
Journal of

Actuator Networks
Sensor and

Article

Enhanced Distributed Dynamic Skyline Query for
Wireless Sensor Networks
Khandakar Ahmed 1,2,3,*, Nazmus S. Nafi 4,† and Mark A. Gregory 4,†

1 School of Electrical and Computer Engineering, RMIT University, Melbourne, VIC 3000, Australia
2 Melbourne Institute of Technology, Melbourne VIC 3000, Australia
3 Department of Computer Science & Engineering, Shahjalal University of Science & Technology,

Sylhet-3114, Bangladesh
4 School of Electrical and Computer Engineering, RMIT University, Melbourne, VIC 3000, Australia;

nazmusshaker.nafi@rmit.edu.au (N.S.N.); mark.gregory@rmit.edu.au (M.A.G.)
* Correspondence: khandakar.ahmed@rmit.edu.au or kahmed@academic.mit.edu.au or tanvir-cse@sust.edu;

Tel.: +61-3-9925-1180 (ext. 51180)
† These authors contributed equally to this work.

Academic Editor: Stefan Fischer
Received: 16 November 2015; Accepted: 28 January 2016; Published: 3 February 2016

Abstract: Dynamic skyline query is one of the most popular and significant variants of skyline query
in the field of multi-criteria decision-making. However, designing a distributed dynamic skyline
query possesses greater challenge, especially for the distributed data centric storage within wireless
sensor networks (WSNs). In this paper, a novel Enhanced Distributed Dynamic Skyline (EDDS)
approach is proposed and implemented in Disk Based Data Centric Storage (DBDCS) architecture.
DBDCS is an adaptation of magnetic disk storage platter consisting tracks and sectors. In DBDCS, the
disc track and sector analogy is used to map data locations. A distance based indexing method is used
for storing and querying multi-dimensional similar data. EDDS applies a threshold based hierarchical
approach, which uses temporal correlation among sectors and sector segments to calculate a dynamic
skyline. The efficiency and effectiveness of EDDS has been evaluated in terms of latency, energy
consumption and accuracy through a simulation model developed in Castalia.

Keywords: wireless sensor networks; distributed data centric storage; skyline query; sector based
distance routing; uniform distribution; lower bound distribution; and upper bound distribution

1. Introduction

WSNs have successfully been validated as a very economic and effective platform for monitoring
diverse physical environments from remote locations. Various types of query techniques have been
developed over WSNs including min-max [1], top-k [2,3] and skyline [4]. Skyline and its variants such
as traditional skyline [5] and dynamic skyline [6–8] have been applied in many multiple criteria decision
making applications. Traditional skyline (TS) retrieves all of the points, which are not dominated by
others, from a set of points [9]. Given a dataset X, a point x1 dominates x2, if x1 is not worse than
x2 for each dimension i P l (i.e., x1[i] ď x2[i]), and x1 is better than x2 for at least one dimension
m P l (x1[m] < x2[m]). Figure 1a shows an example, where each point is drawn taking two dimensions i
and j as coordinators; points x1, x3, x6 and x10 are in the skyline set considering that a point with the
least value for each dimension is desirable.

Dynamic skyline (DS) retrieves a set of points that are not dynamically dominated by others with
respect to a data point q denoted by DS (q, X)) [10]. A point x1 dynamically dominates x2 with respect
to q if for each dimension in i P l, |x1 ris ´ q ris| ď |x2 ris ´ q ris| and for at least one dimension in m P l,

J. Sens. Actuator Netw. 2016, 5, 2; doi:10.3390/jsan5010002 www.mdpi.com/journal/jsan

http://www.mdpi.com/journal/jsan
http://www.mdpi.com
http://www.mdpi.com/journal/jsan

J. Sens. Actuator Netw. 2016, 5, 2 2 of 22

|x1 rms ´ q rms| ă |x2 rms ´ q rms|. In Figure 1b, points x1, x2 and x4 are the dynamic skyline points of q.
Each point xi = (xi[j], xi[i]) is transformed to xi

1 = (xi[j]´q[j], xi[i]´q[i]).

J. Sens. Actuator Netw. 2016, 5, 2 2 of 21

 mqmxmqmx
21

. In Figure 1b, points x1, x2 and x4 are the dynamic skyline points of q. Each

point xi = (xi[j], xi[i]) is transformed to xi′ = (xi[j]-q[j], xi[i]-q[i]).

j

i

x1

x10

x3

x6

x5 x7

x4

x8

x9

j

i

x1
x10

x3

x6

x5

x7

x2

x8

x9

X4'

X1'

q

X2'
X4 X6'x2

(a) (b)

Figure 1. (a) TS and (b) DS (q, X).

Skyline query is very useful in multi-preference analysis and decision making for environmental

monitoring applications. For example, in a WSN deployed in a forest with each sensor node sensing

temperature and wind speed, it is possible to build a fast and energy efficient forest fire detection

method [11] by concentrating on places with high temperature or fast wind speed, or both. To

illustrate the idea of dominance relations in this scenario, consider the readings in the two-

dimensional attribute space shown in Figure 2 depicting a typical example of ranking objects by more

than one criterion. Figure 2a lists nine records received from nine corresponding sensor nodes

deployed in different places and their values. Figure 2b depicts the representation in a 2D space.

Places P1, P2, P3, P5, and P6 are all dominated by other points so the skyline query returns the points

that are not dominated by any other points. Consider the point P5 that is dominated by P7, as it has a

higher wind speed than P5 though both have the same temperature. The skyline query only retrieves

the dominant places in terms of higher temperature and wind speed. The skyline query will not

exhibit any place with lower temperature and wind speed once it is dominated by a location with

higher values. Therefore, the result set of the skyline query consists of {P4, P7, P8, P9}, which are

indicators of dangerous places that need special attention.

Temperature

W
in

d
 s

p
ee

d

Points

P1

P2

P3

P4

P5

P6

P7

P8

P9

Wind speed

9

6

3

1.5

4.5

7

8

9

10

Temperature

1

2

5

9.5

9.0

6

9

7

5

P6

P4

P1

P2

P3

P5

P7

P8
P9

(a) (b)

Figure 2. (a) Skyline of sensor readings, (b) Representation of sensor readings in 2D space [11].

Another example that demonstrates the usefulness of DS can be found when monitoring the air

pollution in a region of interest. A high concentration of CO or SO2, or both, can be a strong indication

Figure 1. (a) TS and (b) DS (q, X).

Skyline query is very useful in multi-preference analysis and decision making for environmental
monitoring applications. For example, in a WSN deployed in a forest with each sensor node sensing
temperature and wind speed, it is possible to build a fast and energy efficient forest fire detection
method [11] by concentrating on places with high temperature or fast wind speed, or both. To illustrate
the idea of dominance relations in this scenario, consider the readings in the two-dimensional attribute
space shown in Figure 2 depicting a typical example of ranking objects by more than one criterion.
Figure 2a lists nine records received from nine corresponding sensor nodes deployed in different places
and their values. Figure 2b depicts the representation in a 2D space. Places P1, P2, P3, P5, and P6 are
all dominated by other points so the skyline query returns the points that are not dominated by any
other points. Consider the point P5 that is dominated by P7, as it has a higher wind speed than P5

though both have the same temperature. The skyline query only retrieves the dominant places in
terms of higher temperature and wind speed. The skyline query will not exhibit any place with lower
temperature and wind speed once it is dominated by a location with higher values. Therefore, the
result set of the skyline query consists of {P4, P7, P8, P9}, which are indicators of dangerous places that
need special attention.

J. Sens. Actuator Netw. 2016, 5, 2 2 of 21

 mqmxmqmx
21

. In Figure 1b, points x1, x2 and x4 are the dynamic skyline points of q. Each

point xi = (xi[j], xi[i]) is transformed to xi′ = (xi[j]-q[j], xi[i]-q[i]).

j

i

x1

x10

x3

x6

x5 x7

x4

x8

x9

j

i

x1
x10

x3

x6

x5

x7

x2

x8

x9

X4'

X1'

q

X2'
X4 X6'x2

(a) (b)

Figure 1. (a) TS and (b) DS (q, X).

Skyline query is very useful in multi-preference analysis and decision making for environmental

monitoring applications. For example, in a WSN deployed in a forest with each sensor node sensing

temperature and wind speed, it is possible to build a fast and energy efficient forest fire detection

method [11] by concentrating on places with high temperature or fast wind speed, or both. To

illustrate the idea of dominance relations in this scenario, consider the readings in the two-

dimensional attribute space shown in Figure 2 depicting a typical example of ranking objects by more

than one criterion. Figure 2a lists nine records received from nine corresponding sensor nodes

deployed in different places and their values. Figure 2b depicts the representation in a 2D space.

Places P1, P2, P3, P5, and P6 are all dominated by other points so the skyline query returns the points

that are not dominated by any other points. Consider the point P5 that is dominated by P7, as it has a

higher wind speed than P5 though both have the same temperature. The skyline query only retrieves

the dominant places in terms of higher temperature and wind speed. The skyline query will not

exhibit any place with lower temperature and wind speed once it is dominated by a location with

higher values. Therefore, the result set of the skyline query consists of {P4, P7, P8, P9}, which are

indicators of dangerous places that need special attention.

Temperature

W
in

d
 s

p
ee

d

Points

P1

P2

P3

P4

P5

P6

P7

P8

P9

Wind speed

9

6

3

1.5

4.5

7

8

9

10

Temperature

1

2

5

9.5

9.0

6

9

7

5

P6

P4

P1

P2

P3

P5

P7

P8
P9

(a) (b)

Figure 2. (a) Skyline of sensor readings, (b) Representation of sensor readings in 2D space [11].

Another example that demonstrates the usefulness of DS can be found when monitoring the air

pollution in a region of interest. A high concentration of CO or SO2, or both, can be a strong indication

Figure 2. (a) Skyline of sensor readings, (b) Representation of sensor readings in 2D space [11].

J. Sens. Actuator Netw. 2016, 5, 2 3 of 22

Another example that demonstrates the usefulness of DS can be found when monitoring the air
pollution in a region of interest. A high concentration of CO or SO2, or both, can be a strong indication
that the location is highly polluted. An environmental scientist can issue a dynamic skyline query for
CO and SO2 levels to monitor the air pollution surrounding a particular region of interest.

DS query processing over moving objects is also very useful for numerous applications, such
as location-aware computing, object tracking and monitoring, virtual environments, uncertain data
stream, computer games, visualization, etc.

Although the skyline query approach has potential for use in WSN applications, it faces
challenges because of high processing complexity and cost related with updating the results. The
main contributors to the high cost are the data access cost from storage locations and the processing
cost while executing the user specified query for a dominance check. It is important to note that
search efficiency and update criteria are two key requirements of skyline query processing and skyline
result maintenance.

Data-Centric Storage (DCS) [12,13], an alternate to External Storage (ES) and Local Storage (LS),
is considered to be a promising and efficient storage and search mechanism. There has been a growing
interest in understanding and optimizing WSN DCS schemes in recent years, where a various number
of query mechanisms such as point query, range query, similarity searching, top-k query and skyline
query can be applied in a consolidated framework. As part of developing such consolidated framework,
this paper proposes a threshold based hierarchical approach, which uses temporal correlation among
the sectors and sector segments to calculate DS in a region of interest. To our knowledge, this is the
first practical demonstration of DS in DCS of WSN in current state-of-the-art.

In this paper, first a novel tree building algorithm is incorporated so that each head node of a
cluster could construct a tree with itself as a root. This allows exertion of three core operations such
as Tree Propagation, Regular Update and Triggered Query from any head node with a particular range.
The performance of the proposed model is analyzed by framing and implementing it in a distributed
information delivery service running one or more applications in a WSN. In this service, a set of
producer and consumer nodes exchange information by relaying packets through neighboring clusters
for each application. This phenomenon is facilitated by a DCS [14] architecture, also referred to as
DBDCS (Section 3.1). DBDCS is an adaptation of the magnetic disk storage platter consisting of tracks
and sectors [15,16]. In DBDCS, each application uses a disc track and sector analogy to map data
locations and uses distance based indexing method for storing and querying multi-dimensional similar
data. The member nodes in each cluster report the sensed event to their associated head node, which
aggregates the received events at the end of each epoch. The aggregated event is hashed to produce a
hash key, which is mapped from a one dimensional domain into a metric space [17] (Section 3.3).

The remainder of this paper is structured as follows: Section 2 provides an overview of the related
work in the literature. Network architecture, data processing and mapping, insertion and skyline
querying are illustrated in Section 3. This is followed by the simulation results and performance
evaluation of EDDS presented in Section 4. The paper is concluded in Section 5.

2. Related Work

According to the current state-of-the-art, skyline operator in database community was first
introduced by Borzsonyi et al. [5]. In their work, they proposed the solution based on block nested loop
(BNL) and divide-and-conquer (D & C). Inspired by BNL, Chomicki et al. [18] and Godfrey et al. [19]
proposed two variants of BNL named sort-filter-skylines (SFS) and linear elimination sort for skyline
(LESS), respectively. Later, two progressive processing algorithms such as Bitmap and Index were
proposed by Tan et al. [20]. Nearest neighbor (NN) method and its variant NN with branch-and-bound
(BB) were later presented by Kossman et al. [21] and Papadias et al. [22], respectively. However, these
approaches are mainly suitable for centralized environments with high computational and energy
resources and thus inappropriate for WSN environments.

J. Sens. Actuator Netw. 2016, 5, 2 4 of 22

A filter-based distributed algorithm for skyline evaluation and maintenance in WSN is proposed
by Liang et al. [23]. Each sensor node uses a greedy algorithm to compute a local skyline certificate,
which is a subset of the local skyline and forwards it to its parent. The parent or non-leaf node
calculates the certificate based on a set of local skyline points plus the certificate received from child
nodes. Following this process, the root calculates the set of skyline points, which is used as a Global
Skyline Filter (GSF) or global certificate. The root broadcasts the global certificate followed by a
simple merge-based algorithm to filter out the points from transmissions that cannot utilize the
certificate. An energy efficient Sliding Window Skyline Monitoring Algorithm (SWSMA) is proposed
in [24] to continuously maintain sliding window skylines over WSN. It reduces the amount of data
transferred and reduces energy consumption, as a consequence, by devising two filter based algorithms:
(1) Single point filter based algorithm referred to as a Tuple Filter (TF); and (2) Grid Filter (GF) based
algorithm. Chen et al. [25] proposed two evaluation algorithms for finding the skyline points on a
dataset progressively. The dataset is first partitioned into disjoint subsets. Then skyline points are
returned through the examination of each subset progressively using discovered skyline points to
filter out the unlikely skyline points from transmission. However, the features of DCS have not been
considered in these approaches and thus direct implication of them in DCS is not suitable.

Song et al. [26] propose a skyline query processing algorithm exploiting the key features of DCS.
The algorithm processes a query in three stages on the basis of four assumptions: (1) choice of DCS
framework is limited to KDDCS [27], GDCS [28] and DIM [29]; (2) all nodes are identified by unique
ID; (3) each node knows the geographic location of its own and its neighbor nodes; and (4) each node
knows the range of data stored in its neighbor nodes. In the first stage, the base station locates the
Start Node (SN) where the query is to commence. In the second stage, SN creates a Skyline Query
Message (SQM) and propagates the SQM to neighbor nodes to search for Candidate Nodes (CNs)
where candidate data for the query are stored. This SQM transmission process is repeated until the
complete candidate results are found. In the third and final stage BS generates a final query result from
its gathered candidate dataset. The aforementioned assumptions made in this work are particularly
expensive in a distributed environment like WSN especially DCS framework.

Su et al. [30] proposed an algorithm, known as Skyline Sensor Algorithm (SkySensor), in a
customized DCS method in order to collect and store all sensor readings and retrieve skyline results
efficiently from the network. The major disadvantages of SkySensor are: (1) SkySensor needs increased
effort from an application designer who has to write the center location of each cluster in such a
way that no two clusters overlap; (2) number of clusters in a sensor network depends on the number
of attributes of a tuple, therefore, an active sensor and actuator network, with higher rate of data
generation and a lower number of attributes leads to high concentration of data in a small portion of
the network which creates congestion and a hot spot around the cluster and limits the ultimate goal or
advantage of DCS; and (3) in the case of resilience to node failure, an inefficient and old technique
referred to as local replication is used, which is expected to incur high storage cost and increased data
loss during a node group failure.

Based on the above discussion, it is obvious that none of the work from the current literature
has implemented DS in WSN, especially in DCS. It consumes great effort in pre-processing, such
as gathering the local skylines of all sensors, mapping all detected data of the entire network (both
inflow and outflow). The overall process is overwhelmed with higher overheads and complexity if the
researcher or analysts are interested in a particular region. In this paper, a threshold based hierarchical
DS approach is proposed and implemented using the temporal correlation among the sectors and
sector segments. This allows reducing the transmission cost in a greater aspect and facilitates finding
skyline points from both entire network and a particular region of interest.

3. Basic System Design

In this section, at first, we briefly discuss the DBDCS network architecture that has been used
for testing our proposed EDDS approach. Definition of skyline is restated in Section 3.2 in terms of

J. Sens. Actuator Netw. 2016, 5, 2 5 of 22

metric based searching. This is followed by the discussion of data processing, mapping and insertion
technique in Sections 3.3 and 3.4. Finally, we have presented the EDDS approach in Section 3.5.

3.1. Network Architecture

The surface/platter of a magnetic disk storage device consisting of tracks and sectors provides an
interesting approach that may be applied to a large scale WSN. This assumption led to the Disk Based
Data Centric Storage (DBDCS) architecture, as shown in Figure 3a, dividing the rectangular field into a
matrix of storage cells (referred to as a sector) where row and column represent track Ti and sector Sj,
respectively. The physical deployment is mapped to a m x n matrix, where m is the number of tracks
and n is the number sectors for each track. Hence, the nodes in the network are divided into S(mxn)
sectors, each comprising a Sector Head (SH) and sector members that communicate via one hop to
the SH (see Figure 3c), where SHi P r1..Ss. Each node is configured to be aware of the deployment
layout by knowing: (1) each SH is assigned with the sector number as a virtual address and node id;
and (2) all member nodes know their own node id and number of tracks (m) and sectors (n) of the
network field. As shown in Figure 3b, the intra-sector communication (i.e., communication from sector
members to SH or vice-versa) is constrained to one hop while inter-sector transmission is multi-hop.
For simplification, the sensor nodes inside each sector are not shown explicitly in Figure 3b. Instead, an
aggregated link (see Figure 3c) is shown to represent the total traffic from member nodes to head node.

J. Sens. Actuator Netw. 2016, 5, 2 5 of 21

and sector Sj, respectively. The physical deployment is mapped to a m x n matrix, where m is the

number of tracks and n is the number sectors for each track. Hence, the nodes in the network are

divided into S(mxn) sectors, each comprising a Sector Head (SH) and sector members that

communicate via one hop to the SH (see Figure 3c), where SSH
i

..1 . Each node is configured to be

aware of the deployment layout by knowing: (1) each SH is assigned with the sector number as a

virtual address and node id; and (2) all member nodes know their own node id and number of tracks

(m) and sectors (n) of the network field. As shown in Figure 3b, the intra-sector communication (i.e.,

communication from sector members to SH or vice-versa) is constrained to one hop while inter-sector

transmission is multi-hop. For simplification, the sensor nodes inside each sector are not shown

explicitly in Figure 3b. Instead, an aggregated link (see Figure 3c) is shown to represent the total

traffic from member nodes to head node.

Figure 3. (a) DBDCS Mapping; (b) inter-sector communication; and (c) intra-sector member node to

head node communication

3.2. Skyline Definition with Metric-Based Searching

Metric space M can be defined as a pair M = (D, d), where D is the domain of objects and d is the

distance function—d: D × D R satisfying the following constraints (Equation (1)) for all objects Dcba ,, :

 0, bad
 (non-negativity)

(1)
 0, bad

 (identity)

),(),(abdbad (symmetry)

),(),(),(cbdbadcad (triangle inequality)

In this metric space, considering that smaller values are preferable to larger ones for a set of l-

dimensional data, the dynamic skyline query result set can be defined as:

Skyline(q, r):

X =

"i Î 1, l[],a,bÎ I | a(i) £ b(i) and

$i Î [1, l],a(i) < b(i) and

d q,a() £ r

ì

í

ï
ï

î

ï
ï

ü

ý

ï
ï

þ

ï
ï

(2)

Figure 3. (a) DBDCS Mapping; (b) inter-sector communication; and (c) intra-sector member node to
head node communication

3.2. Skyline Definition with Metric-Based Searching

Metric space M can be defined as a pair M = (D, d), where D is the domain of objects and d is
the distance function—d: D ˆ D Ô R satisfying the following constraints (Equation (1)) for all objects
a, b, c P D:

d pa, bq ě 0 pnon´ negativityq
d pa, bq “ 0 pidentityq

dpa, bq “ dpb, aq psymmetryq
dpa, cq ď dpa, bq ` dpb, cq ptriangle inequalityq

(1)

In this metric space, considering that smaller values are preferable to larger ones for a set of
l-dimensional data, the dynamic skyline query result set can be defined as:

J. Sens. Actuator Netw. 2016, 5, 2 6 of 22

Skyline(q, r):

X “

$

’

&

’

%

@i P r1, ls , a, b P I|apiq ď bpiq and
Di P r1, ls, apiq ă bpiq and
d pq, aq ď r

,

/

.

/

-

(2)

In Equation (2), q denotes the query point, a(i) denotes the value of the ith attribute of an object
and r defines the range of the region of interest. The data space is divided into S sectors with a pivot
point, denoted by Pi, for each sector Si. The iDistance key for an object x P D can be defined as
(Figure 4a, Equation (3)):

iDist pxq “ d pPi, xq ` i ¨ c (3)

In Equation (3), c is the separating constant for individual sectors. Given q P D, the region of
interest with radius r can be defined as (Figure 4b, Equation (4)):

r “ rd pPi, qq ` i ¨ c´ r, d pPi, qq ` i ¨ c` rs (4)

J. Sens. Actuator Netw. 2016, 5, 2 6 of 21

In Equation (2), q denotes the query point, a(i) denotes the value of the ith attribute of an object

and r defines the range of the region of interest. The data space is divided into S sectors with a pivot

point, denoted by Pi, for each sector Si. The iDistance key for an object Dx can be defined as (Figure

4a, Equation (3)):

 cixPdxiDist
i

 , (3)

In Equation (3), c is the separating constant for individual sectors. Given Dq , the region of

interest with radius r can be defined as (Figure 4b, Equation (4)):

r = d Pi,q() + i ×c- r,d Pi,q()+ i ×c+ réë ùû (4)

12 13 14 15

8 9 10 11

4

0

5 6 7

1 2 3T1

T2

 T

m

S1 S2 Sm

P2

P0

S0

S2

S1

2C 3C 4C

... ...
11C 12C 15C 2C 3C 4C 11C 12C 15C

... ...

(a) (b)

Figure 4. (a) Data mapping; and (b) range query example.

3.3. Data Processing and Mapping

A sensed event E can be defined by an l- dimensional tuple, (A1, A2, A3, … Al) where lA
gg

,1,

denotes the gth attribute and Ag
D is the domain of attribute Ag. Each member node of a sector

transmits the sensed event as an l-tuple
kilii

vvv ,......,,
21 , where

k
Mi 1 , Mk is the total number of

member nodes in kth sector and vij denotes the value of the jth attribute received from ith node of kth

sector. A SH node after collecting tuples from all the member nodes aggregates them at the end of

each epoch before finding the mapping for the target SH.

Hence, after aggregation at epoch t

kM

ilii
tvvv

1iAgg
21k
,......,, (Agg(t))E (5.1)

 t
l

 ,.......,,
21

(5.2)

Here,

 Skljavgvv kkk M

iij

M

iij

M

ij
,1,,1,,min,max

111

 (6)

In Equation (6), Mk denotes the number of member nodes in kth sector. It is assumed that all

attribute’s aggregated values of
i

 have been normalized to be between 0 and 1. As shown in Table

1, weights have been assigned to different attributes based on their importance in the event

Figure 4. (a) Data mapping; and (b) range query example.

3.3. Data Processing and Mapping

A sensed event E can be defined by an l- dimensional tuple, (A1, A2, A3, . . . Al) where Ag,@g P r1, ls
denotes the gth attribute and DAg is the domain of attribute Ag. Each member node of a sector transmits
the sensed event as an l-tuple xvi1, vi2,, vilyk, where 1 ď i ď Mk, Mk is the total number of member
nodes in kth sector and vij denotes the value of the jth attribute received from ith node of kth sector.
A SH node after collecting tuples from all the member nodes aggregates them at the end of each epoch
before finding the mapping for the target SH.

Hence, after aggregation at epoch t

Ek pAgg ptqq “

Mk
ż

Aggi“1

xvi1, vi2,, vily ptq (5.1)

“ xψ1, ψ2,, ψly ptq (5.2)

Here,
ψj “

!

maxMk
i“1vij, minMk

i“1vij, avgMk
i“1

)

, j P r1, ls , k P r1, Ss (6)

J. Sens. Actuator Netw. 2016, 5, 2 7 of 22

In Equation (6), Mk denotes the number of member nodes in kth sector. It is assumed that all
attribute’s aggregated values of ψi have been normalized to be between 0 and 1. As shown in Table 1,
weights have been assigned to different attributes based on their importance in the event description.
Hence, an attribute with higher weight has higher influence in deciding the similarity among events.

Table 1. Weight settings.

Attribute Weight

A1 w1
A2 w2
....
Al wl

3.3.1. Pivot Point Generation

αmin “

l
ÿ

i“1

´´

Aipminq{Aipmaxq

¯

ˆwi

¯

(7.1)

αmax “

l
ÿ

i“1

´´

Aipmaxq{Aipmaxq

¯

ˆwi

¯

(7.2)

β “
l
ÿ

i“1

´´

Aipavgq{Aipmaxq

¯

ˆwi

¯

(7.3)

δ “
l
ÿ

i“1

´´

Aipθq{Aipmaxq

¯

ˆwi

¯

(7.4)

In Equations (7.1)–(7.4), Ai(min), Ai(max), Ai(avg) and Aipθq denote the minimum, maximum, average
and threshold value of ith attribute. Based on Equations (7.1) and (7.2), the domain of the hash key,
denoted by HD, is α (αmin, αmax). The center of gravity, denoted by β, is derived in Equation (7.3) to
find the normalized center point of the domain of the hash key HD, whereas δ is the separating factor
between two pivot points. However, in order to balance the load among sectors, it is important to find
the range where the concentration of the data points is high. Hence, β and δ can be used to find the
range for center of gravity, denoted by β (βrange´min, βrange´max), as shown in Equation (8).

βrange´min “ β´ δ

βrange´max “ β` δ
(8)

Thus, the separating step, denoted by η, between two pivot points in COM range can be
defined by:

η “
`

βrange´max ´ βrange´min
˘

{S´ 1 (9)

Thus, the pivot points for S sectors can be defined in each sector head by:

Pi “

$

’

&

’

%

αmin,
βrange´min ` iˆ η,
αmax,

i “ 0
0 ă i ă S
i “ S

(10)

J. Sens. Actuator Netw. 2016, 5, 2 8 of 22

Algorithm 1. Pivot Point Generation Algorithm (implemented at each SH node).
Input: attrRangeTable (containing minimum, maximum, average and theta of each attribute), W
(weights to different attributes based on their importance in the event description).
Output: P (derived pivot point for each sector)

1: mapRec.minRange = mapRec.maxRange = 0
2: m = lengthof (attrRangeTable)
3: for i = 1 to m do
4: mapRec.minRange+=(attrRangeTable[i].min/attrRangeTable[i].max) ˆW[i]
5: mapRec.maxRange+=(attrRangeTable[i].max)/attrRangeTable[i].max)ˆW[i]
6: mapRec.com += (attrRangeTable[i].avg)/attrRangeTable[i].max) ˆW[i]
7: mapRec.theta += (attrRangeTable.theta)/attrRangeTable[i].max) ˆW[i]
8: i = i + 1
9: end for
10: comLowerLimit = mapRec.com - mapRec.theta
11: comUpperLimit = mapRec.com + mapRec.theta
12: η = (comUpperLimit - comLowerLimit)/(S - 1)
13: for j = 0 to S
14: if (j == 0) then P[j] = mapRec.minRange
15: else if (j == S) then P[j] = mapRec.maxRange
16: else P[j] = comLowerLimit + j ˆ η

17: end if
18: j = j + 1
19: end for

J. Sens. Actuator Netw. 2016, 5, 2 8 of 21

5: mapRec.maxRange+=(attrRangeTable[i].max)/attrRangeTable[i].max)× W[i]

6: mapRec.com += (attrRangeTable[i].avg)/attrRangeTable[i].max) × W[i]

7: mapRec.theta += (attrRangeTable.theta)/attrRangeTable[i].max) × W[i]

8: i = i + 1

9: end for

10: comLowerLimit = mapRec.com - mapRec.theta

11: comUpperLimit = mapRec.com + mapRec.theta

12: η = (comUpperLimit - comLowerLimit)/(S - 1)

13: for j = 0 to S

14: if (j == 0) then P[j] = mapRec.minRange

15: else if (j == S) then P[j] = mapRec.maxRange

16: else P[j] = comLowerLimit + j × η

17: end if

18: j = j + 1

19: end for

Figure 5. Pivot point generation example.

Algorithm 1 uses Equations (8)–(10) for calculating pivot points. Figure 5 illustrates the domain

and sub-domain of pivot points.

3.3.2. Mapping

Given l attributes in an attribute list associated with weight wj (1 ≤ j ≤ l) in a WSN application,

the source SHk generates the hash value by:

l

j
jjij

M

i
wAvavgh k

1
(max)1 (11)

Hence, after each epoch, SHk forwards the aggregated event htE
lk

,,,,,
21

 , where t

denotes the epoch number, to the destination sector head denoted by SHi where,
1

ii

PhP and Pi

and Pi+1 is the lower and upper limit of ith sub-interval, respectively.

3.4. Insertion

Within a sector, data are further distributed among nodes according to their distance from the

SH. In order to do so, a sector is divided into segments. Figures 6 and 7 and Table 2 illustrate the idea

of sector segmentation. Given a kth sector containing Mk member nodes, the SHk first sorts all member

nodes based on RSSI in ascending order. The member nodes are then divided into r segments. Each

segment forms a circle, denoted by B(X,Y) (ri), where the center of the circle is (X, Y) with radius ri. (X,

Y) is the geographic co-ordinates for SHk. The number of segments depends on the WSN application,

sector size and the number of member nodes in each sector. Thus the set of sensors that are within a

Euclidean distance ri from (X, Y) form the segment defined by:

Figure 5. Pivot point generation example.

Algorithm 1 uses Equations (8)–(10) for calculating pivot points. Figure 5 illustrates the domain
and sub-domain of pivot points.

3.3.2. Mapping

Given l attributes in an attribute list associated with weight wj (1 ď j ď l) in a WSN application,
the source SHk generates the hash value by:

h “
l
ÿ

j“1

´´

avgMk
i“1vij{Ajpmaxq

¯

ˆwj

¯

(11)

Hence, after each epoch, SHk forwards the aggregated event Ek “ xrψ1, ψ2, . . . , ψls , rt, hsy, where t
denotes the epoch number, to the destination sector head denoted by SHi where, Pi ď h ă Pi` 1 and Pi
and Pi`1 is the lower and upper limit of ith sub-interval, respectively.

J. Sens. Actuator Netw. 2016, 5, 2 9 of 22

3.4. Insertion

Within a sector, data are further distributed among nodes according to their distance from the
SH. In order to do so, a sector is divided into segments. Figures 6 and 7 and Table 2 illustrate the
idea of sector segmentation. Given a kth sector containing Mk member nodes, the SHk first sorts all
member nodes based on RSSI in ascending order. The member nodes are then divided into r segments.
Each segment forms a circle, denoted by BpX,Yq (ri), where the center of the circle is (X, Y) with radius
ri. (X, Y) is the geographic co-ordinates for SHk. The number of segments depends on the WSN
application, sector size and the number of member nodes in each sector. Thus the set of sensors that
are within a Euclidean distance ri from (X, Y) form the segment defined by:

BpX,Yqpriq “ tSensorsCoordinate px, yq : |pX, Yq , px, yq| ď riu (12)

βk “ pPk`1 ´ Pkq {r, 1 ď k ď S (13)

!

PMKpiq

)S

k“1
“

$

’

&

’

%

Pk,
Pk ` βˆ i,
Pk`1,

i “ 0
0 ă i ă r

i “ r
(14)

By Equations (13) and (14), the pivot points of r segments within the kth sector are calculated.
An event with hash value, denoted by h, is stored in a member sensor node of ith segment where
PMKpiq ď h ď PMKpi`1q. In order to balance the load, data are distributed among the nodes inside a
segment in a round robin fashion (see Algorithm 2).

Algorithm 2. Search_Target_Node (segment[i]), implemented at each SH node.
Input: segment[i] (a data structure containing member node ID and tally to count the number of
packets stored in this member node)
Output: return the target Member Node ID.

1: sort segment[i] in ascending order based on segment[i].tally
2: segment[i].tally = segment[i].tally +1
3: memberNodeId = segment[i].ID
4: return memberNodeId

J. Sens. Actuator Netw. 2016, 5, 2 9 of 21

iiYX

ryxYXyxrdinateSensorsCoorB ,,,:,)(
),(

 (12)

 Skr
kkk

1,
1

 (13)

ri

ri

i

i

k

k

k

S

kiM K
0

0

,

,

,

1

1)(
 (14)

By Equations (13) and (14), the pivot points of r segments within the kth sector are calculated.

An event with hash value, denoted by h, is stored in a member sensor node of ith segment where

)1()(

iMiM KK

h . In order to balance the load, data are distributed among the nodes inside a segment

in a round robin fashion (see Algorithm 2).

Algorithm 2. Search_Target_Node (segment[i]), implemented at each SH node.

Input: segment[i] (a data structure containing member node ID and tally to count the number of

packets stored in this member node)

Output: return the target Member Node ID.

1: sort segment[i] in ascending order based on segment[i].tally

2: segment[i].tally = segment[i].tally +1

3: memberNodeId = segment[i].ID

4: return memberNodeId

Figure 6. Formation of Segments inside a Sector.

m11 m12 m1i...

m21 m22 m2i...

mn1 m12 mni...

SH

First Segment

Second Segment

rth Segment

...

Figure 7. Segmentation architecture of member nodes inside a sector.

Figure 6. Formation of Segments inside a Sector.

J. Sens. Actuator Netw. 2016, 5, 2 10 of 22

J. Sens. Actuator Netw. 2016, 5, 2 9 of 21

iiYX

ryxYXyxrdinateSensorsCoorB ,,,:,)(
),(

 (12)

 Skr
kkk

1,
1

 (13)

ri

ri

i

i

k

k

k

S

kiM K
0

0

,

,

,

1

1)(
 (14)

By Equations (13) and (14), the pivot points of r segments within the kth sector are calculated.

An event with hash value, denoted by h, is stored in a member sensor node of ith segment where

)1()(

iMiM KK

h . In order to balance the load, data are distributed among the nodes inside a segment

in a round robin fashion (see Algorithm 2).

Algorithm 2. Search_Target_Node (segment[i]), implemented at each SH node.

Input: segment[i] (a data structure containing member node ID and tally to count the number of

packets stored in this member node)

Output: return the target Member Node ID.

1: sort segment[i] in ascending order based on segment[i].tally

2: segment[i].tally = segment[i].tally +1

3: memberNodeId = segment[i].ID

4: return memberNodeId

Figure 6. Formation of Segments inside a Sector.

m11 m12 m1i...

m21 m22 m2i...

mn1 m12 mni...

SH

First Segment

Second Segment

rth Segment

...

Figure 7. Segmentation architecture of member nodes inside a sector. Figure 7. Segmentation architecture of member nodes inside a sector.

Table 2. Member table of a SH node.

J. Sens. Actuator Netw. 2016, 5, 2 10 of 21

Table 2. Member table of a SH node.

Member Node Id
Received Signal

Strength Indicator

m1 RSSI1

m2 RSSI2

m3 RSSI3

m4 RSSI4

.. ..

.. ..

mi RSSIi

.. ..

.. ..

.. ..

.. ..

MK RSSIk

3.5. Skyline Query

A threshold based hierarchical approach has been used in this research to calculate DS (q, r). The

threshold based hierarchical approach uses the temporal correlation among the sectors and segments

of a sector. All the key notations used in this section are listed in the Table 3 to increase reader comfort.

Table 3. Skyline Notation.

Symbol Description

ei An event at SHi or segment ri of a sector

E A set of events

θi The threshold point of SHi or Segment ri

LDSi The local dynamic skyline of SHi or Segment ri

𝑒𝑖 ≺(𝑞,𝑟) 𝑒𝑗
Event ej is dominated by event ei with respect to query point q and the target

region of interest is a circle of radius r centered at q.

𝑒𝑖 ≼(𝑞,𝑟) 𝑒𝑗
Event ej is dominated by or equal to event ei with respect to query point q and

the target region of interest is a circle of radius r centered at q.

𝑒𝑖 ≺(𝑞,𝑟) 𝐸
Each event in E is dominated by event ei with respect to query point q and the

target region of interest is a circle of radius r centered at q.

𝑒𝑖 ≼(𝑞,𝑟) 𝐸
Each event in E is dominated by or equal to event ei with respect to query

point q and the target region of interest is a circle of radius r centered at q.

Algorithm 3. Build_Tree(), implemented at each SH.

Input: n (total number of sectors (columns)), SELF_NET_ADDR

Output: Node (to store the node values), L (to store the address of left child of each node), R (to store

the address of right child of each node)

1: // Finding the Track (row) number of current sector

2: i = (SELF_NET_ADDR)/n;

3: index = S;

4: for j = 0 to S−1;

5: node [j] = (i, j)

6: if (i-1 ≥ 0)

7: L[j] = index;

8: N[index] = (i−1, j)

9: end if

10: Li = i−1

11: while (Li-1≥0)

12: L[index] = index + 1

13: Node[index] = (Li−1, j)

14: index++

15: Li--;

r1

r2

r3

r4

3.5. Skyline Query

A threshold based hierarchical approach has been used in this research to calculate DS (q, r). The
threshold based hierarchical approach uses the temporal correlation among the sectors and segments
of a sector. All the key notations used in this section are listed in the Table 3 to increase reader comfort.

Table 3. Skyline Notation.

Symbol Description

ei An event at SHi or segment ri of a sector
E A set of events
θi The threshold point of SHi or Segment ri

LDSi The local dynamic skyline of SHi or Segment ri

ei ăpq,rq ej
Event ej is dominated by event ei with respect to query point q and the target

region of interest is a circle of radius r centered at q.

ei ďpq,rq ej
Event ej is dominated by or equal to event ei with respect to query point q and

the target region of interest is a circle of radius r centered at q.

ei ăpq,rq E Each event in E is dominated by event ei with respect to query point q and the
target region of interest is a circle of radius r centered at q.

ei ďpq,rq E Each event in E is dominated by or equal to event ei with respect to query
point q and the target region of interest is a circle of radius r centered at q.

J. Sens. Actuator Netw. 2016, 5, 2 11 of 22

Algorithm 3. Build_Tree(), implemented at each SH.
Input: n (total number of sectors (columns)), SELF_NET_ADDR
Output: Node (to store the node values), L (to store the address of left child of each node), R (to
store the address of right child of each node)

1: // Finding the Track (row) number of current sector
2: i = (SELF_NET_ADDR)/n;
3: index = S;
4: for j = 0 to S´1;
5: node [j] = (i, j)
6: if (i-1 ě 0)
7: L[j] = index;
8: N[index] = (i´1, j)
9: end if
10: Li = i´1
11: while (Li-1ě0)
12: L[index] = index + 1
13: Node[index] = (Li´1, j)
14: index++
15: Li–;
16: end while
17: index++
18: if (i+1<T)
19: R[j] = index;
20: N[index] = (i+1, j)
21: end if
22: Ri = i+1
23: while (Ri+1<T)
24: R[index] = index+1
25: N[index] = (Ri+1, j)
26: index++
27: Ri++
28: end while
29: index++
30: end for

3.5.1. Tree Structure Construction

Each SH constructs a tree considering itself as the root using Algorithm 3. Figures 8 and 9 illustrate
an example of the formation of a tree rooted at the 13th (2, 3) Sector. Sector (2, 0), (2, 1), (2, 2), (2, 3),
(2, 4) and (2, 5) are the child nodes of Sector (2, 3). The sectors lying at the same column but upper
row and lower row of each of the child nodes of root node are added to the left and right branch,
respectively. For example, Sector (1, 0), (0, 0) and (3, 0), (4, 0) are added to the left and right branch,
respectively, of Sector (2, 0). The hierarchy is further maintained among segments inside each sector,
as shown in Figure 10.

J. Sens. Actuator Netw. 2016, 5, 2 12 of 22

J. Sens. Actuator Netw. 2016, 5, 2 11 of 21

16: end while

17: index++

18: if (i+1<T)

19: R[j] = index;

20: N[index] = (i+1, j)

21: end if

22: Ri = i+1

23: while (Ri+1<T)

24: R[index] = index+1

25: N[index] = (Ri+1, j)

26: index++

27: Ri++

28: end while

29: index++

30: end for

3.5.1. Tree Structure Construction

Each SH constructs a tree considering itself as the root using Algorithm 3. Figures 8 and 9

illustrate an example of the formation of a tree rooted at the 13th (2, 3) Sector. Sector (2, 0), (2, 1), (2,

2), (2, 3), (2, 4) and (2, 5) are the child nodes of Sector (2, 3). The sectors lying at the same column but

upper row and lower row of each of the child nodes of root node are added to the left and right

branch, respectively. For example, Sector (1, 0), (0, 0) and (3, 0), (4, 0) are added to the left and right

branch, respectively, of Sector (2, 0). The hierarchy is further maintained among segments inside each

sector, as shown in Figure 10.

Figure 8. SH of 13th Sector implies Algorithm 3 in order to convert the 5 × 5 grid into a tree rooted at

13th (2, 3) Sector.

Figure 9. Tree rooted at 13th Sector (2, 3).

Figure 8. SH of 13th Sector implies Algorithm 3 in order to convert the 5 ˆ 5 grid into a tree rooted at
13th (2, 3) Sector.

J. Sens. Actuator Netw. 2016, 5, 2 11 of 21

16: end while

17: index++

18: if (i+1<T)

19: R[j] = index;

20: N[index] = (i+1, j)

21: end if

22: Ri = i+1

23: while (Ri+1<T)

24: R[index] = index+1

25: N[index] = (Ri+1, j)

26: index++

27: Ri++

28: end while

29: index++

30: end for

3.5.1. Tree Structure Construction

Each SH constructs a tree considering itself as the root using Algorithm 3. Figures 8 and 9

illustrate an example of the formation of a tree rooted at the 13th (2, 3) Sector. Sector (2, 0), (2, 1), (2,

2), (2, 3), (2, 4) and (2, 5) are the child nodes of Sector (2, 3). The sectors lying at the same column but

upper row and lower row of each of the child nodes of root node are added to the left and right

branch, respectively. For example, Sector (1, 0), (0, 0) and (3, 0), (4, 0) are added to the left and right

branch, respectively, of Sector (2, 0). The hierarchy is further maintained among segments inside each

sector, as shown in Figure 10.

Figure 8. SH of 13th Sector implies Algorithm 3 in order to convert the 5 × 5 grid into a tree rooted at

13th (2, 3) Sector.

Figure 9. Tree rooted at 13th Sector (2, 3). Figure 9. Tree rooted at 13th Sector (2, 3).J. Sens. Actuator Netw. 2016, 5, 2 12 of 21

Figure 10. Hierarchy based on segmentation.

3.5.2. Basic System Operation

A query node first calculates hash hq using Equation (10) for the Dynamic Skyline Query (DS (q,

r)). The query is then forwarded to the SHi where Pi ≤ hq ≤ Pi+1. SHi finds the range of the query, i.e.,

[hq-r, hq+r]. Hence, the target sectors where the sample dataset of the query need to be considered are

SHj, SHj+1,…, SHk, here Pj ≤ hq-r ≤ Pj+1, Pk ≤ hq+r ≤ Pk+1 and j ≤ k. The threshold based hierarchical approach

includes three phases—Tree Propagation, Regular Update and Triggered Query.

SHi issues a Triggered Query containing LSi to SHj+1, SHj+2 ..., SHk. The Triggered Query is issued to

ensure fetching all possible events that might be included in the final skyline but was not reported

during the Regular Update phase. SHi sends Triggered Query to each of its child SHj that satisfies LSi

θj. Any child node SHj satisfying LSi θj can be discarded since no ineligible event can exist in the

final skytline. There cannot exist any event that can be eligible to be included in the final skyline. An

internal child node SHj after receiving Triggered Query LSp from its parent computes LSj among LSp

and its non-reported points. SHj then forwards LSj to each of its children SHk that satisfies LSj θk

and waits for a reply with new points that are not dominated by LSj. SHj updates the local skyline

after receiving replies from all of its child nodes and finally replies to its parent SHp with the new

skyline event set. In contrast, a leaf node SHj reports nothing if it reports ej in the first phase or satisfies

LSi θj. Otherwise, it reports event ej.

Figure 11 illustrates the functionality of the two phases—Regular Update and Triggered Query in

a particular scenario. In the first phase (Regular Update) (Figure 11a), SH0 and SH7 reports eo and e7 to

SH3 and SH4, respectively. However, e7 and e3 have been pruned by e4. Thus, the skyline set after the

first phase includes {e0, e4} (see Figure 11b). Figure 11c,d illustrates the second phase. SH4 issues a

Triggered Query containing {e0, e4} to SH3, SH6, SH5, and SH8 (here, it is assumed that [hq−r, hq+r] covers

all the tree SH). SH0, SH1, SH7 and SH2, however, are discarded since their corresponding thresholds

are dominated by e4. After receiving the Triggered Query, SH5 prunes e5 and forwards the updated

skyline set {e0, e4} to SH8. SH8 calculates its local skyline and prunes among the query it receives from

its parent and its own event e8. Since e8 is not dominated, it has also been included into the final local

skyline set, i.e., {e0, e4, e8}, and is finally sent back to the SH4. It is to be noted that, during both phases,

SH1 and SH2 do not need to transmit any event.

Figure 10. Hierarchy based on segmentation.

3.5.2. Basic System Operation

A query node first calculates hash hq using Equation (10) for the Dynamic Skyline Query (DS
(q, r)). The query is then forwarded to the SHi where Pi ď hq ď Pi`1. SHi finds the range of the query,
i.e., [hq-r, hq+r]. Hence, the target sectors where the sample dataset of the query need to be considered
are SHj, SHj`1, . . . , SHk, here Pj ď hq´r ď Pj`1, Pk ď hq`r ď Pk`1 and j ď k. The threshold based
hierarchical approach includes three phases—Tree Propagation, Regular Update and Triggered Query.

SHi issues a Triggered Query containing LSi to SHj`1, SHj`2 ..., SHk. The Triggered Query is issued
to ensure fetching all possible events that might be included in the final skyline but was not reported
during the Regular Update phase. SHi sends Triggered Query to each of its child SHj that satisfies
LSi ł θ j. Any child node SHj satisfying LSi ĺ θ j can be discarded since no ineligible event can exist in
the final skytline. There cannot exist any event that can be eligible to be included in the final skyline.
An internal child node SHj after receiving Triggered Query LSp from its parent computes LSj among LSp

and its non-reported points. SHj then forwards LSj to each of its children SHk that satisfies LSj ł θk
and waits for a reply with new points that are not dominated by LSj. SHj updates the local skyline
after receiving replies from all of its child nodes and finally replies to its parent SHp with the new

J. Sens. Actuator Netw. 2016, 5, 2 13 of 22

skyline event set. In contrast, a leaf node SHj reports nothing if it reports ej in the first phase or satisfies
LSi ĺ θ j. Otherwise, it reports event ej.

Figure 11 illustrates the functionality of the two phases—Regular Update and Triggered Query in
a particular scenario. In the first phase (Regular Update) (Figure 11a), SH0 and SH7 reports eo and e7

to SH3 and SH4, respectively. However, e7 and e3 have been pruned by e4. Thus, the skyline set after
the first phase includes {e0, e4} (see Figure 11b). Figure 11c,d illustrates the second phase. SH4 issues
a Triggered Query containing {e0, e4} to SH3, SH6, SH5, and SH8 (here, it is assumed that [hq´r, hq+r]
covers all the tree SH). SH0, SH1, SH7 and SH2, however, are discarded since their corresponding
thresholds are dominated by e4. After receiving the Triggered Query, SH5 prunes e5 and forwards the
updated skyline set {e0, e4} to SH8. SH8 calculates its local skyline and prunes among the query it
receives from its parent and its own event e8. Since e8 is not dominated, it has also been included into
the final local skyline set, i.e., {e0, e4, e8}, and is finally sent back to the SH4. It is to be noted that, during
both phases, SH1 and SH2 do not need to transmit any event.

J. Sens. Actuator Netw. 2016, 5, 2 12 of 21

Figure 10. Hierarchy based on segmentation.

3.5.2. Basic System Operation

A query node first calculates hash hq using Equation (10) for the Dynamic Skyline Query (DS (q,

r)). The query is then forwarded to the SHi where Pi ≤ hq ≤ Pi+1. SHi finds the range of the query, i.e.,

[hq-r, hq+r]. Hence, the target sectors where the sample dataset of the query need to be considered are

SHj, SHj+1,…, SHk, here Pj ≤ hq-r ≤ Pj+1, Pk ≤ hq+r ≤ Pk+1 and j ≤ k. The threshold based hierarchical approach

includes three phases—Tree Propagation, Regular Update and Triggered Query.

SHi issues a Triggered Query containing LSi to SHj+1, SHj+2 ..., SHk. The Triggered Query is issued to

ensure fetching all possible events that might be included in the final skyline but was not reported

during the Regular Update phase. SHi sends Triggered Query to each of its child SHj that satisfies LSi

θj. Any child node SHj satisfying LSi θj can be discarded since no ineligible event can exist in the

final skytline. There cannot exist any event that can be eligible to be included in the final skyline. An

internal child node SHj after receiving Triggered Query LSp from its parent computes LSj among LSp

and its non-reported points. SHj then forwards LSj to each of its children SHk that satisfies LSj θk

and waits for a reply with new points that are not dominated by LSj. SHj updates the local skyline

after receiving replies from all of its child nodes and finally replies to its parent SHp with the new

skyline event set. In contrast, a leaf node SHj reports nothing if it reports ej in the first phase or satisfies

LSi θj. Otherwise, it reports event ej.

Figure 11 illustrates the functionality of the two phases—Regular Update and Triggered Query in

a particular scenario. In the first phase (Regular Update) (Figure 11a), SH0 and SH7 reports eo and e7 to

SH3 and SH4, respectively. However, e7 and e3 have been pruned by e4. Thus, the skyline set after the

first phase includes {e0, e4} (see Figure 11b). Figure 11c,d illustrates the second phase. SH4 issues a

Triggered Query containing {e0, e4} to SH3, SH6, SH5, and SH8 (here, it is assumed that [hq−r, hq+r] covers

all the tree SH). SH0, SH1, SH7 and SH2, however, are discarded since their corresponding thresholds

are dominated by e4. After receiving the Triggered Query, SH5 prunes e5 and forwards the updated

skyline set {e0, e4} to SH8. SH8 calculates its local skyline and prunes among the query it receives from

its parent and its own event e8. Since e8 is not dominated, it has also been included into the final local

skyline set, i.e., {e0, e4, e8}, and is finally sent back to the SH4. It is to be noted that, during both phases,

SH1 and SH2 do not need to transmit any event.

J. Sens. Actuator Netw. 2016, 5, 2 13 of 21

Figure 11. Basic Approach Example (3 × 3 Grids). (a) Regular update. (b) Skyline set after first phase.

(c) Triggered query. (d) Skyline set after second phase

4. Performance Evaluation

Simulations were conducted using Castalia v3.2 [29] running on top of OMNET++ [31] to

evaluate the performance of EDDS. The system parameters and their settings used in the experiments

are summarized in Table 4. The network model (illustrated in Section 3.1) was tested in four

rectangular fields with different parameter settings. Sensor MAC (SMAC) [32] and Sector Based

Distance Routing (SBD) [15] are used in MAC and routing layer. Simulations were run 30~40 times

with varying-channel affecting seeds to provide results that included average and 95% confidence

interval. In Section 4.1, possible distribution of data throughout the network is presented. Section 4.2

evaluated EDDS in terms of energy consumption, latency and accuracy in a network of 180 nodes in

a 90 m × 90 m (8100 m2) rectangular field. In Sections 4.3 and 4.4, the performance of EDDS was tested

using four different rectangular fields with four different distributions respectively. In Sections 4.5–

4.8, the performance of EDDS is evaluated against SkySensor in terms of data loss, data uniformity,

success rate and resilience to node failure. In Section 4.9, customized EDDS is implemented on top of

Q-NIGHT and evaluated against its performance in DBDCS.

Figure 11. Basic Approach Example (3 ˆ 3 Grids). (a) Regular update. (b) Skyline set after first phase.
(c) Triggered query. (d) Skyline set after second phase.

J. Sens. Actuator Netw. 2016, 5, 2 14 of 22

4. Performance Evaluation

Simulations were conducted using Castalia v3.2 [29] running on top of OMNET++ [31] to evaluate
the performance of EDDS. The system parameters and their settings used in the experiments are
summarized in Table 4. The network model (illustrated in Section 3.1) was tested in four rectangular
fields with different parameter settings. Sensor MAC (SMAC) [32] and Sector Based Distance Routing
(SBD) [15] are used in MAC and routing layer. Simulations were run 30~40 times with varying-channel
affecting seeds to provide results that included average and 95% confidence interval. In Section 4.1,
possible distribution of data throughout the network is presented. Section 4.2 evaluated EDDS in
terms of energy consumption, latency and accuracy in a network of 180 nodes in a 90 m ˆ 90 m
(8100 m2) rectangular field. In Section 4.3, the performance of EDDS was tested using four different
rectangular fields with four different distributions respectively. In Section 4.4, the performance of
EDDS is evaluated against SkySensor in terms of data loss, data uniformity, success rate and resilience
to node failure.

4.1. Data Distribution

Figure 12 exploits different possible data dispersal with the realization of the mapping algorithm
illustrated in Section 3.2. This experiment was conducted in a network of 80 nodes in a 60 m ˆ 60 m
(3600 m2, total number of sectors is 16 (4ˆ 4)) field with a 60 min simulation time. The data production
rate per sector was five packets per second. Figure 12a shows uniform distribution, which means
data are stored uniformly among all sectors of the network. Figure 12b shows a central distribution in
which data are usually located among central sector of the network. Figure 12c,d represents the lower
bound distribution and upper bound distribution, where data are stored among lower and upper
sectors of the network, respectively.

J. Sens. Actuator Netw. 2016, 5, 2 14 of 21

4.1. Data Distribution

Figure 12 exploits different possible data dispersal with the realization of the mapping algorithm

illustrated in Section 3.2. This experiment was conducted in a network of 80 nodes in a 60 m × 60 m

(3600 m2, total number of sectors is 16 (4 × 4)) field with a 60 min simulation time. The data production

rate per sector was five packets per second. Figure 12a shows uniform distribution, which means data

are stored uniformly among all sectors of the network. Figure 12b shows a central distribution in

which data are usually located among central sector of the network. Figure 12c,d represents the lower

bound distribution and upper bound distribution, where data are stored among lower and upper

sectors of the network, respectively.

(a) (b)

(c) (d)

Figure 12. (a) Uniform distribution; (b) central distribution; (c) lower bound distribution; and (d)

upper bound distribution.

4.2. Efficiency

The efficiency of the proposed approach is measured based on three parameters—energy

consumption, latency and accuracy. These performance metrics and scalability of the proposed

model is directly affected by the query range, which varies based on the average number of sectors

indicated by α. With the increase of α, the number of messages that are generated due to three

fundamental operations such as Tree Propagation, Regular Update and Triggered Query increases

exponentially. Thus, in a model such as skyline query, it is an utmost challenge to minimize the

energy consumption and latency while maximizing the accuracy. This experiment was conducted in

a 90 m × 90 m rectangular field, in which 180 nodes were randomly and independently disseminated.

The data distribution used in this experiment was uniform. The query rate varied from 0.1 to 0.5

queries per sector per second and the simulation was run for 60 min. The Skyline Query overhead is

comparatively high due to its three phase query calculation. Figure 13a–c presents the average energy

consumption (J) per node, latency (s) and accuracy (accuracy was defined as the percentage of skyline

queries that were correctly resolved) as a function of the query rate per sector per second. In this

experiment, the query range was varied in four different ways as shown in Figure 13. In order to

show the scalability of the system, α has been varied exponentially up to 36, where 36 is the total

number of sectors in a 90 m × 90 m (Table 4) rectangular field. From Figure 13a,b, it is noted that the

Figure 12. (a) Uniform distribution; (b) central distribution; (c) lower bound distribution; and (d) upper
bound distribution.

J. Sens. Actuator Netw. 2016, 5, 2 15 of 22

4.2. Efficiency

The efficiency of the proposed approach is measured based on three parameters—energy
consumption, latency and accuracy. These performance metrics and scalability of the proposed model
is directly affected by the query range, which varies based on the average number of sectors indicated
by α. With the increase of α, the number of messages that are generated due to three fundamental
operations such as Tree Propagation, Regular Update and Triggered Query increases exponentially. Thus,
in a model such as skyline query, it is an utmost challenge to minimize the energy consumption and
latency while maximizing the accuracy. This experiment was conducted in a 90 m ˆ 90 m rectangular
field, in which 180 nodes were randomly and independently disseminated. The data distribution used
in this experiment was uniform. The query rate varied from 0.1 to 0.5 queries per sector per second
and the simulation was run for 60 min. The Skyline Query overhead is comparatively high due to its
three phase query calculation. Figure 13a–c presents the average energy consumption (J) per node,
latency (s) and accuracy (accuracy was defined as the percentage of skyline queries that were correctly
resolved) as a function of the query rate per sector per second. In this experiment, the query range was
varied in four different ways as shown in Figure 13. In order to show the scalability of the system, α has
been varied exponentially up to 36, where 36 is the total number of sectors in a 90 m ˆ 90 m (Table 4)
rectangular field. From Figure 13a,b, it is noted that the overhead in terms of energy consumption and
latency grows radically as α increases. It is also to be noted that the data in Figure 13a are presented in
logarithmic scale in order to reduce the wide range to a more manageable size. However, the accuracy
of the query response was very high (see Figure 13c) and close to 100%. Packet loss due to interference
causes some minor inaccuracy.

Table 4. Simulation Parameters.

Parameter Setting

Field Size (F) 60 ˆ 60 m2, 90 ˆ 90 m2, 120 ˆ 120 m2, 150 ˆ 150 m2

Number of Nodes (N) 80 (3600 m2), 180 (8100 m2), 320 (14,400 m2),
500 (22,500 m2)

Number of Sectors/Field Size (S/F) 16/(60 ˆ 60 m2), 36/(90 ˆ 90 m2), 64/(120 ˆ 120 m2),
100/(150 ˆ 150 m2)

Member Node Density (fm) 1 node/56.25 m2

Sector Head Node (SH) Density (fSH) 1 node/225 m2

Radio Range (member node) ~8 m
Radio Range (SH) ~20 m

Transmission Power 0 dBm (SH), ´5 dBm (member node)
Power Consumption in Sending and

Receiving Messages 57.42 mW (SH), 46.2 mW (member node)

Power Consumption Per Sensing 0.02 mJoule
Data Rate, Modulation Type, Bits Per Symbol,

Bandwidth, Noise Bandwidth, Noise
Floor, Sensitivity

250 Kbps, PSK, 4, 20 MHz, 194 MHz, ´100 dBm,
´95 dBm

pathLossExponent 2.4
Initial Average Path Loss (PL(d0)) 55

Reference Distance (d0) 1.0 m
Gaussian Zero-Mean Random Variable (Xα) 4.0

Routing Protocol SBD [15]
MAC Protocol, Maximum Transimission Retries SMAC [32], 2

SMAC Acknowledgment, Synchronization, RTS, CTS
Packet Size 11, 11, 13, 13 bytes

J. Sens. Actuator Netw. 2016, 5, 2 16 of 22

J. Sens. Actuator Netw. 2016, 5, 2 15 of 21

overhead in terms of energy consumption and latency grows radically as α increases. It is also to be

noted that the data in Figure 13a are presented in logarithmic scale in order to reduce the wide range

to a more manageable size. However, the accuracy of the query response was very high (see Figure

13c) and close to 100%. Packet loss due to interference causes some minor inaccuracy.

Table 4. Simulation Parameters.

Parameter Setting

Field Size (F) 60 × 60 m2, 90 × 90 m2, 120 × 120 m2, 150 × 150 m2

Number of Nodes (N)
80 (3600 m2), 180 (8100 m2), 320 (14,400 m2),

500 (22,500 m2)

Number of Sectors/Field Size (S/F)
16/(60 × 60 m2), 36/(90 × 90 m2),

64/(120 × 120 m2), 100/(150 × 150 m2)

Member Node Density (fm) 1 node/56.25 m2

Sector Head Node (SH) Density (fSH) 1 node/225 m2

Radio Range (member node) ~8 m

Radio Range (SH) ~20 m

Transmission Power 0 dBm (SH), −5 dBm (member node)

Power Consumption in Sending and

Receiving Messages
57.42 mW (SH), 46.2 mW (member node)

Power Consumption Per Sensing 0.02 mJoule

Data Rate, Modulation Type, Bits Per

Symbol, Bandwidth, Noise Bandwidth, Noise

Floor, Sensitivity

250 Kbps, PSK, 4, 20 MHz, 194 MHz,

−100 dBm, −95 dBm

pathLossExponent 2.4

Initial Average Path Loss (PL(d0)) 55

Reference Distance (d0) 1.0 m

Gaussian Zero-Mean Random Variable (Xα) 4.0

Routing Protocol SBD [15]

MAC Protocol, Maximum Transimission

Retries
SMAC [32], 2

SMAC Acknowledgment, Synchronization,

RTS, CTS Packet Size
11, 11, 13, 13 bytes

(a) (b)

J. Sens. Actuator Netw. 2016, 5, 2 16 of 21

(c)

Figure 13. (a) Energy consumption; (b) latency; and (c) accuracy.

4.3. Robustness

In this section, robustness of EDDS was evaluated through two different experiments with the

variation of four different network sizes. In the first experiment, energy consumption, latency, and

accuracy were measured for varying the query rate, while, in the second experiment, they were

measured for four different data distributions.

4.3.1. Network Size

Experiments were carried out by varying the network field sizes such as 60 × 60 m2, 90 × 90 m2,

120 × 120 m2 and 150 × 150 m2 containing 80, 180, 320 and 500 nodes, respectively. The size of the

region of interest was kept fixed, i.e., the value of α was 9. The rate of the query was varied from 0.1

to 0.5 queries per sector per second. In Figure 14, the rate of the query is represented by β. Figure

14a,b demonstrates that energy consumption and latency is exponentially proportional to the value

of β. However, when β is constant, they grow linearly with the size of the network. Figure 14c shows

the percentage of accuracy as a function of network size. The accuracy drops slightly with the scale

of the network.

(a) (b)

(c)

Figure 14. (a) Energy consumption; (b) latency; and (c) accuracy.

Figure 13. (a) Energy consumption; (b) latency; and (c) accuracy.

4.3. Robustness

In this section, robustness of EDDS was evaluated through two different experiments with the
variation of four different network sizes. In the first experiment, energy consumption, latency, and
accuracy were measured for varying the query rate, while, in the second experiment, they were
measured for four different data distributions.

4.3.1. Network Size

Experiments were carried out by varying the network field sizes such as 60 ˆ 60 m2, 90 ˆ 90 m2,
120 ˆ 120 m2 and 150 ˆ 150 m2 containing 80, 180, 320 and 500 nodes, respectively. The size of the
region of interest was kept fixed, i.e., the value of α was 9. The rate of the query was varied from 0.1 to
0.5 queries per sector per second. In Figure 14, the rate of the query is represented by β. Figure 14a,b
demonstrates that energy consumption and latency is exponentially proportional to the value of β.
However, when β is constant, they grow linearly with the size of the network. Figure 14c shows the
percentage of accuracy as a function of network size. The accuracy drops slightly with the scale of
the network.

J. Sens. Actuator Netw. 2016, 5, 2 17 of 22

J. Sens. Actuator Netw. 2016, 5, 2 16 of 21

(c)

Figure 13. (a) Energy consumption; (b) latency; and (c) accuracy.

4.3. Robustness

In this section, robustness of EDDS was evaluated through two different experiments with the

variation of four different network sizes. In the first experiment, energy consumption, latency, and

accuracy were measured for varying the query rate, while, in the second experiment, they were

measured for four different data distributions.

4.3.1. Network Size

Experiments were carried out by varying the network field sizes such as 60 × 60 m2, 90 × 90 m2,

120 × 120 m2 and 150 × 150 m2 containing 80, 180, 320 and 500 nodes, respectively. The size of the

region of interest was kept fixed, i.e., the value of α was 9. The rate of the query was varied from 0.1

to 0.5 queries per sector per second. In Figure 14, the rate of the query is represented by β. Figure

14a,b demonstrates that energy consumption and latency is exponentially proportional to the value

of β. However, when β is constant, they grow linearly with the size of the network. Figure 14c shows

the percentage of accuracy as a function of network size. The accuracy drops slightly with the scale

of the network.

(a) (b)

(c)

Figure 14. (a) Energy consumption; (b) latency; and (c) accuracy. Figure 14. (a) Energy consumption; (b) latency; and (c) accuracy.

4.3.2. Different Data Distribution

Similarly, Four different data distributions named as uniform, center, lower bound and upper
bound distribution (Section 4.1) were considered with the same variation of the network field sizes
where the value of α was 9. Figure 15a presents the average energy consumption by each node in
different distribution. It is evident that energy consumption in uniform data distribution grows
radically. This is because, the data are distributed uniformly through every sector and hence each
possible sector (in this case, an average nine neighboring sectors) needed to be scanned to find the
target query. The other three distributions had data concentrated in a particular portion of the network.
Hence, EDDS required no transmission for the null sector, as they did not store any data. Thus, energy
consumption was relatively lower than the uniform distribution. However, center and lower bound
distribution have almost similar energy consumption while upper bound distribution falls in the
middle. The distribution presented in Figure 12 gives the rational of this behavior. Figure 15b shows
the latency performance of EDDS in different distribution. Based on the aforementioned reasoning, it
is obvious that the latency in uniform distribution is higher compared to other distribution. Average
latency of other three distributions is almost same. Figure 15c shows the accuracy of EDDS in different
distributions. It is observed that, accuracy of EDDS drops sharply with the increase of the size of the
network. The accuracy of EDDS varies in between 70% and 96% at uniform distribution, 85%–99% at
center and lower bound distribution and 80%–99% at upper bound distribution.

J. Sens. Actuator Netw. 2016, 5, 2 18 of 22

J. Sens. Actuator Netw. 2016, 5, 2 17 of 21

4.3.2. Different Data Distribution

Similarly, Four different data distributions named as uniform, center, lower bound and upper

bound distribution (Section 4.1) were considered with the same variation of the network field sizes

where the value of α was 9. Figure 15a presents the average energy consumption by each node in

different distribution. It is evident that energy consumption in uniform data distribution grows

radically. This is because, the data are distributed uniformly through every sector and hence each

possible sector (in this case, an average nine neighboring sectors) needed to be scanned to find the

target query. The other three distributions had data concentrated in a particular portion of the

network. Hence, EDDS required no transmission for the null sector, as they did not store any data.

Thus, energy consumption was relatively lower than the uniform distribution. However, center and

lower bound distribution have almost similar energy consumption while upper bound distribution

falls in the middle. The distribution presented in Figure 12 gives the rational of this behavior. Figure

15b shows the latency performance of EDDS in different distribution. Based on the aforementioned

reasoning, it is obvious that the latency in uniform distribution is higher compared to other

distribution. Average latency of other three distributions is almost same. Figure 15c shows the

accuracy of EDDS in different distributions. It is observed that, accuracy of EDDS drops sharply with

the increase of the size of the network. The accuracy of EDDS varies in between 70% and 96% at

uniform distribution, 85%–99% at center and lower bound distribution and 80%–99% at upper bound

distribution.

(a) (b)

(c)

Figure 15. (a) Energy consumption; (b) latency; and (c) accuracy.

4.4. Evaluation against SkySensor

In this section, EDDS is evaluated against SkySensor in terms of data loss, data uniformity,

success rate of the skyline query and resilience to node failure. All subsequent experiments were

conducted with a network size of 150 × 150 m2 with 500 nodes deployed uniformly. The dimension

of attribute varied from 2 to 7, data and query generation rate varied from 0.02 packets/node/second

to 0.1 packets/node/second. The default value of data and query rate was 0.02 packets/node/second

unless otherwise stated.

Figure 15. (a) Energy consumption; (b) latency; and (c) accuracy.

4.4. Evaluation against SkySensor

In this section, EDDS is evaluated against SkySensor in terms of data loss, data uniformity, success
rate of the skyline query and resilience to node failure. All subsequent experiments were conducted
with a network size of 150 ˆ 150 m2 with 500 nodes deployed uniformly. The dimension of attribute
varied from 2 to 7, data and query generation rate varied from 0.02 packets/node/second to 0.1
packets/node/second. The default value of data and query rate was 0.02 packets/node/second unless
otherwise stated.

4.4.1. Data Uniformity

In this experiment, data uniformity of SkySensor and EDDS is studied by varying the dimension
of attribute from 2 to 7. Uniformity metric is defined as the ratio between the number of nodes used
for data storage and total number of nodes in the network. In SkySensor, the number of clusters in a
sensor network depends on the number of attributes of a tuple regardless of the size of the network.
This is one of the major limitations of SkySensor. On the other hand, referring to Table 4, the number
of sectors in EDDS for this particular network is 100, which means data are stored in 100 equivalent
clusters of SkySensor resulting uniform distribution of data throughout the network. Figure 16a shows
that data uniformity of SkySensor is stringently dependent on the number of dimension while this is
independent and consistent for EDDS.

J. Sens. Actuator Netw. 2016, 5, 2 19 of 22

J. Sens. Actuator Netw. 2016, 5, 2 18 of 21

4.4.1. Data Uniformity

In this experiment, data uniformity of SkySensor and EDDS is studied by varying the dimension

of attribute from 2 to 7. Uniformity metric is defined as the ratio between the number of nodes used

for data storage and total number of nodes in the network. In SkySensor, the number of clusters in a

sensor network depends on the number of attributes of a tuple regardless of the size of the network.

This is one of the major limitations of SkySensor. On the other hand, referring to Table 4, the number

of sectors in EDDS for this particular network is 100, which means data are stored in 100 equivalent

clusters of SkySensor resulting uniform distribution of data throughout the network. Figure 16a

shows that data uniformity of SkySensor is stringently dependent on the number of dimension while

this is independent and consistent for EDDS.

(a) (b)

(c)

Figure 16. (a) Data uniformity; (b) data loss; and (c) success rate.

4.4.2. Data Loss

In this experiment, dimension of attribute was fixed at 2 and data generation rate was varied

from 0.02 packets/node/second to 0.1 packets/node/second. Data loss metric is defined as the ratio of

the number of data packets actually stored to the total number of packets generated. From Figure 16b,

it can be seen that the percentage of data loss in SkySensor increases with an increasing data rate.

This happens because there are only two clusters in SkySensor, which is clearly insufficient if the

application or simulation runs for a long time. In addition, with a higher data generation rate, a hot

spot or bottleneck would be created surrounding the cluster or edge nodes. On the other hand,

regardless of the number of dimensions, the number of sectors or clusters is fixed ensuring an

increased participation of nodes in data storage with uniform distribution.

4.4.3. Success Rate

Success rate in retrieving a true skyline result is studied by varying the query rate. In this

experiment, the number of dimensions in attribute space was fixed at 3. The query rate was varied

from 0.02 packets/node/second to 0.1 packets/node/second. Queries were generated uniformly from

different parts of the network. From Figure 16c, it is interesting to note that with a low query rate, the

success rate of SkySensor is slightly higher than EDDS. However, this result reversed when the query

Figure 16. (a) Data uniformity; (b) data loss; and (c) success rate.

4.4.2. Data Loss

In this experiment, dimension of attribute was fixed at 2 and data generation rate was varied from
0.02 packets/node/second to 0.1 packets/node/second. Data loss metric is defined as the ratio of the
number of data packets actually stored to the total number of packets generated. From Figure 16b,
it can be seen that the percentage of data loss in SkySensor increases with an increasing data rate.
This happens because there are only two clusters in SkySensor, which is clearly insufficient if the
application or simulation runs for a long time. In addition, with a higher data generation rate, a
hot spot or bottleneck would be created surrounding the cluster or edge nodes. On the other hand,
regardless of the number of dimensions, the number of sectors or clusters is fixed ensuring an increased
participation of nodes in data storage with uniform distribution.

4.4.3. Success Rate

Success rate in retrieving a true skyline result is studied by varying the query rate. In this
experiment, the number of dimensions in attribute space was fixed at 3. The query rate was varied
from 0.02 packets/node/second to 0.1 packets/node/second. Queries were generated uniformly from
different parts of the network. From Figure 16c, it is interesting to note that with a low query rate, the
success rate of SkySensor is slightly higher than EDDS. However, this result reversed when the query
rate was over 0.04 packets/node/second and then the success rate of SkySensor reduced as the query
rate increased. This occurred due to the high concentration of all sensor readings around three clusters
that eventually created congestion. A significant number of query requests and query responses were
lost due to the interference, congestion and hotspot around the edge or gateway of the cluster.

4.4.4. Resilience to Node Failure

In this experiment, the resilience to node failure of EDDS is studied against SkySensor. In
SkySensor a local replication method is adopted in order to circumvent data loss due to a storage
node failure. On the other hand, EDDS integrates a Decentralized Distributed Erasure Coding (DDEC)

J. Sens. Actuator Netw. 2016, 5, 2 20 of 22

algorithm instead of simple replication to achieve similar level of reliability with less redundancy [33].
In this study, the number of dimensions in attribute space was fixed at five and a fraction f of nodes
from the network were removed at random point of simulation. The simulation was run for 20 rounds.

In the first sub-experiment (Figure 17a), the data generation rate was varied from 0.02 to 0.1
packets/node/second and f was fixed at 20%. Figure 17a shows that DDEC consumed almost 50%
less resources to maintain a similar or even higher magnitude of redundancy in a normal situation
(packet rate < 0.08). However, due to the limited number of clusters, the storage space of SkySensor
depleted with packet rate greater than 0.08 packets/node/second.

J. Sens. Actuator Netw. 2016, 5, 2 19 of 21

rate was over 0.04 packets/node/second and then the success rate of SkySensor reduced as the query

rate increased. This occurred due to the high concentration of all sensor readings around three

clusters that eventually created congestion. A significant number of query requests and query

responses were lost due to the interference, congestion and hotspot around the edge or gateway of

the cluster.

4.4.4. Resilience to Node Failure

In this experiment, the resilience to node failure of EDDS is studied against SkySensor. In

SkySensor a local replication method is adopted in order to circumvent data loss due to a storage

node failure. On the other hand, EDDS integrates a Decentralized Distributed Erasure Coding (DDEC)

algorithm instead of simple replication to achieve similar level of reliability with less redundancy

[33]. In this study, the number of dimensions in attribute space was fixed at five and a fraction f of

nodes from the network were removed at random point of simulation. The simulation was run for 20

rounds.

In the first sub-experiment (Figure 17a), the data generation rate was varied from 0.02 to 0.1

packets/node/second and f was fixed at 20%. Figure 17a shows that DDEC consumed almost 50% less

resources to maintain a similar or even higher magnitude of redundancy in a normal situation (packet

rate < 0.08). However, due to the limited number of clusters, the storage space of SkySensor depleted

with packet rate greater than 0.08 packets/node/second.

(a)

(b)

Figure 17. (a) Storage efficiency; (b) Resilience to node failure

In the second sub-experiment, data generation rate was fixed at 0.05 packets/node/second and f was

varied from 5% to 30%. Figure 17b shows the percentage of the correct skyline result after a query is issued

to the network at the end of each round. It is shown that it is possible to get false skyline results. It is shown

in Figure 17b that EDDS performance is similar to SkySensor under a lower data production rate.

Therefore, EDDS achieves similar or higher level of reliability with less redundancy.

Figure 17. (a) Storage efficiency; (b) Resilience to node failure

In the second sub-experiment, data generation rate was fixed at 0.05 packets/node/second and f
was varied from 5% to 30%. Figure 17b shows the percentage of the correct skyline result after a query
is issued to the network at the end of each round. It is shown that it is possible to get false skyline
results. It is shown in Figure 17b that EDDS performance is similar to SkySensor under a lower data
production rate. Therefore, EDDS achieves similar or higher level of reliability with less redundancy.

5. Conclusions and Future Work

This paper proposes a distributed approach for resolving DS efficiently in DCS of WSN. To our
knowledge, this is the first practical demonstration of DS in DCS of current state-of-the-art WSN. The
key feature of EDDS is the dynamic flexibility provided when carrying out queries from distributed
data sources. The approach highlights the potential for using distributed skyline queries in the case of
DCS of WSN and also shows the relationship between the query efficiency and storage pattern. The
experiments provide results for varying WSN configurations and provide detail on the effectiveness
of the dynamic skyline query approach. The current research focus is on improving EDDS for large
networks and future work includes consideration of reliability and resiliency.

J. Sens. Actuator Netw. 2016, 5, 2 21 of 22

Acknowledgments: This work was supported by Victorian International Research Scholarship (VIRS) and RMIT
School of Electrical and Computer Engineering (SECE).

Author Contributions: This paper is one of the major outcomes of Khandakar Ahmed’s PhD thesis. Khandakar
contributed to the original ideas, developing the prototype in Castalia, data analysis and manuscript drafting.
Nazmus Shaker Nafi contributed to manuscript drafting and revision of manuscript. Mark Gregory contributed
to original ideas and revision of manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Madden, S.; Franklin, M.J.; Hellerstein, J.M.; Hong, W. Tag: A Tiny Aggregation Service for Ad-Hoc Sensor
Networks. SIGOPS Oper. Syst. Rev. 2002, 36, 131–146. [CrossRef]

2. Silberstein, A.S.; Braynard, R.; Ellis, C.; Munagala, K.; Jun, Y. A sampling-based approach to optimizing
top-k queries in sensor networks. In Proceedings of the 22nd International Conference on Data Engineering,
Atlanta, Georgia, USA, 3–7 April 2006.

3. Wu, M.; Xu, J.; Tang, X.; Lee, W.-C. Top-k monitoring in wireless sensor networks. IEEE Trans. Knowl. Data
Eng. 2007, 19, 962–976. [CrossRef]

4. Roh, Y.J.; Inchul, S.; Joo Hyuk, J.; Kyoung Gu, W.; Myoung Ho, K. Energy-efficient two-dimensional skyline
query processing in wireless sensor networks. In Proceedings of the Consumer Communications and
Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2013; pp. 294–301.

5. Borzsony, S.; Kossmann, D.; Stocker, K. The skyline operator. In Proceedings of the 17th International
Conference on Data Engineering, Washington, DC, USA, 2–6 April 2001; pp. 421–430.

6. Dellis, E.; Seeger, B. Efficient computation of reverse skyline queries. In Proceedings of the 33rd International
Conference on Very Large Data Bases, Vienna, Austria, 23–28 September 2007; pp. 291–302.

7. Deng, K.; Zhou, X.; Shen, H.T. Multi-source skyline query processing in road networks. In Proceedings of the
IEEE 23rd International Conference on Data Engineering, Istanbul, Turkey, 11–15 April 2007; pp. 796–805.

8. Papadias, D.; Tao, Y.; Fu, G.; Seeger, B. An optimal and progressive algorithm for skyline queries. In
Proceedings of the 2003 ACM SIGMOD International Conference on Management of data, San Diego, CA,
USA, 9–12 June 2003; pp. 467–478.

9. Chen, B.; Liang, W.; Yu, J. Energy-efficient skyline query optimization in wireless sensor networks. Wirel.
Netw. 2012, 18, 985–1004. [CrossRef]

10. Wang, G.; Xin, J.; Chen, L.; Liu, Y. Energy-efficient reverse skyline query processing over wireless sensor
networks. IEEE Trans. Knowl. Data Eng. 2012, 24, 1259–1275. [CrossRef]

11. Pripužić, K.; Belani, H.; Vuković, M. Early forest fire detection with sensor networks: Sliding Window
Skylines Approach. In Knowledge-Based Intelligent Information and Engineering Systems; Lovrek, I., Howlett, R.,
Jain, L., Eds.; Springer: Berlin, Germany, 2008; Volume 5177, pp. 725–732.

12. Shen, H.; Zhao, L.; Li, Z. A distributed spatial-temporal similarity data storage scheme in wireless sensor
networks. IEEE Trans. Mob. Comput. 2011, 10, 982–996. [CrossRef]

13. Albano, M.; Chessa, S.; Nidito, F.; Pelagatti, S. Dealing with nonuniformity in data centric storage for wireless
sensor networks. IEEE Trans. Parallel Distrib. Syst. 2011, 22, 1398–1406. [CrossRef]

14. Ahmed, K.; Gregory, M.A. Techniques and challenges of data centric storage scheme in wireless sensor
network. J. Sens. Actuator Netw. 2012, 1, 59–85. [CrossRef]

15. Ahmed, K.; Gregory, M.A. Optimized tdma based distance routing for data centric storage. In Proceedings
of the IEEE 3rd International Conference on Networked Embedded Systems for Every Application (NESEA),
Liverpool, UK, 13–14 December 2012; pp. 1–7.

16. Ahmed, K.; Gregory, M.A. Wireless sensor network data centric storage routing using castalia. In Proceedings
of the Telecommunication Networks and Applications Conference (ATNAC), Brisbane, Australia,
7–9 November 2012; pp. 1–8.

17. Jagadish, H.V.; Ooi, B.C.; Tan, K.-L.; Yu, C.; Zhang, R. Idistance: An Adaptive b+-Tree Based Indexing
Method for Nearest Neighbor Search. ACM Trans. Database Syst. 2005, 30, 364–397. [CrossRef]

18. Chomicki, J.; Godfrey, P.; Gryz, J.; Liang, D. Skyline with presorting: Theory and Optimizations. In Intelligent
Information Processing and Web Mining; Kłopotek, M., Wierzchoń, S., Trojanowski, K., Eds.; Springer: Berlin,
Germany, 2005; Volume 31, pp. 595–604.

http://dx.doi.org/10.1145/844128.844142
http://dx.doi.org/10.1109/TKDE.2007.1038
http://dx.doi.org/10.1007/s11276-012-0446-z
http://dx.doi.org/10.1109/TKDE.2011.64
http://dx.doi.org/10.1109/TMC.2010.214
http://dx.doi.org/10.1109/TPDS.2011.18
http://dx.doi.org/10.3390/jsan1010059
http://dx.doi.org/10.1145/1071610.1071612

J. Sens. Actuator Netw. 2016, 5, 2 22 of 22

19. Godfrey, P.; Shipley, R.; Gryz, J. Maximal vector computation in large data sets. In Proceedings of the 31st
International Conference on Very Large Data Bases, Trento, Italy, 4–6 October 2005; pp. 229–240.

20. Tan, K.-L.; Eng, P.-K.; Ooi, B.C. Efficient Progressive Skyline Computation; VLDB: Rome, Italy, 2001; pp. 301–310.
21. Kossmann, D.; Ramsak, F.; Rost, S. Shooting stars in the sky: An online algorithm for skyline queries.

In Proceedings of the 28th International Conference on Very Large Data Bases, Hong Kong, China,
20–23 August 2002; pp. 275–286.

22. Papadias, D.; Tao, Y.; Fu, G.; Seeger, B. Progressive skyline computation in database systems. ACM Trans.
Database Syst. 2005, 30, 41–82. [CrossRef]

23. Liang, W.; Chen, B.; Yu, J.X. Energy-efficient skyline query processing and maintenance in sensor networks.
In Proceedings of the 17th ACM Conference on Information and Knowledge Management, Napa Valley, CA,
USA, 26–30 October 2008; pp. 1471–1472.

24. Xin, J.; Wang, G.; Chen, L.; Zhang, X.; Wang, Z. Continuously maintaining sliding window skylines in a
sensor network. In Advances in Databases: Concepts, Systems and Applications; Kotagiri, R., Krishna, P.R.,
Mohania, M., Nantajeewarawat, E., Eds.; Springer: Berlin, Germany, 2007; Volume 4443, pp. 509–521.

25. Baichen, C.; Weifa, L. Progressive skyline query processing in wireless sensor networks. In Proceedings
of the 5th International Conference on Mobile Ad-hoc and Sensor Networks, MSN ’09, Fujian, China,
14–16 December 2009; pp. 17–24.

26. Song, S.; Kwak, Y.; Lee, S. Skyline query processing in sensor network based on data centric storage. Sensors
2011, 11, 10283–10292. [CrossRef] [PubMed]

27. Aly, M.; Pruhs, K.; Chrysanthis, P.K. Kddcs: A Load-Balanced in-Network Data-Centric Storage Scheme for
Sensor Networks. In Proceedings of the 15th ACM International Conference on Information and Knowledge
Management, Arlington, VA, USA, 5–11 November 2006; pp. 317–326.

28. Song, S.; Bok, K.; Kwak, Y.S.; Goo, B.; Kwak, Y.; Ko, D. Dynamic load balancing data centric storage for
wireless sensor networks. Sensors 2010, 10, 10328–10338. [CrossRef] [PubMed]

29. Li, X.; Kim, Y.J.; Govindan, R.; Hong, W. Multi-dimensional range queries in sensor networks. In Proceedings
of the 1st International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, USA,
5–7 November 2003; pp. 63–75.

30. Su, I.F.; Chung, Y.-C.; Lee, C.; Lin, Y.-Y. Efficient skyline query processing in wireless sensor networks.
J. Parallel Distrib. Comput. 2010, 70, 680–698. [CrossRef]

31. OMNeT++Community. Omnet++. Available online: http://www.omnetpp.org/ (accessed on 5 May 2014).
32. Wei, Y.; Heidemann, J.; Estrin, D. An energy-efficient mac protocol for wireless sensor networks. In

Proceedings of the Twenty-First Annual Joint Conference of the IEEE Computer and Communications
Societies, New York, NY, USA, 23–27 June 2002; Volume 1563, pp. 1567–1576.

33. Ahmed, K.; Gregory, M.A. Decentralized coding algorithm in data centric storage for wireless sensor
networks. In Proceedings of the Telecommunication Networks and Applications Conference (ATNAC),
Christchurch, New Zealand, 20–22 November 2013; pp. 106–111.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1061318.1061320
http://dx.doi.org/10.3390/s111110283
http://www.ncbi.nlm.nih.gov/pubmed/22346642
http://dx.doi.org/10.3390/s101110328
http://www.ncbi.nlm.nih.gov/pubmed/22163472
http://dx.doi.org/10.1016/j.jpdc.2010.01.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	Basic System Design
	Network Architecture
	Skyline Definition with Metric-Based Searching
	Data Processing and Mapping
	Pivot Point Generation
	Mapping

	Insertion
	Skyline Query
	Tree Structure Construction
	Basic System Operation

	Performance Evaluation
	Data Distribution
	Efficiency
	Robustness
	Network Size
	Different Data Distribution

	Evaluation against SkySensor
	Data Uniformity
	Data Loss
	Success Rate
	Resilience to Node Failure

	Conclusions and Future Work

