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Abstract: Trends such as the Industrial Internet of Things and Industry 4.0 have increased the
need to use new and innovative network technologies in industrial automation. The growth
of industrial automation communications is an outcome of the shift to harness the productivity
and efficiency of manufacturing and process automation with a minimum of human intervention.
Due to the ongoing evolution of industrial networks from Fieldbus technologies to Ethernet, a new
opportunity has emerged to harness the benefits of Software Defined Networking (SDN). In this
paper, we provide a brief overview of SDN in the industrial automation domain and propose
a network architecture called the Software Defined Industrial Automation Network (SDIAN), with
the objective of improving network scalability and efficiency. To match the specific considerations and
requirements of having a deterministic system in an industrial network, we propose two solutions
for flow creation: the Pro-active Flow Installation Scheme and the Hybrid Flow Installation Scheme.
We analytically quantify the proposed solutions that alleviate the overhead incurred from the flow
setup. The analytical model is verified using Monte Carlo simulations. We also evaluate the SDIAN
architecture and analyze the network performance of the modified topology using the Mininet
emulator. We further list and motivate SDIAN features and report on an experimental food processing
plant demonstration featuring Raspberry Pi as a software-defined controller instead of traditional
proprietary Programmable Logic Controllers. Our demonstration exemplifies the characteristics
of SDIAN.

Keywords: controller; industry network; Open Flow; Software Defined Networking; Programmable
Logic Controller

1. Introduction

Networking large automated machines is a recent focus for industrial automation and one
challenge is the connectivity with traditional automation machinery that is not designed to support
more than local computer connectivity. Industrial networks can be highly decentralized, rigid and
complex to manage due to the tight coupling of the automation data and control plane that is often
embedded within the equipment. The computing and communication nodes are often configured
individually when the plant is setup and interconnections remain static thereafter. The traditional
industrial communications hierarchical structure consists of three network levels with various
networking technologies and protocols that limits what can be achieved and adds complexity due
to localized configuration. The traditional structure requires offline manual network control and
management, which is time-consuming, error-prone and introduces complexity. It hinders the ability
to make live changes to the configuration and feature set as the production line is shifted from one
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task to another. The resolution of medium access control (MAC) address and virtual routing address
during data forwarding in an industrial network can lead to challenges, including integrating software
and devices from different vendors.

Legacy industrial communications is a challenge to be overcome as part of the fourth-generation
industry revolution (FGIR). FGIR is underpinned by the principle of intelligent manufacturing (IM)
enabling customized production. To ensure that a smooth transition occurs between production
tasks, IM aims to reconstruct the industrial plant by decoupling the manufacturing entities. To attain
optimal production, a goal of FGIR is to utilize live monitoring of machine status, environmental
values and manufacturing parameters to carry out advanced management, control and fault detection.
The outcomes of FGIR will assist with maintenance scheduling to reduce downtime. The future
industrial network will connect a varying range of industrial machinery within one or more
locations that could change over time. To facilitate FGIR, the current heterogeneous hierarchical
localized network structure should be replaced with IP-based networking to provide flexible real-time
communications and simplified data mapping. There is also a requirement to change the configuration
of the industrial machines and production systems as the production tasks change. It is in this
context that future industrial facility networks should embrace Software-Defined Networks (SDNs)
to provide flexible programmatic capabilities. The research gap that this paper addresses is the
introduction of SDN and IP-based networking into an industrial automation setting to provide
flexibility and programmability while maintaining the features and capabilities expected for a real-time
communications environment.

1.1. Software Defined Network

SDNs [1–3] separate the networks control logic (the control plane) from the underlying routers
and switches that forward the traffic (the data plane). With the separation of the control and data
planes, network switches become simple forwarding devices, and the control logic is implemented
in a logically centralized controller, simplifying policy enforcement, and network (re)configuration
and evolution [4]. Therefore, the most promising and possibly profitable benefit of SDNs is their
potential in making the network directly programmable. SDNs become a hot topic at within
cloud and enterprise networks in about 2010. To our knowledge, SDN solutions are new to the
industrial automation domain. SDNs permit reusable configurations and designs that improve
system performance. SDNs complement and build on technologies such as industrial Ethernet [5–7],
wireless technologies [8,9], and network technologies with guaranteed timing behavior for real-time
(e.g., [10]) communication. SDNs can be characterized by: (1) decoupling the control plane from the
data plane within network devices; (2) providing programmability for network services; (3) taking
forwarding decisions based on flow instead of destination; (4) hosting control logic in an external
network component called controller or Network Operating System (NOS); and (5) running software
applications on top of the NOS to interact with the underlying data plane devices. With the realization
of the aforementioned characteristics of SDNs, the current “touch many, configure many” model is
being evolved into “touch one, configure many” [11].

1.2. Brief History of Industrial Networks

Dedicated industry networks, e.g., Fieldbus System, dominated the early days of industrial
automation. The reduction of the communication gap in the lower level of the automation pyramid
was the essence of the dedicated communication infrastructure. However, the complexity of coupling
different communication technologies and protocols used across different communication layers was
one of the fundamental motives to adopt a solution. Table 1 presents the timeline of the progression
of industrial automation networks with unsustainable disruptions that come from the evolution
of computer networks. In the 2000s, the Internet technologies evolved and became commercially
successful raising the possibility of plausible disruption with the inclusion of Ethernet-based networks
and IP. However, due to the lack of guaranteed real-time capabilities, the phenomena of having
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Ethernet-based industry networks did not occur and the emergence of dedicated industry networks
continued. Later some of the Ethernet-based approaches including Powerlink, PROFINET, EtherCAT,
to name a few, emerged to meet the low-latency requirements, in particular, for motion control
applications. In the early 2000s, network evolution occurred with the integration of wireless
networking. The IEEE 802 protocol family was aggressively adopted to realize the flexibility afforded
by connecting machines and devices wirelessly. The typical use of wireless networks in the automation
industry was limited due to the need for wired networks to provide reliable real-time communications.
We have yet to see the full use of Wireless Sensor Networks (WSN) in industry automation though it is
now a mature technology.

Until recently, industrial communication was a mixture of Fieldbus, Ethernet and wireless
solutions that has become complex, difficult to upgrade or change and remains a challenge to
be overcome before industrial automation can take a significant step forward. New networking
approaches that have evolved include the Internet of Things (IoT) and Cyber-Physical Systems (CPS),
both of which should find a place within future industrial automation solutions. The idea behind CPS
being used in industrial automation is to create an industrial ecosystem allowing more comprehensive
and more fine-grained interconnections between machines and systems. Moving business logic into
the cloud is a promising trend in the application layer of the information processing pyramid. There are
two well-known reference architectures for industrial IoT including the Reference Architecture Model
for Industry 4.0 (RAMI4.0) [12] and the Industrial Internet Reference Architecture (IIRA) [13]. RAMI 4.0
uses three dimensions including the lifecycle, physical world and the mapping of IT-based business
models in describing the space of the fourth industrial revolution. Some of the leading industry sector
companies based in Germany initiated and are driving RAMI 4.0. On the other hand, the Industrial
Internet Consortium developed IIRA in the U.S. IIRA focuses on four different viewpoints including
functional, usage, business, and implementation.

1.3. SDNs in Industrial Automation

In transitioning to a software-defined network, the key challenges involve changing the traditional
practices in industrial automation on the factory floor [14,15]. That means providing relevant
employees with the tools and knowledge to support new, more intelligent infrastructure and systems.

Cronberger [16] and Kalman et al. [17] first considered and discussed the use of SDN in industrial
automation networks. Cronberger investigated the potential of SDN through a conceptual framework
whereas Kalman et al. saw SDN as a possible evolution for future industrial Ethernet planning and
extensions towards using Layer 3 networks and wireless solutions. In 2015, we first proposed the
integration of SDN in industrial automation by reforming the current industry communication pyramid
to become a single Ethernet-based solution in a conceptual paper [14]. In [18], the authors proposed
an application-aware industrial Ethernet by exploiting the capabilities of SDN in collecting topology
information and application requirements. A newly developed routing and scheduling algorithm uses
the received information to generate network configuration autonomously. This configuration is later
installed in the network through north and southbound communication, and an enhanced TDMA
approach is used to facilitate real-time communication. D. Li et al. [15] proposed a single IP-based
solution that can respond to the dynamic change of product orders by adaptively reconfiguring the
networks. The architecture promised to guarantee real-time data transmission, enable plug-and-play,
and support wireless access with seamless handover capability. In [19] the authors reviewed SDN to
draw a correlation between the requirement of the industrial network and existing work. In [20] we
continue the evaluation of SDN for future industrial automation networks. This work extended
the Ryu controller for direct multicast routing of industrial traffic in a cyclic switched Ethernet
network setup. The experiment was conducted in an IEC 61499 compliant development environment.
The experiment result shows that there is a promising opportunity to have a flexible and reliable
network that is also suitable for real-time traffic. Table 2 summarizes the current state of the art of SDN
in industrial automation.
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Table 1. Industrial communication protocols timeline.

Industrial Communication Protocols Computer Networks

Protocol Name Published by Place Com. Tech Year Protocol Name Year

Modbus Modular Bus Modicon (now Schneider Electric) United States Master/Slave 1979 1970–1980

ARPANET 1970

Ethernet 1973

ISO/OSI 1978

PROWAY Process Data Highway Working Group 6 1981

1981–1990

MAP 1980FIP French Initiatice factory instrumentation protocol France Producer/Consumer 1982

Bitbus BIT Fieldbus Intel Corporation USA Master/Slave 1983

HART Highway Addressable Remote Transducer FieldComm Group USA Master/Slave 1985
Internet 1981

CAN Controller Area Network Robert Bosch GmbH Detroit, Michigan Producer/Consumer,
Peer to Peer 1985

P-NET Process Network Process-Data Silkeborg ApS Denmark Master/Slave 1987
MMS 1985

INTERBUS INTERBUS Phoenix Contact Germany Master/Slave 1987

PROFIBUS The Federal Ministry of Education and Research (BMBF) process field bus Germany Master/Slave,
Peer to Peer 1989 Ubiq. Comp 1988

EIB European Installation Bus (EIB) EIB Association Europe Master/Slave 1991

1991–2000

WWW 1992
Asi Actuator Sensor Interface AS-International Germany Master/Slave 1992

SDS Smart Distributed System Honeywell USA Master/Slave 1993
2G GSM 1996

DeviceNet Connecting Devices Allen-Bradley USA Producer/Consumer 1993

FF
WLAN 1997

ControlNet Real-Time Control Network Rockwell Automation USA Producer/Consumer 1995

TTP Time-Triggered-Protocol Vienna University of Technology Vienna, Austria Master/Slave 1998 IoT 1997

Powerlink Ethernet Powerlink B&R Industrial Automation GmbH Austria Producer/Consumer 2001

2001–2010

Bluetooth 2003

Modbus/TCP Modbus RTU protocol with a TCP interface that runs on Ethernet Modicon (now Schneider Electric) United States Master/Slave 2001 SOAP 2003

PROFINET Process Field Net Profibus & PROFINET International Germany Real-Time Ethernet 2001 3G: UMTS 2001

EtherCAT Ethernet for control automation technology Beckhoff Automation Germany Master/Slave 2003 ZigBee 2003

ISA 100.11a Wireless Systems for Industrial Automation International Society of Automation Worldwide NIL 2009
3G: HSPA 2005

UWB 2008

Wire. HART Wireless HART HART Communication Foundation USA Master/Slave 2007
6loWPAN 2009

4G: LTE 2010
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Table 2. Software-Defined Network Timeline.

Framework/Concept Brief Description Year
Published

Software Defined Industrial
Network [16]

Reflects the possibility of bringing programming capability in
industrial network through the use of SDN. A theoretical
framework is provided

2014

Outlook on Future Possibilities [17] Possible evolution of industrial Ethernet using SDN 2014

SDNPROFINET [14] Proposed to transform the typical communication architecture
of PROFINET integrating SDN 2015

SDN-based TDMA in IE [18] SDN approach is used to formulate an application-aware
Industrial Ethernet Based on TDMA 2016

SDIN [15]
Propose a new Software Defined Industry Network (SDIN)
architecture to achieve high reliability, low latency, and low
energy consumption in Industrial Networks

2016

Challenge and Opportunities [19] Prospect of future industrial network by means of SDN 2016

Direct Multicast Routing [20] Evaluates SDN for deterministic communication in distributed
industrial automation systems 2017

SDIAN [21] Software-defined industry automation networks 2017

1.4. Contributions

The contribution of this paper can be summarized as

1. We investigate the research gap that exists for IP-based networking in industrial automation and
introduce a novel industrial network framework based on an SDN communication architecture.

2. We propose two solutions for flow creation in relieving the incurred overhead due to the flow
setup cost in SDN.

3. We render an optimal latency model based on a meticulous flow analysis using L1-Norm
Optimization to calculate the shortest path. It verifies the quantified model using a Monte
Carlo simulation.

4. We validate the proposed scheme by running an experiment in an emulated environment using
Mininet [22].

5. We exploit the merits of the proposed framework by presenting an ongoing test bed
implementation. The investigation is conducted on a food processing demonstrator.

1.5. Paper Organization

The remainder of this paper is organized as follows. Section 2 presents the architecture,
communication framework and flow creation of SDIAN. In Section 3, we examine the flow analysis
and present an optimal latency model of the proposed solution. Section 4 exhibits the stochastic
analysis of the model formulated in Section 3. In Section 5, the network performance of the target
mesh topology is shown using a modelled emulation scenario and a report on the experimental setup
in a food processing plant demonstrator is presented. Finally, Section 6 concludes the paper. This
manuscript is the extended version of the paper presented in [21].

2. Architecture and Framework

In this section, we first introduce the architecture and three-layer SDIAN framework. Then we
describe our proposed flow installation scheme.

2.1. System Model

In this section, we present the conceptual architecture of the proposed SDIAN and the packet
dissemination model with the plant components. Figure 1 shows the remolded version of a standard
plant hierarchy that incorporates SDN features and builds an intelligent industrial automation network.
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In this transformed architecture, within the three hierarchical levels (Control Plane, Plant Level and
Field Level), traditional proprietary Programmable Logic Controllers (PLCs) are replaced with the
open Raspberry Pi (RPi) systems running the Rasbian operating system, a Linux flavor, and using
open-source language for software-defined automation control. Sensors and actuators are interfaced
with field level RPis, except the direct I/Os, which are interfaced directly within the plant level
hierarchy. A script running on the RPi-based PLCs can receive and send interrupts from the sensors
and to the actuators through I/O pins. The scripts written for the RPis replicate the behavior of
traditional PLCs. The data layer communication is illustrated using group-1 messages (1A–1E) shown
in Figure 1. In this scenario, when an object is detected on the conveyor belt, RPI-PL-1 receives
an interrupt and invokes the robotic arm via a reply interrupt. This interrupt is sent through the
output pin. In this case, the response of the arm is to deliver the object to another conveyor belt
within a limited time constraint. Likewise, group 2 messages (2A–2C) are used to present the control
layer communication. In this scenario, a remote SDIAN administrator updates control applications
deployed on the controller. After receiving updates, the controller adaptively pushes the information
to the associated RPis. Based on the updated instructions received, RPis update the data plane
behavior accordingly.
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2.2. SDIAN Communication Framework

Figure 2 shows the three-layer SDIAN communication framework. Sensors, actuators, and RPis
reside in the data plane, while the logically centralized but physically distributed controllers reside
in the control plane. RPis are responsible for receiving packets from sensors and instruct the
corresponding actuators to take actions based on the respective flow retrieved from the flow table
or corresponding controller. In this framework, RPis are connected through a mesh topology.
We deliberately use a mesh topology to map the requirements of the food processing plant, which
is presented in Section 5. In the case of a flow table miss [23], an RPi sends a Packet-In message to
the controller sitting in the control plane. After getting the Packet-In message, the controller instructs
the RPi by sending a Packet-Out/Flow-MOD message. This communication between data plane
and control plane happens through the southbound interface (SBI) of the control plane. A task or
application is created in the application (also called service management-control) plane that explicitly
uses northbound interface (NBI) to translate the business use case, network requirements and, behavior
programmatically and logically to the controller. The users are responsible for defining the attributes
of a task. Table 3 presents the summary of the different components of the SDIAN architecture.
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Table 3. SDIAN (Software Defined Industrial Automation Network) architectural components.

Component Task Layer

RPi Receive and send interrupt to sensors and actuators Data Plane

Sensors Sends an interrupt to an associated RPi immediately after sensing an object Data Plane

Actuators Executes the explicitly specified action immediately after receiving an interrupt
from RPi Data Plane

Southbound
Interface (SBI)

Interface between data and controller plane. The functions realized through
this interface include, but not limited to: (i) programmatic control of all
forwarding operations (ii) monitoring (iii) network statistics (iv) advertisement
and (v) event notification

Between Control
and Data Plane

Controller Manage/control network services. It consists of NBI and SBI agents and control
logic. A logically centralized but physically distributed Control Pane

Northbound
Interface (NBI)

Interface between application and controller plane. It typically provides
an abstract view of the network and enables direct expression of network
requirements and behavior

Between Application
and Control Plane

Applications Programs in execution that explicitly translate the business use case, network
requirements and, behavior programmatically and logically to the controller Application Plane

2.3. Creating Flows

Unlike other networks, industrial networking environments have specific considerations and
requirements to fabricate a deterministic system. These include—real-time network performance,
remote access, onsite security, reliability, and ease of use features and manageability. The unique
features, when compared to other communication environments, represent significant disparities
and pose both challenges and opportunities when implementing SDN-based industrial Ethernet
infrastructure. By the inclusion of SDN, there is an inherent opportunity to resolve the reliability,
manageability and ease of use issues that are a challenge to achieving real-time performance. Due to
the fundamental hardware attributes of switch and software implementation inefficiencies, the latency
of flow installations is higher than in traditional network installations. In the case of a flow table miss,
there is a higher latency to resolve what should be done with the first packet. From the empirical study
provided in [22], it was identified that the root causes of this high latency are as follows: (a) outbound
latency, i.e., the latency incurred due to the installation/modification/deletion of forwarding rules,
(b) inbound latency, i.e., the latency to send packet events to the controller can be high, in particular,
when the switch simultaneously processes forwarding rules received from the controller.

We provide two solutions for flow creation, from which the network administrators can determine
the appropriate flow mapping based on their predilection and the application requirements. In the
first solution, we use the innovative idea of mixing reactive and pro-active flow installation methods.
This is referred to as a Hybrid Flow Installation Scheme (HFIS). With HFIS we cater for non-real-time
traffic, in other words, delay tolerant traffic. We use two immediately deployable techniques: Flow
Engineering (FE) and Rule Offload (RO). When a switch in the control-level network of a plant receives
a packet from control and monitoring devices, it starts by performing a table lookup in the flow
table. If a match is found with a flow table entry, it applies the action set associated with the flow
as per the Open Flow 1.3 specification [22]. In the case of a table miss, when the controller receives
a Packet-In message, it first calculates the shortest route (FE) to reach the destination and then sends the
respective Packet-Out/Flow-Mod messages to all switches across this route (RO). Therefore, the packet
transmission latency is increased by only one inbound and outbound event irrespective of the number
of relay nodes it goes through before it reaches the destination.

The precise synchronization of processes underpins today’s manufacturing industry, and therefore,
the network must be enhanced to ensure consistent real-time performance in transporting deterministic
delay-sensitive traffic. Data must be prioritized based on QoS parameters to ensure that critical
information is received first. To tackle this problem, in the second solution, we propose to use
a Pro-active Flow Installation Scheme (PFIS) catering for delay-sensitive traffic by providing precise
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synchronization. In this case, we adopted the direct RO method. The controller sends the flow
installation packet for all pre-determined critical delay-sensitive traffic to the switches immediately
after switch discovery. This pre-installation happens during the convergence of the network. For further
clarification, we present the SDIAN packet dissemination model in Figures 3 and 4. In Figure 3,
the packet exchange is classified into two categories—Non-Real-Time (NRT) communication and
real-time (RT) communication. We apply HFIS for NRT and PFIS for RT. Figure 4 illustrates the
working mechanism of PFIS. Please note that in the test bed implementation the data channel and
control channel are separate, but for drawing simplification this is not portrayed in Figure 4. As shown
in Figure 4a, the switch S1 receives a data packet from a field level device. For this packet, there is
a table miss, therefore, the switch sends a control packet (Packet-In) request to the controller. Based on
the header information, the controller determines the shortest path for this packet and responds
with Packet-Out to all the intermediate switches along this path (Figure 4b). Therefore, as shown in
Figure 4c, there is no further table miss as all the intermediate switches along the path pre-install the
flow into the flow table before the packet arrives.
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3. Flow Analysis

In this section, we first illustrate the basic notation used to represent the data layer of the control
network of a plant. Since the control channel is separated from the data channel, we kept the graph
representation of the control channel out of the scope of this paper and assumed that each switch
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could reach the controller in single hop fashion using a secured and fast directly connected control
channel. Now, we formulate the shortest path routing as the flow optimization problems in a network
that is realized by the controller based on the discovered topology. Finally, we compute the model for
determining optimal latency to reach the destination.

3.1. Data Layer: Basic Notations

We represent our n-node data plane of the control network of a plant by an undirected graph,
G = (S, L, X), where S = {s1, s2,··· ,sn} is the set of switches, L is the set of links, and X is an n × n
matrix defined by

{
xij
∣∣(i, j) ∈ L

}
, where each (i, j)-th entry, denoted by xij, represents the positive

weight of a link (i, j) ∈ L. Due to the undirected nature of the graph, (i, j) and (j, i) designate the same
link, i.e., xij = xji. When (i, j)

USV Symbol Macro(s) Description
21CC ⇌ \textrightleftharpoons RIGHTWARDS HARPOON OVER LEFTWARDS HARPOON

21CD ⇍ \textnLeftarrow LEFTWARDS DOUBLE ARROW WITH STROKE

21CE ⇎ \textnLeftrightarrow LEFT RIGHT DOUBLE ARROW WITH STROKE

21CF ⇏ \textnRightarrow RIGHTWARDS DOUBLE ARROW WITH STROKE

21D0 ⇐ \textLeftarrow LEFTWARDS DOUBLE ARROW

21D1 ⇑ \textUparrow UPWARDS DOUBLE ARROW

21D2 ⇒ \textRightarrow RIGHTWARDS DOUBLE ARROW

21D3 ⇓ \textDownarrow DOWNWARDS DOUBLE ARROW

21D4 ⇔ \textLeftrightarrow LEFT RIGHT DOUBLE ARROW

21D5 ⇕ \textUpdownarrow UP DOWN DOUBLE ARROW

21D6 ⇖ \textNwarrow NORTH WEST DOUBLE ARROW

21D7 ⇗ \textNearrow NORTH EAST DOUBLE ARROW

21D8 ⇘ \textSearrow SOUTH EAST DOUBLE ARROW

21D9 ⇙ \textSwarrow SOUTH WEST DOUBLE ARROW

21DA ⇚ \textLleftarrow LEFTWARDS TRIPLE ARROW

21DB ⇛ \textRrightarrow RIGHTWARDS TRIPLE ARROW

21DC ⇜ \textleftsquigarrow LEFTWARDS SQUIGGLE ARROW

21DD ⇝ \textrightsquigarrow RIGHTWARDS SQUIGGLE ARROW

21E0 ⇠ \textdashleftarrow LEFTWARDS DASHED ARROW

21E1 ⇡ \textdasheduparrow UPWARDS DASHED ARROW

21E2 ⇢ \textdashrightarrow RIGHTWARDS DASHED ARROW

21E3 ⇣ \textdasheddownarrow DOWNWARDS DASHED ARROW

21E8 ⇨ \textpointer RIGHTWARDS WHITE ARROW

21F5 ⇵ \textdownuparrows DOWNWARDS ARROW LEFTWARDS OF UPWARDS ARROW

21FD ⇽ \textleftarrowtriangle LEFTWARDS OPEN-HEADED ARROW

21FE ⇾ \textrightarrowtriangle RIGHTWARDS OPEN-HEADED ARROW

21FF ⇿ \textleftrightarrowtriangle LEFT RIGHT OPEN-HEADED ARROW

2200 ∀ \textforall FOR ALL

2201 ∁ \textcomplement COMPLEMENT

2202 ∂ \textpartial PARTIAL DIFFERENTIAL

2203 ∃ \textexists THERE EXISTS

2204 ∄ \textnexists THERE DOES NOT EXIST

2205 ∅ \textemptyset EMPTY SET

2206 ∆ \texttriangle INCREMENT

2207 ∇ \textnabla NABLA

2208 ∈ \textin ELEMENT OF

2209 ∉ \textnotin NOT AN ELEMENT OF

220A ∊ \textsmallin SMALL ELEMENT OF

220B ∋ \textni CONTAINS AS MEMBER

220C ∌ \textnotowner DOES NOT CONTAIN AS MEMBER

220D ∍ \textsmallowns SMALL CONTAINS AS MEMBER

220F ∏ \textprod N-ARY PRODUCT

2210 ∐ \textamalg N-ARY COPRODUCT

2211 ∑ \textsum N-ARY SUMMATION

2212 − \textminus MINUS SIGN

2213 ∓ \textmp MINUS-OR-PLUS SIGN

2214 ∔ \textdotplus DOT PLUS

2215 ∕ \textDivides DIVISION SLASH

2216 ∖ \textsetminus SET MINUS

2217 ∗ \textast ASTERISK OPERATOR

2218 ∘ \textcirc RING OPERATOR

2219 ∙ \textbulletoperator BULLET OPERATOR

221A √ \textsurd SQUARE ROOT

221D ∝ \textpropto PROPORTIONAL TO

221E ∞ \textinfty INFINITY

38

L, delineate xij = 0 fabricating the weight matrix X = =
[
xij
]

into
symmetric. We also define that X is a 0-1 matrix, i.e., all links have a unit weight, therefore, G refers to
a simple graph and, X is the respective adjacency matrix.

Consider d = [s1, sn], s1, sn ∈ S denotes the source-destination switch pair in the network G and
Fd : S× S→ R+ function defines the amount of traffic ( f (d)- unit) that traverse from s1 (source) to sn

(destination) subject to the following constraints:

(1) along network links:
if (i, j) /∈ L then Fd

ij = 0 (1)

(2) along one direction:
if Fd

ij > 0 then Fd
ji = 0 (2)

(3) at source s1:

f (d) +
n

∑
k = 1

Fd
ks1

=
n

∑
j = 1

Fd
s1 j (3)

relay node i 6= s1, sn:
n

∑
j = 1

Fd
ij =

n

∑
k = 1

Fd
ki (4)

(4) at destination sn:
n

∑
k = 1

Fd
ksn

=
n

∑
j = 1

Fd
sn j + f (d) (5)

The constraint in Equation (1) ensures that for each link (i, j)
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L, Fd
ij = 0 and in particular,

for each undirected link (i, j) ∈ L, the constraint in Equation (2) says if Fd
ij > 0 then Fd

ji = 0 or

if Fd
ji > 0 then Fd

ij = 0. The traffic constraints defined in Equations (3)–(5) state that the amount of f (d)

unit traffic sent by source s1 is received by destination sn at the exact number. The amount of traffic
entering and leaving a relay switch is same.

Considering a set of intermediate or relay switches SF(d) ⊂ S and a corresponding subset of links
LF(d) ⊂ L to carry the given f (d) unit traffic from source s1 to destination sn, we induce a directed (or
oriented) sub-graph of G, GF(d) =

(
SF(d) , LF(d)

)
. GF(d) is a directed acyclic graph (DAG, we refer to it

as a routing graph) that routes the traffic from source s1 to destination sn. The traffic could split or
merge across the nodes of GF(d) to travel across multiple paths. We define Fd′ to refer the collection of
flows, in other words, all functions that satisfy the constraints in Equations (1)–(5).

In the following subsection, we derive the shortest path routing strategy by minimizing L1-norm
of traffic between a given source-destination pair. We build this model based on the fabrication of two
well-known results [24,25] presented in [26].
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Shortest Path Routing (L1-Norm Optimization)

For simplicity and clarity of notation, we assume that f (d) = 1, Fij equivalently specifies the
traffic function F(d), s1 = 1, and sn = n. Therefore, we define the following L1-norm (L1 Primal) flow
optimization problem that can be solved using linear programming (LP).

min
Fd

n

∑
i = 1

n

∑
j = 1

xijFij

s.t. (1)–(5)

(6)

To comply with the constraints specified in Equations (1)–(5), (6) can more specifically be stated as

∑
j:(i,j)∈L

Fij − ∑
k:(k,i)∈L

Fki =


1 if i = s1

0 if i, j 6= s1, sn

−1 if i = sn

(7)

where, Fij ≥ 0 and 1 ≤ i, j ≤ n.
Hence, the optimization problem presented in (6) minimized the weighted L1-norm. Based on the

flow conservation constraints presented in Equation (7), we consider the dual (L1 Dual) of (6) in terms
of Lagrange multipliers (Ui’s) to find the shortest path routing

max
U

U1 (8)

Subject to,
Un = 0 and Ui −Uj ≤ xij, ∀ij ∈ L (9)

Assuming F∗ and U∗ refer to the optimal traffic solution for the primal and dual problem
respectively, we derive the following relations between F∗ij

′s and U∗i
′s

if F∗ij > 0, then U∗i −U∗j = xij (10)

and
if F∗ij = 0, then U∗i −U∗j < xij (11)

Based on these relations, we can define the following properties of the optimal solution (U∗i
′s) of

the dual problem.

Lemma 1. Let P1 and P2 (alternative to P1) are two different paths from source (s1) to destination (sn) to carry
the traffic. If for each link (i, j) ∈ P1, U∗i −U∗j < xij then P1 is not the shortest path and U∗s1

< ∑
(i,j)∈P1

xij.

On the other hand, the alternative path P2 is a shortest path if for each link (i, j) ∈ P2, U∗i −U∗j = xij and
U∗s1

= ∑
(i,j)∈P2

xij.

It is evident from the above Lemma that for any switch Si on a shortest path, U∗si
is the shortest

path distance from the switch Si to the destination Sn. All intermediate switches including Si and Sn

are the elements of S∗
F(d) that form the shortest routing graph G∗

F(d) .

3.2. Optimal Latency Model: Hybrid

In this subsection, we derive the optimal latency model for HFIS. In HFIS, a packet traverses
across the shortest path to reach the destination switch.

Let α denotes the total latency for a packet to reach from source S1 to destination Sn, αin refers to
the inbound latency, αou is the outbound latency, α

Sk
p is the single hop propagation delay of a packet

travelling from Sk to Sk+1. We consider γ is the average time taken by a controller to process a Packet-In
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message and β is the control channel latency i.e., time taken by a Packet-In/Packet-Out message to
travel between a switch and a controller. To this end, our target is to minimize the value of α,
and therefore, the optimization model of latency can be stated as:

min
α

{
αin + αou +

m

∑
k = 1

{
α

Sk
P

}
+ 2× β + γ

}
(12)

where, m is the number of hops i.e., the total number of switches in the shortest routing graph G∗
F(d)

and Sk ∈ S∗
F(d) , where S∗

F(d) = {Si, Si+1, . . . . . . , Si+m}.
According to HFIS, only the first switch generates the packet event to the controller; then all

switches, including the first switch, along the path receive and install the flow instruction. Therefore,
there is only one inbound, one outbound, two control channels and one Packet-In resolution latency.
Considering a consistent and deterministic link state and performance among all switches, we assume
α

Sk
P
∼= α

Sk+1
P
∼= α

Sk+2
P · · · ∼= α

Sk+m
P

∼= αp, where αp is the average propagation delay, therefore, we can
rewrite Equation (12) as follows

min
α

{
αin + αou + m× αp + 2× β + γ

}
(13)

Lemma 2. During the lifetime of a packet, if it traverses across the shortest path, then latency α ∝ αp , i.e.,
α = m× αp + K, where K = αin + αou + 2× β + γ.

Lemma 2 asserts that in the entire journey of a packet, there is no more than one table miss
regardless of the number of hops across the path. Therefore, one table miss generates only one
Packet-In event incurring single inbound (αin) and outbound (αou) latency with the associated control
channel (β) and Packet-In processing time by controller (γ).

3.3. Optimal Latency Model: Pro-Active

According to the second solution, the controller will pro-actively offload the rule to all switches
immediately after the deployment of an application. A network administrator deploys an application
through the application plane. The application plane creates a particular flow and sends it to the
controller in the control plane through the northbound interface. The controller then floods the flow
across all the switches within the respective domain. The value of the associated Idle timeout and
Hard timeout [23], in this case, are set to zero i.e., Flow entry is considered permanent, and it does not
timeout unless it is removed with a flow table modification message of type OFPFC_DELETE [23].
When a switch receives a packet of this kind, the switch gets an obvious table match and therefore,
apply the action accordingly. This pre-offloading of flows eventually eradicates the control channel
communication entirely during the lifetime of a packet in the data plane.

Lemma 3. With the PFIS, if a packet travels across the shortest path, then the latency is calculated as α ∝ αp

i.e., α = m× αp + K, where K ∼=αin + αou + 2× β + γ ∼= 0.

Lemma 3 asserts that in the entire journey of a packet, there is no table miss regardless of the
number of hops across the path. Therefore, there is no Packet-In event, i.e., inbound (αin) and outbound
(αou) latency with the associated control channel (β) and Packet-In processing time by the controller
(γ) are equivalent to zero.

4. Stochastic Analysis of SDIAN

To validate the analytical approach presented in Section 3, we perform an extensive Monte
Carlo simulation with 10,000 runs. In each run, we use a randomized distribution of inbound (αin)

and outbound (αou) flow latency, control channel latency (β), data channel latency (αp) and packet
processing time (γ) by a controller. The distribution of αin and αou is fabricated from the outcome of
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a comprehensive measurement study [27,28] conducted using four types of production SDN switches.
The distribution of inbound latency is a Chi-squared distribution attributed by a mean of 1.853 ms,
a median of 0.71 ms and a standard deviation of 6.71 ms. The outbound delay is less variable and
skewed with the same mean and median of 1.09 ms and a standard deviation of 0.18 ms. Assuming the
simulation is running with a ten (10) switch control network for a single small-scale plant, the number
of hops (m) in the shortest path calculation is varied between 1 and 10 and the distribution is a normal
distribution with a mean of six (6) and standard deviation of three (3). The Round Trip Time (RTT)
between two switches (αp) and between controller and switch (β) is negligible (≈ 0.1 ms). The influx
rate of Packet-In messages from switches to the controller determines the time (β) taken by a controller
to process a packet and therefore the distribution of (β) is a normal distribution with a mean of 5.49 µs
and standard deviation of 2.86 µs.

Figure 5a–c respectively shows the histogram of the Monte Carlo simulation results of three flow
installation schemes: hybrid, reactive and pro-active. The bin size in Figure 5a,b is 5 ms whereas in
it is 0.035 ms. The ascendancy acquired by using HFIS and PFIS over the Reactive Flow Installation
Scheme (RFIS) is discernible. 95% of packets are resolved within 3.28 ms using the HFIS and within
0.19 ms using the PFIS. Table 4 presents the summary simulation result statistics as shown in Figure 5.
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Table 4. Summary statistics of stochastic analysis.

Sample Size
HFIS RFIS PFIS

10,000 10,000 10,000

Central Tendency
Mean 3.15533 9.84786 0.19091

Median 2.03766 5.40382 0.163
StErr 0.06706 0.27245 0.00119

Spread

StDev 6.7095 26.7239 0.1189
Max 88.7062 883.67201 0.598
Min 0.6773 0.6773 0.003

Range 88.0288 882.9946 0.595
Q(0.75) 3.0157 10.2242 0.264
Q(0.25) 1.5196 2.7774 0.098

Q Range 1.4960 7.4467 0.166

Shape Skewness 10.3932 15.9369 0.8368
Kurtosis 118.0304 330.8579 0.0093

Quantiles, Percentiles, Intervals
90% Interval

Q(0.05) = 1.17 Q(0.05) = 1.34 Q(0.05) = 0.04
Q(0.95) = 6.01 Q(0.95) = 24.9 Q(0.95) = 0.42

95% Interval
Q(0.025) = 1.08 Q(0.025) = 1.22 Q(0.025) = 0.03
Q(0.975) = 7.84 Q(0.975) = 35.61 Q(0.975) = 0.47

95% CI for the Mean
Upper Limit 3.0210 9.5795 0.1883
Lower Limit 3.2839 10.7175 0.1930

To see the implication of Lemma 2, we repeat the simulation with the number of switches varying
between (5 ≤ S ≤ 100). After performing all the Monte Carlo simulation runs, we average the
results obtained for each value of S as shown in Figure 6. Figure 6a shows that with HFIS, the total
flow installation latency (K = αin + αou + 2× β + γ) is constant irrespective of the network size;
therefore, the total latency (α) is directly proportional to m× αp. Figure 6b presents the latency for
RFIS. In the worst-case scenario for RFIS, each switch in a route could have packet flow table miss
with the associated flow setup cost. Therefore, the total latency is dominated by the flow installation
overhead (α ∼= K, mαp � K). The PFIS latency results are shown in Figure 6c. Since the respective flow
is installed across all switches before the arrival of any data packet, there is no table miss. As in the
HFIS case α is directly proportional to mαp with α ∼= mαp and K ∼= 0.

Discussion

The results presented in Figures 5 and 6 and Table 4, highlight that the PFIS confers the lowest
latency as the overhead from flow establishment is, in fact, close to zero. Regarding HFIS, the cost
for flow setup is constant regardless of the network size. The upper and lower limits of the 95%
Confidence Interval (CI) for HFIS in a network of ten (10) switches are 3.02 ms and 3.28 ms respectively,
indicating a stable deterministic condition. For consistent RT performance in transporting deterministic
delay-sensitive traffic, we can apply PFIS, while we can use HFIS to provision the rest of the traffic
sustaining the dynamic behavior of the SDN network. In a nutshell, the latency bound for RFIS, HFIS
and PFIS are 0.025–0.975, 1.08–7.84 and 1.22–35.61 ms respectively with 95% confidence.
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Shape 
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Quantiles, Percentiles, Intervals 

90% Interval 
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5. Experiments

In this section, we first present the network performance of the target mesh topology using
a modelled emulation scenario and then report on an experimental setup with the adaptive
configuration in a food processing plant demonstrator.
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5.1. Emulation Environment

For further validation of our proposed scheme, we run another experiment in an emulated
environment using Mininet. Although the accuracy of Mininet cannot be taken for granted particularly
for large scale topologies, the SDN community adopts it widely. In our case, we are essentially
interested in looking at the expediency of our proposed solution before we investigate it with limited
functionality in a real testbed. Therefore, we deploy a small mesh network of five (5) switches and
a Ryu controller [29] as shown in Figure 7. The Ryu controller is tailored to incorporate the three
flow installation schemes, and Spanning Tree Protocol (STP) is implemented to discard any possibility
of creating a loop. We generate the plant level network packets from openflow switch#2 (source)
to openflow switch#5 (sink) and vice versa. We varied the rate of packets generated from source to
sink and measure the latency and success rate for the three flow installation schemes. We present the
results in Figures 8 and 9. In Figure 8, we present the latency for each flow installation scheme against
a varying number of packets generated per second. The latency of RFIS increases linearly with the
increase in the number of packets while PFIS and HFIS show a similar pattern. The latency bound of
PFIS and HFIS are 1–3 ms and 3–7 ms respectively, therefore for this setup, the guaranteed delay is
<7 ms. Figure 9 shows the success rate of the three flow installation schemes against a varying packet
rate. The success rate for PFIS and HFIS varies from 98–99% and 97–99%.

From the results it was found that the HFIS retains a consistent low latency and high success rate
as well as maintaining the flexibility and dynamic behavior of SDN.
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5.2. Test Bed Implementation

The demonstrator bottling plant comprises sensors and actuators such as conveyor belts, physical
and vacuum grippers, robots and a turning table. We designed and implemented the test bed
experiment to study the performance of the proposed SDIAN model. To do so, we transformed
some parts of the demonstrator plant to be controlled by the RPis, while other parts rely on classical
PLC solutions and vendor specific robot controllers. The portion that was controlled by the RPis
includes a conveyor belt carrying bottle caps, sensors to detect when a cap arrives and a robotic arm
as an actuator that will pick the cap and restore it into the designated location. The behavior of the
sensors and actuators are determined by the controller and accordingly the script is pushed into the
RPi. In this experiment, we have replaced two of the traditional PLCs with RPI-based PLCs to control
a small set of sensors/actuators mounted on the Festo plant demonstrator. As shown in Figure 10, we
interface two RPi-based PLCs (RPI-1 and RPI-2) with one of the gear boxes from the food demonstrator
plant to get connectivity with a set of sensors and actuators. The two RPi-based PLCs are connected
to a controller through a control channel. We use a python script to read, write and process signals
from/to the I/O pin of the RPi. The python script replicates the standard behavior of traditional PLCs.
We deploy a controller application in the controller to facilitate flow control communication between
controller and RPi-based PLCs.
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Figure 11 presents the collage of a few snapshots of our test bed setup. It briefly demonstrates the
different stages of the experiment. Clockwise from top left: a python script running on an RPi-based
PLC replicates a traditional PLC, interfacing of RPis with sensors/actuators through the gear box,
a robotic arm picking the desired object based on the instruction received from the corresponding RPi,
and placing the object into a designated conveyor belt.
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Figure 11. Clockwise from top left: (a) python script (b) interfacing with gear box (c,d) task execution
by robotic arm.

The supplementary video clip demonstrates that the transformed architecture is working in
a small-scale testbed experiment.

6. Conclusions

In this paper, we have explained the characteristics of SDN in the context of industrial
automation. We highlighted the design of two flow installation schemes to precisely synchronize
the industrial automation processes as well as presenting the potential benefits and opportunities
of SDN. Furthermore, we have presented our architectural model that utilizes SDN and brought
this into the context of an ongoing demonstrator project. Future work comprises the use of our
demonstrator in current industry and academic projects. We are addressing both the challenges of the
industrial automation hardware as well as integrating SDN into the communications utilizing software
configurable devices.

Limitations of the demonstrator constrain evaluation of the proposed framework at this stage;
however, the results obtained provide support for the approach and future work. For simplification,
we limit our work to wired network technologies although it is evident that the approach could
be extended to the integration of wireless (e.g., sensor network) with the wired network to achieve
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a unified architecture. The inclusion of wireless networks will introduce challenges including the
seamless integration between the controllers across the wired and wireless domains. We also have
limited our scope to one plant; therefore, the validation of using multiple controllers across multiple
plants and the east-west communication are left unexplored and identified as future work. In the
proposed framework, each RPi-based PLC is also used as an SDN switch, in future we may consider
the use of lightweight SDN switches such as Zodiac FX, which could reduce the chance of bottlenecks
across the RPis and clearly separate the forwarding devices from underlying field level sensors
and actuators.

Supplementary Materials: The following are available online at http://www.mdpi.com/2224-2708/7/3/33/s1.
Video S1: The supplementary video clip of the demonstrator.
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