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Abstract: The maturity level reached by today’s commodity platforms makes even low-cost PCs
viable alternatives to dedicated hardware to implement real network functions without sacrificing
performance. Indeed, the availability of multi-core processing packages and multi-queue network
interfaces that can be managed by accelerated I/O frameworks, provides off-the-shelf servers with
the necessary power capability for running a broad variety of network applications with near
hardware-class performance. At the same time, the introduction of the Software Defined Networks
(SDN) and the Network Functions Virtualization (NFV) paradigms call for new programming
abstractions and tools to allow this new class of network devices to be flexibly configured and
functionally repurposed from the network control plane. The paper presents the ongoing work
towards Enif-Lang (Enhanced Network processIng Functional Language), a functional language
for programming network functions over generic middleboxes running the Linux operating system.
The language addresses concurrent programming by design and is targeted at developing simple
stand-alone applications as well as pre-processing stages of packet elaborations. Enif-Lang is
implemented as a Domain Specific Language embedded in the Haskell language and inherits
the main principles of its ancestor, including the strong typedness and the concept of function
compositions. Complex network functions are implemented by composing a set of elementary
operations (primitives) by means of a compact yet expressive language grammar. Throughout
the paper, the description of the design principles and features of Enif-Lang are accompanied by
examples and use cases. In addition, a preliminary performance assessment is carried out to prove
the effectiveness of the language for developing practical applications with the performance level
required by 5G systems and the Tactile Internet.

Keywords: commodity hardware; concurrent programming; network function programmability;
functional composition; stateful processing

1. Introduction

The success of the Software Defined Networks (SDN) and the Network Function Virtualization
(NFV) paradigms has naturally fueled the model of softwarized networks in which specialized hardware
is replaced by general-purpose platforms and network functions are implemented as software
applications instantiated through the network control plane. Both SDN and NFV propose a dramatic
change in the way network operations and services are conceived and push programmability and
reconfigurability as crucial keywords of a new generation of network devices.

The adoption of commodity hardware as the new “metal” for network equipments is well justified
by its consolidated evolution towards powerful multi-core platforms that commonly accommodate
a new family of flexible multi-gigabit network interfaces. At the same time, the attained maturity of
commodity hardware has been accompanied by significant progresses of the software capabilities in
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handling even high-speed network traffic. Indeed, a flourish literature about effective I/O operations
has lately appeared in the scientific arena by proposing accelerated I/O engines for 10+ Gbps line
rates such as PF_RING [1], PF_RING ZC (Zero Copy) [2], Netmap [3], Data Plane Development Kit
(DPDK) [4] and Packet Family Queue (PFQ) [5].

In this scenario, the adoption of commodity PCs as both traditional network nodes and
middleboxes becomes an almost natural consequence. This is perfectly in-line with the evolving
model of SDN that, from the pragmatic approach of OpenFlow [6] in which network nodes are mere
enforcer of the decisions taken by the network brain (the controller), is slowly migrating towards
a model in which a portion of the logic is offloaded to the network devices. As a result, device
programmability is becoming a very hot topic in research and new data-plane programming models
are emerging. Indeed, starting from the basic stateless Match-Action paradigm proposed by OpenFlow,
several other approaches (e.g., [7–9]) have been proposed to enable stateful processing within network
devices. However, stateful operations do not straightforwardly cope with parallel processing when
performance matters. The most common issue is represented by state sharing among the flows
processed by different cores. Such a condition becomes even more critical when multiple applications
run concurrently on the same set of network interfaces.

This paper presents Enif-Lang (Enhanced Network processIng Functional Language), a simple,
compact, expressive and robust programming language specifically tailored to network traffic
processing for multi-core PCs running Linux Operating System (OS).

Originally born as PFQ-Lang [5,10], the language has lately evolved quite a lot and is still a topic
of ongoing research. The seminal version of the language [11] was designed to let applications run in
the kernel-space of the Linux OS within PFQ. The new version, instead, enables user-space usage and it is
entirely implemented as a Domain Specific Language (DSL) within Haskell. As such, its basic behavior
is now independent of the underlying packet I/O framework, although some of its advanced features
(mainly in the transmission side) need to be supported by the I/O system underneath. In addition,
the current version now integrates a runtime platform that orchestrates the language operations and
addresses the management of the state to allow core isolation in concurrent programming scenario.
Furthermore, with respect to [11], the current document presents in more details the language features,
including a simple application that is used to exemplify the language usage as well as a benchmark to
give evidence of the performance that can be achieved.

The implementation maturity of Enif-Lang is still at the experimental level. The language
description refers to the current version of the prototype, hence specific grammar details may be
subject to change while the research progresses.

The rest of the paper is organized as follows. Section 2 introduces the technical background and
related work in the area of network programming with commodity hardware. Section 3 gives a high
level overview of Enif-Lang by introducing the main feature and its application scope. Section 4 delves
into the details of the language by presenting the specific classes of instructions (primitives) that are
combined together into Enif-Lang programs, as described next in Section 5. Section 6 addresses the
management of stateful operations in multi-applications context and details the clustering approach
adopted by Enif-Lang to guarantee core isolation for performance reasons. Section 7 presents a simple
“Hello word” monitoring application written in Enif-Lang and performing flow tracking over live
data. The example is used to show the expressiveness of the language itself as well as to assess
the impact of the language machinery on the overall performance. Section 8 extends the scope of
usage of Enif-Lang by presenting two practical examples of stateless and stateful network functions
implementing a network load-balancer and a port-knocking firewall. Finally, Section 9 draws conclusions
and final remarks.

2. Background

Network softwarization requires on one hand powerful computing platforms, and, on the other
hand, effective software tools to handle and process high rates of traffic. If the technological maturity
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reached by off-the-shelf hardware platforms does make general-purpose servers viable candidate for
implementing real network nodes, a significant effort has lately been directed towards the software
accelerated approaches for efficient packet handling. At the capture level, much research has focused
on the main limitations of general-purpose operating systems and proposed different solutions that
bypass either the OS network stack or the entire operating system. A thorough review of such
approaches is contained in the papers [12–14] along with their comparison and usage guidelines.

From a chronological point of view, PF_RING [1] was one of the first accelerated engines for
1 Gbps links. More recently, PF_RING ZC (Zero Copy) [2] and Netmap [3] allow a single CPU to
retrieve short sized packets up to a full 10 Gbps line rate by memory mapping the ring descriptors
of Network Interface Cards (NICs) at the user space. Intel’s DPDK [4] is a very popular engine
that accelerate packet capture by bypassing the operating system. In addition, DPDK provides
a user-space framework for packet processing on multi-core architectures running Linux. PFQ [5]
is a software acceleration engine built upon standard network device drivers that primarily focuses on
programmable packet fan-out.

Other proposals include OpenOnLoad [15] that rebuilds the network stack for SolarFlare products
to seamlessly accelerate existing applications and HPCAP [16], a packet capture engine that focuses on
the efficient storage of live traffic into non-volatile devices and to perform timestamping and delivery
to multiple listeners at user-space. NetSlices [17] provides operating system abstractions towards
hardware resources, such as multi-core processors and multi-queue network adapters.

Recently, the pcap library has been extended [18] to support the fan-out mechanism over different
capture engines, thus allowing pcap based network applications to select the packet distribution flavor
straight from the libpcap Application Programming Interface (API) without the need for managing
raw socket details and hardware configurations. Finally, it is worth mentioning that the Linux
kernel itself has significantly improved its capture performance with the adoption of the TPACKET
(version 3) socket that integrates PACKET_MMAP [19] for efficient packet memory mapping towards
the user-space.

At a higher level, software acceleration has been integrated in soft-based switches and routers,
seldom taking advantage of the previously mentioned frameworks. Packetshader [20] was one
of the first proposals of a high performance software routing based on a heavily modified driver
and on GPU acceleration. A thorough investigation about the design and implementation of
high performance software routers by distributing workload across cores was also presented in
Ref. [21]. The Click [22] modular router has determined a significant number of follow-up works.
Routebricks [23] proposes routing clusters to improve the performance of software-based routing.
In Ref. [24], the Netmap I/O framework has been used to accelerate Click itself while FastClick [25]
features I/O batching and advanced multi-processing techniques and integrates both Netmap and
DPDK. Snap [26] takes advantage of offloading computation intensive processes to GPUs in order to
improve the Click performance. PFQ proved to effectively accelerate the OpenFlow software switch
OfSoftSwitch [27] and the monitoring framework Blockmon [28] on commodity PCs. Finally, the kernel
bypass mode of Ethernet I/O and the Lua scripting language are used in the Snabb switch [29] to build
a fast and easy to use networking toolkit.

All the above approaches prove that even high-speed packet handling on general purpose
platforms is no longer an issue. However, when it comes to programmability, the very few specialized
network programming models that have emerged so far mostly originate from the switching domain.
Beyond OpenFlow, the most successful proposal is currently P4 [7], a high-level language that allows to
define the data-plane processing operations for programmable switches. However, the programming
abstractions inherited by the switching domain typically show clear limitations when the processing
scope become more complex and include stateful operations. More sophisticated approaches like
OpenState [8] and Open Packet Processor (OPP) [30] specifically address the management of stateful
processing on hardware platforms through the use of eXtended Finite State Machines (XFSM).
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If the above proposals mainly focus on hardware devices, not much has been done in terms
of specialized network programming languages for general-purpose platforms, and most of the
programming effort is still addressed by traditional general-purpose languages such as C, C++,
Lua, etc. Indeed, the most recent proposals are limited to the imperative language Pyretic [31]
(from the Frenetic [32] family of network programming languages) for the description of the data plane
logic of an SDN network, and to Streamline [33] for configuring I/O paths to applications through
the operating system. In this area, the Vector Programming Processing (VPP) [34] is also worth being
mentioned as it originates from the Cisco world for switch/router functionalities. Finally, embedded
Berkley Packet Filter eBPF [35] is recently emerging as an in-kernel advanced programming approach
for packet processing and data plane programming.

So, why Enif-Lang?
Enif-Lang enters the arena of the above listed approaches by providing a simple tool for

programming generic network functions. As such, this is not specifically targeted at any specific
application domain (as opposed to OpenFlow, P4, etc. that focus on switching), while being designed
to help a network programmer by means of a compact yet expressive language grammar and a rich
set of primitives. In fact, the set of typical applications and Virtual Network Functions (VNFs) that
can be either fully developed in Enif-Lang or accelerated through a first stage of Enif-Langwritten
pre-processing application includes soft switches, network filters, traffic shapers, load balancers,
network intrusion detection systems (NIDS), deep packet inspection (DPI) modules, etc.

Enif-Lang targets by design programming safety through the strong typedeness feature inherited
from the underlying functional philosophy. This, in turn, guarantees no undefined application behavior
as well as nearly certain correctness upon successful code compiling.

Finally, the language is conceived to guarantee high-level application speed.
Indeed, the implementation of network functions, especially in 5G and Tactile Internet scenarios,
cannot leave performance aside of their basic requirements, and the adopted programming abstraction
cannot make an exception. Enif-Lang framework proves to obey the performance requirements
(up to multi-gigabit line-rate speed) by taking advantage of the efficiency of the underlying Haskell
language as well as by explicitly enabling parallel processing through a proper management of
stateful operations.

3. Enif-Lang at a Glance

Enif-Lang is a functional language designed to develop applications that run in the user-space of
Linux systems. The language is implemented as a declarative Domain Specific Language (DSL) on top
of the Haskell Language from which it borrows similar constructs and semantic.

At the very beginning, Enif-Lang was designed as an extension of PFQ-Lang [5]. Not only the
first version [11] was based on a similar grammar, but it was also built on top of a collection of
composable functions implemented in GNU C language (much like PFQ–Lang). The experimental
compiler was meant to enforce the correctness of the grammar and to translate the source code into
a hybrid binary-based representation suitable to be serialized in kernel space and executed by a runtime,
implemented as a dedicated module.

After that, we decided to move the implementation of the language to the user-space for a number
of reasons, including the simplicity of development, the portability (Enif-Lang is theoretically no longer
Linux dependent), the possibility to reuse other tool chains (the GHC – Glasgow Haskell Compiler)
and, more importantly, to ease the interoperability with other applications and languages.

The net result is no longer a DSL for the abstract syntax tree only, but rather an embedded DSL
(eDSL) in which functions can either be implemented by means of Enif-Lang itself (possibly using
external modules and libraries), or by means of other languages (such as, Haskell and C) via the
Foreign Functions Interface (FFI). As a matter of fact, the new language turns out to be more flexible
and extensible without compromising performance.
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The design principles of Enif-Lang are those typical of functional languages and include strong
static type safety (i.e., no undefined behavior is allowed) and data (i.e., packets) immutability.
An underlying runtime framework handles by design data contention and parallelism, implements
packets duplication (copy-on-write) to allow packet mutability and to better achieve parallelism by
avoiding head-of-line blocking.

Figure 1 shows the full processing model. Enif-Lang programs are compiled through the standard
Glasgow Haskell Compiler (GHC) as .so shared objects which are loaded by the runtime and attached
to specific hooks. Such hooks can be attached to physical network ports (or possibly channels), to pcap
files and so forth.

App

E1

E1

E3

Enif-Lang runtim
e (C++)

enif-lang application layer

NIC

E2

E2

App

App
PFQ

DPDK

netmap

NIC

I/O layer

Figure 1. The Enif-Lang abstract processing model.

The runtime is responsible to handle traffic from the network, to hide the grammar and the
semantic differences of the various underlying sockets (e.g., PFQ, DPDK, TPACKET3, etc.) by means
of abstract engines, and to expose a set of hooks where the user can attach Enif-Lang programs.
In addition, it allows multiple applications to consume packets from the same network devices.

Packets retrieved by the runtime at the physical network interfaces are steered towards the
Enif-Lang apps (the Ei blocks in the picture) by maintaining per-flow consistency. At this stage,
computations are executed according to the description provided by Enif-Lang programs before being
finally delivered to the selected endpoints, i.e., to network cards, application threads, the OS kernel,
etc. Notice that the last layer of applications is optional: indeed, Enif-Lang is expressive enough to
build simple stand-alone network applications. However, the most common use of Enif-Lang is to
build pre-processing stages of elaborations (e.g., filtering, marking, etc.) while delegating more refined
elaborations to traditional applications such as IDSs, visual analytics, etc., that receive data through
tun interfaces.

The entry point of Enif-Lang program is the function enif-main. To amortize the cost of invoking
the enif-main function, a batching technique is also implemented in the runtime. Therefore, the most
recent implementation of the Enif-Lang offers an entry-point for the main function which takes a queue



J. Sens. Actuator Netw. 2018, 7, 34 6 of 19

of packets instead of just a single one. In the current version, packets cannot be re-injected in the
processing loop, but rather can be distributed to virtual or real interfaces, to enable the implementation
of VNFs entirely written in Enif-Lang.

Enif-Lang programs are formally expressed as the composition of pure and effective functions,
called actions, that perform network operations on top of packets. Actions are formally modelled
around the concept of monad [10] that provides the theoretical support for composing effective functions
(such as those performing I/O, those that handle the state associated with a packet or a flow, and so
on) while maintaining the pure functionality of the language. As it will be elaborated upon in the
following sections, Enif-Lang instructions include most of the common packet processing primitives
for packet forwarding, filtering, steering, logging and statistics retrieval.

4. Enif-Lang Primitives

Enif-Lang provides a rather expressive set of built-in primitives as well as a complete library of
functions to describe generic packet processing. Depending on their purposes, such functions are
classified into different common categories, as detailed in the following.

Meters and Counters

Meters and counters are local and global generic registers used to temporarily store the results of
computations. They are mainly derived from the Haskell language and they can be assessed through
specialized functions such as the modifyCounter primitive of the example below:

udpCounter = counter 0
enif_main :: Packet -> ActionIO ()
enif_main pkt =
when (is_udp pkt) $ modifyCounter udpCounter (+1)

Counters offer a mean to handle global states that can either be used directly from the language
or can be exported by the runtime to inspect the behavior of an instrumented Enif-Lang application.

Predicates

Predicates are pure functions that take an arbitrary number of arguments (possibly none) plus the
current packet and return a boolean value. Such functions are either used within the if-then-else
statement, or passed as argument to high-order-functions to specialize their behavior.

The language includes a set of primitive predicates that compose together to implement
more complex ones. The default library includes predicates for the most common protocols.
As a convention, the names of such functions are prefixed by is_ or has_, when meaningful.
Examples are is_tcp, is_udp, is_icmp, has_addr CIDR, is_rtp, is_sip, is_gtp or has_port
80, has_addr “192.168.0.0/24”.

The following snippets show the use of predicates within both the if-then-else and the
when statements:

if (not is_tcp pkt)
then pass pkt
else drop pkt

when (has_addr "192.168.0.0/24" pkt) $ do
forward pkt "eth1"

Notice that the last piece of code includes the use of the do notation, which is mandatory to handle
multiple statements. This indeed is a central element of Enif-Lang and will be further elaborated
in Section 5.
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Combinators

Enif-Lang provides a set of combinators, namely functions designed to combine predicates
together. In particular, the composition of predicates is enabled by the logical or, and, xor and
not functions, also available in the form of operators: ||, &&, ∧ ∧. In addition, the language
offers special non-boolean functions to force filter inversion (inv) and parallelization (par) with
the following signature:

inv :: (Packet -> ActionIO Packet) -> (Packet -> ActionIO Packet)
par :: (Packet -> ActionIO Packet) -> (Packet -> ActionIO Packet)

-> (Packet -> ActionIO Packet)

As an example, in the following line of code, the combinator par is used to parallelize the udp
and tcp filters before delivering packets to the OS kernel:

par tcp udp >=> kernel

Properties

Properties are functions that take an arbitrary number of arguments and a packet as input
and return a value associated with the packet. Typical examples are hash functions computed over
a portion of a packet, header field extractors, state retrievals, etc. The Enif-Lang library includes
a large number of properties for the most common protocols (IP, TCP, UDP, ICMP, etc.), as well as
a set of field value extractors from arbitrary protocols (upon specifying the offset and the size of
the field). Examples of properties are ip_tos, ip_tot_len, ip_id, ip_frag, ip_ttl, get_mark,
get_state, tcp_source, tcp_dest, and so on. In the following piece of code, the value of TTL is
first extracted from the IP header of packets while the state value is later accessed and compared to 10
before packet delivery to the OS kernel:

filter (ip_ttl pkt < 5) pkt
when (get_state pkt == 10) kernel

Comparators

Comparators are among the most commonly used functions in any languages to perform
a comparison between a property and a specified value. Along with the standard operators <, <=,
>, >=, == and /=, the Enif-Lang library provides some network-specific functions, such as any_bit
and all_bit to check whether some (or all) bits of a given mask are set. The two functions have
identical signature:

any_bit :: (Packet -> Word) -> Word -> Packet -> Bool
all_bit :: (Packet -> Word) -> Word -> Packet -> Bool

and the following example shows the usage this of the any_bit comparator within the if statement to
check the flags of TCP packets:

if (any_bit tcp_flags (SYN|ACK) pkt)

Filters

Filters are effective functions that break the chain of processing when the packet does not match
a given condition. The Enif-Lang library is equipped with a wide range of filters for the most common
protocols. In short, a filter is a function whose output action can be either Pass or Drop. Examples of
common filters are ip, tcp, udp, port, src_port, dst_port, addr, src_addr, dst_addr, etc. As a further
example, the more generic l3_proto and l4_proto have the following signature:

l3_proto, l4_proto :: Int16 -> Packet -> ActionIO Packet
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In the following snippet, the l3_proto function is used to recognize packets carrying the
wake-on-line protocol; a log message is next prepared upon the composition to the log_msg function:

l3_proto 0x842 >=> log_msg ‘‘Wake-on-LAN!’’

Monadic Functions

Monadic functions are the typical primitives of functional languages as they allow for enriching
the output with extra information while still obeying the functional principle. In Enif-Lang, they take
an arbitrary number of arguments together with a packet, and produce a packet with an associated
action. The available actions are: Pass, Drop (used by filters), Broadcast, Dispatch, Steer and DoubleSteer
(used by steering functions).

Common monadic functions are when and unless, and are used to implement conditional
statements. Special types of monadic functions are those in charge of distributing packets to the
final end-points. Such functions, named steering functions, provide fine-grained control of packet
dispatching across end-points. Their generic signature is given by:

Steering :: Arg1 -> Arg2 ... -> Packet -> ActionIO Packet

and a few examples are steer_flow, steer_p2p, steer_link, etc., used to balance the traffic among
multiple endpoints with different flow consistency guarantees.

High-Order Functions

High-order functions takes either functions or effective functions as argument. Examples of such
functions are the instructions conditional, when, unless, inv, par, filter, etc. In addition,
this category also includes the built in if-then-else construct, whose support is borrowed from the
underlying Haskell language.

5. Enif-Lang Programs

As previously mentioned, Enif-Lang is built around the concepts of pure and effective functions
(actions). Actions act as the processing primitives and are mainly used for typical network operations
such as packet forwarding, filtering, steering, logging and sharing state across functions.

Pure and monadic functions are then composed together by means of either the do notation
(slightly different from that of Haskell), or through the Kleisli operator >=>, and follow the precise
rules of composition set forth in [10].

The following simple program exemplifies the use of the do notation to (i) select DNS packets
only, (ii) log the results and (iii) forward them to the eth1 network interface:

dns :: Packet -> ActionIO Packet
dns pkt = port 53 pkt

enif_main :: Packet -> ActionIO ()
enif_main pkt = do

dns pkt
log_packet pkt
forward "eth1"

The snippet below, instead, shows the use of the Haskell pointfree style and the Kleisli operator
to provide an alternative description of the same operations:

enif_main = dns >=> log_packet >=> forward "eth1".

In general, the previous line of code gives a good example of the expressiveness of Enif-Lang,
which makes it possible to describe even complex pipelines through a very concise grammar.



J. Sens. Actuator Netw. 2018, 7, 34 9 of 19

The following example describes a stateless filter that allows TCP packets to be logged and passed
back to the kernel of the operating system (notice that forwarding packets to the OS kernel and to
network interfaces requires the underlying I/O framework to support a feedback channel):

enif_main = tcp >=> log >=> kernel.

The natural and easy step ahead is represented by programs in which the elaboration requires the
use of a per-computation state:

is_http = has_dst_port 80,

pass_to_kernel pkt =
state <- get_state
when (state == http_traffic)

kernel pkt,

mirror_to_port pkt port =
state <- get_state
when (state == other_traffic)

(forward port pkt),

process pkt = if (not is_tcp pkt)
then drop
else do pass_to_kernel pkt

mirror_to_port pkt "eth2"),
http_traffic = 1,
other_traffic = 2,

enif_main :: Packet -> ActionIO ()
enif_main pkt = do
if (is_http pkt)
then put_state http_traffic
else put_state other_traffic

process.

In the example, functions like put_state, get_state are implemented as properties and act
as an implicit extra parameter for all of the functions. The overall computation takes advantage of
a per-packet state, which, however, expires at the end of the packet processing itself. Hence, this specific
programming model cannot be applied to implement elaborations that require the storage of stateful
information across different packets. In all such cases, the state must be kept persistent (and consistent)
over entire flows of packets, as it will be shown in detail in the next section.

6. State Management

One of the key issues addressed by Enif-Lang is the efficient handling of computation resources
to allow concurrent programming. Generally speaking, network applications find great benefits from
parallel computing as long as the processing cores can work in perfect isolation without sharing any
kind of information with other cores. Indeed, data sharing among cores (especially at high rates) is not
recommended due to synchronization issues (to avoid race conditions), cache (in)coherence among
cores, and because of the mandatory use of Compare-and-Swap (CAS) and Software Transactional
Memory (STM) techniques that have a dramatic impact on performance.

As a general rule, core isolation is typically obtained by selecting a proper flow description and
by distributing traffic according to such a per-flow policy. Indeed, this is the operational behavior
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of the runtime framework that delivers the packets from the underlying I/O engine to the different
chains of processing by maintaining per-flow consistency. Hence, the key point is to provide a suitable
definition of packet flow. Packet flows are defined through flow-keys (such as, IP addresses, canonical
5-tuples, etc.). In the Enif-Lang context, a generic flow-key consists of the concatenation of an arbitrary
number of packet header fields. For example, the next two definitions of flow are associated with the
classical IP 5-tuple and the pair source/destination IP addresses (mega-flow), respectively:

IP_SRC | IP_DST | PORT_SRC | PORT_DST | PROTOCOL
IP_SRC | IP_DST

As shown in Figure 2, an application running three threads (or, equivalently, three instances of
a process) can be parallelized by simply distributing traffic to the threads (processes) on the basis of
a hash function computed over the key represented by the flow descriptor.

key-extractor hash
pkt key

app’

app’’

app’’’

[flow-key]

Figure 2. Packet distribution to multiple threads of an application.

6.1. Multiple Applications

The computational power of todays commodity servers does allow multiple applications to run
at the same time on the same cores. However, different applications may take care of very different
operations and the definition of flows may be significantly different. In all such cases, traffic distribution
still provides the key for enabling parallelism as long as the concept of flow key is replaced by the
the concept of largest common flow key (LCFK). Indeed, each application specifies its own flow key.
The LCKF is obtained by the runtime through the bitwise intersection of all such keys, and it is used as
the new key for performing hash-based packet distribution.

Figure 3 shows three instances of two applications running on three cores. The flow key specified
by application 1 is represented by the canonical IP 5-tuple while the second application specifies
the triple <source IP, dest. IP, protocol> as its flow descriptor. The intersection of the two flow keys
is therefore given by the latter and passed to the key-extractor module to pull out the hash key.
Notice that the flow key of app1 is more specific than that of app2. As such, all of the packets that
match the flow key of app1 will also match the one of app2.

Once traffic is split, the current abstraction guarantees that packets of the same flow are processed
in the Enif-Lang stage sequentially on the same core. This automatically ensures the flow consistency
for all the packets and their related states and prevents from inter-core data-sharing. It is worth
noticing that all instances of applications 1 and 2 are executed sequentially on each core and receive
the same input traffic distributed according to the LCFK (visually depicted by the dashed arrow that
originates on the hash module). In addition, the order of execution of the apps is not relevant thanks
to the packet immutability property enforced by the functional programming model.
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key-extractor hash
pkt key

app1’

app1’’

app1’’’

[LCFK] app2’

app2’’

app2’’’

core 1core 2core 3! "##$%&'()%*+,-%./01#'+%%%%%%%%%%%% 2%345678%9%345:6;%9%4<7;5678%9%4<7;5:6;%9%47<;<%=! "##>%&'()%*+,-%?/01#'+ %%%%%%%%%%%%%%%%%%2%345678%9%345:6;%9%%%%/%%%%%9%%%%%/%%%%9%47<;<%=!!!"#!$%&'()*!+,--,.!/0,1!2(3!!!!!!!!!!!!!!!!4!56789+!:!567;8<!:!!!!=!!!!!:!!!!!=!!!!:!69><>!?
Figure 3. LCFK for packet distribution to multiple applications.

6.2. Clustering

Unfortunately, it is not always possible to find a proper flow definition that guarantees data to
be strictly confined within separated cores. As an example, consider the problem of parallelizing
the MAC self-learning algorithm of Ethernet switch. For each Ethernet frame reaching the switch,
the incoming physical port along with its MAC source address are stored in a forwarding table that gets
continuously populated so as to allow the device to discover the L2 addresses of the connected hosts.
The acquired information is then used by the switch to select the proper output interface as a result of
MAC destination address lookup. However, it should be clear that in this case there is no definition
of flow key that guarantees core isolation, even within the same application. Indeed, if packets are
distributed by hashing on the MAC destination address, they will likely not find the corresponding
entry in the forwarding table, as the latter is filled on the basis of the MAC source address. In other
words, the forwarding table must be shared upon all of the cores operating the self-learning algorithm.

A more general case is represented by the following example, in which three applications define
the following three flow keys:

App1 flow key: IP 5-tuple [ IP_SRC | IP_DST | PORT_SRC | PORT_DST | PROTO ]
App2: flow key: IP 3-tuple [ IP_SRC | IP_DST | - | - | PROTO ]
App3: flow key: TCP/UDP ports [ - | - | PORT_SRC | PORT_DST | - ]
=> LCFK: [ - | - | - | - | - ]

for which the LCFK is empty.
As shown in Figure 4, this special case can be conveniently handled by partitioning the

applications into clusters sharing a common sub-key and by introducing shallow copies of packets to
feed each of them. In practice, all amounts of traffic are replicated on both cluster 1 (accommodating
apps 1 and 2) and cluster 2. Within the same cluster, traffic is load balanced across the participating
threads (processes) according to the LCFK computed for the specific cluster (in the example, LCFK1
and LCFK2, respectively).
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Figure 4. Application clustering.

7. An Enif-Lang “Hello World”: Tracking and Counting IP Flows

This section presents an example of a simple monitoring application that tracks and counts
the different IP packet flows from a traffic source. The objectives of the presentation are manifold:
first, to give a practical example of the use of Enif-Lang; second, to show the integration of Enif-Lang
within Haskell and its libraries; third, to show the usage of the Enif-Lang own library; and finally
fourth, to provide an experimental assessment of the impact of the language processing on the
application performance.

import Language.Enif.Flow

- defined in Language.Enif.Flow ----------
mkFlowKey5 :: Packet -> FlowKey5
mkFlowKey5 pkt = FlowKey5 byteSwap32 (ipSaddr pkt)

byteSwap32 (ipDaddr pkt)
byteSwap16 (srcPort pkt)
byteSwap16 (dstPort pkt)
protocol pkt

---------------------------

flowMap :: HashTable FlowKey5 Int
flowMap = newHashTable 1000000

enif_main :: Packet -> ActionIO ()
enif_main pkt = do
let key = mkFlowKey5 pkt

e <- lookup flowMap key
case e of

Nothing -> insert flowMap key 1
Just x -> insert flowMap key (x+1)
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The program begins with the definition of the associative table flowMap that uses the canonical IP
5-tuple of type FlowKey5 as the indexing key, and contains counters (of Int type).

Currently, the flowMap table is implemented on top of the HashTable Haskell library and is
efficiently implemented as a Cuckoo hash table [36]. In addition, while the Int type is obviously also
inherited from the Haskell Language, the FlowKey5 is instead defined in the Enif.Flow library which
ships with Enif-Lang.

The hash table is then initialized to 1,000,000 entries. Next, the main body of the program
is represented by the function enif_run which takes packets (of type Packet, yet defined in the
Enif.Flow library), and produces an I/O action. The function first extracts the canonical IP 5-tuple from
the packet, then performs flow lookup in the hash table and finally updates the flowMap accordingly.

The functions mkFlowKey5 and lookup are both defined in the Enif.Flow library, in addition
to the types of the packet header. For the sake of clarity, the body of the function FlowKey5 is also
explicitly reported between the comment lines in the code.

Even though very basic, the example shows the expressiveness of the language as well as
the simplicity of its usage. First, the extremely strong typedness of the language, which includes
highly tailored types of data specifically targeted at packet parsing processing, is worth noticing.
As a comparison, to produce the same output by using C/C++ languages would have required a much
longer piece of code, including a full handmade packet parsing section. Enif-Lang largely simplifies
the whole process of code writing by exposing a rich API that includes a large number of helper
functions that, as shown above, dramatically reduce the coding effort and allow even non-expert
network programmers to readily access traffic information in a few lines of code.

7.1. Performance Evaluation

The flow tracker application described above is next used as a simple benchmark to evaluate the
performance that can be reasonably attained by processing traffic with Enif-Lang. The experimental
setup consists of a pairs of identical PCs with a 8-core 3.0 GHz Intel Xeon E5-1660V3 on board,
Intel 82599 10G NICs and running a Linux Debian distribution with kernel version 4.9. The two servers
are connected through a 10 Gbps copper link; one of the two PCs is used as a traffic generator while
the second acts as the monitoring probe and runs the flow tracker application.

The traffic generator uses pfq-gen, an open-source tool included in the PFQ distribution, to send
synthetic UDP packets with randomized IP addresses. The random depth is configurable so as to control
the total number of different IP flows. In order to evaluate the actual traffic rate that can be sustained
by the flow-tracker app—hence, estimate the actual burden of the Enif-Lang program—we used PFQ
as the underlying I/O framework. This guarantees that no packets are lost at the interface and that
packet drop can only occurs at the application level. More specifically, PFQ was set to use two kernel
threads retrieving packets from the network card and delivering to a single instance of the application.

The measurement system was instrumented to give the average number of processed packets
over non-overlapped time windows of 1 s. Every run lasted 50 s, hence each experiment produced
a time series of 50 samples of measured packet rates.

The results of the first experiment are reported in Figure 5, which depicts the average throughput
of the application for increasing values of the flow cardinality in the worst case of minimum packet size
of 64 Bytes. The plotted data are computed by averaging the time series of the measured throughput
over the 50 s.

Albeit the maximum throughput is attained for the lowest number of flows, the application proves
to consistently sustain more than 12 Mpps packet-rate until the table load factor hits 20% (around
200 K flows). For larger number of flows, the performance slowly decreases because of hash collisions
that imply relocations within the Cuckoo table. Note that the table can accommodate more than the
1 M entries defined at the initialization time as its implementation is self-resizing.
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Figure 5. Flow tracker application performance.

The overall impact of the application is therefore reasonably low, with only a 1–2 Mpps rate
drop with respect to the theoretical line rate. This level of performance is quite remarkable as the
experiment is carried out in the worst case scenario of minimum sized packets, whereas the packet
rate is realistically much lower with the typical packet lengths of real traffic. Indeed, when the packet
size increases, Figure 6 proves that the application throughput consistently catches up with the input
traffic rate by reaching line-rate processing speed even with the largest flow cardinality of more than
2 M flows.

Figure 6. Flow tracker application performance.

In order to investigate the throughput variability, Figure 5 also reports the upper and lower limits
given by the sample standard deviations computed over the data. The two curves prove that the
attained throughput is vary stable, with a measured coefficient of variation that slightly exceeds 1% in
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all cases. For the sake of clarity, the whole time-series of throughput samples measured in the case of
1024 input flows is shown in Figure 7, along with the sample mean and standard deviations’ range.

Figure 7. Flow tracker application performance.

8. Use Cases

This section goes further regarding the simple flow tracker monitoring application by presenting
the use of Enif-Lang in the development of two slightly more practical applications.

The first application implements a stateless load balancer that distributes packets to a cluster of
end-nodes, namely network devices or local applications that run a more complex processing, such as
Deep Packet Inspection. The second application, instead, is the Enif-Lang implementation of a simple
stand-alone simple stateful firewall based on the port knocking scheme.

Both cases allow for further pointing out the two-fold use of Enif-Lang to implement
(i) a stand-alone network function (load balancing) and (ii) a first stage of traffic elaboration to
be followed by a next (possibly multi-threaded) traditional application.

As anticipated in Section 3, in the latter case, packets are distributed to the application through
tun interfaces, which, in fact, are the endpoints of the Enif-Lang processing. However, while Enif-Lang
applications expose (in a declarative way) to the runtime their desired flow key, standard applications
do not. Hence, the runtime must be manually instrumented to select the flow keys in order to compute
the largest common flow mask and handle the tun interfaces accordingly.

8.1. Stateless Processing

DPI applications are typically quite computation expensive and largely benefit from splitting their
elaboration across multiple workers (thread/processes). As an example, in [18], the huge performance
improvements brought by parallelizing Bro [37] into multiple instances over a multi-core platform
have been shown.

However, splitting DPI elaborations over multiple workers requires maintaining flow consistency.
In addition, many DPI applications take advantage of DNS packets to build classification trees
to improve application recognition. To this aim, the following load-balancer preserves layer 3
symmetric flow consistency by spreading IP packets according to the steer_p2p steering function
while broadcasting DNS packets to all DPI workers. The latter operation sends a copy of all DNS
packets to all application workers regardless of the flow definition, so as to allow any computation
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thread/process to build its own complete DNS tree without the need of accessing data shared among
cores, hence ensuring core-isolation.

is_dns = has_port 53

enif_main :: Packet -> ActionIO ()
enif_main pkt =
if is_dns pkt

then broadcast pkt
else steer_p2p pkt

8.2. Stateful Processing

The second use case presents the implementation of the simple port knocking firewall.
The problem is well described in [8] and provides a didactically elegant example of a stateful application
that blocks all packets with the exception of the ones that know the locker code represented by a sequence
of four predefined TCP port numbers (5123, 6234, 7345 and 8456 in the example).

The example uses two tables. The first table contains the list of the currently authorized flows
and is implemented as an associative map based on the classic 5-tuple key. The second table, instead,
is indexed by the 3-tuple keys, and implements the state machine for tracking the knocking sequence.
Any time the expected destination port is found, the state is updated through the function next_if
until it reaches the state value 4 which opens the firewall and the corresponding flow is authorized
upon its insertion into the auth_flow table.

auth_flow :: HashTable FlowKey5 Int
auth_flow = newHashTable 1000000

knock_table :: HashTable FlowKey3 Int
knock_table = newHashTable 1000000

next_if pred key3 value =
if pred
then insert knock_table key3 value
else insert knock_table key3 value

enif_main :: Packet -> ActionIO ()
enif_main pkt = do
let k5 = mkFlowKey5 pkt

f5 <- lookup auth_flow k5
case f5 of
Just _ -> kernel pkt

Nothing -> do
let k3 = mkFlowKey3 pkt
f3 <- loolup knock_table k3
case f3 of
Nothing -> next_if (dst_port pkt == 5123) k3 1 >=> drop

Just 1 -> next_if (dst_port pkt == 6234) k3 2 >=> drop
Just 2 -> next_if (dst_port pkt == 7345) k3 3 >=> drop
Just 3 -> next_if (dst_port pkt == 8456) k3 4 >=> drop
Just 4 -> do
when (dst_port pkt == 22) $ do

delete knowk_table k3
insert auth_flow k5 1
kernel pkt
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9. Conclusions

The paper presents Enif-Lang, a functional language for developing network functions on
multi-core middleboxes based on commodity hardware. The language is implemented as an embedded
DSL of the Haskell functional language and is specifically targeted at easing network softwarization
by providing a compact but expressive formal description of a generic processing machine for high
performance network traffic manipulation. The programming model explicitly addresses automatic
parallelism through the functional paradigm of packets immutability as well as through the concept
of application clustering for traffic splitting across multiple computation resources. A few examples
are reported in the paper to exemplify the use of the language in practice, as well as its baseline
performance. Two simple use cases are also given to show the expressiveness of the language in
handling both stateless and stateful packet processing.
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