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Abstract: Dynamic skyline query is one of the most popular and significant variants of skyline query
in the field of multi-criteria decision-making. However, designing a distributed dynamic skyline
query possesses greater challenge, especially for the distributed data centric storage within wireless
sensor networks (WSNs). In this paper, a novel Enhanced Distributed Dynamic Skyline (EDDS)
approach is proposed and implemented in Disk Based Data Centric Storage (DBDCS) architecture.
DBDCS is an adaptation of magnetic disk storage platter consisting tracks and sectors. In DBDCS, the
disc track and sector analogy is used to map data locations. A distance based indexing method is used
for storing and querying multi-dimensional similar data. EDDS applies a threshold based hierarchical
approach, which uses temporal correlation among sectors and sector segments to calculate a dynamic
skyline. The efficiency and effectiveness of EDDS has been evaluated in terms of latency, energy
consumption and accuracy through a simulation model developed in Castalia.

Keywords: wireless sensor networks; distributed data centric storage; skyline query; sector based
distance routing; uniform distribution; lower bound distribution; and upper bound distribution

1. Introduction

WSNs have successfully been validated as a very economic and effective platform for monitoring
diverse physical environments from remote locations. Various types of query techniques have been
developed over WSNs including min-max [1], top-k [2,3] and skyline [4]. Skyline and its variants such
as traditional skyline [5] and dynamic skyline [6–8] have been applied in many multiple criteria decision
making applications. Traditional skyline (TS) retrieves all of the points, which are not dominated by
others, from a set of points [9]. Given a dataset X, a point x1 dominates x2, if x1 is not worse than
x2 for each dimension i P l (i.e., x1[i] ď x2[i]), and x1 is better than x2 for at least one dimension
m P l (x1[m] < x2[m]). Figure 1a shows an example, where each point is drawn taking two dimensions i
and j as coordinators; points x1, x3, x6 and x10 are in the skyline set considering that a point with the
least value for each dimension is desirable.

Dynamic skyline (DS) retrieves a set of points that are not dynamically dominated by others with
respect to a data point q denoted by DS (q, X)) [10]. A point x1 dynamically dominates x2 with respect
to q if for each dimension in i P l, |x1 ris ´ q ris| ď |x2 ris ´ q ris| and for at least one dimension in m P l,
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|x1 rms ´ q rms| ă |x2 rms ´ q rms|. In Figure 1b, points x1, x2 and x4 are the dynamic skyline points of q.
Each point xi = (xi[j], xi[i]) is transformed to xi

1 = (xi[j]´q[j], xi[i]´q[i]).
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Figure 1. (a) TS and (b) DS (q, X). 

Skyline query is very useful in multi-preference analysis and decision making for environmental 

monitoring applications. For example, in a WSN deployed in a forest with each sensor node sensing 

temperature and wind speed, it is possible to build a fast and energy efficient forest fire detection 

method [11] by concentrating on places with high temperature or fast wind speed, or both. To 

illustrate the idea of dominance relations in this scenario, consider the readings in the two-

dimensional attribute space shown in Figure 2 depicting a typical example of ranking objects by more 

than one criterion. Figure 2a lists nine records received from nine corresponding sensor nodes 

deployed in different places and their values. Figure 2b depicts the representation in a 2D space. 

Places P1, P2, P3, P5, and P6 are all dominated by other points so the skyline query returns the points 

that are not dominated by any other points. Consider the point P5 that is dominated by P7, as it has a 

higher wind speed than P5 though both have the same temperature. The skyline query only retrieves 

the dominant places in terms of higher temperature and wind speed. The skyline query will not 

exhibit any place with lower temperature and wind speed once it is dominated by a location with 

higher values. Therefore, the result set of the skyline query consists of {P4, P7, P8, P9}, which are 

indicators of dangerous places that need special attention. 
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Figure 2. (a) Skyline of sensor readings, (b) Representation of sensor readings in 2D space [11]. 
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Skyline query is very useful in multi-preference analysis and decision making for environmental
monitoring applications. For example, in a WSN deployed in a forest with each sensor node sensing
temperature and wind speed, it is possible to build a fast and energy efficient forest fire detection
method [11] by concentrating on places with high temperature or fast wind speed, or both. To illustrate
the idea of dominance relations in this scenario, consider the readings in the two-dimensional attribute
space shown in Figure 2 depicting a typical example of ranking objects by more than one criterion.
Figure 2a lists nine records received from nine corresponding sensor nodes deployed in different places
and their values. Figure 2b depicts the representation in a 2D space. Places P1, P2, P3, P5, and P6 are
all dominated by other points so the skyline query returns the points that are not dominated by any
other points. Consider the point P5 that is dominated by P7, as it has a higher wind speed than P5

though both have the same temperature. The skyline query only retrieves the dominant places in
terms of higher temperature and wind speed. The skyline query will not exhibit any place with lower
temperature and wind speed once it is dominated by a location with higher values. Therefore, the
result set of the skyline query consists of {P4, P7, P8, P9}, which are indicators of dangerous places that
need special attention.
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Another example that demonstrates the usefulness of DS can be found when monitoring the air
pollution in a region of interest. A high concentration of CO or SO2, or both, can be a strong indication
that the location is highly polluted. An environmental scientist can issue a dynamic skyline query for
CO and SO2 levels to monitor the air pollution surrounding a particular region of interest.

DS query processing over moving objects is also very useful for numerous applications, such
as location-aware computing, object tracking and monitoring, virtual environments, uncertain data
stream, computer games, visualization, etc.

Although the skyline query approach has potential for use in WSN applications, it faces
challenges because of high processing complexity and cost related with updating the results. The
main contributors to the high cost are the data access cost from storage locations and the processing
cost while executing the user specified query for a dominance check. It is important to note that
search efficiency and update criteria are two key requirements of skyline query processing and skyline
result maintenance.

Data-Centric Storage (DCS) [12,13], an alternate to External Storage (ES) and Local Storage (LS),
is considered to be a promising and efficient storage and search mechanism. There has been a growing
interest in understanding and optimizing WSN DCS schemes in recent years, where a various number
of query mechanisms such as point query, range query, similarity searching, top-k query and skyline
query can be applied in a consolidated framework. As part of developing such consolidated framework,
this paper proposes a threshold based hierarchical approach, which uses temporal correlation among
the sectors and sector segments to calculate DS in a region of interest. To our knowledge, this is the
first practical demonstration of DS in DCS of WSN in current state-of-the-art.

In this paper, first a novel tree building algorithm is incorporated so that each head node of a
cluster could construct a tree with itself as a root. This allows exertion of three core operations such
as Tree Propagation, Regular Update and Triggered Query from any head node with a particular range.
The performance of the proposed model is analyzed by framing and implementing it in a distributed
information delivery service running one or more applications in a WSN. In this service, a set of
producer and consumer nodes exchange information by relaying packets through neighboring clusters
for each application. This phenomenon is facilitated by a DCS [14] architecture, also referred to as
DBDCS (Section 3.1). DBDCS is an adaptation of the magnetic disk storage platter consisting of tracks
and sectors [15,16]. In DBDCS, each application uses a disc track and sector analogy to map data
locations and uses distance based indexing method for storing and querying multi-dimensional similar
data. The member nodes in each cluster report the sensed event to their associated head node, which
aggregates the received events at the end of each epoch. The aggregated event is hashed to produce a
hash key, which is mapped from a one dimensional domain into a metric space [17] (Section 3.3).

The remainder of this paper is structured as follows: Section 2 provides an overview of the related
work in the literature. Network architecture, data processing and mapping, insertion and skyline
querying are illustrated in Section 3. This is followed by the simulation results and performance
evaluation of EDDS presented in Section 4. The paper is concluded in Section 5.

2. Related Work

According to the current state-of-the-art, skyline operator in database community was first
introduced by Borzsonyi et al. [5]. In their work, they proposed the solution based on block nested loop
(BNL) and divide-and-conquer (D & C). Inspired by BNL, Chomicki et al. [18] and Godfrey et al. [19]
proposed two variants of BNL named sort-filter-skylines (SFS) and linear elimination sort for skyline
(LESS), respectively. Later, two progressive processing algorithms such as Bitmap and Index were
proposed by Tan et al. [20]. Nearest neighbor (NN) method and its variant NN with branch-and-bound
(BB) were later presented by Kossman et al. [21] and Papadias et al. [22], respectively. However, these
approaches are mainly suitable for centralized environments with high computational and energy
resources and thus inappropriate for WSN environments.
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A filter-based distributed algorithm for skyline evaluation and maintenance in WSN is proposed
by Liang et al. [23]. Each sensor node uses a greedy algorithm to compute a local skyline certificate,
which is a subset of the local skyline and forwards it to its parent. The parent or non-leaf node
calculates the certificate based on a set of local skyline points plus the certificate received from child
nodes. Following this process, the root calculates the set of skyline points, which is used as a Global
Skyline Filter (GSF) or global certificate. The root broadcasts the global certificate followed by a
simple merge-based algorithm to filter out the points from transmissions that cannot utilize the
certificate. An energy efficient Sliding Window Skyline Monitoring Algorithm (SWSMA) is proposed
in [24] to continuously maintain sliding window skylines over WSN. It reduces the amount of data
transferred and reduces energy consumption, as a consequence, by devising two filter based algorithms:
(1) Single point filter based algorithm referred to as a Tuple Filter (TF); and (2) Grid Filter (GF) based
algorithm. Chen et al. [25] proposed two evaluation algorithms for finding the skyline points on a
dataset progressively. The dataset is first partitioned into disjoint subsets. Then skyline points are
returned through the examination of each subset progressively using discovered skyline points to
filter out the unlikely skyline points from transmission. However, the features of DCS have not been
considered in these approaches and thus direct implication of them in DCS is not suitable.

Song et al. [26] propose a skyline query processing algorithm exploiting the key features of DCS.
The algorithm processes a query in three stages on the basis of four assumptions: (1) choice of DCS
framework is limited to KDDCS [27], GDCS [28] and DIM [29]; (2) all nodes are identified by unique
ID; (3) each node knows the geographic location of its own and its neighbor nodes; and (4) each node
knows the range of data stored in its neighbor nodes. In the first stage, the base station locates the
Start Node (SN) where the query is to commence. In the second stage, SN creates a Skyline Query
Message (SQM) and propagates the SQM to neighbor nodes to search for Candidate Nodes (CNs)
where candidate data for the query are stored. This SQM transmission process is repeated until the
complete candidate results are found. In the third and final stage BS generates a final query result from
its gathered candidate dataset. The aforementioned assumptions made in this work are particularly
expensive in a distributed environment like WSN especially DCS framework.

Su et al. [30] proposed an algorithm, known as Skyline Sensor Algorithm (SkySensor), in a
customized DCS method in order to collect and store all sensor readings and retrieve skyline results
efficiently from the network. The major disadvantages of SkySensor are: (1) SkySensor needs increased
effort from an application designer who has to write the center location of each cluster in such a
way that no two clusters overlap; (2) number of clusters in a sensor network depends on the number
of attributes of a tuple, therefore, an active sensor and actuator network, with higher rate of data
generation and a lower number of attributes leads to high concentration of data in a small portion of
the network which creates congestion and a hot spot around the cluster and limits the ultimate goal or
advantage of DCS; and (3) in the case of resilience to node failure, an inefficient and old technique
referred to as local replication is used, which is expected to incur high storage cost and increased data
loss during a node group failure.

Based on the above discussion, it is obvious that none of the work from the current literature
has implemented DS in WSN, especially in DCS. It consumes great effort in pre-processing, such
as gathering the local skylines of all sensors, mapping all detected data of the entire network (both
inflow and outflow). The overall process is overwhelmed with higher overheads and complexity if the
researcher or analysts are interested in a particular region. In this paper, a threshold based hierarchical
DS approach is proposed and implemented using the temporal correlation among the sectors and
sector segments. This allows reducing the transmission cost in a greater aspect and facilitates finding
skyline points from both entire network and a particular region of interest.

3. Basic System Design

In this section, at first, we briefly discuss the DBDCS network architecture that has been used
for testing our proposed EDDS approach. Definition of skyline is restated in Section 3.2 in terms of
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metric based searching. This is followed by the discussion of data processing, mapping and insertion
technique in Sections 3.3 and 3.4. Finally, we have presented the EDDS approach in Section 3.5.

3.1. Network Architecture

The surface/platter of a magnetic disk storage device consisting of tracks and sectors provides an
interesting approach that may be applied to a large scale WSN. This assumption led to the Disk Based
Data Centric Storage (DBDCS) architecture, as shown in Figure 3a, dividing the rectangular field into a
matrix of storage cells (referred to as a sector) where row and column represent track Ti and sector Sj,
respectively. The physical deployment is mapped to a m x n matrix, where m is the number of tracks
and n is the number sectors for each track. Hence, the nodes in the network are divided into S(mxn)
sectors, each comprising a Sector Head (SH) and sector members that communicate via one hop to
the SH (see Figure 3c), where SHi P r1..Ss. Each node is configured to be aware of the deployment
layout by knowing: (1) each SH is assigned with the sector number as a virtual address and node id;
and (2) all member nodes know their own node id and number of tracks (m) and sectors (n) of the
network field. As shown in Figure 3b, the intra-sector communication (i.e., communication from sector
members to SH or vice-versa) is constrained to one hop while inter-sector transmission is multi-hop.
For simplification, the sensor nodes inside each sector are not shown explicitly in Figure 3b. Instead, an
aggregated link (see Figure 3c) is shown to represent the total traffic from member nodes to head node.
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3.2. Skyline Definition with Metric-Based Searching

Metric space M can be defined as a pair M = (D, d), where D is the domain of objects and d is
the distance function—d: D ˆ D Ô R satisfying the following constraints (Equation (1)) for all objects
a, b, c P D:

d pa, bq ě 0 pnon´ negativityq
d pa, bq “ 0 pidentityq

dpa, bq “ dpb, aq psymmetryq
dpa, cq ď dpa, bq ` dpb, cq ptriangle inequalityq

(1)

In this metric space, considering that smaller values are preferable to larger ones for a set of
l-dimensional data, the dynamic skyline query result set can be defined as:
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Skyline(q, r):

X “

$

’

&

’

%

@i P r1, ls , a, b P I|apiq ď bpiq and
Di P r1, ls, apiq ă bpiq and
d pq, aq ď r

,

/

.

/

-

(2)

In Equation (2), q denotes the query point, a(i) denotes the value of the ith attribute of an object
and r defines the range of the region of interest. The data space is divided into S sectors with a pivot
point, denoted by Pi, for each sector Si. The iDistance key for an object x P D can be defined as
(Figure 4a, Equation (3)):

iDist pxq “ d pPi, xq ` i ¨ c (3)

In Equation (3), c is the separating constant for individual sectors. Given q P D, the region of
interest with radius r can be defined as (Figure 4b, Equation (4)):

r “ rd pPi, qq ` i ¨ c´ r, d pPi, qq ` i ¨ c` rs (4)
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3.3. Data Processing and Mapping

A sensed event E can be defined by an l- dimensional tuple, (A1, A2, A3, . . . Al) where Ag,@g P r1, ls
denotes the gth attribute and DAg is the domain of attribute Ag. Each member node of a sector transmits
the sensed event as an l-tuple xvi1, vi2, ......, vilyk, where 1 ď i ď Mk, Mk is the total number of member
nodes in kth sector and vij denotes the value of the jth attribute received from ith node of kth sector.
A SH node after collecting tuples from all the member nodes aggregates them at the end of each epoch
before finding the mapping for the target SH.

Hence, after aggregation at epoch t

Ek pAgg ptqq “

Mk
ż

Aggi“1

xvi1, vi2, ......, vily ptq (5.1)

“ xψ1, ψ2, ......., ψly ptq (5.2)

Here,
ψj “

!

maxMk
i“1vij, minMk

i“1vij, avgMk
i“1

)

, j P r1, ls , k P r1, Ss (6)
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In Equation (6), Mk denotes the number of member nodes in kth sector. It is assumed that all
attribute’s aggregated values of ψi have been normalized to be between 0 and 1. As shown in Table 1,
weights have been assigned to different attributes based on their importance in the event description.
Hence, an attribute with higher weight has higher influence in deciding the similarity among events.

Table 1. Weight settings.

Attribute Weight

A1 w1
A2 w2
.... ....
Al wl

3.3.1. Pivot Point Generation

αmin “

l
ÿ

i“1

´´

Aipminq{Aipmaxq

¯

ˆwi

¯

(7.1)

αmax “

l
ÿ

i“1

´´

Aipmaxq{Aipmaxq

¯

ˆwi

¯

(7.2)

β “
l
ÿ

i“1

´´

Aipavgq{Aipmaxq

¯

ˆwi

¯

(7.3)

δ “
l
ÿ

i“1

´´

Aipθq{Aipmaxq

¯

ˆwi

¯

(7.4)

In Equations (7.1)–(7.4), Ai(min), Ai(max), Ai(avg) and Aipθq denote the minimum, maximum, average
and threshold value of ith attribute. Based on Equations (7.1) and (7.2), the domain of the hash key,
denoted by HD, is α (αmin, αmax). The center of gravity, denoted by β, is derived in Equation (7.3) to
find the normalized center point of the domain of the hash key HD, whereas δ is the separating factor
between two pivot points. However, in order to balance the load among sectors, it is important to find
the range where the concentration of the data points is high. Hence, β and δ can be used to find the
range for center of gravity, denoted by β (βrange´min, βrange´max), as shown in Equation (8).

βrange´min “ β´ δ

βrange´max “ β` δ
(8)

Thus, the separating step, denoted by η, between two pivot points in COM range can be
defined by:

η “
`

βrange´max ´ βrange´min
˘

{S´ 1 (9)

Thus, the pivot points for S sectors can be defined in each sector head by:

Pi “

$

’

&

’

%

αmin,
βrange´min ` iˆ η,
αmax,

i “ 0
0 ă i ă S
i “ S

(10)
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Algorithm 1. Pivot Point Generation Algorithm (implemented at each SH node).
Input: attrRangeTable (containing minimum, maximum, average and theta of each attribute), W
(weights to different attributes based on their importance in the event description).
Output: P (derived pivot point for each sector)

1: mapRec.minRange = mapRec.maxRange = 0
2: m = lengthof (attrRangeTable)
3: for i = 1 to m do
4: mapRec.minRange+=(attrRangeTable[i].min/attrRangeTable[i].max) ˆW[i]
5: mapRec.maxRange+=(attrRangeTable[i].max)/attrRangeTable[i].max)ˆW[i]
6: mapRec.com += (attrRangeTable[i].avg)/attrRangeTable[i].max) ˆW[i]
7: mapRec.theta += (attrRangeTable.theta)/attrRangeTable[i].max) ˆW[i]
8: i = i + 1
9: end for
10: comLowerLimit = mapRec.com - mapRec.theta
11: comUpperLimit = mapRec.com + mapRec.theta
12: η = (comUpperLimit - comLowerLimit)/(S - 1)
13: for j = 0 to S
14: if (j == 0) then P[j] = mapRec.minRange
15: else if (j == S) then P[j] = mapRec.maxRange
16: else P[j] = comLowerLimit + j ˆ η

17: end if
18: j = j + 1
19: end for
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Algorithm 1 uses Equations (8)–(10) for calculating pivot points. Figure 5 illustrates the domain
and sub-domain of pivot points.

3.3.2. Mapping

Given l attributes in an attribute list associated with weight wj (1 ď j ď l) in a WSN application,
the source SHk generates the hash value by:

h “
l
ÿ

j“1

´´

avgMk
i“1vij{Ajpmaxq

¯

ˆwj

¯

(11)

Hence, after each epoch, SHk forwards the aggregated event Ek “ xrψ1, ψ2, . . . , ψls , rt, hsy, where t
denotes the epoch number, to the destination sector head denoted by SHi where, Pi ď h ă Pi` 1 and Pi
and Pi`1 is the lower and upper limit of ith sub-interval, respectively.
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3.4. Insertion

Within a sector, data are further distributed among nodes according to their distance from the
SH. In order to do so, a sector is divided into segments. Figures 6 and 7 and Table 2 illustrate the
idea of sector segmentation. Given a kth sector containing Mk member nodes, the SHk first sorts all
member nodes based on RSSI in ascending order. The member nodes are then divided into r segments.
Each segment forms a circle, denoted by BpX,Yq (ri), where the center of the circle is (X, Y) with radius
ri. (X, Y) is the geographic co-ordinates for SHk. The number of segments depends on the WSN
application, sector size and the number of member nodes in each sector. Thus the set of sensors that
are within a Euclidean distance ri from (X, Y) form the segment defined by:

BpX,Yqpriq “ tSensorsCoordinate px, yq : |pX, Yq , px, yq| ď riu (12)

βk “ pPk`1 ´ Pkq {r, 1 ď k ď S (13)

!

PMKpiq

)S

k“1
“

$

’

&

’

%

Pk,
Pk ` βˆ i,
Pk`1,

i “ 0
0 ă i ă r

i “ r
(14)

By Equations (13) and (14), the pivot points of r segments within the kth sector are calculated.
An event with hash value, denoted by h, is stored in a member sensor node of ith segment where
PMKpiq ď h ď PMKpi`1q. In order to balance the load, data are distributed among the nodes inside a
segment in a round robin fashion (see Algorithm 2).

Algorithm 2. Search_Target_Node (segment[i]), implemented at each SH node.
Input: segment[i] (a data structure containing member node ID and tally to count the number of
packets stored in this member node)
Output: return the target Member Node ID.

1: sort segment[i] in ascending order based on segment[i].tally
2: segment[i].tally = segment[i].tally +1
3: memberNodeId = segment[i].ID
4: return memberNodeId
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3.5. Skyline Query

A threshold based hierarchical approach has been used in this research to calculate DS (q, r). The
threshold based hierarchical approach uses the temporal correlation among the sectors and segments
of a sector. All the key notations used in this section are listed in the Table 3 to increase reader comfort.

Table 3. Skyline Notation.

Symbol Description

ei An event at SHi or segment ri of a sector
E A set of events
θi The threshold point of SHi or Segment ri

LDSi The local dynamic skyline of SHi or Segment ri

ei ăpq,rq ej
Event ej is dominated by event ei with respect to query point q and the target

region of interest is a circle of radius r centered at q.

ei ďpq,rq ej
Event ej is dominated by or equal to event ei with respect to query point q and

the target region of interest is a circle of radius r centered at q.

ei ăpq,rq E Each event in E is dominated by event ei with respect to query point q and the
target region of interest is a circle of radius r centered at q.

ei ďpq,rq E Each event in E is dominated by or equal to event ei with respect to query
point q and the target region of interest is a circle of radius r centered at q.
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Algorithm 3. Build_Tree(), implemented at each SH.
Input: n (total number of sectors (columns)), SELF_NET_ADDR
Output: Node (to store the node values), L (to store the address of left child of each node), R (to
store the address of right child of each node)

1: // Finding the Track (row) number of current sector
2: i = (SELF_NET_ADDR)/n;
3: index = S;
4: for j = 0 to S´1;
5: node [j] = (i, j)
6: if (i-1 ě 0)
7: L[j] = index;
8: N[index] = (i´1, j)
9: end if
10: Li = i´1
11: while (Li-1ě0)
12: L[index] = index + 1
13: Node[index] = (Li´1, j)
14: index++
15: Li–;
16: end while
17: index++
18: if (i+1<T)
19: R[j] = index;
20: N[index] = (i+1, j)
21: end if
22: Ri = i+1
23: while (Ri+1<T)
24: R[index] = index+1
25: N[index] = (Ri+1, j)
26: index++
27: Ri++
28: end while
29: index++
30: end for

3.5.1. Tree Structure Construction

Each SH constructs a tree considering itself as the root using Algorithm 3. Figures 8 and 9 illustrate
an example of the formation of a tree rooted at the 13th (2, 3) Sector. Sector (2, 0), (2, 1), (2, 2), (2, 3),
(2, 4) and (2, 5) are the child nodes of Sector (2, 3). The sectors lying at the same column but upper
row and lower row of each of the child nodes of root node are added to the left and right branch,
respectively. For example, Sector (1, 0), (0, 0) and (3, 0), (4, 0) are added to the left and right branch,
respectively, of Sector (2, 0). The hierarchy is further maintained among segments inside each sector,
as shown in Figure 10.
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3.5.2. Basic System Operation

A query node first calculates hash hq using Equation (10) for the Dynamic Skyline Query (DS
(q, r)). The query is then forwarded to the SHi where Pi ď hq ď Pi`1. SHi finds the range of the query,
i.e., [hq-r, hq+r]. Hence, the target sectors where the sample dataset of the query need to be considered
are SHj, SHj`1, . . . , SHk, here Pj ď hq´r ď Pj`1, Pk ď hq`r ď Pk`1 and j ď k. The threshold based
hierarchical approach includes three phases—Tree Propagation, Regular Update and Triggered Query.

SHi issues a Triggered Query containing LSi to SHj`1, SHj`2 ..., SHk. The Triggered Query is issued
to ensure fetching all possible events that might be included in the final skyline but was not reported
during the Regular Update phase. SHi sends Triggered Query to each of its child SHj that satisfies
LSi ł θ j. Any child node SHj satisfying LSi ĺ θ j can be discarded since no ineligible event can exist in
the final skytline. There cannot exist any event that can be eligible to be included in the final skyline.
An internal child node SHj after receiving Triggered Query LSp from its parent computes LSj among LSp

and its non-reported points. SHj then forwards LSj to each of its children SHk that satisfies LSj ł θk
and waits for a reply with new points that are not dominated by LSj. SHj updates the local skyline
after receiving replies from all of its child nodes and finally replies to its parent SHp with the new
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skyline event set. In contrast, a leaf node SHj reports nothing if it reports ej in the first phase or satisfies
LSi ĺ θ j. Otherwise, it reports event ej.

Figure 11 illustrates the functionality of the two phases—Regular Update and Triggered Query in
a particular scenario. In the first phase (Regular Update) (Figure 11a), SH0 and SH7 reports eo and e7

to SH3 and SH4, respectively. However, e7 and e3 have been pruned by e4. Thus, the skyline set after
the first phase includes {e0, e4} (see Figure 11b). Figure 11c,d illustrates the second phase. SH4 issues
a Triggered Query containing {e0, e4} to SH3, SH6, SH5, and SH8 (here, it is assumed that [hq´r, hq+r]
covers all the tree SH). SH0, SH1, SH7 and SH2, however, are discarded since their corresponding
thresholds are dominated by e4. After receiving the Triggered Query, SH5 prunes e5 and forwards the
updated skyline set {e0, e4} to SH8. SH8 calculates its local skyline and prunes among the query it
receives from its parent and its own event e8. Since e8 is not dominated, it has also been included into
the final local skyline set, i.e., {e0, e4, e8}, and is finally sent back to the SH4. It is to be noted that, during
both phases, SH1 and SH2 do not need to transmit any event.
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4. Performance Evaluation

Simulations were conducted using Castalia v3.2 [29] running on top of OMNET++ [31] to evaluate
the performance of EDDS. The system parameters and their settings used in the experiments are
summarized in Table 4. The network model (illustrated in Section 3.1) was tested in four rectangular
fields with different parameter settings. Sensor MAC (SMAC) [32] and Sector Based Distance Routing
(SBD) [15] are used in MAC and routing layer. Simulations were run 30~40 times with varying-channel
affecting seeds to provide results that included average and 95% confidence interval. In Section 4.1,
possible distribution of data throughout the network is presented. Section 4.2 evaluated EDDS in
terms of energy consumption, latency and accuracy in a network of 180 nodes in a 90 m ˆ 90 m
(8100 m2) rectangular field. In Section 4.3, the performance of EDDS was tested using four different
rectangular fields with four different distributions respectively. In Section 4.4, the performance of
EDDS is evaluated against SkySensor in terms of data loss, data uniformity, success rate and resilience
to node failure.

4.1. Data Distribution

Figure 12 exploits different possible data dispersal with the realization of the mapping algorithm
illustrated in Section 3.2. This experiment was conducted in a network of 80 nodes in a 60 m ˆ 60 m
(3600 m2, total number of sectors is 16 (4ˆ 4)) field with a 60 min simulation time. The data production
rate per sector was five packets per second. Figure 12a shows uniform distribution, which means
data are stored uniformly among all sectors of the network. Figure 12b shows a central distribution in
which data are usually located among central sector of the network. Figure 12c,d represents the lower
bound distribution and upper bound distribution, where data are stored among lower and upper
sectors of the network, respectively.
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4.2. Efficiency

The efficiency of the proposed approach is measured based on three parameters—energy
consumption, latency and accuracy. These performance metrics and scalability of the proposed model
is directly affected by the query range, which varies based on the average number of sectors indicated
by α. With the increase of α, the number of messages that are generated due to three fundamental
operations such as Tree Propagation, Regular Update and Triggered Query increases exponentially. Thus,
in a model such as skyline query, it is an utmost challenge to minimize the energy consumption and
latency while maximizing the accuracy. This experiment was conducted in a 90 m ˆ 90 m rectangular
field, in which 180 nodes were randomly and independently disseminated. The data distribution used
in this experiment was uniform. The query rate varied from 0.1 to 0.5 queries per sector per second
and the simulation was run for 60 min. The Skyline Query overhead is comparatively high due to its
three phase query calculation. Figure 13a–c presents the average energy consumption (J) per node,
latency (s) and accuracy (accuracy was defined as the percentage of skyline queries that were correctly
resolved) as a function of the query rate per sector per second. In this experiment, the query range was
varied in four different ways as shown in Figure 13. In order to show the scalability of the system, α has
been varied exponentially up to 36, where 36 is the total number of sectors in a 90 m ˆ 90 m (Table 4)
rectangular field. From Figure 13a,b, it is noted that the overhead in terms of energy consumption and
latency grows radically as α increases. It is also to be noted that the data in Figure 13a are presented in
logarithmic scale in order to reduce the wide range to a more manageable size. However, the accuracy
of the query response was very high (see Figure 13c) and close to 100%. Packet loss due to interference
causes some minor inaccuracy.

Table 4. Simulation Parameters.

Parameter Setting

Field Size (F) 60 ˆ 60 m2, 90 ˆ 90 m2, 120 ˆ 120 m2, 150 ˆ 150 m2

Number of Nodes (N) 80 (3600 m2), 180 (8100 m2), 320 (14,400 m2),
500 (22,500 m2)

Number of Sectors/Field Size (S/F) 16/(60 ˆ 60 m2), 36/(90 ˆ 90 m2), 64/(120 ˆ 120 m2),
100/(150 ˆ 150 m2)

Member Node Density (fm) 1 node/56.25 m2

Sector Head Node (SH) Density (fSH) 1 node/225 m2

Radio Range (member node) ~8 m
Radio Range (SH) ~20 m

Transmission Power 0 dBm (SH), ´5 dBm (member node)
Power Consumption in Sending and

Receiving Messages 57.42 mW (SH), 46.2 mW (member node)

Power Consumption Per Sensing 0.02 mJoule
Data Rate, Modulation Type, Bits Per Symbol,

Bandwidth, Noise Bandwidth, Noise
Floor, Sensitivity

250 Kbps, PSK, 4, 20 MHz, 194 MHz, ´100 dBm,
´95 dBm

pathLossExponent 2.4
Initial Average Path Loss (PL(d0)) 55

Reference Distance (d0) 1.0 m
Gaussian Zero-Mean Random Variable (Xα) 4.0

Routing Protocol SBD [15]
MAC Protocol, Maximum Transimission Retries SMAC [32], 2

SMAC Acknowledgment, Synchronization, RTS, CTS
Packet Size 11, 11, 13, 13 bytes
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4.3. Robustness

In this section, robustness of EDDS was evaluated through two different experiments with the
variation of four different network sizes. In the first experiment, energy consumption, latency, and
accuracy were measured for varying the query rate, while, in the second experiment, they were
measured for four different data distributions.

4.3.1. Network Size

Experiments were carried out by varying the network field sizes such as 60 ˆ 60 m2, 90 ˆ 90 m2,
120 ˆ 120 m2 and 150 ˆ 150 m2 containing 80, 180, 320 and 500 nodes, respectively. The size of the
region of interest was kept fixed, i.e., the value of α was 9. The rate of the query was varied from 0.1 to
0.5 queries per sector per second. In Figure 14, the rate of the query is represented by β. Figure 14a,b
demonstrates that energy consumption and latency is exponentially proportional to the value of β.
However, when β is constant, they grow linearly with the size of the network. Figure 14c shows the
percentage of accuracy as a function of network size. The accuracy drops slightly with the scale of
the network.
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4.3.2. Different Data Distribution

Similarly, Four different data distributions named as uniform, center, lower bound and upper
bound distribution (Section 4.1) were considered with the same variation of the network field sizes
where the value of α was 9. Figure 15a presents the average energy consumption by each node in
different distribution. It is evident that energy consumption in uniform data distribution grows
radically. This is because, the data are distributed uniformly through every sector and hence each
possible sector (in this case, an average nine neighboring sectors) needed to be scanned to find the
target query. The other three distributions had data concentrated in a particular portion of the network.
Hence, EDDS required no transmission for the null sector, as they did not store any data. Thus, energy
consumption was relatively lower than the uniform distribution. However, center and lower bound
distribution have almost similar energy consumption while upper bound distribution falls in the
middle. The distribution presented in Figure 12 gives the rational of this behavior. Figure 15b shows
the latency performance of EDDS in different distribution. Based on the aforementioned reasoning, it
is obvious that the latency in uniform distribution is higher compared to other distribution. Average
latency of other three distributions is almost same. Figure 15c shows the accuracy of EDDS in different
distributions. It is observed that, accuracy of EDDS drops sharply with the increase of the size of the
network. The accuracy of EDDS varies in between 70% and 96% at uniform distribution, 85%–99% at
center and lower bound distribution and 80%–99% at upper bound distribution.
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4.4. Evaluation against SkySensor

In this section, EDDS is evaluated against SkySensor in terms of data loss, data uniformity, success
rate of the skyline query and resilience to node failure. All subsequent experiments were conducted
with a network size of 150 ˆ 150 m2 with 500 nodes deployed uniformly. The dimension of attribute
varied from 2 to 7, data and query generation rate varied from 0.02 packets/node/second to 0.1
packets/node/second. The default value of data and query rate was 0.02 packets/node/second unless
otherwise stated.

4.4.1. Data Uniformity

In this experiment, data uniformity of SkySensor and EDDS is studied by varying the dimension
of attribute from 2 to 7. Uniformity metric is defined as the ratio between the number of nodes used
for data storage and total number of nodes in the network. In SkySensor, the number of clusters in a
sensor network depends on the number of attributes of a tuple regardless of the size of the network.
This is one of the major limitations of SkySensor. On the other hand, referring to Table 4, the number
of sectors in EDDS for this particular network is 100, which means data are stored in 100 equivalent
clusters of SkySensor resulting uniform distribution of data throughout the network. Figure 16a shows
that data uniformity of SkySensor is stringently dependent on the number of dimension while this is
independent and consistent for EDDS.
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4.4.2. Data Loss

In this experiment, dimension of attribute was fixed at 2 and data generation rate was varied from
0.02 packets/node/second to 0.1 packets/node/second. Data loss metric is defined as the ratio of the
number of data packets actually stored to the total number of packets generated. From Figure 16b,
it can be seen that the percentage of data loss in SkySensor increases with an increasing data rate.
This happens because there are only two clusters in SkySensor, which is clearly insufficient if the
application or simulation runs for a long time. In addition, with a higher data generation rate, a
hot spot or bottleneck would be created surrounding the cluster or edge nodes. On the other hand,
regardless of the number of dimensions, the number of sectors or clusters is fixed ensuring an increased
participation of nodes in data storage with uniform distribution.

4.4.3. Success Rate

Success rate in retrieving a true skyline result is studied by varying the query rate. In this
experiment, the number of dimensions in attribute space was fixed at 3. The query rate was varied
from 0.02 packets/node/second to 0.1 packets/node/second. Queries were generated uniformly from
different parts of the network. From Figure 16c, it is interesting to note that with a low query rate, the
success rate of SkySensor is slightly higher than EDDS. However, this result reversed when the query
rate was over 0.04 packets/node/second and then the success rate of SkySensor reduced as the query
rate increased. This occurred due to the high concentration of all sensor readings around three clusters
that eventually created congestion. A significant number of query requests and query responses were
lost due to the interference, congestion and hotspot around the edge or gateway of the cluster.

4.4.4. Resilience to Node Failure

In this experiment, the resilience to node failure of EDDS is studied against SkySensor. In
SkySensor a local replication method is adopted in order to circumvent data loss due to a storage
node failure. On the other hand, EDDS integrates a Decentralized Distributed Erasure Coding (DDEC)
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algorithm instead of simple replication to achieve similar level of reliability with less redundancy [33].
In this study, the number of dimensions in attribute space was fixed at five and a fraction f of nodes
from the network were removed at random point of simulation. The simulation was run for 20 rounds.

In the first sub-experiment (Figure 17a), the data generation rate was varied from 0.02 to 0.1
packets/node/second and f was fixed at 20%. Figure 17a shows that DDEC consumed almost 50%
less resources to maintain a similar or even higher magnitude of redundancy in a normal situation
(packet rate < 0.08). However, due to the limited number of clusters, the storage space of SkySensor
depleted with packet rate greater than 0.08 packets/node/second.
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In the second sub-experiment, data generation rate was fixed at 0.05 packets/node/second and f
was varied from 5% to 30%. Figure 17b shows the percentage of the correct skyline result after a query
is issued to the network at the end of each round. It is shown that it is possible to get false skyline
results. It is shown in Figure 17b that EDDS performance is similar to SkySensor under a lower data
production rate. Therefore, EDDS achieves similar or higher level of reliability with less redundancy.

5. Conclusions and Future Work

This paper proposes a distributed approach for resolving DS efficiently in DCS of WSN. To our
knowledge, this is the first practical demonstration of DS in DCS of current state-of-the-art WSN. The
key feature of EDDS is the dynamic flexibility provided when carrying out queries from distributed
data sources. The approach highlights the potential for using distributed skyline queries in the case of
DCS of WSN and also shows the relationship between the query efficiency and storage pattern. The
experiments provide results for varying WSN configurations and provide detail on the effectiveness
of the dynamic skyline query approach. The current research focus is on improving EDDS for large
networks and future work includes consideration of reliability and resiliency.
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