
Journal of 

Actuator Networks
Sensor and

Article

Real-Time Management of Groundwater Resources
Based on Wireless Sensors Networks

Qingguo Zhou 1,*, Chong Chen 2, Gaofeng Zhang 1, Huaming Chen 3, Dan Chen 1, Yingnan Yan 1,
Jun Shen 3,* ID and Rui Zhou 1

1 School of Information Science and Technology, Lanzhou University, Lanzhou 730000, China;
zhanggaof@lzu.edu.cn (G.Z.); chend13@lzu.edu.cn (D.C.); yanyn15@lzu.edu.cn (Y.Y.); zr@lzu.edu.cn (R.Z.)

2 College of Geophysics and Information Engineering, China University of Petroleum, Beijing 102249 China;
chenchong87@gmail.com

3 School of Computing and Information Technology, University of Wollongong, Wollongong, NSW 2522,
Australia; hc007@uowmail.edu.au

* Correspondence: zhouqg@lzu.edu.cn (Q.Z.); jshen@uow.edu.au (J.S.)

Received: 20 December 2017; Accepted: 11 January 2018; Published: 13 January 2018

Abstract: Groundwater plays a vital role in the arid inland river basins, in which the
groundwater management is critical to the sustainable development of area economy and ecology.
Traditional sustainable management approaches are to analyze different scenarios subject to
assumptions or to construct simulation–optimization models to obtain optimal strategy. However,
groundwater system is time-varying due to exogenous inputs. In this sense, the groundwater
management based on static data is relatively outdated. As part of the Heihe River Basin (HRB),
which is a typical arid river basin in Northwestern China, the Daman irrigation district was selected
as the study area in this paper. First, a simulation–optimization model was constructed to optimize
the pumping rates of the study area according to the groundwater level constraints. Three different
groundwater level constraints were assigned to explore sustainable strategies for groundwater
resources. The results indicated that the simulation–optimization model was capable of identifying
the optimal pumping yields and satisfy the given constraints. Second, the simulation–optimization
model was integrated with wireless sensors network (WSN) technology to provide real-time
features for the management. The results showed time-varying feature for the groundwater
management, which was capable of updating observations, constraints, and decision variables in real
time. Furthermore, a web-based platform was developed to facilitate the decision-making process.
This study combined simulation and optimization model with WSN techniques and meanwhile
attempted to real-time monitor and manage the scarce groundwater resource, which could be used to
support the decision-making related to sustainable management.

Keywords: groundwater management; real-time; simulation; optimization; sustainable

1. Introduction

Freshwater is a precious resource. It is essential for agriculture, domestic usage, industry, and
environment. Rapid economic growth, population growth, urbanization, and the continuous expansion
of human development have aggravated water scarcity in many basins. Owing to several unique
features (e.g., widespread and continuous availability, low development cost, and drought reliability),
groundwater has become one of the most important sources of water supplies among the available
water resources throughout the world in the last few decades. The importance of groundwater
resources increases with the continuous growth in the world’s population, which is expected to reach
11.2 billion in 2100 [1]. Therefore, it is very important to sustainably manage groundwater resources to
satisfy the increasing demand. However, because of a lack of policy making and supervision measures
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for utilization, the over-exploitation of groundwater in many areas has been extensive, altering flow
regimes and thereby becoming a threat to socio-economic development and ecological health [2].
The middle reaches of Heihe River Basin (HRB), which is located in the arid regions of Northwestern
China, have faced serious water problems [3]. In the last 30 years, the groundwater level has declined
along with the dramatic increase of agricultural pumping wells (from 3199 in 1985 to 6275 in 2005).
In the Daman irrigation district, the groundwater level has dropped 20 m due to unconstrained
groundwater exploitation. A number of studies have tried to tackle the groundwater resources
management problems using scenario analysis [4,5]. However, selecting the optimal operational
procedure or policy is extremely difficult because of the complexity of groundwater systems and
relatively limited onsite studies. To address this difficulty, it is suggested that groundwater simulation
models be linked with optimization techniques to obtain the best (or optimal) management strategy
from many possible strategies [6]. These approaches are all based on static data that cannot reflect
real-time situations. Therefore, decisions, which are made based on these approaches, are always
obsolete to some extent. On the other hand, among traditional sampling techniques related to
groundwater monitoring, the most common method is grab sampling, which can be conducted
on-site using handheld instruments. Grab sampling is subject to several disadvantages. The process is
labor-intensive and costly, and the sampling interval is quite large, which leads to sparse datasets.

With the rapid development of Information and Communications Technology (ICT), Wireless
Sensors Network (WSN) techniques have gained worldwide attention in recent years. The WSN was
already recognized as part of the Earth Observing System (EOS) by most researchers. Many famous
institutions in Geo-Information Science (United States Geological Survey (USGS), National Research
Council (NRC), National Geo-Spatial-Intelligence Agency (NGA), etc.) have considered WSN as
an extension and an important part of EOS, the International Earth Observing System, and the Global
Earth Observation System of Systems. In the field of hydrology, WSN is also an important source
of observation data. In China, the research and development of major projects and frontier fields in
the National Plan for Medium- and Long-term Science and Technology Development (2006–2020)
have emphasized WSN as an important direction. The emerging technology of WSN can be used to
mitigate the aforementioned problems due to its integrity and wireless network of sensing devices.
WSN requires little maintenance once they are deployed. The sampling interval can be from minutes
to days. Therefore, the real-time management of groundwater system should be designed in concert
with a WSN.

In this paper, we developed a real-time groundwater management system for the Daman irrigation
district in the middle reaches of the HRB. The WSN techniques were used in the system in order
to provide real-time data. We also optimized a proposed highly efficient and reliable method to
calculate the pumping yields of groundwater, subject to the constraints of the groundwater level.
A numerical model was constructed to provide objective function evaluations. A larger boundary was
selected to provide the boundary conditions for the Daman irrigation district. The contributions of this
paper include

1. developing a simulation–optimization model to analyze the groundwater level data;
2. designing and implementing an architecture of a real-time groundwater management system to

provide real-time support for decision-making.

This work is inter-disciplinary in nature. Different expertise from computer science and
environmental engineering were combined. We anticipate that this paper will contribute to research
on real-time sustainable management of groundwater resources. Findings on intelligent techniques for
sensor data collection can be found in [7].

2. Related Work

A number of studies have tried to tackle the sustainable management problems of groundwater
resources using monitor systems and model simulations [8–10]. Groundwater flow and land
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deformation was integrated in an anisotropic aquifer system. The model was applied to conduct
pumping recovery tests under various conditions in order to design groundwater pumping projects
for Shanghai, China [11]. Carmen et al. proposed a hydro-economic model to balance the trade-off
between sustainable management of groundwater resources and the cost of overexploited aquifers in
the Segura basin, Southeast Spain [12]. Huo et al. integrated a soil and water assessment tool (SWAT)
for simulating surface water and MODFLOW for simulating groundwater in order to explore the
discharge from rivers under future predictions [4]. A few optimization techniques have been used
for irrigation management [6,13–16]. Sadeghi-Tabas et al. proposed an attempt to link MODFLOW to
a multi-algorithm genetically adaptive search method (AMALGAM) to optimize pumping rates of
a groundwater system in Iran [17]. A surrogate-based approach was developed based on integrated
surface water-groundwater modeling to optimize the percentages of surface water and groundwater in
irrigation water in order to obtain a better balance between groundwater storage in the middle reaches
of HRB and the environmental flow in the lower reaches [18]. Hamid R. Safavi and Mehrdad Falsafioun
combined a genetic algorithm optimization model with scenario analysis to develop an optimal plan
for the conjunctive use of surface water and groundwater resources in Zayandehrud Basin, Iran [19].
However, these researches were based on static data, which were relatively obsolete.

As recent technology advancements have been made with WSN, environmental monitoring is
becoming feasible. Environmental sensor networks provide a powerful combination of distributed
sensing capacity, real-time data visualization and analysis, and integration with adjacent networks
and remote sensing data streams. Rundel et al. reviewed environmental sensor networks in ecological
research [20]. Lin et al. examined the relationship between home occupant behavior and indoor air
quality by collecting both sensor-based behavior data and chemical indoor air quality measurements in
smart home environments [21]. Jiang et al. [22] developed a water environmental monitoring system
based on WSN. The system auto-monitored the water temperature and pH value of an artificial lake.
This study made use of WSN to monitor the environment in real time. WSN have been integrated with
groundwater contamination transport models in a realistic simulative environment [23]. This study
focused on the contaminant transport and suggested that contaminant transport models could
benefit from WSN techniques as WSN become more sophisticated. In this study, advances in WSN,
groundwater simulations, and optimizations were integrated to sustainably manage groundwater
resources in real time.

3. Materials and Methods

3.1. Study Area

The Daman irrigation district, located in the upper part of the middle reaches of HRB, was
selected to examine the proposed groundwater management system. Located in the northwest
of China (Figure 1), the HRB is dominated by very limited (69–216 mm) precipitation but strong
evaporation (1453–2351 mm). The Heihe River flows into the middle reaches through Yingluo Gorge
hydrologic station located in the southeast area of the basin and flows out through the Zhengyi Gorge
hydrologic station located in the northwest area of the basin. About 788 pumping wells have been
constructed in the Daman irrigation district since the 1980s [24]. The groundwater level declined 20 m
in the past 20 years due to the overexploitation of groundwater. An observation well at 38.8 N and
100.4 E was constructed in the Daman irrigation district, and time series data of the groundwater
level has been obtained since the 1980s. In this work, we primarily focused on utilizing the data of
the Daman irrigation district, and the time period was set to one year. All well data were collected
and preprocessed for the structured groundwater study via the sensor network [7,25,26]. Meanwhile,
the feedback and executors, operating in the real fields, were also deployed by the remote sensor
network. We will detail the backend system design and development in the following sections.
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3.2. System Design

The scheme of the real-time groundwater management system is illustrated in Figure 2.
Recent achievements in hydrology tended to benefit from the development and application of sensor
technology, wireless communication, and information infrastructure. Six groundwater probes (HOBO
water level Logger U20-001-01 and U20-001-01-Ti) were installed in the middle reaches of the Heihe
River Basin (Figure 1) with the capability of recording the pressure of the groundwater (which could
be used to obtain the groundwater level) and the temperature of the groundwater. One of the probes
was deployed in the Daman borehole. All sensors were connected to a data logger, and the data
recording interval was setting to one hour. The groundwater depth could derive from the pressure
of the groundwater. Together with the depth of HOBO and the elevation from differential global
positioning system (GPS), the groundwater level was calculated. The observed data was relayed
to the database via the General Packet Radio Service (GPRS). The groundwater level was used by
the simulation–optimization model to generate an optimal water usage scheme in order to assist in
decision-making. The decisions would have positive or negative effects on the groundwater resources,
effects that could be later observed by the probes. As building this real-time management system of
groundwater was our first attempt, the time interval was set to one year. The observed data by HOBO
was averaged to the system time interval.
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3.3. Simplex Method

The groundwater management problem was formulated by three components: an objective
function, a set of decision variables, and constraints. The optimization problem is defined as
maximizing or minimizing the objective function, which is usually stated in terms of decision variables
subject to the specified constraints. In this study, the optimization problem was to identify the
maximum groundwater pumping rates (decision variables) in the Daman irrigation district (objective
function) subject to a specified groundwater level (constraints) at the Daman borehole. In other words,
the objective function was to maximize:

Z = CTX
Subject to, AX ≤ B

LB ≤ X ≤ UB
(1)

where Z was the pumping yields in the Daman irrigation district; CT = (c1, c2, . . . , cn)T represented
the weights of the decision variables, which were all set to 1 in this study; the superscript T stands for
vector transpose; X was the pumping rates; A represented the vector of response coefficients, which
were calculated from the response matrix method in the following section; B = (b1, b2, . . . , bp)T was
the vector of groundwater level constrains; LB and UB were the lower bound and upper bound of the
pumping rates, respectively.

3.4. Response Matrix Method

Due to the large computational cost of the numerical model, the response matrix method
was applied to transform the groundwater management problem into an optimization function
approximately. The response matrix method is briefly summarized as follows, and the interested
reader can refer to [27] for a detailed description.

The idea of the response matrix is to approximate the relations between the decision variables
and the constraints which are originally described in the numerical model by physical equations.
Suppose the groundwater level is a function of a set of pumping rates.

Hi,j,k,t = Hi,j,k,t(Qw) (2)

where Qw represents the vector of all withdrawal and/or injection rates in the Daman irrigation
district; H is the groundwater level; (i, j, k) represents a location in the three-dimensional aquifer
system; t is time.

A first-order Taylor series expansion can be applied to approximate the groundwater level at the
constraint location:

Hi,j,k,t(Qw) = H0
i,j,k,t

(
Qw0

)
+

N

∑
n=1

∂Hi,j,k,t

∂Qwn

(
Qw0

)(
Qwn − Qw0

n

)
(3)

where H0 and Qw0 represent the base (initial) condition of groundwater level and pumping rates;
∂Hi,j,k,t
∂Qwn

are the response coefficients; n is the number of decision variables.
The response coefficients are approximated as

∂Hi,j,k,t

∂Qwn
≈

∆Hi,j,k,t

∆Qwn
=

Hi,j,k,t(Qw∆n)− H0
i,j,k,t

(
Qw0)

∆Qwn
(4)

where ∆Qwn is the perturbation for the n-th decision variable; Qw∆n represents the pumping rates
after perturbation.
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3.5. Numerical Groundwater Flow Model

In this study, the response coefficients were calculated from a three-dimensional groundwater
model, which was constructed by MODFLOW. For detailed information about MODFLOW, please
refer to [28]. Several physical processes were identified as principal processes in the study area (shown
in Table 1).

Table 1. Packages used in the establishment of the groundwater model.

Physical Processes MODFLOW Packages

Irrigation and precipitation RCH [28]
Evapotranspiration EVT [28]

Groundwater exploitation Well [28]
River STR [29]

Boundary influx Well [28]

3.6. Data Collection

The management system was conducted from 1986 to 2012 with a yearly stress period due to the
availability of data. Landsat TM/ETM+ images in 1986 [30], 2000 [31], and 2007 [32] were processed to
obtain the cultivated area. Groundwater levels from 42 monitoring wells (Figure 1), an annual runoff
at Yingluo, Gaoya, and Zhengyi hydrologic stations, and irrigation and groundwater exploitation data
were used and obtained from the WestDC [33].

4. Results

4.1. Calibration

The groundwater simulation was conducted from 1986 to 2012 with yearly stress periods.
The parameters of the middle reaches of the HRB were calibrated. The calibration of the model
was accomplished by a combination procedure of the parameter estimation code PEST [34] and
a trial-and-error method. Eight sub-zones of hydraulic conductivities were identified based on the
hydrogeological map [35] and adjusted (shown in Figure 3). The observed and simulated groundwater
level at all observation wells in the middle reaches of the HRB during the calibration period indicated
a reasonable match. The calculated and observed streamflow hydrographs at Gaoya and Zhengyi
Gorge hydrologic stations basically had similar trends, with the calculated streamflow being in good
agreement with the observed ones over a yearly time step. The calculated groundwater levels and
streamflow during the simulation periods can be found in [27].
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The groundwater pumping data, irrigation data, and the cultivated areas obtained
from WestDC [33] were divided into three periods (1986–1989, 1990–2001, and 2002–2012).
Therefore, the water balance for the middle reaches of the HRB was analyzed corresponding to
the three periods (Figure 4). Figure 4 indicated that the main groundwater recharge source of the
study area was the leakage from the Heihe River, which accounted for about 50% of the total recharge
amount. Other important sources of groundwater recharge were the irrigation backflow and the lateral
inflow from the mountain area, which accounted for about 27% and 21%, respectively. The principal
sink term of the groundwater was the drainage from the groundwater to the river, which accounted
for about 80%, 67%, and 60% of the total amount in different periods. The difference between periods
represented the groundwater dynamics, which is mainly due to the different groundwater exploitations
in different periods. In addition, the figure also indicates that the groundwater system was under
negative water balance for almost 30 years.
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4.2. Optimization

The calibration results indicated a serious shortage and decreasing trend of groundwater resources
in the study area. Therefore, a test case for groundwater management was conducted and analyzed.
In our system, the optimization problem was maximizing the total groundwater pumping yields in the
Daman irrigation district subjected to groundwater level constraints at the Daman observation borehole.
Several groundwater level constraints of 1474 m, 1475 m, and 1476 m were applied (hereafter referred
as S1, S2, and S3, respectively). By analyzing the historical data, the LB and UB of the pumping yields
in all scenarios were set to be 0.05 × 108 m3/a and 1.0 × 108 m3/a respectively. In most studies, offline
data were used to sustainably manage the groundwater resources. However, the groundwater level
was observed incessantly. A WSN with HOBO water level Logger U20-001-01 was deployed to measure
and record the continuous groundwater level. A real-time system was implemented to manage the
groundwater resources by combining incessant real-time observation and optimization. The data from
1986 to 2012 were used to simulate the real-time data by inputting the simulation/optimization model at
each time step. At each time step, the groundwater level was calculated by simulating the groundwater
system. The decision variables (pumping rates) were used to adjust the simulated groundwater level
to the constraints. The optimized groundwater levels are shown in Figure 5 to indicate reasonable
control based on the constraints. Pumping yields, which were optimized in three different scenarios
with different groundwater level constraints, are shown in Figure 6. The average pumping yields
for S1, S2, and S3 were ~0.57 × 108 m3/a, ~0.2 × 108 m3/a and ~0.1 × 108 m3/a, respectively.
The annual amount of surface water diverted from the Heihe River was around 1.36 × 108 m3/a,
which was used to sustain a cultivated area of about 3.29 × 108 m2 according to the data collected
by WestDC [33]. We assume that the climate condition remains at an average level with the usual
runoff and lateral flow from the upper reaches. Under this assumption, the total cultivated area, which
could be supported by the limited water resources in the Daman irrigation district, could be calculated
considering the optimal irrigation water demand (on average ~570 mm expressed in water depth) [36].
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Therefore, the cultivated area, which could be sustained by the available water resources in S1, S2 and
S3, were ~3.38 × 108 m2, ~2.73 × 108 m2 and ~2.56 × 108 m2, respectively. However, according to the
current irrigation techniques, the average total irrigation water in the Daman Irrigation district was 601
mm expressed in water depth [36], which meant that ~0.22 × 108 m2, ~2.3 × 108 m2 and ~0.2 × 108 m2
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4.3. Real-Time Management of Groundwater Resources

The real-time management of groundwater resources was accomplished by integrating WSN
techniques, a simulation process, and optimization modeling. The simulation process was prepared
before the optimization and real-time management using offline data to calibrate and verify.
The real-time data from WSN were used to optimize the groundwater level by adjusting the pumping
rates. The management system was updated when new groundwater level observations and pumping
data became available. The decision-makers could manage the groundwater resources based on the
real-time optimization and make better decisions. Furthermore, the real-time management system
was integrated into a web-based platform (shown in Figure 7), which helped the decision-makers.
The platform emphasized the study area and the location of the borehole. By clicking the (yellow) label
for the borehole, detailed information was displayed. The observed groundwater level (dashed line
in Figure 7) was plotted based on the in-situ observation stored in the database, which was measured
and transferred by the WSN. The groundwater resource was optimized based on different groundwater
level constraints and is displayed in the chart (solid line in Figure 7). The optimized curves presented
the results of the decision based on groundwater level constraints. The observed groundwater level
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was an indicator of the management effects. Therefore, the decision-makers could make decisions at
every time step based on the real-time observations and optimizations.J. Sens. Actuator Netw. 2018, 7, x FOR PEER REVIEW  9 of 11 
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5. Conclusions

In this study, a real-time management system of groundwater resource was designed and
developed based on WSN techniques. This system was preliminarily deployed in the middle reaches
of the Heihe River Basin (HRB) to help solve the groundwater depletion problem. Daman irrigation in
the middle reaches of the HRB was selected as the pilot region. The management system contained
a correlated simulation–optimization model, which offered the optimal decision variables subject to
constraints. With the facility of WSN techniques, a real-time management system was implemented
to provide accurate decision support. Reasonable results were obtained by appropriately defining
the initial/boundary conditions and calibrating the parameters. The simulated results revealed that
Daman irrigation district have experienced a dramatic groundwater level drawdown of 20 m over the
past three decades. The optimization employed in this simplex method was proved to be effective,
controlling the groundwater level from drawdown. Under normal conditions, the cultivated area
for different scenarios, which could be sustained by the available water resources, was calculated.
Furthermore, the real-time management system was integrated into a web-based platform to ease
decision-makers’ work. In the future, we will deploy more wireless sensors and further expand the
concept of real-time management to the entire basin considering the surface water to regulate water
resources on a basin scale.
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