysis in medium-voltage (MV) networks, based on load power measurements at a low-voltage level,
is modified by considering the temporary unavailability of power measurement [13]. Also, an artificial
neural network (ANN)-based load-power estimation method is used. Measurement device placement
in low-voltage (LV) distribution systems for load-flow analysis in medium-voltage distribution systems
is proposed in ref. [14]. This method finds the number and location of measurement devices considering
the uncertainty of power flow estimation. The two-stage methodology for finding the optimal location
for placing a monitoring device instrument with minimum investment cost using differential evolution
(DE) and particle swarm optimization (PSO) is proposed in ref. [15]. A second-stage real-time
measurement to estimate the bus voltage is proposed, which is required for decision making.

For effective monitoring and controlling of distribution system meters are required to ensure they
are placed optimally and economically. A brief review of meter placement and artificial intelligence
algorithms is proposed in ref. [16] by considering various constraints. Distribution system operators
(DSOs) face many problems due to uncertainty while making decisions. In ref. [17], an optimal
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power flow based on information gap decision theory is proposed. An internet protocol (IP)-based
communication with power line communication (PLC) is proposed to get to the last point (i.e., smart
meters, etc.) [18]. An internet of things (IoT)-based distribution system cyber security is of prime
importance. In ref. [19], a decentralized energy management framework is proposed for decision
making in distribution systems.

In decision making [20–23], numbers of alternatives or options are considered along with some
attributes or criteria that are compared, processed and ranked. A decision table or matrix consists of
number of alternatives and attributes. It also considers weightage or relative importance of attributes,
as well as dealing with performance amongst alternatives, as described in refs. [20–23]. A decision
maker’s (DM’s) main job is to get a compromised best from the given alternatives.

A traditional optimization approach in electrical distribution systems is to find the solution with
the minimum cost, though in ref. [24] the authors propose a methodology that evaluates a number
of criteria by using the multiple-criteria decision-making (MCDM) method to trade-off between
alternative solutions. Reconfiguration of distribution systems with Pareto front analysis is done by
considering network losses and energy not supplied as multi-objectives [25]. MCDM methods are
helpful in finding the solutions to problems having multiple or conflicting objectives. A review of the
literature was done to analyze the various methods, and it was found that the analytical hierarchy
process (AHP), preference ranking organization method for enrichment evaluations (PROMETHEE)
and elimination and choice translating reality (ELECTRE) were the most popular methods [26].

Reconfiguration of distribution is done for various purposes. After the reconfiguration of
distribution system, available alternatives are different switching combinations for decision-making.
The attributes that may be considered for decision making are energy losses, security of system, voltage
magnitude, capital cost, supply availability or non-availability, constraints related to capacity, length
of the circuit and reliability indices such as system average interruption frequency index (SAIFI),
system average interruption duration index (SAIDI), consumer average interruption frequency index
(CAIFI), customer average interruption duration index (CAIDI) and average energy not supplied
(AENS) [27,28].The application of multiple attribute decision-making (MADM) methods for decision
making in distribution systems is described by PROMETHEE [29], which is improved upon as
AHP–PROMETHEE [30]. An evaluation of Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) and PROMETHEE [31], and a comparison of the simple additive method (SAW)
or weighted sum method (WSM), weighted product method (WPM) and TOPSIS and PROMEHEE
methods is done in [32].

Generally, there are two methods for determining attribute weights—biased (or subjective) and
unbiased (or objective). The important aspect in decision making is that the weights are determined
by experts. In an unbiased or objective method, there are also some biased or subjective factors to be
considered. The unbiased weightage method has the advantage of having information about attributes
to decide weights, and does not depend on the biased judgment of decision makers. The weights are
assigned by applying a mathematical method to attributes.

In a biased weightage method, weights are assigned to attributes as per the experience of the
decision maker, who should have experience and the field. A decision maker’s experience can be
very useful in deciding the biased or subjective weight method, but it should not be at the cost of
losing its flexibility and mutability, as doing so can lead to randomness. In an unbiased or objective
weight method, subjective will is not considered, and therefore it can be inconsistent with the actual
importance of given attributes and it may be difficult to explain the results obtained.

Researchers must take advantage of and overcome the limitations of the combined biased and
unbiased weights, but methods must be chosen to determine unbiased and biased weightages, or which
methods can be combined, to overcome the limitations of either the biased or unbiased approach.

In this paper, a blended biased and unbiased (BBUW) method is proposed for obtaining the
compromised optimal combination of switches by considering some of the attributes from available
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alternatives for practical distribution systems, and the results are compared with other MADM methods
such as WSM, WPM, AHP and TOPSIS [27–32].

2. Decision-Making Methods

Decision making plays an important role in utilizing all the resources optimally and efficiently in
any organization. A manager’s target is to achieve the maximum possible productivity with available
resources for achieving predefined goals. In a real-life situation, decisions have to be made under
complicated conditions with various criteria/attributes that may contrast with each other, resulting in
a more-challenging task. The development of logical and systematic methods is required for assisting
decision makers in consideration of various attributes and their interrelations. The job of a decision
maker is to find and get the best mixture of suitable attributes.

It is essential to cautiously examine attributes before choosing an alternative for the desired
purpose. The attributes are classified in two categories:

• beneficial attributes (attributes where the higher values preferred are beneficial attributes, such as
efficiency, profit and so on);

• non-beneficial attributes (attributes where lower values are favored, such as losses, cost of purchase
and so on).

2.1. Multiple Criterion Decision-Making (MCDM) Methods

Multiple criterion decision-making (MCDM) methods can be used for solving multiple criteria
problems, and are categorized as

• multiple objective decision-making (MODM) methods;
• multiple attribute decision-making (MADM) methods.

MODM methods are applicable when there are several objectives, and decision maker has to
decide the best without violating limits.

MADM methods are used to solve decision-making problems associated with a number of
predetermined alternatives. In cases of complicated problems where multiple factors are considered,
multi-attribute decision-making (MADM) methods are preferred by researchers or decision makers.

In MADM, the number of alternatives and shortlisted attributes are processed with some logical,
analytical methods, and ranked, and the final decision is made by considering the practical knowledge
of the decision maker and their experience.

2.2. Multiple-Attribute Decision Making (MADM)

Every decision matrix or decision table in MADM consists of shortlisted alternatives, attributes,
weightage or significance of each attribute and performance measure for the alternatives. The decision
matrix or table can be prepared as given in Table 1. The decision matrix or table comprises alternatives
Ai (for i = 1 to N), attributes Bj (for j = 1 to M), weightages considered for attributes wj (for j = 1 to M)
and performance measures for alternatives mij (for i = 1 to N; j = 1 to M) [20].

The decision maker needs to choose the best alternative from the available or shortlisted alternatives
from the decision matrix. Many times units of the considered attributes are altogether different, hence
it is required to normalize them so that they are on same platform.

Some of the popular multi-criteria decision-making methods used for decision making are

(i) analytic hierarchy process (AHP);
(ii) weighted product method (WPM);
(iii) weighted sum method (WSM);
(iv) elimination and choice translating reality (ELECTRE);
(v) Technique for Order Preference by Similarity to Ideal Solution (TOPSIS);
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(vi) Višekriterijumsko kompromisno rangiranje (VIKOR);
(vii) preference ranking organization method for enrichment evaluations (PROMETHEE).

2.3. Blended Biased and Unbiased Weightage (BBUW) MADM Method

A blended biased and unbiased weightage (BBUW) multi-attribute decision-making (MADM)
method is proposed in this section. Unbiased weightage of significance with respect to attributes
and the biased priority of preference of the DM are considered collectively to find the aggregated or
integrated weightages of the pre-determined attributes. This BBUW method assists the DM to reach
a decision by using (a) the biased weightage of significance for the attributes, (b) the unbiased priority
of preference or (c) taking into account both (a) and (b).

Table 1 shows the general arrangement of alternatives and attributes for decision-making problems.

Table 1. Decision table or matrix in MADM methods.

Alternatives
Attributes

B1 (w1) B2 (w2) B3 (w3) . . . BM (wM)

A1 m11 m12 m13 . . . m1M
A2 m21 m22 m23 . . . m2M
A3 m31 m32 m33 . . . m3M
. . . . . . . . . . . . . . . . . .

AN mN1 mN2 mN3 . . . Mnm

The steps to be followed in decision making for a given distribution system problem using the
blended biased and unbiased weights (BBUW) method [23] are as follows:

Step 1: Identify and curtail the alternatives by considering the criteria.
Step 2: Arrange a decision matrix or table after short listing the alternatives and values related to the

attributes (mij).
Step 3: The values of the attributes (mij) are generally in different units (e.g., losses in Mwh, cost in

Rupees, etc.). Hence, it is necessary to list all parameters of the decision table or matrix for
different alternatives on a common platform. Obtain the normalized decision matrix mij* by
using Equation (1).

mij∗ = mij/
N∑

i=1

mij (1)

where, mij* is the normalized value of mij and N, and
∑

mij is the sum of the of jth attribute
values for alternatives (from i =1 to N).

Step 4: The weightages of relative significance of the attributes can be determined by the decision
maker for the given example based on three parameters: (a) biased weights of alternatives,
(b) unbiased weights of the attributes or (c) integration of both (a) and (b).

(a) Unbiased weightage of significance of the attributes: In this paper, the statistical variance
considered for determining the unbiased or objective weightage of significance of the
attributes is calculated using Equation (2).

V j =
( 1

N

) N∑
i=1

(mij∗ − (mij∗)mean)2 (2)

where, Vj is the statistical variance for the jth attribute, and (mij*) mean is the average
value of mij*. Range considers the extreme points, but the variance considers all points
and then finds their distribution. Hence, the variance provides important information
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regarding the data distribution. The unbiased weightage of the jth attribute (wjU) can
be calculated by separating the variance of the jth attribute with the total variance value
with M attributes. Thus, wjU can be found using Equation (3).

wjU =
V j∑M

j=1 V j
(3)

(b) Biased weightage of significance of the attributes: The weightage of relative significance
of the attributes can be determined on the basis of a DM’s choice for the attributes for
a given application, or by using any other method.

(c) Blended weightage of significance of the attributes: The DM can integrate the unbiased
and biased weightage of the attributes using Equation (4).

wji = WUwu
j + WBwb

j (4)

where, wji is the integrated or aggregated weight of the jth attribute, WB is weightage
assigned to the biased weights and WU is the weightage assigned to the unbiased
weights. By integrating WB and WU, the decision maker decides the importance of
unbiased and biased weights.

Step 5: Every considered attribute is allocated a weightage that can be unbiased, biased, aggregated or
integrated. Data corresponding to each attribute are processed with respect to each alternative.
The performance index (Pi) is calculated using the weightage sum method by considering the
general performance of the shortlisted alternative. The performance index for every alternative
shows the merit of the alternative in comparison with all the other alternatives. Performance
index (Pi) is calculated using Equations (5)–(7).

PiU =
M∑

j=1

wjUmij∗∗ (5)

PiB =
M∑

j=1

wjBmij∗∗ (6)

Pii =
M∑

j=1

wjimij∗∗ (7)

where, mij** = [mij*b/(mij*b)max] for beneficiary attributes, and [(mij*nb)min/mij*nb] for
non-beneficiary attributes; mij*b and mij*nb signify the normalized values of the beneficiary and
non-beneficiary attributes, respectively; (mij*b)max is the greatest value of the jth beneficiary
attribute; and (mij*nb)min indicates the smallest value of the jth non-beneficiary attribute.
Equation (5) can be used to calculate the unbiased or objective weightage of the attributes;
Equation (6) is used for the biased or subjective weightage of the attributes; and Equation (7) is
used for the aggregated or integrated weightage of the attributes.

Step 6: Arrange the solutions or alternatives in a descending order as per values of the preference
index. The highest preference index value of an alternative is preferred as rank1 for the given
decision-making problem.

Step 7: Finally, considering the practical limitations and other constraints, the DM can arrive at
the conclusion, but preference is given to the alternative with the maximum value of the
preference index.

Figure 1 depicts the flow chart for the proposed BBUW MADM method.
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Figure 1. Flow chart for the blended biased and unbiased weightage (BBUW) MADM method.

3. Implementation and Results

3.1. Distribution System Case Study 1

The case study of a 33-bus system, rated at 12.66 kV, is considered from [27]. The total power
demand was 3715 kW and 2000 kVAR. The total number of customers on the given distribution system
was 18,200. Further details for the considered distribution system can be obtained from [27]. There are
many feasible switching combinations or configurations in the study; out of these, only non-dominated
alternatives are shortlisted, as provided in the Table 2. The biased or subjective weightage of the
attributes given for this case were 0.3 for the active power losses, 0.35 for SAIFI and 0.35 for AENS.

There are 14 shortlisted alternatives or solutions available for the decision maker, and three
attributes considered: active power losses, SAIFI and AENS. All of these attributes are non-beneficial
(i.e., should be as minimal as possible to get the utmost benefit for the distribution system).

Application of Blended Biased and Unbiased Weightage (BBUW) Method for Decision Making in
Smart Distribution System Case Study 1:

The following procedure is followed for decision making by using the blended biased and
unbiased (BBUW) MADM method:

Step 1: The selection attributes identified for selecting the optimal switching combination are energy
losses, SAIFI and AENS.

Step 2: The decision table or matrix is prepared and entered into Table 2.
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Step 3: The data is normalized by using Equation (1), as the attributes have different units in Table 3.
Step 4: The weightage of relative importance of the attributes can be worked out by the DM for any

one of the following:

(a) The unbiased weightages of the attributes are calculated with the help of Equations (2)
and (3) as follows: WU

Losses = 0.4814, WU
SAIFI = 0.2543, WU

AENS = 0.2643.
(b) The biased weightages are taken from ref. [27] to compare the results: WB

Losses = 0.3000,
WB

SAIFI = 0.3500, WB
AENS = 0.3500

(c) The blended or integrated weights (as per significance of the attributes) are calculated
with the help of Equation (4) and displayed in Table 4 for the different combinations of
weightages assigned to the unbiased and biased weightages of the considered attributes.

Step 5: The preference index numbers are calculated for various alternatives using Equations (5)–(7),
and are listed in Table 5.

Step 6: Alternatives are ranked as per preference index Pi values, with the highest Pi as rank 1 and so
on (see Table 6).

Step 7: A decision may be finalized considering the practical limitations by the decision maker using
their knowledge and experience as per the ranking marked.

Table 2. Data for distribution system case 1 [27,31].

Solution Losses SAIFI AENS

1 139.5513 1.1048 0.4422
2 139.9780 1.0327 0.4118
3 141.9160 1.0173 0.4056
4 142.4292 1.0162 0.4054
5 146.2891 1.0042 0.3998
6 146.5133 1.0031 0.3995
7 146.6658 1.0021 0.3999
8 148.6078 0.9982 0.3991
9 150.2031 1.0003 0.3984

10 150.2483 0.9991 0.3982
11 150.9774 0.9910 0.3952
12 152.5900 0.9871 0.3943
13 156.0999 0.9847 0.3936
14 161.5802 0.9841 0.3935

SAIFI, system average interruption frequency index; AENS, average energy not supplied.

Table 3. Normalized values.

Solution Losses SAIFI AENS

1 0.0673 0.0782 0.0785
2 0.0675 0.0731 0.0731
3 0.0684 0.0720 0.0720
4 0.0687 0.0719 0.0719
5 0.0705 0.0711 0.0709
6 0.0707 0.0710 0.0709
7 0.0707 0.0709 0.0709
8 0.0717 0.0707 0.0708
9 0.0724 0.0708 0.0707

10 0.0725 0.0707 0.0706
11 0.0728 0.0702 0.0701
12 0.0736 0.0699 0.0700
13 0.0753 0.0697 0.0698
14 0.0779 0.0697 0.0698



J. Sens. Actuator Netw. 2019, 8, 20 9 of 16

Table 4. Integrated or blended weights for different combinations.

WU WB WI
LOSS WI

SAIFI WI
AENS

0 1 0.3000 0.3500 0.3500
0.2 0.8 0.3363 0.3309 0.3329
0.4 0.6 0.3726 0.3117 0.3157
0.5 0.5 0.3907 0.3021 0.3072
0.6 0.4 0.4089 0.2926 0.2986
0.8 0.2 0.4452 0.2734 0.2814
1 0 0.4814 0.2543 0.2643

Table 5. Preference index for different weights.

Solution PiU PiB
PiI

0, 1 0.2, 0.8 0.4, 0.6 0.5, 0.5 0.6, 0.4 0.8, 0.2 1, 0

1 0.94311 0.92322 0.92322 0.92720 0.93118 0.93317 0.93516 0.93913 0.94311
2 0.97482 0.96706 0.96706 0.96861 0.97016 0.97094 0.97172 0.97327 0.97482
3 0.97580 0.97314 0.97314 0.97367 0.97420 0.97447 0.97473 0.97526 0.97580
4 0.97448 0.97261 0.97261 0.97298 0.97336 0.97355 0.97373 0.97411 0.97448
5 0.96857 0.97366 0.97366 0.97264 0.97163 0.97112 0.97061 0.96959 0.96857
6 0.96834 0.97386 0.97386 0.97275 0.97165 0.97110 0.97055 0.96944 0.96834
7 0.96785 0.97356 0.97356 0.97242 0.97128 0.97070 0.97013 0.96899 0.96785
8 0.96336 0.97186 0.97186 0.97016 0.96846 0.96761 0.96676 0.96506 0.96336
9 0.95849 0.96875 0.96875 0.96670 0.96465 0.96362 0.96259 0.96054 0.95849

10 0.95879 0.96926 0.96926 0.96716 0.96507 0.96402 0.96297 0.96088 0.95879
11 0.96066 0.97335 0.97335 0.97081 0.96827 0.96701 0.96574 0.96320 0.96066
12 0.95755 0.97259 0.97259 0.96958 0.96658 0.96507 0.96357 0.96056 0.95755
13 0.94874 0.96789 0.96789 0.96406 0.96023 0.95832 0.95640 0.95257 0.94874
14 0.93436 0.95910 0.95910 0.95415 0.94921 0.94673 0.94426 0.93931 0.93436

Table 6. Rankings of solutions for the BBUW method (blended biased and unbiased weightage, BBUW).

Solution WU WB
Integrated Weights WI

WU = 0,
WB = 1

WU = 0.2,
WB = 0.8

WU = 0.4,
WB = 0.6

WU = 0.5,
WB = 0.5

WU = 0.6,
WB = 0.4

WU = 0.8,
WB = 0.2

WU = 1,
WB = 0

1 13 14 14 14 14 14 14 14 13
2 3 12 12 9 6 5 3 3 2
3 1 5 5 1 1 1 1 1 1
4 2 6 6 2 2 2 2 2 3
5 4 2 2 4 4 3 4 4 4
6 5 1 1 3 3 4 5 5 5
7 6 3 3 5 5 6 6 6 6
8 7 8 8 7 7 7 7 7 7
9 10 10 10 11 11 11 12 11 10
10 9 9 9 10 10 10 11 9 9
11 8 4 4 6 8 8 9 8 8
12 11 7 7 8 9 9 10 10 11
13 12 11 11 12 12 12 8 12 12
14 14 13 13 13 13 13 13 13 14

The weights obtained from the BBUW method (see Table 4) are considered as weights for the other
MADM methods WSM, WPM and TOPSIS. Tables 7 and 8 show the results obtained by WSM and
WPM for different weights respectively. Table 9 displays the results obtained by the TOPSIS method
for different combinations of weights for case study 1.

Results of the BBUW method for distribution system case study 1 are shown graphically in
Figure 2.
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Table 7. Result of WSM for different weights (weighted sum method, WSM). 

Solution 
WU = 0,  
WB = 1 

WU = 0.2,  
WB = 0.8 

WU = 0.4,  
WB = 0.6 

WU = 0.5,  
WB = 0.5 

WU = 0.6,  
WB = 0.4 

WU = 0.8,  
WB = 0.2 

WU = 1,  
WB = 0 

Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking 
1 0.9232 14 0.9272 14 0.9312 14 0.9332 14 0.9351 14 0.9391 14 0.9431 14 
2 0.9671 13 0.9686 9 0.9702 6 0.9709 5 0.9717 3 0.9733 3 0.9748 2 
3 0.9731 5 0.9737 1 0.9742 1 0.9745 1 0.9747 1 0.9753 1 0.9758 1 
4 0.9726 6 0.9730 2 0.9734 2 0.9735 2 0.9737 2 0.9741 2 0.9745 3 
5 0.9737 2 0.9726 4 0.9716 4 0.9711 3 0.9706 4 0.9696 4 0.9686 4 
6 0.9739 1 0.9728 3 0.9716 3 0.9711 4 0.9705 5 0.9694 5 0.9683 5 
7 0.9736 3 0.9724 5 0.9713 5 0.9707 6 0.9701 6 0.9690 6 0.9679 6 
8 0.9719 8 0.9702 7 0.9685 7 0.9676 7 0.9668 7 0.9651 7 0.9634 7 
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Figure 2. Result of the BBUW method for distribution system case study 1.

Table 7. Result of WSM for different weights (weighted sum method, WSM).

Solution
WU = 0,
WB = 1

WU = 0.2,
WB = 0.8

WU = 0.4,
WB = 0.6

WU = 0.5,
WB = 0.5

WU = 0.6,
WB = 0.4

WU = 0.8,
WB = 0.2

WU = 1,
WB = 0

Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking

1 0.9232 14 0.9272 14 0.9312 14 0.9332 14 0.9351 14 0.9391 14 0.9431 14
2 0.9671 13 0.9686 9 0.9702 6 0.9709 5 0.9717 3 0.9733 3 0.9748 2
3 0.9731 5 0.9737 1 0.9742 1 0.9745 1 0.9747 1 0.9753 1 0.9758 1
4 0.9726 6 0.9730 2 0.9734 2 0.9735 2 0.9737 2 0.9741 2 0.9745 3
5 0.9737 2 0.9726 4 0.9716 4 0.9711 3 0.9706 4 0.9696 4 0.9686 4
6 0.9739 1 0.9728 3 0.9716 3 0.9711 4 0.9705 5 0.9694 5 0.9683 5
7 0.9736 3 0.9724 5 0.9713 5 0.9707 6 0.9701 6 0.9690 6 0.9679 6
8 0.9719 8 0.9702 7 0.9685 7 0.9676 7 0.9668 7 0.9651 7 0.9634 7
9 0.9688 10 0.9667 11 0.9646 11 0.9636 11 0.9626 11 0.9605 11 0.9585 10

10 0.9693 9 0.9672 10 0.9651 10 0.9640 10 0.9630 10 0.9609 9 0.9588 9
11 0.9734 4 0.9708 6 0.9683 8 0.9670 8 0.9657 8 0.9632 8 0.9607 8
12 0.9726 6 0.9696 8 0.9666 9 0.9651 9 0.9636 9 0.9606 10 0.9576 11
13 0.9679 11 0.9641 12 0.9602 12 0.9583 12 0.9564 12 0.9526 12 0.9487 12
14 0.9591 13 0.9542 13 0.9492 13 0.9467 13 0.9443 13 0.9393 13 0.9344 13

Table 8. Result of WPM for different weights (weighted product method, WPM).

Solution
WU = 0,
WB = 1

WU = 0.2,
WB = 0.8

WU = 0.4,
WB = 0.6

WU = 0.5,
WB = 0.5

WU = 0.6,
WB = 0.4

WU = 0.8,
WB = 0.2

WU = 1,
WB = 0

Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking

1 0.9219 14 0.9258 14 0.9297 14 0.9317 14 0.9336 14 0.9376 13 0.9415 14
2 0.9669 11 0.9684 9 0.9699 6 0.9707 5 0.9715 3 0.9730 3 0.9746 2
3 0.9731 4 0.9736 3 0.9742 1 0.9744 1 0.9747 1 0.9752 1 0.9758 1
4 0.9726 6 0.9730 4 0.9733 2 0.9735 2 0.9737 2 0.9741 2 0.9745 3
5 0.9736 2 0.9726 2 0.9715 4 0.9710 3 0.9705 4 0.9695 4 0.9685 4
6 0.9738 1 0.9726 1 0.9715 3 0.9710 4 0.9704 5 0.9693 5 0.9682 5
7 0.9735 3 0.9723 5 0.9712 5 0.9706 6 0.9700 6 0.9689 6 0.9677 6
8 0.9716 8 0.9699 7 0.9682 7 0.9673 7 0.9665 7 0.9648 7 0.9631 7
9 0.9684 10 0.9663 11 0.9643 11 0.9632 11 0.9622 11 0.9601 10 0.9581 10

10 0.9689 9 0.9668 10 0.9647 10 0.9636 10 0.9626 10 0.9604 9 0.9584 9
11 0.9728 5 0.9702 6 0.9677 8 0.9664 8 0.9651 8 0.9626 8 0.9600 8
12 0.9718 7 0.9688 8 0.9657 9 0.9642 9 0.9627 9 0.9597 11 0.9567 11
13 0.9666 12 0.9627 12 0.9588 12 0.9569 12 0.9550 12 0.9511 12 0.9473 12
14 0.9570 13 0.9519 13 0.9469 13 0.9443 13 0.9418 13 0.9368 14 0.9319 13
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Table 9. Result of TOPSIS method for different weights (Technique for Order Preference by Similarity
to Ideal Solution, TOPSIS).

Solution
WU = 0,
WB = 1

WU = 0.2,
WB = 0.8

WU = 0.4,
WB = 0.6

WU = 0.5,
WB = 0.5

WU = 0.6,
WB = 0.4

WU = 0.8,
WB = 0.2

WU = 1,
WB = 0

Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking

1 0.4283 14 0.4697 14 0.5093 13 0.5284 13 0.5472 12 0.5837 11 0.6186 8
2 0.7104 10 0.7316 6 0.7529 6 0.7634 3 0.7738 3 0.7942 3 0.8137 3
3 0.7843 2 0.7952 1 0.8064 1 0.8119 1 0.8174 1 0.8281 1 0.8380 1
4 0.7835 4 0.7927 3 0.8020 2 0.8066 2 0.8111 2 0.8199 2 0.8279 2
5 0.7851 1 0.7728 2 0.7610 3 0.7555 4 0.7502 4 0.7404 4 0.7318 4
6 0.7841 3 0.7705 4 0.7575 4 0.7514 5 0.7456 5 0.7349 5 0.7254 5
7 0.7811 5 0.7669 5 0.7535 5 0.7471 6 0.7411 6 0.7299 6 0.7201 6
8 0.7502 6 0.7287 7 0.7085 7 0.6990 7 0.6899 7 0.6729 7 0.6579 7
9 0.7167 9 0.6912 11 0.6671 9 0.6557 9 0.6447 9 0.6240 9 0.6056 9

10 0.7183 8 0.6924 10 0.6679 8 0.6563 8 0.6452 8 0.6242 8 0.6054 10
11 0.7227 7 0.6936 9 0.6659 10 0.6528 10 0.6401 10 0.6160 10 0.5941 11
12 0.6980 11 0.6656 8 0.6345 11 0.6196 11 0.6052 11 0.5774 12 0.5518 12
13 0.6431 12 0.6054 12 0.5690 12 0.5514 12 0.5342 13 0.5006 13 0.4688 13
14 0.5717 13 0.5303 13 0.4907 14 0.4716 14 0.4528 14 0.4163 14 0.3814 14

3.2. Distribution System Case Study 2

Another case study considered is distribution system of a practical electricity utility from [28].
The proposed blended biased and unbiased weightage (BBUW) methodology is implemented on this
case study. The considered distribution network consists of seven load points and 17 transformers
along with underground cables and overhead distribution lines of the rated voltage 11 kV. In this
example, five alternatives or solutions are available for the decision maker, and six attributes are
considered: system security, capital cost, supply availability, annual energy losses, circuit length and
capacity constraints. All of the attributes shortlisted in this example are non-beneficial (i.e., minimum
values are preferred for the benefit of the system).

Application of the Blended Biased and Unbiased Weightage (BBUW) Method for Decision Making in
Smart Distribution System Case Study 2

The following procedure is followed for decision making using the blended biased and unbiased
weightage (BBUW) MADM method:

Step 1: The selection attributes identified for selecting the optimal switching combination are
system security, capital cost, supply availability, annual energy losses, circuit length and
capacity constraints.

Step 2: The decision matrix or table is prepared, as given in Table 10.
Step 3: The data is normalized using Equation (1), as the attributes have different units in Table 11.
Step 4: The decision maker can decide the weightage of relative significance for the considered

attributes with one of the following method:

(a) The unbiased or objective weightages of the attributes can be calculated with the help of
Equations (2) and (3) as follows: WU

EL = 0.000007, WU
SS = 0.001784, WU

SA = 0.014261,
WU

CCONS = 0.795030, WU
CL = 0.187471, WU

CCOST = 0.001446.
(b) The biased or subjective weightages for the given example are taken from reference [28]:

WB
EL = 0.05, WB

SS = 0.15, WB
SA = 0.15, WB

CCONS = 0.25, WB
CL = 0.15, WB

CCOST = 0.25.
(c) The blended, or aggregate or integrated weightage of significance of the attributes are

calculated with the help of Equation (4) and shown in Table 12 for various weightages
assigned to the unbiased and biased weights for the considered attributes.

Step 5: Calculate the preference index values for different solutions or alternatives with the help of
Equations (5)–(7), listed in Table 13.

Step 6: Rank the alternatives as per the values of preference index Pi, with the highest Pi ranked as 1
and so on (as shown in Table 14).
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Step 7: A decision may be finalized considering the practical limitations by the decision maker using
their knowledge and experience as per the ranking marked.

Table 10. Distribution system case 2 [28].

Solution
Energy
Losses
(MWh)

System Security
(% Customers
Interrupted)

Supply
Availability

(CML)

Capacity
Constraints

(MWh)

Circuit
Length (km)

Capital Cost
(£’000)

1 14632.4 4.72 125.74 23.26 1.44 14826
2 14584.3 4.69 120.22 109.8 1.59 14813
3 14657.3 4.42 103.99 109.8 2.36 14286
4 14647.8 4.93 141.74 23.26 0.68 15703
5 14674.8 4.66 125.62 23.26 1.44 15176

Table 11. Normalized data for Distribution System case 2.

Solution
Energy
Losses
(MWh)

System Security
(% Customers
Interrupted)

Supply
Availability

(CML)

Capacity
Constraints

(MWh)

Circuit
Length
(kM)

Capital Cost
(£’000)

1 0.1999 0.2015 0.2037 0.0804 0.1917 0.1982
2 0.1992 0.2003 0.1947 0.3794 0.2117 0.1980
3 0.2002 0.1887 0.1685 0.3794 0.3142 0.1910
4 0.2001 0.2105 0.2296 0.0804 0.0905 0.2099
5 0.2005 0.1990 0.2035 0.0804 0.1917 0.2029

Table 12. Blended or integrated weights for different combinations.

WU WB WI
EL WI

CI WI
SA WI

CC WI
CL WI

CCOST

0 1 0.0500 0.1500 0.1500 0.2500 0.1500 0.2500
0.2 0.8 0.0400 0.1204 0.1229 0.3590 0.1575 0.2003
0.4 0.6 0.0300 0.0907 0.0957 0.4680 0.1650 0.1506
0.5 0.5 0.0250 0.0759 0.0821 0.5225 0.1687 0.1257
0.6 0.4 0.0200 0.0611 0.0686 0.5770 0.1725 0.1009
0.8 0.2 0.0100 0.0314 0.0414 0.6860 0.1800 0.0512
1 0 0.0000 0.0018 0.0143 0.7950 0.1875 0.0014

Table 13. Preference index for different weights.

Solution PiU PiB
PiI

0, 1 0.2, 0.8 0.4, 0.6 0.5, 0.5 0.6, 0.4 0.8, 0.2 1, 0

1 0.89842 0.87608 0.87608 0.88055 0.88502 0.88725 0.88949 0.89396 0.89842
2 0.26401 0.67933 0.67933 0.59627 0.51320 0.47167 0.43014 0.34708 0.26401
3 0.23993 0.69593 0.69593 0.60473 0.51353 0.46793 0.42233 0.33113 0.23993
4 0.99589 0.92176 0.92176 0.93658 0.95141 0.95882 0.96623 0.98106 0.99589
5 0.89842 0.87231 0.87231 0.87753 0.88276 0.88537 0.88798 0.89320 0.89842

Table 14. Ranking of solutions.

Solution WU WB
Integrated Weights WI

WU = 0,
WB = 1

WU = 0.2,
WB = 0.8

WU = 0.4,
WB = 0.6

WU = 0.5,
WB = 0.5

WU = 0.6,
WB = 0.4

WU = 0.8,
WB = 0.2

WU = 1,
WB = 0

1 3 2 2 2 2 2 2 2 3
2 4 5 5 5 5 4 4 4 4
3 5 4 4 4 4 5 5 5 5
4 1 1 1 1 1 1 1 1 1
5 2 3 3 3 3 3 3 3 2

The weights obtained from the BBUW method (see Table 12) are considered as weights for the
other MADM methods WSM, WPM and TOPSIS. Result of the BBUW method for distribution system
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case study 2 is shown graphically in Figure 3. Tables 15 and 16 show the results obtained by WSM
and WPM for different weights, and Table 17 displays the results obtained by the TOPSIS method for
different combinations of weights for case study 2.

The two examples presented above demonstrate and validate the BBUW method as a prospective
decision-making method for dealing with distribution system problems.
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Table 15. Result of WSM for different weights. 

Solution 
WU = 0,  
WB = 1 

WU = 0.2,  
WB = 0.8 

WU = 0.4,  
Wb = 0.6 

WU = 0.5,  
WB = 0.5 

WU = 0.6,  
WB = 0.4 

WU = 0.8,  
WB = 0.2 

WU = 1,  
WB = 0 

Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking 
1 0.8761 2 0.8805 2 0.8850 2 0.8873 2 0.8895 2 0.8939 2 0.8984 3 
2 0.6793 5 0.5963 5 0.5132 5 0.4717 4 0.4301 4 0.3471 4 0.2640 4 
3 0.6959 4 0.6047 4 0.5135 4 0.4680 5 0.4223 5 0.3311 5 0.2399 5 
4 0.9218 1 0.9366 1 0.9514 1 0.9588 1 0.9662 1 0.9811 1 0.9959 1 
5 0.8723 3 0.8775 3 0.8828 3 0.8854 3 0.8880 3 0.8932 3 0.8984 2 

Table 16. Result of WPM for different weights. 

Solution 
WU = 0,  
WB = 1 

WU = 0.2,  
WB = 0.8 

WU = 0.4,  
Wb = 0.6 

WU = 0.5,  
WB = 0.5 

WU = 0.6,  
WB = 0.4 

WU = 0.8,  
WB = 0.2 

WU = 1,  
WB = 0 

Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking 
1 0.8519 2 0.8547 2 0.8576 2 0.8591 2 0.8605 2 0.8634 2 0.8663 3 
2 0.5740 4 0.4852 4 0.4102 4 0.3771 4 0.3467 4 0.2931 4 0.2478 4 
3 0.5628 5 0.4708 5 0.3939 5 0.3603 5 0.3295 5 0.2756 5 0.2306 5 
4 0.9170 1 0.9321 1 0.9475 1 0.9553 1 0.9632 1 0.9791 1 0.9953 1 
5 0.8485 3 0.8521 3 0.8556 3 0.8574 3 0.8591 3 0.8627 3 0.8663 2 

Table 17. Result of TOPSIS method for different weights. 

Solution 
WU = 0,  
WB = 1 

WU = 0.2,  
WB = 0.8 

WU = 0.4,  
WB = 0.6 

WU = 0.5,  
WB = 0.5 

WU = 0.6,  
WB = 0.4 

WU = 0.8,  
WB = 0.2 

WU = 1,  
WB = 0 

Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking 
1 0.8028 2 0.8489 2 0.8763 2 0.8861 2 0.8941 2 0.9064 2 0.9152 3 
2 0.2004 4 0.1533 4 0.1253 4 0.1153 4 0.1072 4 0.0948 4 0.0858 4 
3 0.1368 5 0.0865 5 0.0543 5 0.0422 5 0.0322 5 0.0161 5 0.0044 5 
4 0.8632 1 0.9135 1 0.9457 1 0.9578 1 0.9678 1 0.9839 1 0.9956 1 
5 0.8014 3 0.8483 3 0.8760 3 0.8859 3 0.8940 3 0.9063 3 0.9152 2 

4. Results and Discussions 
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Figure 3. Graphical representation of the results of the BBUW MADM method for distribution system
case 2.

Table 15. Result of WSM for different weights.

Solution
WU = 0,
WB = 1

WU = 0.2,
WB = 0.8

WU = 0.4,
Wb = 0.6

WU = 0.5,
WB = 0.5

WU = 0.6,
WB = 0.4

WU = 0.8,
WB = 0.2

WU = 1,
WB = 0

Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking

1 0.8761 2 0.8805 2 0.8850 2 0.8873 2 0.8895 2 0.8939 2 0.8984 3
2 0.6793 5 0.5963 5 0.5132 5 0.4717 4 0.4301 4 0.3471 4 0.2640 4
3 0.6959 4 0.6047 4 0.5135 4 0.4680 5 0.4223 5 0.3311 5 0.2399 5
4 0.9218 1 0.9366 1 0.9514 1 0.9588 1 0.9662 1 0.9811 1 0.9959 1
5 0.8723 3 0.8775 3 0.8828 3 0.8854 3 0.8880 3 0.8932 3 0.8984 2

Table 16. Result of WPM for different weights.

Solution
WU = 0,
WB = 1

WU = 0.2,
WB = 0.8

WU = 0.4,
Wb = 0.6

WU = 0.5,
WB = 0.5

WU = 0.6,
WB = 0.4

WU = 0.8,
WB = 0.2

WU = 1,
WB = 0

Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking

1 0.8519 2 0.8547 2 0.8576 2 0.8591 2 0.8605 2 0.8634 2 0.8663 3
2 0.5740 4 0.4852 4 0.4102 4 0.3771 4 0.3467 4 0.2931 4 0.2478 4
3 0.5628 5 0.4708 5 0.3939 5 0.3603 5 0.3295 5 0.2756 5 0.2306 5
4 0.9170 1 0.9321 1 0.9475 1 0.9553 1 0.9632 1 0.9791 1 0.9953 1
5 0.8485 3 0.8521 3 0.8556 3 0.8574 3 0.8591 3 0.8627 3 0.8663 2

Table 17. Result of TOPSIS method for different weights.

Solution
WU = 0,
WB = 1

WU = 0.2,
WB = 0.8

WU = 0.4,
WB = 0.6

WU = 0.5,
WB = 0.5

WU = 0.6,
WB = 0.4

WU = 0.8,
WB = 0.2

WU = 1,
WB = 0

Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking Score Ranking

1 0.8028 2 0.8489 2 0.8763 2 0.8861 2 0.8941 2 0.9064 2 0.9152 3
2 0.2004 4 0.1533 4 0.1253 4 0.1153 4 0.1072 4 0.0948 4 0.0858 4
3 0.1368 5 0.0865 5 0.0543 5 0.0422 5 0.0322 5 0.0161 5 0.0044 5
4 0.8632 1 0.9135 1 0.9457 1 0.9578 1 0.9678 1 0.9839 1 0.9956 1
5 0.8014 3 0.8483 3 0.8760 3 0.8859 3 0.8940 3 0.9063 3 0.9152 2

4. Results and Discussions

MADM methods use biased or subjective and unbiased or objective methods to determine weights.
In some studies, researchers have combined biased and unbiased weights. In this paper, a blended



J. Sens. Actuator Netw. 2019, 8, 20 14 of 16

biased and unbiased weightage (BBUW) MADM method was elaborated in detail considering statistical
variance. In order to carry out a more complete analysis, the biased and unbiased weights were varied,
and their effects on solution ranking were studied for the considered case studies. This was done to
provide flexibility, as sometimes the priorities of distribution system operators may change due to
changes in configuration or other alterations in infrastructure. In the literature available, weights were
not varied for the considered case studies, thus the results of the present cannot be compared with
them. Further, the weights obtained from the BBUW were taken as the inputs for the WSM, WPM
and TOPSIS methods, and ranking was done accordingly for different combinations of biased and
unbiased weights.

Other MADM methods, WPM, WSM and TOPSIS, were worked out to study and compare for two
distribution network case studies to support in decision making. The attributes considered for the first
case study reduced power losses in the system and minimized reliability parameters, such as SAIFI
and AENS. The results of the BBUW and all other MADM methods were compared and arrived at the
conclusion that alternative number 3 should receive rank 1 in WPM, WSM, TOPSIS and the proposed
BBUW method. As anticipated, the rankings of the solutions were opposites, indicating that reliability
and losses of these attributes were conflicting with each other. When the weights varied from 0 to 1,
from unbiased to biased, rank 1 was obtained for solution 3, the first 7 positions were solutions 2–8
and the last ranking was different. The validation was done by comparing the results of the BBUW
with the WSM, WPM and TOPSIS methods.

For the distribution network in cast study 2, the attributes considered were system security, capital
cost, supply availability, annual energy losses, circuit length and capacity constraints. All the attributes
were almost conflicting. The results of the BBUW and all other MADM methods were compared and
arrived at the conclusion that alternative number 4 should receive rank 1 for the WPM, WSM, TOPSIS
and proposed BBUW methods. Other rankings obtained by the BBUW method and other methods
used in this paper were almost the same, hence the results are verified and validated.

The main advantage of this method is that it makes use of a DM’s experience, and deciding biased
(or subjective) weights and unbiased (or objective) weights is accomplished using a mathematical
model of statistical variance. The limitations of the work are that this method is applicable only to
balanced distribution networks, and it does not consider the effects of distributed generation energy
sources in the system. These issues are left for future studies to resolve. Sensitivity analysis can also be
performed in the future.

5. Conclusions

The proposed blended biased and unbiased weightage (BBUW) method is very simple to
understand, convenient to implement for any type of decision-making problem and comes under
the umbrella of the weighted sum method. The described BBUW method assists the DM to arrive
at a decision by considering (a) unbiased or objective weights, (b) biased or subjective weights or (c)
blended or integrated unbiased and biased weights. The results obtained using the explained BBUW
method show a good interrelation with other MADM methods. The overall approach of this paper is
to provide the decision maker an effective solution among the different alternatives.
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