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Abstract: This paper presents an experimental performance assessment for localization systems using
received signal strength (RSS) measurements from a wireless sensor network. In this experimental
study, we compare two types of model-based localization methods: transceiver-based localization,
which locates objects using RSS from transmitters to receivers at known locations; and transceiver-free
localization, which estimates location by using RSS changes on known-location nodes caused by
objects. We evaluate their performance using three sets of experiments with different environmental
conditions. Our performance analysis shows that transceiver-free localization methods are generally
more accurate than transceiver-based localization methods for a wireless sensor network with high
node density.
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1. Introduction

Localization and tracking of people, robots and assets has significant benefits for logistics,
inspection and safety applications. Different sensing techniques such as vision, radio and ultrasound
have been developed. Radio-based techniques have the advantages of being robust to different lighting
conditions, being able to cover a large area and penetrate non-metal walls, etc. Among all the radio
sensing modalities, received signal strength (RSS)-based method provides a low-cost and low-power
solution [1], since RSS measurements are available in almost all standard wireless devices. In this
paper, we focus on RSS-based localization.

From a wireless sensor network perspective, radio transceivers can be attached to people and
objects, and the signal from the known-location receiver nodes of a wireless sensor network can
be used to locate and track mobile nodes that are moving or present in the sensor network area.
This is the traditional radio transceiver-based method, which uses ranging measurements between
transmitters and known-location receivers of a wireless sensor network to locate people wearing those
transmitters [2]. The other approach is the transceiver-free or “sensorless sensing” approach [3],
which uses characteristic footprint on RSS caused by object motion to detect, locate and track
objects. Radio tomographic imaging (RTI) developed by [4] uses the transceiver-free approach, and
uses the shadowing losses introduced by objects to RSS links between pairs of nodes in a wireless
sensor network to locate these objects. For radio transceiver-based and transceiver-free localization
methods, performance analysis has been performed separately, focusing either on transceiver-based
or transceiver-free localization. Little effort has been made on comparing the performance of these
two RSS-based localization methods in a systematic way. In this paper, we investigate and compare
localization accuracy of transceiver and transceiver-free localization methods using experiments
specifically designed for both methods.
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For transceiver localization, RSS has been used in both fingerprinting-based approach [5,6] and
model-based approach [2,7]. However, RSS is a low-cost sensing modality, and it suffers from multipath
effects, distorted antenna gain pattern, etc [8]. Thus, a lot of effort has been made on better modeling,
algorithms and systems to improve the accuracy and robustness of transceiver-based RSS localization
methods [2,5]. In [7], a Cramér-Rao bound (CRB) and maximum likelihood estimator (MLE) were
derived under log-normal model for RSS measurements. The MLE location estimation algorithm
was implemented in a wireless sensor network, and an extensive RSS measurement campaign
illustrated 1 to 2 m root mean squared error (RMSE) using RSS. In a more recent study [9],
the non-isotropic antenna gain pattern due to the human body effect was measured and modeled,
and an alternating gain and position estimation (AGAPE) algorithm was developed to estimate the
orientation and position of a transmitter using RSS measurements at known-location nodes. Their
experimental results show submeter level localization and tracking accuracy. In this paper, we focus
on model-based transceiver localization and implement the MLE [7] and AGAPE [9] algorithms.
We also evaluate their location estimation accuracy using three sets of experiments, and then compare
with transceiver-free localization method.

For transceiver-free localization, various methods [10–12] have been developed following
the “sensorless sensing” approach [3]. Studies in [10,11,13,14] are fingerprinting-based method,
which estimates a person’s location by comparing RSS measurements with training measurement
database. In this paper, we focus on the other approach, the model-based method, which does not rely
on extensive training, i.e., building a “radio map” training database. The model-based transceiver-free
localization was initiated by the study in [12], where a spatial elliptical model was developed to
characterize the object shadowing effects on RSS links of a wireless sensor network. RTI was then
proposed in [4], which images and locates people’s locations based on an empirical model. After that,
a variance-based RTI (VRTI) method was developed to locate and track people even through non-metal
walls [15]. Since then, different methods have been developed to improve the accuracy and robustness
of RTI and VRTI [16–21]. In this work, we implement RTI [4], VRTI [15] and subspace variance
RTI (SubVRT) [16] algorithms in outdoor, indoor and through-wall scenarios to compare with the
performance of transceiver-based localization algorithms.

We organize the paper as follows: Section 2.2 describes transceiver-based localization algorithms
including MLE and AGAPE, and Section 2.3 presents transceiver-free algorithms: RTI, VRTI and
SubVRT. Section 3 describes datasets collected from three experimental campaigns performed for both
transceiver and transceiver-free localization. We present experimental results in Section 4, and we
discuss and compare results in Section 4.3.

2. Localization Methods

In this section, we define general terms, and we present transceiver-based and transceiver-free
localization methods that we evaluate in this paper. Specifically, we discuss the classical MLE
localization algorithm proposed in [7] and the state-of-the-art location and orientation algorithm
proposed in [9] for transceiver-based localization. We also formulate model-based transceiver-free
localization algorithms RTI [4], variance-based RTI [15], and also the more recent subspace variance
radio tomography (SubVRT) [16].

2.1. Problem Statement

For a wireless sensor network with N radio receiver nodes, we use zs,i to denote the coordinate of
sensor node i for i ∈ {1, . . . , N}, and we use zo = [xo, yo]T to denote the 2-D coordinate of the object
with or without a radio transmitter. For transceiver-based localization, we use st,i to denote the RSS
transmitted from transmitter tag t and measured by node i, and the transceiver-based localization
problem is the estimation of the coordinates of the transmitter carried by the object from N RSS
measurements st,i, i ∈ {1, . . . , N}. Model-based transceiver localization uses the log-distance model to
relate RSS measurements with distances, and then estimate transmitter tag location in a trilateration
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way. Note that even though we focus on formulating localization of a single person here for simplicity,
both transceiver and transceiver-free localization methods in this paper are capable of locating multiple
persons [22].

For transceiver-free localization, people or objects to be located do not need to carry any radio
devices. However, RSS measurements from the wireless links, which the people or objects interact
with, need to be collected. We use s f ,l to denote the RSS measured at node il sent by node jl , where
il and jl are the receiver and transmitter number for link l, respectively. We assume L = N(N − 1)
directional links measure RSS, and the transceiver-free localization problem is the estimation of zo

from L RSS link measurements measured by anchor nodes of a wireless sensor network.

2.2. Transceiver-Based Localization

2.2.1. Model

For transceiver-based localization, a log-distance model [8] is usually used to relate RSS
measurements with distances. Here we use a log-distance model with the transmitter antenna gain
pattern included in the model [9].

The RSS st,i measured by node i can be modeled as [9]:

st,i = P0 − 10np log10

(
di
d0

)
+ g(αi) + η (1)

where P0 is the RSS in dBm at a reference distance d0, np is the pathloss exponent, di = ‖zs,i − zo‖ is
the distance between anchor node i at coordinate zs,i and transmitter t at coordinate zo, αi is the angle
between anchor node i and the transmitter, g(αi) is the gain pattern in dBi of the transmitter at angle
αi, and η is the model error plus noise.

Recent study in [9] shows that the human body changes the gain pattern significantly when the
transmitter is worn by a person, and the gain pattern g(αi) can be modeled as:

ĝ(α) = G1 cos(α− β) (2)

where β is the orientation (direction of maximum gain) of the transmitter, and G1 ≥ 0 is the magnitude
of the cosine function in dB. If G1 = 0, we will have a isotropic gain pattern, and Equation (1) converges
to the classical log-distance model [8]. Thus, Equation (1) may require more model parameters, but is a
more general model that can better characterize the real-world RSS-distance relation.

2.2.2. 2D MLE Algorithm

With an isotropic gain pattern assumption, g(αi) = 0, the maximum likelihood estimation (MLE)
is derived by [7] for 2D position estimation:

ẑo = arg max
zo

N−1

∑
i=0

(st,i − µ(zo))
2 (3)

where the RSS values st,i are assumed to be independent Gaussian with variance σ2, and mean µ(zo).
Since MLE can be implemented using a 2D grid search method, we also call this method 2D MLE in
this paper.

In practice, we first estimate the model parameters np and P0 in Equation (1) using linear regression
fit of RSS measurements between pairs of anchor nodes. Then we use RSS measurements between the
transmitter tag and anchor nodes to estimate the tag location MLE solution.
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2.2.3. AGAPE Algorithm

Many previous studies have found the unrealistic isotropic gain pattern assumption [5,23] in
RSS-based localization. However, it is the recent study in [9] that first develops models and algorithms
to handle, and in fact benefit from, the removal of the isotropic gain pattern assumption.

With a non-isotropic gain pattern as modeled in Equation (2), an alternating gain and position
estimation (AGAPE) algorithm [9] is developed to estimate both the position and orientation of a
person wearing a transmitter tag in a wireless sensor network.

The basic idea of the AGAPE algorithm is to first use 2D MLE solution Equation (3) as the initial
estimate of the transmitter position, and then take advantage of the first-order gain pattern model in
Equation (2) to calculate the gain pattern model parameter G1 and the orientation β:

β = −∠G(1)

G1 =
2
N
|G(1)| (4)

where G(1) is the discrete Fourier transform term G(k) = ∑N−1
i=0 g(αi)e−jαik with k = 1.

Given the gain pattern, the log-distance model Equation (1) is used to re-estimate the transmitter
position. The algorithm iterates until a misfit function is minimized. The detailed formulation and
implementation can be found in [9].

2.3. Transceiver-Free Localization

For model-based transceiver-free localization, the RTI method [4,15,16] uses RSS variations caused
by motion or presence of people or object to infer their locations. For single target, the goal of RTI is to
estimate an image of the presence of an object in the network space, which can be discretized into P
pixels x = [x1, . . . , xP]

T , where xi = 1 if the object occurs in pixel i, and xi = 0 otherwise. The center
coordinate of the pixel with the maximum value is the location estimate ẑo of the object from RTI.

2.3.1. Model

Previous studies [4,12] have shown the efficacy of a linear model to relate the object presence
image x with a RSS function denoted by y [4,15]:

y = Wx + n (5)

where n is an L-length noise vector, and W is an L× P model matrix with the weight of pixel p on link
l formulated as [4]:

Wl,p =
1√
dil ,jl

{
φ if dil ,p + djl ,p < dil ,jl + dw

0 otherwise
(6)

where dil ,jl is the Euclidean distance between two sensors il , jl on link l located at zs,il and zs,jl ; djl ,p is
the Euclidean distance between sensor jl and zp, the center coordinate of pixel p; dil ,p is the Euclidean
distance between sensor il and pixel p; dw is a tunable parameter controlling the ellipse width, and φ is
a constant scaling factor.

2.3.2. RTI Algorithms

Once we have the forward model, the localization problem becomes an inverse problem: to
estimate P dimensional position vector x from L dimensional link measurement vector y, i.e., the
vector of certain RSS function.

We present three RTI algorithms to evaluate and compare with transceiver-based localization:
shadowing-based RTI [4], variance-based RTI (VRTI) [15], and subspace variance radio tomography
(SubVRT) [16].
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Shadowing-based RTI uses the shadowing effect of the human body on correlated RSS link
measurements to infer people’s location. The RSS function y used in shadowing-based RTI is the
absolute change of RSS with respect to an averaged RSS measured at empty-area calibration period:

yn,l = |sn,l −
1
M

M−1

∑
i=0

si,l | (7)

where sn
n,l is the RSS at time n for link l, and M is the length of the calibration period. Note that since

it is the shadowing-based RTI that first introduced the concept of RTI to the research community,
researchers often simply call it RTI, and we also use RTI to represent shadowing-based RTI in this paper.

RTI works well for outdoor environments, but it fails to image people’s location at through-wall
situations. Then VRTI is proposed by using the variance of RSS measurements in the RTI framework.
It turns out that VRTI is capable of locating human motion even through walls. For VRTI, the RSS
function y is the windowed RSS variance:

yn,l =
1

m− 1

m−1

∑
i=0

(s̄n,l − sn−i,l)
2 (8)

where s̄n,l =
1
m ∑m−1

i=0 sn−i,l is the sample average in a time window with length m.
RTI and VRTI have different RSS function y, but they use the same inversion formulation.

Their Tikhonov regularized solution is given as:

x̂ = (WTW + αQTQ)−1WTy (9)

where α is a regularization parameter, and Q is the Tikhonov matrix, which is calculated by using the
difference operations in both the vertical and horizontal directions of an image, as discussed in [15].

VRTI works even through walls, but it is sensitive to all motion including environment intrinsic
motion [16]. To make VRTI more robust to environmental noise, a subspace decomposition solution is
applied to VRTI, and the SubVRT algorithm is developed. In SubVRT, principal component analysis
is used to build an intrinsic subspace and an extrinsic subspace from the covariance matrix of link
measurement vector. The SubVRT solution is formulated as:

x̂ = (WTW + αQTQ)−1WT(I − ÛÛT)y (10)

where ÛÛT is the projection matrix to the intrinsic subspace, and I − ÛÛT is the projection matrix to
the extrinsic subspace. Note that, in subspace decomposition, a lower dimensional space spanned by
principal components Û = [u1, u2, · · · , uk] with the cut-off parameter k represents the space containing
the majority of the intrinsic noise, as described in [21].

3. Experiments

3.1. Experiment Campaigns

We use experimental datasets from three experiment campaigns in this paper. In these
experiments, we use Memsic TelosB nodes originally developed by UC Berkeley as our radio
hardware [24]. We have recorded RSS measurements between a transmitter tag and anchor nodes for
transceiver localization, as well as pair-wise RSS measurements between each two anchor nodes for
transceiver-free localization. These experiments were performed at outdoor, indoor and through-wall
scenarios, which cover a variety of multipath effects and environmental noise conditions:

• Experiment 1: The first experiment was performed in a 6.4 m by 6.4 m area outside the Merrill
Engineering Building of the University of Utah. The area is surrounded by 28 TelosB nodes
deployed at known locations near trees and 3 m away from the building wall. A person worn
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a TelosB node in the middle of his chest and walked around a marked path at a constant speed
of about 0.5 m/s. This outdoor experiment dataset was first reported in [9], and details can be
found there.

• Experiment 2: The second experiment was an indoor experiment performed inside the Warnock
Engineering Building of the University of Utah. A 6.1 m by 6.1 m area was surrounded by
20 TelosB nodes with an interdistance of 0.91 m (3 feet) between each two anchor nodes. A person
wearing a TelosB node walked clockwise twice around a 2.7 m by 2.7 m square, as shown as the
purple line in Figure 2. The experiment was performed in the building lounge area, during which
students occasionally walked outside the peripheral area of the sensor network. This experiment
is first reported by this paper.

• Experiment 3: The third experiment was a through-wall experiment, in which 34 TelosB nodes were
deployed outside the living room of a residential house, as shown in Figure 1. A person wearing a
transmitter walked four times around a 3.6 m by 3.6 m square in the living room. The experiment
was performed in a dynamic environment, where wind caused tree branches and leaves to sway
and introduced instrinsic noise [21] to the experiment. This experiment was performed by [21],
but the transceiver-based experimental dataset is first reported in this paper.

Version July 17, 2016 submitted to J. Sens. Actuator Netw. 6 of 10

Table 1. Experimental results from three experiments (unit in meter)2.

Experiment Model parameters 2D MLE AGAPE RTI VRTI SubVRT
np P0 RMSE std RMSE std RMSE std RMSE std RMSE std

Experiment 1 1.67 48.6 2.64 n/a 0.87 n/a 0.41 0.12 0.62 0.24 0.61 0.25
Experiment 2 2.28 19.8 1.86 0.78 1.69 0.60 0.33 0.14 0.74 0.33 0.72 0.32
Experiment 3 3.22 30.5 2.10 0.77 2.05 0.78 n/a n/a 1.89 0.43 0.77 0.38
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3.2. Network Testbed and Experiment Procedure

All three experiments use the same radio hardware, network protocol and follow the same
procedure for transceiver and transceiver-free localization. TelosB nodes were used as network anchor
nodes and also mobile node. In all experiments, anchor nodes were deployed at fixed locations, and
one mobile node (transmitter tag) was worn by a person in the middle of their chest. All TelosB nodes
were programmed with TinyOS program Spin [25], and a basestation connected to a laptop was used
to collect pairwise RSS measurements from all these nodes (including the radio transmitter carried by
experiment participant). During the experiment, a person wearing the radio transmitter on their chest
walked around a marked path a few times. Before people started walking in the area, a calibration was
performed with no people in the experimental area. A metronome and a metered path were used to
keep the walking speed constant so that the position of the person at any particular time was known.
Note that the RSS measurements st,i recorded by anchor node i for transceiver-based localization, and
the RSS measurements s f ,l of link l from the network for transceiver-free localization were recorded
simultaneously by the network testbed system. Thus, the environmental conditions are the same for
the transceiver-based and transceiver-free localization, which ensures a fair comparison between these
two localization methods.
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4. Experimental Results

4.1. Metrics

We compare the performance of transceiver localization algorithms 2D MLE and AGAPE with
transceiver-free localization algorithms RTI, VRTI and SubVRT, in term of accuracy and precision in
this section.

To quantify location estimation precision, we use the standard deviation of the estimation error.
In addition, we use the root mean squared error (RMSE) of the position estimates, to quantify accuracy:

RMSE =

√√√√ 1
K

K−1

∑
k=0

(x̂k − xo)2 + (ŷk − yo)2 (11)

where x̂k, ŷk are estimated coordinates at time k, and xo, yo are actual coordinates.

4.2. Results

In this section, we present and compare localization results from transceiver-based methods (2D
MLE and AGAPE algorithms) and transceiver-free methods (RTI, VRTI and SubVRT algorithms).
We summarize the RMSEs and standard deviations from three sets of experiments in Table 1. We also
list path-loss model parameters np and P0 showing different environment conditions.

Table 1. Experimental results from three experiments (unit in meter) 1.

Experiment Model Parameters 2D MLE AGAPE RTI VRTI SubVRT

np P0 RMSE std RMSE std RMSE std RMSE std RMSE std

Experiment 1 1.67 48.6 2.64 n/a 0.87 n/a 0.41 0.12 0.62 0.24 0.61 0.25

Experiment 2 2.28 19.8 1.86 0.78 1.69 0.60 0.33 0.14 0.74 0.33 0.72 0.32

Experiment 3 3.22 30.5 2.10 0.77 2.05 0.78 n/a n/a 1.89 0.43 0.77 0.38
1: For Experiment 1, we use experimental results reported in [9], which does not contain standard
deviation of the position estimate. For Experiment 3, RTI in [4] does not work in the through-wall
scenario. We leave those items as n/a.

4.2.1. Transceiver Localization Results

For the outdoor Experiment 1, the 2D MLE with an isotropic gain pattern assumption has an
RMSE of 2.64 m, as reported by [9]. The large bias is due to the fact that the human body significantly
changes the transmitter antenna gain pattern, and the gain pattern has strong directionality. With the
addition of a gain pattern model in Equation (2), the AGAPE algorithm is able to achieve an RMSE
of 0.87 m.

For indoor Experiment 2 first reported in this paper, we show position estimates from 2D MLE
and AGAPE, together with the likelihood function of MLE at a particular time, in Figure 2a. We see
the 2D MLE solution corresponds to the maximum of the likelihood function (or the minimum of
a cost function), which is biased towards the walking direction of the person, the same as the outdoor
Experiment 1. We also see that the AGAPE algorithm estimates both position and orientation of the
person. The orientation of the person was facing right at that moment, and the AGAPE estimate has
a bias less than 20◦. The AGAPE position estimate is better than the 2D MLE estimate. However,
AGAPE does not perform as accurate as the outdoor experiment, due to the multipath effect of the
indoor environment.

For the through-wall Experiment 3, 2D MLE and AGAPE both have RMSE larger than 2 m.
From the histogram of AGAPE estimate errors in Figure 3a, we see that there are several position
estimate errors that are larger than 4 m, which is due to the ambiguity problem of AGAPE. That is,
AGAPE has the orientation β and gain pattern parameter G1 to estimate, in addition to position
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estimate. Thus AGAPE can converge to an incorrect position with an incorrect estimate of orientation,
due to the noisy RSS measurements and the modeling error in Equations (1) and (2). We observe this
ambiguity problem happened when the person wearing an RFID badge was close to walls. The close
proximity of walls could change the transmitter gain pattern, and thus introduce error to the first
order gain pattern model. Overall, AGAPE does not have much improvement compared to MLE in
Experiment 3.

(a)
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Figure 2. Transceiver and transceiver-free localization results in Exp. 2: (a) MLE likelihood together
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Figure 2. Transceiver and transceiver-free localization results in Exp. 2: (a) MLE likelihood together
with MLE and AGAPE estimates; (b) RTI image and estimate (anchor node positions (•); actual person
positions (×); AGAPE position estimate (�); 2D MLE estimate (�); AGAPE orientation estimate (⇒));
RTI position estimate (N).
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and 2. Since RTI does not work at through-wall environments, we only run VRTI and SubVRT on229

Experiment 3. For the outdoor Experiment 1, all three algorithms achieve submeter accuracy. RTI has230

the best performance, an RMSE of 0.41 m. VRTI and SubVRT have slightly higher RMSE, 0.62 m and231
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environment noise, thus SubVRT does not have much improvement upon VRTI.234

For Experiment 2, one snapshot of RTI image and position estimate is shown in Figure 2(b). The235

image pixel with the maximum pixel value indicates the RTI position estimate. From Table 1, we see236

that the same as Experiment 1, RTI also has the lowest RMSE 0.33 m, compared to 0.74 m RMSE from237

VRTI and 0.72 m RMSE from SubVRT. The histogram of RTI estimate errors is shown in Figure 3(b).238

All RTI estimates have error less than 0.8 m.239

For Experiment 3, RTI does not work at the through-wall scenario, so we only present VRTI and240

SubVRT results. Due to the intrinsic environmental noise caused by movement of tree leaves and241

branches due to wind [16], VRTI has an RMSE of 1.89 m, much larger than those of Experiments 1242

and 2. However, SubVRT uses subspace decomposition method to make transceiver-free localization243

more robust to the intrinsic noise. SubVRT has an RMSE of 0.77 m, 59% lower than VRTI. Note that in244
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and SubVRT algorithms. For Experiment 1, both the AGAPE algorithm and RTI algorithm achieves252

Figure 2. Transceiver and transceiver-free localization results in Experiment 2: (a) Likelihood function
for maximum likelihood estimator (MLE) together with MLE and alternating gain and position
estimation (AGAPE) estimates; (b) Radio tomographic imaging (RTI) image and estimate (anchor node
positions (•); actual person positions (×); AGAPE position estimate (�); 2D MLE estimate (�); AGAPE
orientation estimate (⇒)); RTI position estimate (N).

4.2.2. Transceiver-Free Localization Results

For transceiver-free localization, we run RTI, VRTI and SubVRT on data from Experiments 1
and 2. Since RTI does not work at through-wall environments, we only run VRTI and SubVRT on
Experiment 3. For the outdoor Experiment 1, all three algorithms achieve submeter accuracy. RTI has
the best performance, an RMSE of 0.41 m. VRTI and SubVRT have slightly higher RMSE, 0.62 m and
0.61 m respectively, since they both need to calculate variance during a time window, and thus their
estimates are sometimes lagged behind the true position. Experiment 1 does not have much intrinsic
environment noise, thus SubVRT does not have much improvement upon VRTI.

For Experiment 2, one snapshot of RTI image and position estimate is shown in Figure 2b.
The image pixel with the maximum pixel value indicates the RTI position estimate. From Table 1,
we see that the same as Experiment 1, RTI also has the lowest RMSE 0.33 m, compared to 0.74 m RMSE
from VRTI and 0.72 m RMSE from SubVRT. The histogram of RTI estimate errors is shown in Figure 3b.
All RTI estimates have error less than 0.8 m.

For Experiment 3, RTI does not work at the through-wall scenario, so we only present VRTI and
SubVRT results. Due to the intrinsic environmental noise caused by movement of tree leaves and
branches due to wind [16], VRTI has an RMSE of 1.89 m, much larger than those of Experiments 1
and 2. However, SubVRT uses subspace decomposition method to make transceiver-free localization
more robust to the intrinsic noise. SubVRT has an RMSE of 0.77 m, 59% lower than VRTI. Note that in
SubVRT, we use k = 10 for Experiments 1 and 2, and k = 40 for Experiment 3, since there is not much
intrinsic motion in the first two experiments, while a lot of environment noise exists in Experiment 3,
as explained in [16].



J. Sens. Actuator Netw. 2016, 5, 13 9 of 11

(a)

Version July 17, 2016 submitted to J. Sens. Actuator Netw. 9 of 10

(a)
0 1 2 3 4 5

Localization Error (m)
0

10

20

30

40

50

60

Oc
cu

rr
en

ce

(b)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Localization Error (m)
0

5

10

15

20

25

30

35

40

45

Oc
cu

rr
en

ce

Figure 3. (a) Histogram of position estimate errors from AGAPE in Exp. 2; (b) Histogram of position
estimate errors from RTI in Exp. 2.

submeter localization accuracy. However, the RMSE from RTI is 0.41 m, 52.8% lower than the 0.87 m253

RMSE from AGAPE. For Experiment 2, the RMSE from RTI is 0.33 m, 80.5% more accurate than254

AGAPE. The histogram of position errors from RTI and AGAPE are shown in Figure 3(a) and (b),255

respectively. The RTI errors are all below 0.8 m, and the error standard deviation is 0.14 m. The256

AGAPE position error has a bimodal histogram, with one mode centered around 1 m, and the other257

mode of errors larger than 4 m. The large errors of AGAPE are due to the ambiguity problem, in which258

AGAPE converges to a wrong position with a wrong orientation estimate, due to indoor multipath259

effect. For the through-wall Experiment 3, the path-loss model parameter np = 3.22 is much larger260

than those from the first two experiments, due to the attenuation of walls. However, SubVRT still261

achieves submeter accuracy, an RMSE of 0.77 m, which is over 60% more accurate than AGAPE262

and MLE. In sum, the transceiver-free localization algorithms RTI, VRTI and SubVRT outperform263

transceiver-based localization algorithms MLE and AGAPE in both accuracy and precision, based on264

three sets of experiments at indoor and outdoor environments.265

Comparing the transceiver and transceiver-free localization methods based on three266

experiments, we reach a counter-intuitive result: radio tomographic imaging (RTI)-based267

transceiver-free localization methods are more accurate and precise than transceiver-based methods268

2D MLE and AGAPE, even though RTI does not require people to carry any transceivers. However, if269

we compare the quantities of RSS measurements used in each method, we may understand the reason270

why RTI achieves better performance. The transceiver-based methods only use the RSS received at the271

anchor nodes from the transmitter in the localization algorithms. For a network with N anchor nodes,272

AGAPE and MLE only use N RSS measurements. However, RTI uses all pairwise link measurements273

from anchor nodes, that is N(N − 1) RSS measurements, if the basestation can reach all nodes in the274

network. Take Experiment 1 for example, AGAPE achieves 0.87 m RMSE localization accuracy using275

28 RSS measurements for each estimate, but RTI uses 756 RSS measurements, which is over an order276

of magnitude higher than AGAPE. In addition, all three experiments use a wireless sensor network277

with relatively high node density. The node densities for Experiments 1, 2 and 3 are 0.68, 0.54 and278

0.46 node per m2, respectively. For a network with low node density, the performance of RTI may be279

downgraded significantly. We leave it as future work.280
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Figure 3. (a) Histogram of position estimate errors from AGAPE in Exp. 2; (b) Histogram of position
estimate errors from RTI in Exp. 2.

submeter localization accuracy. However, the RMSE from RTI is 0.41 m, 52.8% lower than the 0.87 m253

RMSE from AGAPE. For Experiment 2, the RMSE from RTI is 0.33 m, 80.5% more accurate than254

AGAPE. The histogram of position errors from RTI and AGAPE are shown in Figure 3(a) and (b),255

respectively. The RTI errors are all below 0.8 m, and the error standard deviation is 0.14 m. The256

AGAPE position error has a bimodal histogram, with one mode centered around 1 m, and the other257

mode of errors larger than 4 m. The large errors of AGAPE are due to the ambiguity problem, in which258

AGAPE converges to a wrong position with a wrong orientation estimate, due to indoor multipath259

effect. For the through-wall Experiment 3, the path-loss model parameter np = 3.22 is much larger260

than those from the first two experiments, due to the attenuation of walls. However, SubVRT still261

achieves submeter accuracy, an RMSE of 0.77 m, which is over 60% more accurate than AGAPE262

and MLE. In sum, the transceiver-free localization algorithms RTI, VRTI and SubVRT outperform263

transceiver-based localization algorithms MLE and AGAPE in both accuracy and precision, based on264

three sets of experiments at indoor and outdoor environments.265

Comparing the transceiver and transceiver-free localization methods based on three266
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4.3. Comparison and Discussion

From the above section, we see AGAPE outperforms 2D MLE in all three experiments, while
for transceiver-free localization, RTI has the best performance for Experiments 1 and 2, and SubVRT
is the best for Experiment 3. Now we compare transceiver localization algorithm AGAPE with RTI
and SubVRT algorithms. For Experiment 1, both the AGAPE algorithm and RTI algorithm achieves
submeter localization accuracy. However, the RMSE from RTI is 0.41 m, 52.8% lower than the 0.87 m
RMSE from AGAPE. For Experiment 2, the RMSE from RTI is 0.33 m, 80.5% more accurate than AGAPE.
The histogram of position errors from RTI and AGAPE are shown in Figure 3a,b, respectively. The
RTI errors are all below 0.8 m, and the error standard deviation is 0.14 m. The AGAPE position error
has a bimodal histogram, with one mode centered around 1 m, and the other mode of errors larger
than 4 m. The large errors of AGAPE are due to the ambiguity problem, in which AGAPE converges to a
wrong position with a wrong orientation estimate, due to indoor multipath effect. For the through-wall
Experiment 3, the path-loss model parameter np = 3.22 is much larger than those from the first two
experiments, due to the attenuation of walls. However, SubVRT still achieves submeter accuracy, an
RMSE of 0.77 m, which is over 60% more accurate than AGAPE and MLE. In sum, the transceiver-free
localization algorithms RTI, VRTI and SubVRT outperform transceiver-based localization algorithms
MLE and AGAPE in both accuracy and precision, based on three sets of experiments at indoor and
outdoor environments.

Comparing the transceiver and transceiver-free localization methods based on three experiments,
we reach a counter-intuitive result: RTI-based transceiver-free localization methods are more accurate
and precise than transceiver-based methods 2D MLE and AGAPE, even though RTI does not require
people to carry any transceivers. However, if we compare the quantities of RSS measurements
used in each method, we may understand the reason why RTI achieves better performance.
The transceiver-based methods only use the RSS received at the anchor nodes from the transmitter
in the localization algorithms. For a network with N anchor nodes, AGAPE and MLE only use N
RSS measurements. However, RTI uses all pairwise link measurements from anchor nodes, that is
N(N − 1) RSS measurements, if the basestation can reach all nodes in the network. Take Experiment
1 for example, AGAPE achieves 0.87 m RMSE localization accuracy using 28 RSS measurements for
each estimate, but RTI uses 756 RSS measurements, which is over an order of magnitude higher than
AGAPE. In addition, all three experiments use a wireless sensor network with relatively high node
density. The node densities for Experiments 1, 2 and 3 are 0.68, 0.54 and 0.46 node per m2, respectively.
For a network with low node density, the performance of RTI may be downgraded significantly.
We leave this investigation as work to be undertaken in the future.
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