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Abstract: In this paper, a novel concept of coupling the actuators of an automated order
picking system for pouch packed goods with an embedded CCD camera sensor by means
of image processing and machine learning is presented. The picking system mechanically
combines the conveyance and singularization of a still-connected chain of pouch packed
goods in a single machinery. The proposed algorithms perform a per-frame processing of
the captured images in real-time to detect the sealed seams of the ongoing pouches. The
detections are used to deduce cutting decisions in order to control the system’s actuators,
namely the drive pulley for conveyance and the cutting device for the separation. Within
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this context, two controlling strategies are presented as well which specify the interaction of
the sensor and the actuators. The detection is carried out by two different marker detection
strategies: enhanced Template Matching as a heuristic and Support Vector Machines as a
supervised classification based concept. Depending on the employed marker, detection rates
of almost 100% with a calculation time of less than 40 ms are possible. From a logistic point
of view, sealed seam widths of 20 mm prove feasible.

Keywords: sensor-actuator coupling; automated order picking; sealed seam detection;
servo drive; CCD camera; image processing; pouches

1. Introduction

Typical logistic processes like order picking became significantly more complex and dynamic during
the last years. This is mainly driven by increasing e-commerce (e.g., estimated growth of 24.8% in 2014
in Germany only [1]) and reduction of buffer stocks in production lines. Obviously, this also affects the
logistics of companies considerably. On the one hand, the number of shipments (packages) rises while
the number of items (goods) per shipment declines. To face the required needs in e-commerce fulfilment
and production industry as well, automated solutions are desirable because they typically reduce costs
and failure rates when compared to manual handling. Especially in the business sectors “Distributive
Trades” with 6.144 enterprises in Europe and “Transport and Storage” with 1.118 enterprises in Europe,
a significant sales market for automated solutions is given [2].

However, the automated handling of non-rigid packagings (like plastic pouches) are still challenging
due to their mechanical and geometric properties. In spite of the disadvantages of plastic pouches
like, e.g., missing stack-ability, lack of shock absorption, unpredictable position, shape, and reaction to
forces, they do have certain advantages such as low prices, space-saving storage, lightweight, hygienic
properties, and transparency. These make them an attractive alternative to other packages like cardboard
packages and support their wide-spread use in the industrial and end-consumer sector; sometimes,
pouches may even be the only available packaging choice [3]. In the fourth quarter of 2013, around
5.100 machines for tubular or side-sealed pouch packages with a business volume of more than
103 million Euros [4] were produced in Germany only. Hence, a potential market for automated pouch
handling solutions exists, too.

The aforementioned disadvantages impede the automated handling of pouch packed goods
considerably. This paper presents a possible solution to handle such goods in an automatic way; an
overview of the utilized hardware is given hereafter. At the Fraunhofer Institute for Material Flow and
Logistics, preliminary work concerning automated order picking of pouch packaged goods has been
accomplished. In several research projects, mechanical and analytical models have been developed and
assessed [3] which finally led to a prototype of an automated order picking system. It offers a possible
solution to the conveyance and separation of pouch packed goods in a single machinery. The basic idea
of the system can be summarized as follows: Pouches are produced and stored as a chain to simplify
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subsequent handling operations. For order picking, the pouch chain is loaded into the machine, the
chain is automatically fed forward by a cover band drive, cut into single pouches, and dispensed to full
customer order lines. Inherent to the functional principle of cover belt conveyors are almost random
variations of the pouch geometry during conveyance caused by the fillings of the pouches. This leads
to different heights of the pouches and, hence, accurate determination of the feed distance is impossible
due to pouch deformations and varying friction between the belt and guide pulley. From the mechanical
point of view, dimensioning and design of the order picking system have been researched in the past but,
finally, an efficient and inexpensive solution for the cutting line (sealed seam) detection was missing to
empower the system to automatically separate the chain of pouches according to given customer orders.

Within this paper, a novel concept of coupling the actuators of the picking system (a servo eccentric
drive for conveyance and the cutting device) with an embedded CCD camera (-sensor) by means of
image processing and machine learning is presented. More specifically, captured images are used for the
detection of the cutting lines which, in turn, are used for deducing the final cutting decision. Besides the
detection algorithms, two controlling strategies are introduced which determine the specific interaction
of the sensor and the actuators. Clearly, the presented concepts may also be applied in identification and
automation processes different to the underlying picking system utilized in this paper since they cope
with the general challenges superimposed by the disadvantages of pouch-packagings.

Employing a vision based solution enables a high flexibility concerning different packaging materials
(foils), types of pouches, fillings (i.e., packed goods), and markers. Decreasing prices for cameras and
computers in combination with applied software solutions offer an economical alternative to specialized
one-purpose sensor solutions.

The rest of this paper is organized as follows. In Section 2, State of the Art is presented for automated
order picking, different pouches in the industry, and today’s solutions for cutting line detection. Section 3
describes the setup of the automated order picking system and its components. The core of this
paper—the novel marker detection methodology to interface the actuators—is described in Section 4.
Section 5 deals with an experimental assessment of the presented algorithms in terms of detection
quality, cutting accuracy and runtime using the real machine setup of the order picking system described
in Section 3. Finally, Section 6 summarizes the main statements of the paper and concludes with an
outlook on future work.

2. State of the Art

Due to the constant need of automation in production, order picking and warehousing, a wide range of
technical solutions have been developed over the last 20 years. The following sections show the state of
development in the field concerning this work. More specifically, Section 2.1 reviews existing automated
solutions and examines whether they can be used for automated order-picking of pouch-packed goods.
Additionally, the presented picking system is differentiated from existing systems and a usage scenario is
revealed. Section 2.2 surveys different types of pouches used in industrial systems. Finally, Section 2.3
explains typical hardware systems employed for cutting line detection and how they can be utilized for
the purposes of this paper.
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2.1. Fully Automated Order Picking

Distribution in commerce and industry is usually based on different trade levels. Along the supply
chain—from producer to consumer—loading units are suspended and repacked. Large production lots
are reallocated to smaller selling units. An important sub function for processes in facility logistics is the
separation of piece goods. This so-called order picking is targeted by definition on assembling subsets
out of an assortment due to requirements (customer order) [5]. Reaching this aim normally demands the
separation of single goods out of bigger packaging units.

Manual separation processes are labor- and cost-intensive, so automated solutions could help to
increase efficiency and reduce through-put time of orders at the same time. Contrary to these advantages,
a huge number of factors impede the automated separation. First of all, complex and varying contours
of the picking goods as well as a hardly predictable probability of quantity limit automated solutions
for order picking to a defined spectrum of goods. Particularly block shaped packages and trays are well
suited for machinable handling. Hence, shape, size, and quality of positioning have a crucial impact on
the performance of automated order picking systems [6].

An example of known solutions for the automated order picking of small packages is shown in
Figure 1. In these so-called A-frames, the goods are stored in vertical slots. According to costumer
orders, they are separately ejected to a belt conveyor or into a bin. These systems stand out due to high
performance but are limited to just a few packaging sizes and shapes.

Figure 1. Different solutions of automated order-picking.

(a) A-frame [7] (b) Robots provided by
conveyors [8]

(c) Order-picking machines [9] (d) Singulator [10]

Robots are also well aware in automated order-picking. As shown in Figure 1b, a gripper equipped
robot singularizes goods out of bins. This solution allows high dynamics and flexibility. Depending on
the processing time needed for the recognition of the gripping object and position, an adequate length
of the supply belt is mandatory. Under certain conditions, this leads to large space requirements caused
by long conveyor belts. Besides, these oder-picking machines (cf. Figure 1c) are used for special types
of goods (e.g., pharmaceuticals), usually stored in large drug stores or dispensaries. In these cases, a
small rack feeder reloads packages stored in shelves. Due to individual access to each storing object,
high flexibility is a major advantage of this approach; however, due to the individual handling, the
performance is rather low. A different approach is presented in Figure 1d. Karaca et al. [11] describe
a calibrated multi camera vision system for real time tracking of parcels moving on a special conveyor
belt. This belt consists of several independently controlled and moved sub-belts to arrange a bunch of
parcels into a single line. Separated or singulated this way, the goods could be sorted mechanically to
several chutes to complete an order. With a high throughput, this solution is suitable only for a limited
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spectrum of goods with a certain footprint and stiff package bottoms, i.e., they are unsuitable for pouches
in general.

As already mentioned in Section 1, the automated separation of pouch packed goods is particularly
challenging. They are usually stored in loose heaps or bins with no established order due to the difficult
handling of limp goods. Beside the mentioned applications in Figure 1, some technical solutions are
known for pouches. These solutions usually work with several belts or rollers in series, operating with
different rotation speed to separate single packages from a heap (e.g., SpaceFeeder [12] or Automated
Pouch Singulator [13]). Notably, these approaches have significant disadvantages concerning space
requirements and they are not solving the complete picking task compared with the novel solution that
this paper focuses on.

In principle, the picking system used in this paper may be deployed in any warehouse environemnt,
regardless of whether the other logistical processes are done automatically or manually. However, to
increase efficiency and reduce throughput times, it is intended to be integrated in a fully automated
industrial environment. Moreover, the picking system can be cascaded using multiple machines to
support the (automated) order-picking of different types of goods because a single machinery is only
able to process one type of pouches at a time.

2.2. Types of Pouches in Industrial Systems

In this section, different types of pouches and their markers are presented which are usually used for
packaging goods. They emphasize the variety and complexity of pouch packagings—Figure 2 gives an
overview. Tubular pouches (see types (a) to (b) in Figure 2) are the most common pouches in the retail
sector (especially food) and well suited to build chains. In most cases, a vertical bag forming, filling and
sealing machine processes these pouches automatically. Usually, sealing the bottom of the pouch and
cutting is one production step. By omitting the last step during the processing of each pouch, a defined
chain accrues (e.g., type (c) in Figure 2).

Figure 2. Common shapes of flat pouches used for bag chains. (a,b) tubular pouches
produced with or without side gussets; (c) a chain of tabular bags; (d) 3-side sealed
bag; (e) 4-side sealed bag; (f) sealed seam bags as double or chain.

(a) (b) (c) (d) (e) (f)

Beside form and production method, different ways of marking the pouches and storing the needed
information about their content are known in the industry. As shown in Figure 3, four general cases
could be distinguished, depending on the production process of the pouches.

While using bag forming, filling and sealing machines in combination with graphics or pre-printed
information on the foil, a printer’s imprint (also called registration mark) is mandatory to detect the
accurate placement of the pouches. Printing process variations, film stretch, film slippage during
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acceleration and other factors can allow the graphics to drift away from ideal cosmetic/marketing
placement on the finished bag. The registration mark provides a method to make minor adjustments
to the actual end placement of the seal and cut on a bag [15]. An example for a printer’s imprint or
registration mark is given on the left side (1) of Figure 3. In some cases, the vertical seam may cover
the registration mark after producing the pouch where the longitudinal sides of the flat foil are welded
to a tubular shape. Otherwise, printer imprints are suitable for post-production cutting line detection.
When there is no printing or graphics on the bag, the production process is defined solely on length
(cf. right side of Figure 3). This type of pouches usually gets a label or overprint (see (2) and (3) in
Figure 3) during or after production to identify the content (e.g., a bar code). While these markers
are attached during the packaging process, they could also be used for post-production cutting line
detection. However, the proposed method will not work for uniformly designed pouches without any
recognizable mark.

Figure 3. Systematic of possible different ways to mark a pouch.

Printer‘s
imprint (1)

Label (2) Overprint (3) No marker (4)

Markers on pouches

2.3. Cutting Line Detection

Different options concerning detection of sealed seams are presented within this section. Today’s
systems of cutting line detection are based on the recognition of printer’s imprint placed on the packaging
material. Efficient working sensors are well available on the market, usually deployed in print and
packaging applications. Four different types could be distinguished [16]:

• binary registration (print) mark sensor based on contrast or color (e.g., SICK KT 10-2),

• binary camera based sensors,

• camera systems (e.g., SICK IVC-2D or IVC 3D),

• and sensors for detection of streams of marks.

High sensitivity against changing distances between the sensor and the detected goods is the main
drawback of the mentioned technologies. Usually, so-called registration mark sensors (e.g., SICK AX20)
work with a detection distance of 10 to 50 mm; the tolerance against distance changes is even less.
Inherent to the presented order picking system for pouches, the distance between the detection unit and
the chain of pouches is not constant. This is caused by type and orientation of the goods inside the pouch.
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Given these undefined outlines, the pouches vary in length and depth which virtually prevents the use of
the listed sensor technologies except for 2D- and 3D- camera systems.

However, compared to standard sensors, the use of commercially available 2D or 3D vision systems
for the detection causes high costs. Hence, a flexible, low cost and robust concept has to be developed
which enables the detection of various sealed seams. Instead of dedicated sensors, a combination of a
CCD camera, an off-the-shelf desktop PC and a detection algorithm is used. By surrendering specialized
solutions like “Smart Cameras”, cost efficiency is granted.

3. Automated Order Picking System

Within this section, the details of the automated order picking system are presented. It is built up
of three components: the mechanical, the control and the vision component. Details of the mechanical
setup and the intercommunication by the control system are explained in this section while the vision
system is detailed in Section 5.1.

In Figure 4a, a drawing of the functional principle is shown. The real setup is depicted in Figure 4b
which shows the mechanical setup (left) and the vision system (right). A dispensing mechanism based on
a modified cover band principle is responsible for feeding the pouch chain through the system. Powered
by a drive pulley, the belt covers the goods which roll over the guide pulley. Slack-side tension of the
belt is imposed and maintained at a constant level by a floating tension pulley which compensates for
belt elongation and changes in the thickness of the pouch chain inside the machine. Thus, the friction
between the cover belt and the pouch chain advances the goods [3]. An incremental position encoder
compares the number of revolutions of the guide pulley with the number of revolutions of the drive pulley
in order to tentatively ensure a constant velocity level. The integrated cutting unit consists of two parallel
linear blades and a servo eccentric drive which allows up to 4 cuts per seconds. All sensors and actuators
are controlled by a soft Programmable Logic Controller (PLC) located on an external computer.

Figure 4. Drawing of the functional principle and the needed components (a) and the real
setup at the Fraunhofer Institute for Material Flow and Logistics (b).

camera

drive pulley

pretension pulley

belt

guide pulley

guide plate

cutting tool

(a) Drawing of the functional principle (b) Real machine setup
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The picking process is started by the inquiry of the required number of pouches. A specific marker
profile attached to each of the pouches enables the vision system to detect the cutting line. In Figure 5,
two different approaches for the interaction of the sensor (CCD camera) and the actuators (servo drive
and cutting tool) are presented. Depending on these approaches, the controlling strategies differ, too.
They specify how the marker detection module (blue, dashed) interacts with the machine control (gray).
On the one hand, a clocked solution (see Figure 5a) may be realized. In this case, a defined feed (roughly
having the length of a single pouch) is processed by the PLC. A position request from the PLC opens
a control loop that sends back the actual position of the detected marker. If the marker is detected in a
possible cutting position, one or more pouches can be separated. Otherwise, a correction of the position
has to be executed before a new request is accomplished by the PLC. This process will be repeated until
the desired number of pouches is separated. In terms of time, this implementation is not critical since
the processed images only show static pouch chains.

Figure 5. Interaction of the sensor (red) and actuators (green) in terms of two controlling
strategies of the picking system: (a) clocked and (b) “on the fly” mode of operation. Figure 8
depicts the details of the “marker detection” module (dashed) which are presented throughout
this paper. It serves as the (algorithmic) interface between the sensor and actuators.

CCD camera Servo drive Cutting tool

Marker detection

image request image (acquisition)

detected position

start / stop

position request

cutting signal

Machine control

(a) Clocked operation

CCD camera Servo drive Cutting tool

Marker detection

parameter picture

instant cut

start / stop

start / stop

cutting signal

Machine control

(b) “On the fly” operation

Another solution is based on a continuous “on the fly” principle (see Figure 5b). In this case,
marker detection is processed permanently analog to the cover belt traction. As far as a marker is
detected in cutting position, the cutting command is immediately send to the PLC. When the number
of ordered pouches has been reached, the drive of the cover belt stops. Literally, the latter control
approach convinces with simplicity since only three commands are required; however, apart from that it
is time-sensitive. Depending on conveying speed, pouch length, and marker size, the overall processing
time has to be lower than the feed duration between two markers. For the sake of throughput, the marker
detection algorithms presented in this paper are solely based on the continuous “on the fly” principle.

4. Marker Detection System

Given the setup described in the previous section, a CCD camera observes the ongoing pouches
(cf. Figure 4). The attached marker on each pouch enables the vision component to detect whether
a pouch is currently in cutting position. The images are provided by an industrial camera and the
processing is executed on a desktop PC allowing an overall robust and low-cost solution.

The markers and the appropriate detection algorithms are described in the next sections.
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4.1. Marker Detection

The marker detection algorithms support two types of markers, a color based marker and a specially
designed “user-defined marker” as visualized in Figure 6. The detection of the color based marker is
performed with a histogram enhanced template matching (Color-Marker_Template) whereas in addition
to a template-based approach (UD-Marker_Template), a machine learning concept (UD-Marker_SVM)
is used for the detection of the user-defined (UD) marker. This section introduces the marker detection
concepts from a methodical point of view: Color-Marker_Template and UD-Marker_Template as
heuristic concepts and UD-Marker_SVM as a supervised classification based concept.

Figure 6. Two different types of marker: (a) a silver sealed seam as a color based marker
and (b) a plastic pouch with a specially designed user-defined marker.

Color based marker

(a) Colored pouch with silver sealed seam as a color based
marker.

User-defined marker

(b) Plastic pouch with a special designed user-defined
marker.

Figure 7. Schematic concept of the (Left) extraction of k ≤ M salient columns
ρx( j) = {ρx( j)

0 , . . . ,ρx( j)
i , . . . ,ρx( j)

N−1} from an image of size N×M pixels–the RGB-channel
is represented by ρ ∈ {r,g,b}. The salient columns undergo a classification process leading
to a time series which assigns the image rows a specific probability of containing the
marker (Right).
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The key idea of both concepts is the representation of an image column j as time series
ρx( j) = {ρx( j)

0 , . . . ,ρx( j)
i , . . . ,ρx( j)

N−1} while each image line i represents a discrete time step with a
specified probability (in the following equivalent to the notation confidence) of containing the marker
as visualized in Figure 7. ρ ∈ {r,g,b} denotes the RGB channel of the input image. The two concepts
differ in the way of deducing the time series which are finally analyzed in order to detect the marker.

The detection algorithm is applied on the images, provided by the camera, and consists of
several substeps as shown in Figure 8. In the preprocessing step, a set of salient columns is
extracted followed by deducing time series of the selected image columns. Then the deduced
time series undergoes a detection/classification (Color-Marker_Template, UD-Marker_SVM and
UD-Marker_Template) producing a confidence vector for each time series. Finally, the confidence
vectors are combined to a global confidence vector which serves as the input for the decision-finding
in order to detect the marker.

Figure 8. Pipeline of the vision based marker detection system (dashed boxes in Figure 5).
The classification step of the color based marker detection proceeds with Template Matching
while the user-defined marker is detected by supervised classification (SVMs).

Detection / classification

Cutting
decision

CCD:camera

PLC:deviceMarker:detection

global
confidence

vector
Preprocessing
:-:extract:salient
::::columns
:-:deduce:time
::::series

Template:Matching
:a):Color:marker:
::::::-:detect:changeovers
:b):User-defined:marker:
::::::-:compute:correlation

Support:Vector:Machines
:-:learn:two:SVM:models
::::(one:for:each:submarker)
:-:classify:feature:vectors

4.2. Color Marker Detection

The model of the color based marker consists of a color component and the vertical dimension θv of
the marker as shown in Figure 9. The color component is deduced by constructing a three-dimensional
histogram of the image pixel intensity values of the RGB channels. The histogram space is equidistantly
subdivided into quads which are analyzed with respect to their density. Figure 9b exemplary visualizes
a three-dimensional histogram. Each sphere represents one sub quad while the size of the sphere
symbolizes the count of the pixels in the sub quad . All intensities of the marker lie in the region of
the marked sphere which represents the sub quad σv. Beside the marker pixels, additional pixels from
image regions with light reflections fall in this region. Hence, a pure intensity based classification is
insufficient. Therefore, an additional feature is needed for an explicit representation of the marker. In
this context, the vertical dimension θv of the marker is taken into account as illustrated in Figure 9a.
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Figure 9. Model of the color based marker depending on the (a) vertical image dimension
θv of the marker and (b) the three dimensional RGB histogram. The size of the spheres
symbolizes the pixel count in the subquads.

(a) Vertical dimension θv

Marker regionB

R

G

(b) 3D color histogram

4.2.1. Preprocessing

In order to equalize different illumination conditions, the contrast of the image is enhanced by the
help of histogram equalization. Therefore the RGB image is converted to the YUV format first, followed
by a histogram equalization of the Y channel. Finally, the enhanced YUV image is converted back to the
RGB format. In the next step, salient columns are extracted from the image.

The extraction set X ∈ {ρx(0), . . . ,ρx( j), . . . ,ρx(k−1)} of the k = |X | ≤ M salient columns
ρx( j) = {ρx( j)

0 , . . . ,ρx( j)
i , . . . ,ρx( j)

N−1} is based on the object model which consists of a color component
and the vertical dimension θv of the marker. In terms of reducing the calculation time, extracting
few salient image columns is a remedy, keeping in mind the trade-off between detection quality and
calculation time. The selected image columns are analyzed in further pipeline steps.

The extracted salient columns are represented as intensity vectors for each RGB channel ρ while the
image lines serve as time steps. Hence, for each salient column x( j) we get three vectors rx( j), gx( j),
bx( j) as time series.

4.2.2. Histogram-Enhanced Template Matching (Color-Marker_Template)

Based on the deduced time series of the salient image columns, for each time step (which represents
a particular image row) a correlation is calculated resulting in a confidence vector which indicates the
probability of containing the marker. The process of constructing the confidence vector is illustrated in
Figure 10 and described in detail in the following. First, the histogram based classification is examined
which segments the pixels (time steps of the time series) into potentially marker candidates α and the
rest β . Let σ define the subspace in the three dimensional RGB histogram which represents the marker
pixel values. A pixel x( j)

i is assigned to potential marker candidate, if the RGB values of x( j)
i fall in the

RGB subspace σ :

• αr ∈ σ r
r1,r2

,r1,r2 ∈N,r1,r2 ≤ 255,r1 ≤ r2: σ r
r1,r2

interval which contains the red channel intensity
values αr of the subquad.
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• αg ∈ σ
g
g1,g2 ,g1,g2 ∈ N,g1,g2 ≤ 255,g1 ≤ g2: σ

g
g1,g2 interval which contains the green channel

intensity values αg of the subquad.

• αb ∈ σb
b1,b2

,b1,b2 ∈ N,b1,b2 ≤ 255,b1 ≤ b2: σb
b1,b2

interval which contains the blue channel
intensity values αb of the subquad.

Otherwise pixel x( j)
i is assigned to β . After that, each pixel of the salient columns is mapped either to

α or to β .

Figure 10. Flow chart for constructing confidence vectors c( j) for a particular time series
x( j). Input and output is visualized in Figure 11a,c. α represents predefined marker candidate
pixels based on the RGB color model and β represents pixels from the rest of the image.

The histogram based classification is used to construct a confidence vector
c( j) = {c( j)

0 , . . . ,c( j)
i , . . . ,c( j)

N−1} for each time series x( j) which uses the vertical dimension θ ∈ N
of the marker and detects β −α (no marker→ marker) and α−β - (marker→ no marker) changeovers.
In terms of robustness, a changeover is detected when s β -pixels follow directly after s α-pixels (s ∈ N,
s≥ 1). The search for a marker begins with a β −α- (no marker→ marker) changeover and ends with
a α − β - (marker → no marker) changeover. For a time series x( j), if a α − β -changeover is found
at position i, the confidence vector stores the confidence value ω1 at position i as c( j)

i = ω1, whereby
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ω1 ∈ N is an arbitrary constant. After finding the start position i of the marker, the search for the end
position of the marker is performed with a sliding window of a defined size. In an ideal constellation,
the sliding window has the size of the vertical dimension of the marker θv (cf. Figure 11a).

Figure 11. Classification of time series x( j) of a synthetic image shown in (a) to marker
candidates (α ∈N) and no marker time steps (β = 0). The subsequent process of constructing
a confidence vector c( j) based on (b) is depicted in (c).

Marker

(a) Synthetic image (grey rectangle)
represented as time series. The vertical
dimension of the marker (green) counts
θ time steps (image rows).

Sliding window

changeover changeover

(b) Classification of the time series x( j)

in image (a) to marker candidates (α ∈
N), represented as green lines and the
rest (β = 0). The sliding window with
variable size is used to construct the
confidence vector c( j) (c).

(c) Constructing confidence vector c( j)

based on classified time series (b)
and the horizontal dimension θ of the
marker used in a sliding window (cf.
Figure 10).

Considering the vertical marker dimension θv and, e. g., the fact that the marker is not perfectly
horizontally aligned to the image lines due to irregular materials and buckling, a tolerance interval
[θv− θv

3 ,θv +
θv
3 ] is used as the size of the sliding window. Therefore, if a α −β -changeover is found

within distance d ∈ [θv− θv
3 ,θv +

θv
3 ] after a β −α-changeover followed by α- (marker) candidates, the

confidence (founding a marker at position i) increases to c( j)
i = c( j)

i +ω2, whereby ω2 ∈N is an arbitrary
constant, too. Figure 10 visualizes the process of constructing the confidence vector by exemplary
assigning a confidence to a particular pixel (time step) of a salient image column (time series).

The result of the Color-Marker_Template are k ≤ M confidence vectors c(0), . . . , c( j), . . . , c(k−1)

constructed from k time series (salient columns). The domain of each confidence vector consists of three
different types of values, namely 0, ω1 or ω1 +ω2, with 0 ≤ ω1 ≤ ω1 +ω2. While ω1 +ω2 represents
a high probability to include a marker at the corresponding time step (pixel), ω1 is a weaker indication
and other values are remarked with 0.

In the next step, unique confidence vectors are combined into a global confidence vector
z = {z0, . . . ,zi, . . . ,zN−1}. The global confidence vector is built as a sum of the particular confidence
vectors:

zi =
k−1

∑
j=0

c( j)
i , k ≤M. (1)

In terms of optimization, zi is smoothed with a window operator with the window size δ ∈ N which
is empirically determined:

ẑi =

δ

2

∑
w=− δ

2

zi+w. (2)
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Finally, a search for the maximum ẑmax of ẑi is performed. An empirically user-defined bound η ∈ N
builds an additional demand on the found marker position. Hence, ẑmax represents a marker position if
ẑmax > η as illustrated in Figure 12.

Figure 12. Detected marker position i with ẑi ≥ η in the global confidence vector ẑ.

The template matching approach affords excellent results for special cases like the detection of the
characteristic silver sealed seam of colored pouches as presented in the evaluation results in Section 5.
Nevertheless, this concept leads to the disadvantage of manually defining the marker model for each type
of pouch. The next section presents a learning based classification method which simplifies the adaption
to new pouch types.

4.3. User-Defined Marker Detection

In this section, two approaches (UD-Marker_SVM and UD-Marker_Template) to detect user-defined
(UD-) markers will be introduced. The use of one- or two-dimensional barcodes (like QR codes) was
tested as well. Unfortunately, motion blur and varying distances between the camera and the pouches led
to low detection rates making barcodes unsuitable in this context. Thus, the use of a user-defined marker
is proposed which extents a typical barcode (located in between the user-defined submarkers). This way,
logistic processes are still able to employ barcode technologies for identification purposes.

The first approach—described in Section 4.3.2—applies a machine learning method while the second
approach (cf. Section 4.3.3) finds a user-defined marker by means of template matching. The main
advance of machine learning (supervised classification) is not only the flexible portability to new marker
and pouch types but also the robustness towards environmental changes as varying light conditions and
artifacts. In the given case, Support Vector Machines (SVMs) assign objects to defined classes based on
a learned classification model. For details of Support Vector Machines, see, e.g., [17,18]. In combination
with the UD-Marker_SVM approach, an optimal marker was developed as visualized in Figure 13a and
described in the following.

4.3.1. User-Defined Marker Design

Figure 13a visualizes the user-defined marker, designed for the UD-Marker_SVM approach. The
special feature of the marker design is the integration of a barcode which is standard in industrial labeling.
The new marker consists of two submarkers (with distance d2) enclosing the barcode: the upper marker
and lower submarker. The submarkers are built up of three vertical black bars, two bars of the same
thickness and one twice thick as the other two. Between the bars, a constant distance d1 is set which is
a relevant value for the detection process as described in the evaluation (cf. Section 5.2.2). The upper
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and lower submarker differ in the alignment of the particular bars. The key idea (cf. Section 4.1) of the
design of the marker is to represent the image as time series while each column specifies one time series
and the image lines serve as particular time steps. Deducing one image column of the marker (ignoring
the middle bar code) as time series of the intensity values, leads to a characteristic function as visualized
on the right side of Figure 13b. For simplicity, the distance dcut between the marker and the optimal
cutting line is assumed to be constant because d(cut) is usually rather small compared to the size of the
sealed seams so that the deformations of the pouches are negligible.

Figure 13. The design of the marker (a) approves deducing characteristic intensity
profiles (b) of each image column (vertical red line in (a)) of the marker by analyzing the
intensity values. The marker is integrated into the bar code (vertical bars) which does not
take influence on the detection of the submarkes (horizontal bars).

Upper submarker 

Lower submarker 

d1

d2

x (j)

(a) The marker consists of two relevant parts,
the upper submarker and the lower submarker,
shifted by distance d2. The distance d1 between
the bars is a critical value for the detection
process. The salient column c( j) (red line) is
represented as intensity profile in (b).

Upper submarker 

Lower submarker 

d1

d2

Intensity
0 255

N-1

t
d1

d1

d1

d1

Optimal cutting line 

dcut

(b) Deducing salient column x( j) along the red line in (a) based
on intensity values (cf. scheme on the right). Dashed line parts are
ignored. The distance dcut from the lower submarker to the optimal
cutting line is assumed to be constant.

4.3.2. Machine Learning Based Marker Detection

The following paragraphs describe the machine learning based marker detection pipeline for the
user-defined marker (UD-Marker_SVM). First of all, the SVM classification model is learned based
on a representative set of exemplary images as described in the next paragraph. Once the SVM model
is built, the current image is analyzed by extracting feature vectors from the image and classifying them
by the SVM model in order to search for a marker. Then a confidence vector is built which represents
the probability of containing the marker in each image line. Based on the confidence vector, a model for
decision-finding is determined.

Preprocessing: In the first step, a Region of Interest (ROI) is defined which includes the marker as
illustrated in Figure 14. Here, attention should be paid that the marker significantly differs from the
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rest of the ROI region. Because of the static setup (cf. Section 5.1), the marker is always found in the
ROI. Image regions outside the ROI are not considered in the marker detection process; hence, excluding
these regions decreases the calculation time. A set of images is captured which show the pouches with
the marker in different positions. Because of irregular buckling of the pouches, the marker differs in
position and rotation. For each image, the user manually marks two image regions, one including the
upper and one representing the lower submarker as visualized in Figure 14. In terms of the marker
detection process, two SVMs are learned separately, one for the upper and one for the lower submarker.
Thus, two datasets are generated for the learning process, one for each of the two SVMs.

Figure 14. Definition of the Region of Interest (ROI) and the vertical bounds of the upper
and lower marker parts within the ROI.

Upper 
submarker

begin

end

begin

end

ROI

Lower
submarker

Figure 15 visualizes the extraction process of the feature vectors for the learning set of the SVM. First,
n salient columns with equidistant distance are extracted from the ROI automatically. The pixel values of
the salient columns are converted from RGB to gray-scale intensity values. In order to equalize different
illumination conditions, the contrast of the gray-scale image is enhanced by histogram equalization. The
parts of the salient image columns which coincide with the manually tagged marker sub regions provide
a basis for the feature vectors of the particular submarkers. In a following preprocessing step, high
intensity values are cut at the beginning and at the end of the intensity vectors which leads to a small
diversity in the length of the particular vectors. Because the detection process requires a fixed length of
the feature vectors, the minimum length lmin of all vectors is determined first. Then the values at the end
of the residual vectors are cut to a total vector length equal to lmin.

Learning: The learning classification process is based on a representative set D

D =
{
(x̃( j)

i ,y( j)
i ) | 0 < i < k

}
(3)
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of tuples (x̃( j)
i ,y( j)

i ), consisting of feature vectors x̃( j)
i ∈ Rlmin extracted from the salient column x( j),

(x̃( j)
i )T =

(
v( j)

i , . . . ,v( j)
i+lmin

)
, lmin ≤ N (4)

of normalized intensity values v( j)
i ∈ [0,1] and the associated labels y( j)

i

y( j)
i ∈ {−1,1} (5)

where y( j)
i = −1 indicates “no marker” and y( j)

i = 1 indicates a “marker”. The learning data set is
generated by the user by marking the image regions containing the upper and the lower marker as
visualized in Figure 14. Besides the two marked regions by the user, a third random image region is
marked automatically which does not overlap with the marker regions. From the salient columns of this
region, intensity vectors with length lmin are extracted which represent the negative tuples (x̃i,y

( j)
i ) with

labels y( j)
i =−1 in the training data of both SVMs.

Figure 15. Schematic visualization of the learning classification model: extraction of feature
vectors xi ∈ Rlmin for the learning set of the SVM.
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The training dataset for the SVMs of the upper marker is generated from tuples consisting of the
feature vectors x̃i extracted from the corresponding preprocessed vectors of the marked region and labels
y( j)

i = 1. Furthermore, the vectors extracted from the lower marker region are added to the training
dataset for the first SVM with labels y( j)

i =−1. This ensures the differentiation between the two markers.
Finally, the vectors from the random region are added to the training dataset of the first SVM and labeled
with y( j)

i =−1. Analogously, the training data for the SVM concerning the lower submarker is generated.
This process is repeated with all images captured for the training process. After completing the two
datasets, the SVMs are learned. As a result of the learning process two SVM classification models
are generated, one for the detection of the upper and one for the lower submarker. For a desciption of
techniques related to SVM parameters optimization, the reader is referred to [19].
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Classification: Based on the two learned SVMs for the upper and lower submarker, the images
produced by the camera are analyzed in order to detect the marker. The particular steps of the pipeline in
Figure 8 with SVM based classification are described in detail in the following. Notice that the detection
pipeline is executed on each image separately.

At first, for each image, salient columns are extracted from the ROI; they conform to the same salient
columns of the learning process. Next, the RGB values of the salient columns are transformed to gray
values. In the learning process, the length of the feature vectors x̃( j)

i of the upper and lower submarker are
set to the previous fixed size lmin. From each salient column, feature vectors are extracted with exactly
the size lmin as illustrated in Figure 16. Based on a salient column x( j) of size N−1 and a fixed size lmin

of the feature vectors x̃( j)
i , a set S( j) =

{
x̃( j)

0 , . . . , x̃( j)
N−1−lmin

}
of feature vectors is extracted. The set of all

extracted feature vectors is S =
⋃

S( j) and is classified in the next step.

Figure 16. Extracting feature vectors x̃( j)
i from a salient column x( j) (represented as grey

values) leads to a set S( j) =
{

x̃( j)
0 , . . . , x̃( j)

N−1−lmin

}
of feature vectors.

...
.

...
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...
.

...
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i

Based on the two learned SVMs (for the upper and lower submarker) and the set S of extracted
feature vectors in the previous step, a classification is executed for each SVM individually. During the
classification process the extracted feature vectors from the salient columns are assigned to one of the
two classes “marker” and “no marker”. The two SVM classes in both SVMs are separated through a
hyper plane, determined in the learning process. Considering one SVM, for each salient column x( j) and
the corresponding set of feature vectors S( j), a confidence vector c( j) is determined. Hence, for k salient
columns we get k confidence vectors uc( j), 0 ≤ j ≤ k−1 ≤M−1 for the first SVM (upper submarker)
and k confidence vectors lc( j), 0≤ j ≤ k−1≤M−1 for the second SVM (lower submarker).

The particular confidence vectors for the upper and lower submarker are summed to one confidence
vector

uc =
k

∑
j=0

uc( j) , lc =
k

∑
j=0

lc( j) , k ≤M−1. (6)



J. Sens. Actuator Netw. 2014, 4 263

The confidence vectors uc, lc describe the probability of finding the appropriate submarkers at
particular time steps. In order to find the user-defined marker, the two confidence vectors must be
combined to a single global vector

z =
N−1

∑
i=d2

uci +
lci−d2 (7)

by shifting lc by d2 (distance between the upper and lower submarker, cf. Figure 13a) time steps to the
left. Furthermore, a window operator is applied on the vector z which leads to ẑ with the elements

ẑi =

δ

2

∑
j=− δ

2

zi+ j, i, j,δ ∈ N. (8)

The window size δ is empirically determined. In the next step, the constructed confidence vector ẑ is
analyzed in order to find the marker position.

The search for marker positions is equivalent to the search for positions in the confidence vector ẑ
which exceed a threshold α ∈ N+. Due to the definition of the window operator (see Equation (8)),
the maximum possible value of the confidence vector ẑ is ẑi = δ · sn where sn is the number of salient
columns. Hence, the determination of the threshold ζ depends on δ and the number sn of salient columns.
An experimental determination led to ζ = 1

2δ · sn. Finally, the (vertical) position i is returned as “marker
position” if the value of the confidence vector ẑi exceeds the threshold ζ ≤ ẑi. If the detected marker
position satisfies wl < i < wh (i.e., it is located within the cutting detection window), a cutting signal is
transmitted to the programmable logic device (PLC) of the picking system (cf. Section 3).

4.3.3. Template Matching Based Marker Detection

The template matching based marker detection (UD-Marker_Template) is quite similar to the
aforementioned SVM approach in terms of moving the upper and lower submarkers as a pattern over
a salient column and measuring the correlations between the two patterns and the profile of the column.
The output comprises two correlation vectors k( j),h( j) for each column j. Before the detection method
is described in detail, the overall workflow for the template matching based marker detection approach
is presented in the following. The template matching based marker detection starts with converting the
input RGB image into a gray-scale image as depicted in Figure 17a. Afterwards, the gray-scale image is
filtered by applying a sharpness filter by means of a Laplacian kernel and then utilizing a median filter.
The result is a filtered gray-scale image as shown in Figure 17b. In order to equalize different illumination
conditions, the contrast of filtered gray-scale image is enhanced by a histogram equalization (illustrated
in Figure 17c). By using Otsu’s adaptive thresholding method [20], a binary version of the image is
created. An exemplary result image for applying the template matching is depicted in Figure 17d.

The pattern for the upper marker is represented by the vector u ∈ RN :

u = (u0, . . . ,ui, . . . ,uc1−1)
T ,c1 ≤ N (9)

and the pattern for the lower marker is represented by the vector w ∈ RN :

w = (w0, . . . ,wi, . . . ,wc2−1)
T ,c2 ≤ N (10)
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with binary intensity values ui,wi ∈ {0,1}. The correlations vectors k( j),h( j) are defined as follows:

k( j) =
(

k( j)
0 , . . . ,k( j)

i , . . . ,k( j)
N−1

)T
, h( j) =

(
h( j)

0 , . . . ,h( j)
i , . . . ,h( j)

N−1

)T
. (11)

The correlation values for the patterns are then calculated for each row by

k( j)
i =

∑
N−1
i′=0

(
ui′ · x

( j)
i+i′−

1
c1
·∑N−1

i′′=0 x( j)
i+i′

)
√

∑
N−1
i′=0 u2

i′ ·∑
N−1
i′=0 x( j)

i+i′
2

(12)

and

h( j)
i =

∑
N−1
i′=0

(
wi′ · x

( j)
i+i′−

1
c2
·∑N−1

i′′=0 x( j)
i+i′

)
√

∑
N−1
i′=0 w2

i′ ·∑
N−1
i′=0 x( j)

i+i′
2

. (13)

Identifying the position of the marker is analogously done to the SVM approach (see
Equations (6)–(8)) whereas the classification vectors are exchanged by the correlation vectors presented
in this section.

Figure 17. Image states in template matching based marker detection: (a) grayscale
image, (b) filtered grayscale image, (c) histogram equalized grayscale image and (d) binary
image.

(a) (b)

(c) (d)

5. Evaluation

This section deals with the evaluation of the color based marker detection (using the
Color-Marker_Template algorithm) and the detection of the user-defined marker (employing
UD-Marker_SVM and UD-Marker_Template, respectively). The evaluation was executed on the real
setup of the fully functional picking system as visualized in Figure 4b and described in detail in Section 3.
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5.1. Vision System Setup

Developed in several research projects [3], the mechanical setup (see Section 3) was extended by a
vision system for cutting line detection. The details of the vision system are described next.

According to the requirement of supplying sufficient detection speed, high frame rates of and high
data transfer rates to the processing computer are mandatory. Beside this, the deployed camera has
to constantly deliver high quality images. Especially in the field of industrial applications, numerous
adequate cameras are available in the market (e.g., [21,22]). In the test setup, an acA640-100gc
CCD camera produced by Basler AG was used providing frame rates up to 100 frames per second.
It is interfaced by the TCP/IP based GigE vision standard [23] and offers different output formats
like YUV422, grey scale, RGB24 or RGBA32. Furthermore, shutter speed and a ROI are manually
adjustable. To be independent from ambient light, it is equipped with a LED ring lamp. The camera
is mounted in a distance of 25 cm to the guiding plate (cf. Figure 4a) of the cover belt conveyor. In
combination with a Schneider-Kreuznach wide-angle lens, a captured detection field of 21 cm (width)
times 17 cm (height) results. The hardware platform for image processing is an OpenCL compatible
x86 personal computer with a quad core processor. The system specifications are detailed along with the
experimental runtime analysis in Section 5.2.3.

5.2. Detection Quality, Cutting Line Accuracy and Runtime

In the following, the marker detection methods (Color-Marker_Template, UD-Marker_SVM and
UD-Marker_Template) will be experimentally evaluated. Firstly, the quality of the detection algorithms
will be assessed (Section 5.2.1). Secondly, the accuracy of the cutting process will be analyzed
(Section 5.2.2). Finally, the runtime performance of the detection methods will be presented
(Section 5.2.3).

Colored pouches with a silver sealed seam as a color based marker (cf. Figure 6a) will be used as test
objects for the Color-Marker_Template algorithm. For the UD-Marker_SVM and UD-Marker_Template
detection methods, transparent pouches with the user-defined marker will be utilized as test candidates.

5.2.1. Detection Quality

In this section, the marker detection algorithms are evaluated in terms of robustness if the image is
synthetically modified by adding Gaussian noise and global brightening.

Generally, the overall performance of the system is depending on several parameters; the detection
process is one of them. On the one hand, performance could be seen from a bottleneck perspective. The
system consists of the pouch transport unit, the cutting unit and the detection unit. Depending on the
length of the bags, the transport unit or the cutting unit limits the possible performance. Nevertheless,
the cutting unit is able to perform 4 cuts per second. As long as the long side of a pouch is shorter than
200 mm (a typical size), the cutting unit becomes the bottleneck. Hence, available process time for
marker detection and cutting is about 250 ms. On the other hand, manual and automatic order picking
has to be compared: For manual picking, the process time could be calculated [24] and lasts certainly
longer than one second. Thus, any performance achievement above 1 pouch per second is not only
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acceptable but also the basis for economical feasibility. Regarding the detection quality, a detection rate
close to 100% is mandatory for industrial applications to assure robust picking processes.

Gaussian Noise: In practice, the quality of the captured images is not constant, e.g., caused by random
noise of the sensor. Hence, the original images were modified by adding Gaussian noise with an average
standard deviation of σ = 5,10,20,40 and 80 as illustrated in Figures 18 and 19. Figure 20a shows
the detection rate of the color based marker depending on the specified average standard deviation of
Gaussian noise by using a dark line with rectangle markers. The detection rate for a standard deviation
up to σ = 20 amounts stable at 94%. For σ = 40, the detection rate decreases to 85% and for σ = 80,
the color based marker is detected only in 50% of the total cases. For the user-defined marker detection
methods, the trends for the different noise levels are similar. For up to σ = 40, the detection rate remains
on a high level and decreases for greater values of σ . It can be concluded from Figure 20a that the SVM
based detection approach has a higher detection rate than the template matching based approach. This
can be explained by the major flexibility of the SVM based approach.

Figure 18. Color marker with Gaussian noise.

(a) σ = 10 (b) σ = 40 (c) σ = 80

Figure 19. User-defined marker with Gaussian noise.

(a) σ = 10 (b) σ = 40 (c) σ = 80

Synthetic Brightening: The illumination conditions are not constant in practice. Hence, the
robustness of the detection algorithm is evidenced by robust detections in varying illumination
conditions. The original image was modified by adjusting the γ (gamma) value of the images as
illustrated in Figures 21 and 22. The evaluation results are shown in Figure 20b. A γ value of one
(γ = 1) equals the original image lightening and values below one (γ < 1) result in brighter images with
lesser contrast. A value above one (γ > 1) will also lead to an image with a lower contrast but it will
be much darker than the original one. As it can be seen in Figure 20b, the detection rate for the SVM
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based approach and the template matching based approaches is the same as for the original images for all
configurations. Therefore, the detection rate of the SVM based approach is around 81% and the template
matching attains about 54%. In terms of an industrial application, the environment and hardware have
to be adapted to achieve a detection rate close to 100% which is a common requirement in industry. The
situation for the color marker is different since the method is based on the brightness differences in the
figure itself and therefore, the detection rate will decrease when brighter images are considered.

Figure 20. Evaluation of the robustness of the detection algorithm under varying (a) random
Gaussian noise with standard deviation σ = 5;10;20;40;80 and (b) illumination conditions
with γ = 0.125;0.25;0.5;1.5;2.
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Figure 21. Color marker with synthetic brightening.

(a) γ = 0.125 (b) γ = 0.5 (c) γ = 2

Figure 22. User-defined marker with synthetic brightening.

(a) γ = 0.125 (b) γ = 0.5 (c) γ = 2
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5.2.2. Cutting Line Accuracy

The evaluation of the cutting accuracy was done by measuring the deviation of the performed to the
optimal cutting line with chains of 10 pouches. In contrast to the evaluation of the detection quality in
the previous Section 5.2.1, the test runs were executed on the real machine setup.

Within the test runs, the distance of the user-defined marker bars d1 ∈ {0.6 mm,0.8 mm,1.2 mm} and
the distance of the marker to the optimal cutting line dcut ∈ {1 cm,5 cm} were varied (cf. Figure 13a).
The results are illustrated in Figure 23a as box-and-whisker plots. Within the test series, all markers
were detected. Overall result is a notable small deviation (less than 10 mm for the maximum deviation
in total) of the detected cutting line compared to the optimal cutting line. The most significant reason for
the deviations is the occurrence of irregularly sealed seams of the pouches and a small deviation of the
marker positions caused by manual attaching.

Figure 23. Accuracy of the detection process with UD-Marker_SVM on (a) transparent
pouches. Varied parameters are the distance of the user-defined marker bars
d1 ∈ {0.6mm,0.8mm,1.2mm} and the distance of the marker to the optimal cutting line
dcut ∈ {1cm,5cm}. Visualization of the accuracy of the detection process of the template
approaches (b): UD-Marker_Template on transparent pouches with user-defined marker and
Color-Marker_Template on colored pouches. The y-axis in each box-whisker-plot indicates
the deviation of the detected to the optimal cutting line.
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The evaluation of the cutting accuracy for the Color-Marker_Template was determined on a chain
with 30 colored pouches by measuring the deviation of the detected to the optimal cutting line. The
right box-and-whisker plot in Figure 23a illustrates the results. Within the test series, two markers were
not detected and led to false negatives (i.e., no cut was performed). The critical false positives, cases
in which a cut was performed although no marker was present, did not occur. Disregarding the false
negatives, a notable fact is the small deviation of the detected to the optimal cutting line when the marker
is correctly detected. The most significant reason for false negatives and the deviations is due to the
irregularly buckling of the pouches which is currently not taken into account by the detection algorithm.
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The left box-and-whisker plot in Figure 23b further illustrates the evaluation results for the cutting
accuracy with the template matching based detection (UD-Marker_Template) based on transparent
pouches with the user-defined marker. Within the test runs, each marker was detected while the deviation
of the associated cutting line to the optimal cutting line was less than 8 mm in all cases and less than 5
mm on average.

Derived from the results of the cutting line detection accuracy for the different strategies, a sealed
seam width of 20 mm (10 mm for the upper plus 10 mm for the lower seam) is suitable for robust
operation.

5.2.3. Runtime Performance

The runtime performance of the three marker detection mechanisms were measured on two hardware
platforms which could be utilized for efficient data processing: (1) a mobile device (Intel i5M 2.53 GHz,
4 GB RAM, Windows 7 64 bit) and (2) a desktop PC (Intel i5 2.80 GHz, 8 GB RAM, Windows 7 64 bit).
The results for the mobile device are shown in Figure 24a and the results for the desktop PC are depicted
in Figure 24b. From both figures, it can be derived that the runtime scales linear with the number of
salient columns. Another point which can be concluded from Figures 24 is that the histogram-based
marker detection is much faster than the detection algorithms for the user-defined markers. This is due
to the simpler detection strategy. The runtimes of the histogram-based detection methods are below 1ms
for all tested configurations. The runtime of the template matching and the SVM based approach for the
user defined marker grows linear with the number of salient columns. Due to the more flexible nature of
the SVM based approach and its robustness against noise and illumination situations, the requirements
with regard to the hardware platform are higher in comparison to the other methods.

Figure 24. Runtimes for different marker detection methods on (a) a mobile device (Intel
i5M 2.53 GHz, 4 GB RAM, Windows 7 64 bit) and (b) an desktop PC (Intel i5 2.80 GHz,
8 GB RAM, Windows 7 64 bit).

NumberDofDcolumns
20 40 60 80 100 120 140 160

0

50

100

150

200

R
un

tim
eD

(m
s)

Color-markerDtemplateD
UD-markerDSVM
UD-markerDtemplateD

(a) Mobile device

20 40 60 80 100 120 140 160

0

20

40

60

80

NumberSofScolumns

R
un

tim
eS

(m
s)

Color-markerStemplateS
UD-markerSSVM
UD-markerStemplateS

(b) Desktop PC



J. Sens. Actuator Netw. 2014, 4 270

5.3. Trade-off Considerations: Detection Quality vs. Number of Columns

The robustness of the detection quality depends on the number of salient columns which are
analyzed by the presented marker detection methods Color-Marker_Template, UD-Marker_SVM and
UD-Marker_Template (cf. Figure 25). As the vertical size of the user defined marker maximum counts
approximately 100 pixels in the images taken by the camera, a ROI consisting of maximum 80 salient
columns (cf. Paragraph 4.3.2) was defined. The number of columns directly influences the runtime
performance. Hence, a trade-off between the number of columns resulting in definite detection rate and
the runtime of the detection algorithm is mandatory. In case of Color-Marker_Template processing, the
marker detection on 80 salient columns yields a detection rate of 100% while the runtime stays beneath
1 ms. For the user-defined marker detection with UD-Marker_SVM, a detection rate of approximately
90% is reached for already 10 salient columns with a runtime of about 20 ms. UD-Marker_Template
leads to the best detection results for a ROI consisting of 20 salient columns with a runtime less than
5 ms. In case of UD-Marker_SVM and UD-Marker_Template, increasing the number of columns above
the mentioned thresholds does not yield improved detection results.

Figure 25. Trade-off consideration between the detection quality and the number
of columns: the detection rate (%) depends on the number of salient columns as
input for the marker detection algorithms Color-Marker_Template, UD-Marker_SVM and
UD-Marker_Template.
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6. Conclusion

In this paper, a novel approach for detecting sealed seams allowing automated order picking of pouch
packed goods was presented. Beyond a few existing expensive and specialized solutions in the field of
automated order picking of pouch packed goods, an efficient and inexpensive vision based concept was
developed which supports the detection of different types of pouches. The core of the new approach was
a vision based marker detection system with the realization of two different marker detection strategies,
template matching as a heuristic concept, and SVMs as a supervised classification based concept.



J. Sens. Actuator Netw. 2014, 4 271

The evaluation results of the presented vision based marker detection system show that efficient
and reliable marker detection can be guaranteed for color based and user-defined markers on different
types of pouches. The number of salient columns analyzed by the marker detection algorithms lead
to a balance between the detection robustness and calculation time. Already 10 salient columns are
sufficient for a detection rate greater than 90% with a calculation time less than 5 ms. Analyzing 80
salient rows with Color-Marker_Template leads to a detection rate of 100% with a calculation time
of less than 1 ms and a detection rate of almost 100% using the new user-defined marker approaches
(UD-Marker_SVM and UD-Marker_Template) with a calculation time of less than 40 ms. Up to a
conveying speed of 200 mm per second, a robust detection using the two different strategies can be
proven. In addition to that, experimental verification proved the robustness of the three presented
detection algorithms (Color-Marker_Template, UD-Marker_SVM and UD-Marker_Template) in terms
of image sensor noise and varying illumination scenarios. The effect of combining the (simulated)
Gaussian noise and synthetic brightening may be investigated in further reseach. However, the results
of Section 5 should be considered as guidelines to (re-) design the picking system. For example, the
illumination conditions may be controlled by replacing the acrylic glass panels with non-transparent
panels (cf. Figure 4b). To compensate deviation in cutting accuracy, a sealed seam width of 20 mm is
suitable which seems feasible from a pouch production perspective. However, the pouches used in this
paper exhibit rather large sealed seams which allows us to neglect the deformations. This aspect should
be addressed in further research, too. With a total hardware cost of approximately 800 Euro (300 Euro
for the camera and 500 Euro for a desktop PC), the presented embedded approach provides a competitive
alternative to expensive high integrated sensors just like smart cameras.

Future fields of research are the motion prediction as a further enhancement of the performance of
the detection method and trade-off analyses. At this, the comparison to other automated order picking
systems, particularly relating to the throughput, is a central aspect of further research. The overall quality
of the system is sufficient for most desired application areas but due to the cost/performance trade-off,
it may be desirable to even use cheaper hardware such as slower cameras. By using these platforms, it
is mandatory to integrate additional advanced motion prediction / tracking algorithms, such as Hidden
Markov Models [25] or Condensation algorithms [26].
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