
J. Sens. Actuator Netw. 2013, 2, 509-556; doi:10.3390/jsan2030509
OPEN ACCESS

Journal of Sensor
and Actuator Networks

ISSN 2224-2708
www.mdpi.com/journal/jsan

Article

Wireless Sensor Network Operating System Design Rules Based
on Real-World Deployment Survey
Girts Strazdins 1,2,*, Atis Elsts 1,2, Krisjanis Nesenbergs 1,2 and Leo Selavo 1,2

1 Institute of Electronics and Computer Science, 14 Dzerbenes Street, Riga, LV 1006, Latvia;
E-Mails: atis.elsts@edi.lv (A.E.); krisjanis.nesenbergs@edi.lv (K.N.); leo.selavo@edi.lv (L.S.)

2 Faculty of Computing, University of Latvia, 19 Raina blvd, Riga, LV 1586, Latvia

* Author to whom correspondence should be addressed; E-Mail: girts.strazdins@edi.lv;
Tel.: +371-6755-8224; Fax: +371-6755-5337.

Received: 1 June 2013; in revised form: 13 July 2013 / Accepted: 24 July 2013 /
Published: 16 August 2013

Abstract: Wireless sensor networks (WSNs) have been a widely researched field since the
beginning of the 21st century. The field is already maturing, and TinyOS has established
itself as the de facto standard WSN Operating System (OS). However, the WSN researcher
community is still active in building more flexible, efficient and user-friendly WSN operating
systems. Often, WSN OS design is based either on practical requirements of a particular
research project or research group’s needs or on theoretical assumptions spread in the WSN
community. The goal of this paper is to propose WSN OS design rules that are based on a
thorough survey of 40 WSN deployments. The survey unveils trends of WSN applications
and provides empirical substantiation to support widely usable and flexible WSN operating
system design.

Keywords: wireless sensor networks; deployment; survey; operating system; design rules

1. Introduction

Wireless sensor networks are a relatively new field in computer science and engineering. Although
the first systems that could be called WSNs were used already in 1951, during the Cold War [1],
the real WSN revolution started in the beginning of the 21st century, with the rapid advancement of
micro-electro-mechanical systems (MEMS). New hardware platforms [2,3], operating systems [4,5],

J. Sens. Actuator Netw. 2013, 2 510

middleware [6,7], networking [8], time synchronization [9], localization [10] and other protocols have
been proposed by the research community. The gathered knowledge has been used in numerous
deployments [11,12]. TinyOS [4] has been the de facto standard operating system in the community
since 2002. However, as the survey will reveal, customized platforms and operating systems are often
used, emphasizing the still actual WSN user need for a flexible and easily usable OS.

The goal of this paper is to summarize WSN deployment surveys and analyze the collected data in
the OS context, clarifying typical deployment parameters that are important in WSN OS design.

2. Methodology

Research papers presenting deployments are selected based on multiple criteria:

• The years 2002 up to 2011 have been reviewed uniformly, without emphasis on any particular year.
Deployments before the year 2002 are not considered, as early sensor network research projects
used custom hardware, differing from modern embedded systems significantly.

• Articles have been searched using the Association for Computing Machinery (ACM) Digital
Library (http://dl.acm.org/), the Institute of Electrical and Electronics Engineers (IEEE) Xplore
Digital Library(http://ieeexplore.ieee.org/), Elsevier ScienceDirect and SpringerLink databases.
Several articles have been found as external references from the aforementioned databases.

• Deployments are selected to cover a wide WSN application range, including environmental
monitoring, animal monitoring, human-centric applications, infrastructure monitoring, smart
buildings and military applications.

WSN deployment surveys can be found in the literature [13–18]. This survey focuses on more
thorough and detailed review regarding the aspects important for WSN OS design. This survey also
contains deployments in the prototyping phase, because of two reasons. First, rapid prototyping and
experimentation is a significant part of sensor network application development. Second, many of the
research projects develop a prototype, and stable deployments are created later as commercial products,
without publishing technical details in academic conferences and journals. Therefore software tools must
support experimentation and prototyping of sensor networks, and the requirements of these development
phases must be taken into account.

Multiple parameters are analyzed for each of the considered WSN deployments. For presentation
simplification, these parameters are grouped, and each group is presented as a separate subsection.

For each deployment, the best possible parameter extraction was performed. Part of information was
explicitly stated in the analyzed papers and web pages, and part of it was acquired by making a rational
guess or approximation. Such approximated values are marked with a question mark right after the
approximated value.

3. Survey Results

The following subsections describe parameter values extracted in the process of deployment article
analysis. General deployment attributes are shown in Table 1. Each deployment has a codename

http://dl.acm.org/

J. Sens. Actuator Netw. 2013, 2 511

assigned. This will be used to identify each article in the following tables. Design rules are listed in
the text right after conclusions substantiating the rule.

The extracted design rulesshould be considered as WSN deployment trends that suggest particular
design choices to OS architects. There is no strict evidence that any particular deployment trend must be
implemented in an operating system at all costs. These design rulessketch likely choices of WSN users
that should be considered.

Table 1. Deployments: general information.

Nr Codename Year Title Class Description

1 Habitats [11] 2002 Wireless Sensor Networks for Habitat
Monitoring

Habitat and
weather
monitoring

One of the first sensor network deployments,
designed for bird nest monitoring on a remote island

2 Minefield [12] 2003 Collaborative Networking Requirements for
Unattended Ground Sensor Systems

Opposing force
investigation

Unattended ground sensor system for self healing
minefield application

3 Battlefield [19] 2004 Energy-Efficient Surveillance System Using
Wireless Sensor Networks

Battlefield
surveillance

System for tracking of the position of moving
targets in an energy-efficient and stealthy manner

4 Line in the
sand [20]

2004 A Line in the Sand: A Wireless Sensor
Network for Target Detection, Classification,
and Tracking

Battlefield
surveillance

System for intrusion detection, target classification
and tracking

5 Counter-sniper
[21]

2004 Sensor Network-Based Countersniper
System

Opposing force
investigation

An ad hoc wireless sensor network-based system
that detects and accurately locates shooters, even in
urban environments.

6 Electro-
shepherd
[22]

2004 Electronic Shepherd—A Low-Cost, Low-
Bandwidth, Wireless Network System

Domestic animal
monitoring and
control

Experiments with sheep GPS and sensor tracking

7 Virtual fences
[23]

2004 Virtual Fences for Controlling Cows Domestic animal
monitoring and
control

Experiments with virtual fence for domestic animal
control

8 Oil tanker [24] 2005 Design and Deployment of Industrial
Sensor Networks: Experiences from a
Semiconductor Plant and the North Sea

Industrial
equipment
monitoring and
control

Sensor network for industrial machinery
monitoring, using Intel motes with Bluetooth
and high-frequency sampling

9 Enemy
vehicles [25]

2005 Design and Implementation of a Sensor
Network System for Vehicle Tracking and
Autonomous Interception

Opposing force
investigation

A networked system of distributed sensor nodes that
detects an evader and aids a pursuer in capturing the
evader

10 Trove game
[26]

2005 Trove: A Physical Game Running on an
Ad hoc Wireless Sensor Network

Child education
and sensor games

Physical multiplayer real-time game, using
collaborative sensor nodes

11 Elder Radio-
Frequency
Identification
(RFID) [27]

2005 A Prototype on RFID and Sensor Networks
for Elder Healthcare: Progress Report

Medication
intake accounting

In-home elder healthcare system integrating sensor
networks and RFID technologies for medication
intake monitoring

12 Murphy
potatoes [28]

2006 Murphy Loves Potatoes: Experiences from
a Pilot Sensor Network Deployment in
Precision Agriculture

Precision
agriculture

A rather unsuccessful sensor network pilot
deployment for precision agriculture, demonstrating
valuable lessons learned

13 Firewxnet [29] 2006 FireWxNet: A Multi-Tiered Portable
Wireless System for Monitoring Weather
Conditions in Wildland Fire Environments

Forest fire
detection

A multi-tier WSN for safe and easy monitoring of
fire and weather conditions over a wide range of
locations and elevations within forest fires

14 AlarmNet [30] 2006 ALARM-NET: Wireless Sensor Networks
for Assisted-Living and Residential
Monitoring

Human health
telemonitoring

Wireless sensor network for assisted-living and
residential monitoring, integrating environmental
and physiological sensors and providing end-to-end
secure communication and sensitive medical data
protection

15 Ecuador
Volcano [31]

2006 Fidelity and Yield in a Volcano Monitoring
Sensor Network

Volcano
monitoring

Sensor network for volcano seismic activity
monitoring, using high frequency sampling and
distributed event detection

16 Pet game [32] 2006 Wireless Sensor Network-Based Mobile Pet
Game

Child education
and sensor games

Augmenting mobile pet game with physical sensing
capabilities: sensor nodes act as eyes, ears and skin

J. Sens. Actuator Netw. 2013, 2 512

Table 1. Cont.

Nr Codename Year Title Class Description

17 Plug [33] 2007 A Platform for Ubiquitous Sensor
Deployment in Occupational and Domestic
Environments

Smart energy
usage

Wireless sensor network for human activity logging
in offices; sensor nodes implemented as power
strips

18 B-Live [34] 2007 B-Live—A Home Automation System for
Disabled and Elderly People

Home/office
automation

Home automation for disabled and elderly people
integrating heterogeneous wired and wireless sensor
and actuator modules

19 Biomotion
[35]

2007 A Compact, High-Speed, Wearable Sensor
Network for Biomotion Capture and Interac-
tive Media

Smart user
interfaces and art

Wireless sensor platform designed for processing
multipoint human motion with low latency and
high resolutions. Example applications: interactive
dance, where movements of multiple dancers are
translated into real-time audio or video

20 AID-N [36] 2007 The Advanced Health and Disaster Aid
Network: A Light-Weight Wireless Medical
System for Triage

Human health
telemonitoring

Lightweight medical systems to help emergency
service providers in mass casualty incidents

21 Firefighting
[37]

2007 A Wireless Sensor Network and Incident
Command Interface for Urban Firefighting

Human-centric
applications

Wireless sensor network and incident command
interface for firefighting and emergency response,
especially in large and complex buildings. During
a fire accident, fire spread is tracked, and firefighter
position and health status are monitored.

22 Rehabil [38] 2007 Ubiquitous Rehabilitation Center: An
Implementation of a Wireless Sensor
Network-Based Rehabilitation Management
System

Human indoor
tracking

Zigbee sensor network-based ubiquitous
rehabilitation center for patient and rehabilitation
machine monitoring

23 CargoNet [39] 2007 CargoNet: A Low-Cost Micropower
Sensor Node Exploiting
Quasi-Passive Wake Up for Adaptive
Asynchronous Monitoring of
Exceptional Events

Good and daily
object tracking

System of low-cost, micropower active sensor tags
for environmental monitoring at the crate and
case level for supply-chain management and asset
security

24 Fence monitor
[40]

2007 Fence Monitoring—Experimental Evalua-
tion of a Use Case for Wireless Sensor
Networks

Security systems Sensor nodes attached to a fence for collaborative
intrusion detection

25 BikeNet [41] 2007 The BikeNet Mobile Sensing System for
Cyclist Experience Mapping

City environment
monitoring

Extensible mobile sensing system for cyclist
experience (personal, bicycle and
environmental sensing) mapping, leveraging
opportunistic networking principles

26 BriMon [42] 2008 BriMon: A Sensor Network System for
Railway Bridge Monitoring

Bridge
monitoring

Delay tolerant network for bridge vibration
monitoring using accelerometers. Gateway mote
collects data and forwards opportunistically to a
mobile base station attached to a train passing by.

27 IP net [43] 2008 Experiences from Two Sensor Network
Deployments—Self-Monitoring and Self-
Configuration Keys to Success

Battlefield
surveillance

Indoor and outdoor surveillance network for
detecting troop movement

28 Smart home
[44]

2008 The Design and Implementation of Smart
Sensor-Based Home Networks

Home/office
automation

Wireless sensor network deployed in a miniature
model house, which controls different household
equipment: window curtains, gas valves, electric
outlets, TV, refrigerator and door locks

29 SVATS [45] 2008 SVATS: A Sensor-Network-Based Vehicle
Anti-Theft System

Anti-theft
systems

Low cost, reliable sensor-network based, distributed
vehicle anti-theft system with low false-alarm rate

30 Hitchhiker
[46]

2008 The Hitchhikers Guide to Successful
Wireless Sensor Network Deployments

Flood and glacier
detection

Multiple real-world sensor network deployments
performed, including glacier detection; experience
and suggestions reported.

31 Daily morning
[47]

2008 Detection of Early Morning Daily Activities
with Static Home and Wearable Wireless
Sensors

Daily activity
recognition

Flexible, cost-effective, wireless in-home activity
monitoring system integrating static and mobile
body sensors for assisting patients with cognitive
impairments

J. Sens. Actuator Netw. 2013, 2 513

Table 1. Cont.

Nr Codename Year Title Class Description

32 Heritage [48] 2009 Monitoring Heritage Buildings with
Wireless Sensor Networks: The Torre
Aquila Deployment

Heritage
building and site
monitoring

Three different motes (sensing temperature,
vibrations and deformation) deployed in a historical
tower to monitor its health and identify potential
damage risks

33 AC meter [49] 2009 Design and Implementation of a
High-Fidelity AC Metering Network

Smart energy
usage

AC outlet power consumption measurement
devices, which are powered from the same AC line,
but communicate wirelessly to IPv6 router

34 Coal mine [50] 2009 Underground Coal Mine Monitoring with
Wireless Sensor Networks

Coal mine
monitoring

Self-adaptive coal mine wireless sensor
network (WSN) system for rapid
detection of structure variations caused by
underground collapses

35 ITS [51] 2009 Wireless Sensor Networks for Intelligent
Transportation Systems

Vehicle tracking
and traffic
monitoring

Traffic monitoring system implemented through
WSN technology within the SAFESPOT Project

36 Underwater
[52]

2010 Adaptive Decentralized Control of
Underwater Sensor Networks for Modeling
Underwater Phenomena

Underwater
networks

Measurement of dynamics of underwater bodies
and their impact in the global environment, using
sensor networks with nodes adapting their depth
dynamically

37 PipeProbe [53] 2010 PipeProbe: A Mobile Sensor Droplet for
Mapping Hidden Pipeline

Power line
and water pipe
monitoring

Mobile sensor system for determining the spatial
topology of hidden water pipelines behind walls

38 Badgers [54] 2010 Evolution and Sustainability of a Wildlife
Monitoring Sensor Network

Wild animal
monitoring

Badger monitoring in a forest

39 Helens
volcano
[55]

2011 Real-World Sensor Network for Long-Term
Volcano Monitoring: Design and Findings

Volcano
monitoring

Robust and fault-tolerant WSN for active volcano
monitoring

40 Tunnels [56] 2011 Is There Light at the Ends of the
Tunnel? Wireless Sensor Networks for
Adaptive Lighting in Road Tunnels

Tunnel
monitoring

Closed loop wireless sensor and actuator system for
adaptive lighting control in operational tunnels

3.1. Deployment State and Attributes

Table 2 describes the deployment state and used sensor node (mote) characteristics. SVATS, sensor-
network-based vehicle anti-theft system.

Table 2. Deployments: deployment state and attributes.

Nr Codename Deployment
state

Mote
count

Heterog.
motes

Base
stations

Base station hardware

1 Habitats pilot 32 n 1 Mote + PC with satellite link to Internet
2 Minefield pilot 20 n 0 All motes capable of connecting to a PC

via Ethernet
3 Battlefield prototype 70 y (soft, by

role)
1 Mote + PC

4 Line in the sand pilot 90 n 1 Root connects to long-range radio relay
5 Counter-sniper prototype 56 n 1 Mote + PC
6 Electro-shepherd pilot 180 y 1+ Mobile mote
7 Virtual fences prototype 8 n 1 Laptop
8 Oil tanker pilot 26 n 4 Stargate gateway + Intel mote, wall

powered.

J. Sens. Actuator Netw. 2013, 2 514

Table 2. Cont.

Nr Codename Deployment
state

Mote
count

Heterog.
motes

Base
stations

Base station hardware

9 Enemy vehicles pilot 100 y 1 Mobile power motes - laptop on wheels
10 Trove game pilot 10 n 1 Mote + PC
11 Elder RFID prototype 3 n 1 Mote + PC
12 Murphy potatoes pilot 109 n 1 Stargate gateway + Tnode, solar panel
13 Firewxnet pilot 13 n 1 Base

Station
(BS) + 5
gateways

Gateway: Soekris net4801 with Gentoo
Linux and Trango Access5830 long-range
10 Mbps wireless; BS: PC with satellite
link 512/128Kbps

14 AlarmNet prototype 15 y varies Stargate gateway with MicaZ, wall
powered.

15 Ecuador Volcano pilot 19 y 1 Mote + PC
16 Pet game prototype ? n 1+ Mote + MIB510 board + PC
17 Plug pilot 35 n 1 Mote + PC
18 B-Live pilot 10+ y 1 B-Live modules connected to PC,

wheelchair computer, etc.
19 Biomotion pilot 25 n 1 Mote + PC
20 AID-N pilot 10 y 1+ Mote + PC
21 Firefighting prototype 20 y 1+ ?
22 Rehabil prototype ? y 1 Mote + PC
23 CargoNet pilot <10 n 1+ Mote + PC?
24 Fence monitor prototype 10 n 1 Mote + PC?
25 BikeNet prototype 5 n 7+ 802.15.4/Bluetooth bridge + Nokia N80

OR mote + Aruba AP-70 embedded PC
26 BriMon prototype 12 n 1 Mobile train TMote, static bridge Tmotes
27 IP net pilot 25 n 1 Mote + PC?
28 Smart home prototype 12 y 1 Embedded PC with touchscreen, internet,

wall powered
29 SVATS prototype 6 n 1 ?
30 Hitchhiker pilot? 16 1 ?
31 Daily morning prototype 1 n 1 Mote + MIB510 board + PC
32 Heritage stable 17 y 1 3Mate mote + Gumstix embedded PC with

SD card and WiFi
33 AC meter pilot 49 n 2+ Meraki Mini and the OpenMesh

Mini-Router wired together with radio
34 Coal mine prototype 27 n 1 ?
35 ITS prototype 8 n 1 ?
36 Underwater prototype 4 n 0 -
37 PipeProbe prototype 1 n 1 Mote + PC
38 Badgers stable 74

mobile
+ 26?
static

y 1+ Mote

39 Helens volcano pilot 13 n 1 ?
40 Tunnels pilot 40 n 2 Mote + Gumstix Verdex Pro

J. Sens. Actuator Netw. 2013, 2 515

Deployment state represents maturity of the application: whether it is a prototype or a pilot test-run
in a real environment or it has been running in a stable state for a while. As can be seen, only a few
deployments are in a stable state; the majority are prototypes and pilot studies. Therefore, it is important
to support fast prototyping and effective debugging mechanisms for these phases.

Despite theoretical assumptions about huge networks consisting of thousands of nodes, only a few
deployments contain more than 100 nodes. Eighty percent of listed deployments contain 50 or less
nodes, 34%: less than 10 nodes (Figure 1). It seems that the most active period of large-scale WSN
deployment has been experienced in the years 2004–2006, with networks consisting of 100 and more
nodes (Figure 2).

Figure 1. Distribution function of mote count in surveyed deployments—Eighty percent
of deployments contain less than 50 motes; 50%: less than 20 motes; and 34%: ten or less.

Design rule 1: The communication stack included in the default OS libraries should concentrate on
usability, simplicity and resource efficiency, rather than providing complex and resource-intensive,
scalable protocols for thousands of nodes.

Another theoretical assumption, which is only partially true, is a heterogeneous network. The majority
of deployments are built on homogenous networks with equal nodes: 70% of deployments. However,
significant amount of deployments contain heterogeneous nodes, and that must be taken into account
in remote reprogramming design. Remote reprogramming is essential, as it is very time-intensive and
difficult to program even more than five nodes. Additionally, often, nodes need many reprogramming
iterations after initial setup at the deployment site. Users must be able to select subsets of network nodes
to reprogram. Different node hardware must be supported in a single network.

J. Sens. Actuator Netw. 2013, 2 516

Figure 2. Maximum mote count in surveyed deployments, in each year— peak size in
the years 2004–2006; over 100 motes used.

0	
20	
40	
60	
80	
100	
120	
140	
160	
180	
200	

2002	 2003	 2004	 2005	 2006	 2007	 2008	 2009	 2010	 2011	

M
ax
	 m

ot
e	
co
un

t	

Year	

Although remote reprogramming is a low-level function, it can be considered as a debug phase
feature, and external tools, such as QDiff [57], can be used to offload this responsibility from the
operating system.

Almost all (95%) networks have a sink node or base station, collecting the data. A significant part of
deployments use multiple sinks.

Design rule 2: Sink-oriented protocols must be provided and, optionally, multiple sink support.

Almost half of deployments use a regular mote connected to a PC (usually a laptop) as a base station
hardware solution.

Design rule 3: The OS toolset must include a default solution for base station application, which is
easily extensible to user specific needs.

3.2. Sensing

Table 3 lists the sensing subsystem and sampling characteristics used in deployments.

Table 3. Deployments: sensing.

Nr Codename Sensors Sampling rate, Hz GPS used

1 Habitats temperature, light, barometric pressure, humidity and
passive infrared

0.0166667 n

2 Minefield sound, magnetometer, accelerometers, voltage and imag-
ing

? y

3 Battlefield magnetometer, acoustic and light 10 n
4 Line in the sand magnetometer and radar ? n
5 Counter-sniper sound 1,000,000 n
6 Electro-shepherd temperature ? y
7 Virtual fences - ? y

J. Sens. Actuator Netw. 2013, 2 517

Table 3. Cont.

Nr Codename Sensors Sampling rate, Hz GPS used

8 Oil tanker accelerometer 19,200 n
9 Enemy vehicles magnetometer and ultrasound transceiver ? y, on powered

nodes
10 Trove game accelerometers and light ? n
11 Elder RFID RFID reader 1 n
12 Murphy potatoes temperature and humidity 0.0166667 n
13 Firewxnet temperature, humidity, wind speed and direction 0.8333333 n
14 AlarmNet motion, blood pressure, body scale, dust, temperature and

light
≤ 1 n

15 Ecuador Volcano seismometers and acoustic 100 y, on BS
16 Pet game temperature, light and sound configurable n
17 Plug sound, light, electric current, voltage, vibration, motion

and temperature
8,000 n

18 B-Live light, electric current and switches ? n
19 Biomotion accelerometer, gyroscope and capacitive distance sensor 100 n
20 AID-N pulse oximeter, Electrocardiogram (ECG) , blood pressure

and heart beat
depends on queries n

21 Firefighting temperature ? n
22 Rehabil temperature, humidity and light ? n
23 CargoNet shock, light, magnetic switch, sound, tilt, temperature and

humidity
0.0166667 n

24 Fence monitor accelerometer 10 n
25 BikeNet magnetometer, pedal speed, inclinometer, lateral tilt,

Galvanic Skin Response (GSR) stress, speedometer, CO2,
sound and GPS

configurable y

26 BriMon accelerometer 0.6666667 n
27 IP net temperature, luminosity, vibration, microphone and

movement detector
? n

28 Smart home Light, temperature, humidity, air pressure, acceleration,
gas leak and motion

? n

29 SVATS radio Received Signal Strength Indicator (RSSI) ? n
30 Hitchhiker air temperature and humidity, surface temperature, solar

radiation, wind speed and direction, soil water content and
suction and precipitation

? n

31 Daily morning accelerometer 50 n
32 Heritage fiber optic deformation, accelerometers and analog tem-

perature
200 n

33 AC meter current ≤ 14,000 n
34 Coal mine - (sense radio neighbors only) - n
35 ITS anisotropic magneto-resistive and pyroelectric varies n
36 Underwater pressure, temperature, CDOM, salinity, dissolved oxygen

and cameras; motor actuator
≤1 n

37 PipeProbe gyroscope and pressure 33 n
38 Badgers humidity and temperature ? n
39 Helens volcano geophone and accelerometer 100,000? y

J. Sens. Actuator Netw. 2013, 2 518

Table 3. Cont.

Nr Codename Sensors Sampling rate, Hz GPS used

40 Tunnels light, temperature and voltage 0.0333333 n

The most popular sensors are temperature, light and accelerometer sensors (Figure 3).

Design rule 4: The WSN operating system should include an Application Programming Interface (API)
for temperature, light and acceleration sensors in the default library set.

Figure 3. Sensors used in deployments—Temperature, light and acceleration sensors are
the most popular: each of them used in more than 20% of analyzed deployments.

When considering sensor sampling rate, a pattern can be observed (Figure 4). Most of the
deployments are low sampling rate examples, where the mote has a very low duty cycle and the sampling
rate is less than 1 Hz. Other, less popular application classes use sampling in the range 10–100 Hz
and 100–1,000 kHz. The former class uses accelerometer data processing, while the latter is mainly
representative of audio and high sensitivity vibration processing. A significant part of applications have
a variable sampling rate, configurable in run time.

J. Sens. Actuator Netw. 2013, 2 519

Figure 4. Sensor sampling rate used in deployments—Low duty cycle applications with
sampling rate below 1 Hz are the most popular; however, high-frequency sampling is also
used; the ranges 10–100 Hz and 10–100 kHz are popular.

Design rule 5: The operating system must set effective low-frequency, low duty-cycle sampling as the
first priority. High performance for sophisticated audio signal processing and other high-frequency
sampling applications is secondary, yet required.

GPS localization is a widely used technology, in general; however, it is not very popular in sensor
networks, mainly due to unreasonably high power consumption. It is used in less than 18% of
deployments. A GPS module should not be considered as a default component.

3.3. Lifetime and Energy

Table 4 describes energy usage and the target lifetime of the analyzed deployments.

Table 4. Deployments: lifetime and energy.

Nr Codename Lifetime, days Energy source
Sleep time,
sec

Duty cycle, %
Powered-motes
present

1 Habitats 270 battery 60 ? yes, gateways
2 Minefield ? battery ? ? yes, all
3 Battlefield 5–50 battery varies varies yes, base station
4 Line in the sand ? battery and solar ? ? yes, root
5 Counter-sniper ? battery 0 100 no
6 Electro-shepherd 50 battery ? < 1 no
7 Virtual fences 2 h 40 min battery 0 100 no
8 Oil tanker 82 battery 64,800 < 1 yes, gateways
9 Enemy vehicles ? battery ? ? yes, mobile nodes
10 Trove game ? battery ? ? yes, base station
11 Elder RFID ? battery 0? 100? yes, base station
12 Murphy potatoes 21 battery 60 11 yes, base station

J. Sens. Actuator Netw. 2013, 2 520

Table 4. Cont.

Nr Codename Lifetime, days Energy source
Sleep time,
sec

Duty cycle, %
Powered-motes
present

13 Firewxnet 21 battery 840 6.67 yes, gateways
14 AlarmNet ? battery ? configurable yes, base stations
15 Ecuador Volcano 19 battery 0 100 yes, base station
16 Pet game ? battery ? ? yes, base station
17 Plug - power-net 0 100 yes, all
18 B-Live - battery 0 100 yes, all
19 Biomotion 5 h battery 0 100 yes, base stations
20 AID-N 6 battery 0 100 yes, base station
21 Firefighting 4+ battery 0 100 yes, infrastructure

motes
22 Rehabil ? battery ? ? yes, base station
23 CargoNet 1825 battery varies 0.001 no
24 Fence monitor ? battery 1 ? yes, base station
25 BikeNet ? battery ? ? yes, gateways
26 BriMon 625 battery 0.55 no
27 IP net ? battery ? 20 yes, base station
28 Smart home ? battery ? ? yes
29 SVATS unlimited power-net not

implemented
- yes, all

30 Hitchhiker 60 battery and solar 5 10 yes, base station
31 Daily morning ? battery 0? 100? yes, base station
32 Heritage 525 battery 0.57 0.05 yes, base station
33 AC meter ? power-net ? ? yes, gateways
34 Coal mine ? battery ? ? yes, base station?
35 ITS ? power-net? 0? 100? yes, all
36 Underwater ? battery ? ? no
37 PipeProbe 4 h battery 0 100 yes, base station
38 Badgers 7 battery ? 0.05 no
39 Helens volcano 400 battery 0? 100? yes, all
40 Tunnels 480 battery 0.25 ? yes, base stations

Target lifetime is very dynamic among applications, from several hours to several years. Long-living
deployments use a duty-cycle below 1%, meaning that sleep mode is used 99% of the time. Both, very
short and very long, sleeping periods are used: from 250 milliseconds up to 24 hours.

Operating systems should provide effective routines for duty-cycling and have low
computational overhead.

A significant part of deployments (more than 30%), especially in the prototyping phase, do not
concentrate on energy efficiency and use a 100% duty cycle.

Design rule 6: The option, “automatically activate sleep mode whenever possible”, would decrease
the complexity and increase the lifetime for deployments in the prototyping phase and also help
beginner sensor network programmers.

J. Sens. Actuator Netw. 2013, 2 521

Although energy harvesting is envisioned as the only way for sustainable sensing systems [58], power
sources other than batteries or static power networks are rarely used (5% of analyzed deployments).
Harvesting module support at the operating system level is, therefore, not an essential part of
deployments, until today. However, harvesting popularity may increase in future deployments, and
support for it at the OS level could be a valuable research direction.

More than 80% of deployments have powered motes present in the network: at least one node has an
increased energy budget. Usually, these motes are capable of running at 100% duty cycle, without sleep
mode activation.

Design rule 7: Powered mote availability should be considered when designing a default networking
protocol library.

3.4. Sensor Mote

Table 5 lists used motes, radio (or other communication media) chips and protocols.

Table 5. Deployments: used motes and radio chips.

Nr Codename Mote
Ready or
custom

Mote motivation Radio chip
Radio
protocol

1 Habitats Mica adapted custom Mica weather board and
packaging

RFMonolitics
TR1001

?

2 Minefield WINS NG 2.0 [59] custom need for high performance ? ?
3 Battlefield Mica2 adapted energy and bandwidth efficient; simple

and flexible
Chipcon CC1000 SmartRF

4 Line in the sand Mica2 adapted ? Chipcon CC1000 SmartRF
5 Counter-sniper Mica2 adapted ? Chipcon CC1000 SmartRF
6 Electro-shepherd Custom + Active RFID

tags
custom packaging adapted to sheep habits unnamed

Ultra High
Frequency (UHF)
transceiver

?

7 Virtual fences Zaurus PDA ready off-the-shelf unnamed WiFi 802.11
8 Oil tanker Intel Mote adapted ? Zeevo TC2001P Bluetooth

1.1
9 Enemy vehicles Mica2Dot adapted ? Chipcon CC1000 SmartRF

10 Trove game Mica2 ready off-the-shelf Chipcon CC1000 SmartRF
11 Elder RFID Mica2 adapted off-the-shelf; RFID reader added Chipcon CC1000

+ RFID
SmartRF
+ RFID

12 Murphy potatoes TNOde, Mica2-like custom packaging + sensing Chipcon CC1000 SmartRF
13 Firewxnet Mica2 adapted Mantis OS [60] support, AA batteries,

extensible
Chipcon CC1000 SmartRF

14 AlarmNet Mica2 + TMote Sky adapted off-the-shelf; extensible Chipcon CC1000 SmartRF
15 Ecuador Volcano Tmote Sky adapted off-the-shelf Chipcon CC2420 802.15.4
16 Pet game MicaZ ready off-the-shelf Chipcon CC2420 802.15.4
17 Plug Plug Mote custom specific sensing + packaging Chipcon CC2500 ?
18 B-Live B-Live module custom custom modular system ? ?
19 Biomotion custom custom size constraints Nordic

nRF2401A
-

20 AID-N TMote Sky + MicaZ adapted off-the-shelf; extensible Chipcon CC2420 802.15.4
21 Firefighting TMote Sky adapted off-the-shelf; easy prototyping Chipcon CC2420 802.15.4
22 Rehabil Maxfor TIP 7xxCM:

TelosB-compatible
ready off-the-shelf Chipcon CC2420 802.15.4

23 CargoNet CargoNet mote custom low power; low cost components Chipcon CC2500 -
24 Fence monitor Scatterweb ESB [61] ready off-the-shelf Chipcon CC1020 ?

J. Sens. Actuator Netw. 2013, 2 522

Table 5. Cont.

Nr Codename Mote
Ready or
custom

Mote motivation Radio chip
Radio
protocol

25 BikeNet TMote Invent adapted off-the-shelf mote providing required
connectivity

Chipcon CC2420 802.15.4

26 BriMon Tmote Sky adapted off the shelf Chipcon CC2420 802.15.4
27 IP net Scatterweb ESB adapted Necessary sensors on board TR1001 ?
28 Smart home ZigbeX custom specific sensor, size and power

constraints
Chipcon CC2420 802.15.4

29 SVATS Mica2 ready off-the-shelf Chipcon CC1000 SmartRF
30 Hitchhiker TinyNode adapted long-range communication Semtech XE1205 ?
31 Daily morning MicaZ ready off-the-shelf Chipcon CC2420 802.15.4
32 Heritage 3Mate! adapted TinyOS supported mote with custom

sensors
Chipcon CC2420 802.15.4

33 AC meter ACme (Epic core) adapted modular; convenient prototyping Chipcon CC2420 802.15.4
34 Coal mine Mica2 ready off-the-shelf Chipcon CC1000 SmartRF
35 ITS Custom custom specific sensing needs Chipcon CC2420 802.15.4
36 Underwater AquaNode custom specific packaging, sensor and actuator

needs
custom -

37 PipeProbe Eco mote adapted size and energy constraints Nordic nRF24E1 ?
38 Badgers V1: Tmote Sky + exter-

nal board; V2: custom
v1: adapted;
v2: custom

v1: off-the-shelf v2: optimizations Atmel
AT86RF230

802.15.4

39 Helens volcano custom custom specific computational, sensing and
packaging needs

Chipcon CC2420 802.15.4

40 Tunnels TRITon mote [62] :
TelosB-like

custom reuse and custom packaging Chipcon CC2420 802.15.4

Mica2 [64] and MicaZ [3] platforms were very popular in early deployments. TelosB-compatible
platforms (TMote Sky and others) [2,65] have been the most popular in recent years.

Design rule 8: TelosB platform support is essential.

MicaZ support is optional, yet suggested, as sensor network research laboratories might use
previously obtained MicaZ motes, especially for student projects.

Almost half of deployments (47%) use adapted versions of off-the-shelf motes by adding customized
sensors, actuators and packaging (Figure 5). Almost one third (32%) use custom motes, by combining
different microchips. Often, these platforms are either compatible or similar to commercial platforms
(for example, TelosB) and use the same microcontrollers (MCUs) and radio chips. Only 20% use motes
off-the-shelf with default sensor modules.

Design rule 9: The WSN OS must support implementation of additional sensor drivers for existing
commercial motes

Design rule 10: Development of completely new platforms must be simple enough, and highly reusable
code should be contained in the OS

J. Sens. Actuator Netw. 2013, 2 523

Figure 5. Custom, adapted and off-the-shelf mote usage in deployments—Almost half
of deployments adapt off-the-shelf motes by custom sensing and packaging hardware, 32%
use custom platforms and only 20% use commercial motes with default sensing modules.

The most popular reason for building a customized mote is specific sensing and packaging constraints.
The application range is very wide; there will always be applications with specific requirements.

On the other hand, part of the sensor network users are beginners in the field and do not have resources
to develop a new platform to assess a certain idea in real-world settings. Off-the-shelf commercial
platforms, a simple programming interface, default settings and demo applications are required for this
user class.

Chipcon CC1000 [66] radio was popular for early deployments; however, Chipcon CC2420 [67] is
the most popular in recent years. IEEE 802.15.4 is the most popular radio transmission protocol (used
in CC2420 and other radio chips) at the moment.

Design rule 11: Driver support for CC2420 radio is essential.

More radio chips and system-on-chip solutions using the IEEE 802.15.4 protocol can be expected in
the coming years.

3.5. Sensor Mote: Microcontroller

Used microcontrollers are listed in Table 6.

Table 6. Deployments: used microcontrollers (MCUs).

Nr Codename MCU count MCU Name Architecture,
bits

MHz RAM, KB Program
Memory, KB

1 Habitats 1 Atmel ATMega103L 8 4 4 128
2 Minefield 1 Hitachi SH4 7751 32 167 64,000 0
3 Battlefield 1 Atmel ATMega128 8 7.3 4 128
4 Line in the sand 1 Atmel ATMega128 8 4 4 128
5 Counter-sniper 1 + Field-

Programmable
Gate Array
(FPGA)

Atmel ATMega128L 8 7.3 4 128

6 Electro-shepherd 1 Atmel ATMega128 8 7.3 4 128
7 Virtual fences 1 Intel StrongArm 32 206 65,536 ?

J. Sens. Actuator Netw. 2013, 2 524

Table 6. Cont.

Nr Codename MCU count MCU Name Architecture,
bits

MHz RAM, KB Program
Memory, KB

8 Oil tanker 1 Zeevo ARM7TDMI 32 12 64 512
9 Enemy vehicles 1 Atmel ATMega128L 8 4 4 128

10 Trove game 1 Atmel ATMega128 8 7.3 4 128
11 Elder RFID 1 Atmel ATMega128 8 7.3 4 128
12 Murphy potatoes 1 Atmel ATMega128L 8 8 4 128
13 Firewxnet 1 Atmel ATMega128L 8 7.3 4 128
14 AlarmNet 1 Atmel ATMega128L 8 7.3 4 128
15 Ecuador Volcano 1 Texas Instruments (TI)

MSP430F1611
16 8 10 48

16 Pet game 1 Atmel ATMega128 8 7.3 4 128
17 Plug 1 Atmel AT91SAM7S64 32 48 16 64
18 B-Live 2 Microchip PIC18F2580 8 40 1.5 32
19 Biomotion 1 TI MSP430F149 16 8 2 60
20 AID-N 1 TI MSP430F1611 16 8 10 48
21 Firefighting 1 TI MSP430F1611 16 8 10 48
22 Rehabil 1 TI MSP430F1611 16 8 10 48
23 CargoNet 1 TI MSP430F135 16 8? 0.512 16
24 Fence monitor 1 TI MSP430F1612 16 7.3 5 55
25 BikeNet 1 TI MSP430F1611 16 8 10 48
26 BriMon 1 TI MSP430F1611 16 8 10 48
27 IP net 1 TI MSP430F149 16 8 2 60
28 Smart home 1 Atmel ATMega128 8 8 4 128
29 SVATS 1 Atmel ATMega128L 8 7.3 4 128
30 Hitchhiker 1 TI MSP430F1611 16 8 10 48
31 Daily morning 1 Atmel ATMega128 8 7.3 4 128
32 Heritage 1 TI MSP430F1611 16 8 10 48
33 AC meter 1 TI MSP430F1611 16 8 10 48
34 Coal mine 1 Atmel ATMega128 8 7.3 4 128
35 ITS 2 ARM7 + MSP430F1611 32 + 8 ? + 8 64 + 10 ? + 48
36 Underwater 1 NXP LPC2148 ARM7TDMI 32 60 40 512
37 PipeProbe 1 Nordic nRF24E1 DW8051 8 16 4.25 32
38 Badgers 1 Atmel ATMega128V 8 8 8 128
39 Helens volcano 1 Intel XScale PXA271 32 13 (624 max) 256 32768
40 Tunnels 1 TI MSP430F1611 16 8 10 48

Only a few deployments use motes with more than one MCU. Therefore, OS support for multi-MCU
platforms is an interesting option; however, the potential usage is limited. Multi-MCU motes are a
future research area for applications running simple tasks routinely and requiring extra processing power
sporadically. Gumsense mote is an example of this approach [68].

The most popular MCUs belong to Atmel ATMega AVR architecture[69] and Texas Instruments
MSP430 families. The former is used in Mica-family motes, while the latter is the core of the TelosB
platform, which has been widely used recently.

Design rule 12: Support for Atmel AVR and Texas Instruments MSP430 MCU architectures is essential
for sensor network operating systems.

Sensor network motes use eight-bit or 16-bit architectures, with a few 32-bit ARM-family exceptions.
Typical CPU frequencies are around 8 MHz; RAM amount: 4–10 KB; program memory: 48–128 KB.
It must be noted that program memory size is always larger than RAM, sometimes even by a factor of

J. Sens. Actuator Netw. 2013, 2 525

32. Therefore, RAM memory effective usage is more important, and a reasonable amount of program
memory can be sacrificed for that matter.

3.6. Sensor Mote: External Memory

Used external memory characteristics are described in Table 7. While external memory of several
megabytes is available on most sensor motes, it is actually seldom used (only in 25% of deployments).
Motes often perform either simple decision tasks or forward all the collected data without caching.
However, these 25% of deployments are still too many to be completely discarded.

Table 7. Deployments: external memory.

Nr Codename Available external
memory, KB

Secure Digital
(SD)

External memory
used

File system used

1 Habitats 512 n y n
2 Minefield 16,000 n y y
3 Battlefield 512 n n n
4 Line in the sand 512 n n ?
5 Counter-sniper 512 n n n
6 Electro-shepherd 512 n y n
7 Virtual fences ? y y y
8 Oil tanker 0 n n n
9 Enemy vehicles 512 n n n

10 Trove game 512 n n n
11 Elder RFID 512 n n n
12 Murphy potatoes 512 n n n
13 Firewxnet 512 n n n
14 AlarmNet 512 n n n
15 Ecuador Volcano 1,024 n y n
16 Pet game 512 n n n
17 Plug 0 n n n
18 B-Live 0 n n n
19 Biomotion 0 n n n
20 AID-N 1,024 n n n
21 Firefighting 1,024 n n n
22 Rehabil 1,024 n n n
23 CargoNet 1,024 n y n
24 Fence monitor 0 n n n
25 BikeNet 1,024 n y? n
26 BriMon 1,024 n y n
27 IP net 1,024 n n n
28 Smart home 512 n ? n
29 SVATS 512 n n n

J. Sens. Actuator Netw. 2013, 2 526

Table 7. Cont.

Nr Codename Available external
memory, KB

Secure Digital
(SD)

External memory
used

File system used

30 Hitchhiker 1,024 n n n
31 Daily morning 512 n n n
32 Heritage 1,024 n n n
33 AC meter 2,048 n y n
34 Coal mine 512 n n n
35 ITS ? n? ? n?
36 Underwater 2,097,152 y ? n
37 PipeProbe 0 n n n
38 Badgers 2,097,152 y y n
39 Helens volcano 0 n n n
40 Tunnels 1024 n n n

Design rule 13: External memory support for user data storage at the OS level is optional; yet, it should
be provided.

Although very popular consumer products, Secure Digital/MultiMediaCard (SD/MMC) cards are
even less frequently used (in less than 10% of deployments). The situation is even worse with filesystem
use. Despite multiple sensor network filesystems already being proposed previously [70,71], they are
seldom used. Furthermore, probably, there is a connection between the (lack of) external memory and
filesystem usage—external memories are rarely used, because there is no simple and efficient filesystem
for these devices.

Design rule 14: A convenient filesystem interface should be provided by the operating system, so that
sensor network users can use it without extra complexity.

3.7. Communication

Table 8 lists deployment communication characteristics.

Table 8. Deployments: communication.

Nr Codename Report rate, 1/h Payload size, B Radio range, m Speed, kbps Connectivity type

1 Habitats 60 ? 200 (1,200 with Yagi 12dBi) 40 connected
2 Minefield ? ? ? ? connected
3 Battlefield ? ? 300 38.4 intermittent
4 Line in the sand ? 1 300 38.4 connected
5 Counter-sniper ? ? 60 38.4 connected
6 Electro-shepherd 0.33 7+ 150–200 ? connected
7 Virtual fences 1,800 8? ? 54,000 connected
8 Oil tanker 0.049 ? 30 750 connected
9 Enemy vehicles 1,800 ? 30 38.4 connected

J. Sens. Actuator Netw. 2013, 2 527

Table 8. Cont.

Nr Codename Report rate, 1/h Payload size, B Radio range, m Speed, kbps Connectivity type

10 Trove game ? ? ? 38.4 connected
11 Elder RFID ? 19 ? 38.4 connected
12 Murphy potatoes 6 22 76.8 connected
13 Firewxnet 200 ? 400 38.4 intermittent
14 AlarmNet configurable 29 ? 38.4 connected
15 Ecuador Volcano depends on events 16 1,000 250 connected
16 Pet game configurable ? 100 250 connected
17 Plug 720 21 ? ? connected
18 B-Live - ? ? ? connected
19 Biomotion 360,000 16 15 1,000 connected
20 AID-N depends on queries ? 66 250 connected
21 Firefighting ? ? 20 250 connected
22 Rehabil ? 12 30 250 connected
23 CargoNet depends on events ? ? 250 sporadic
24 Fence monitor ? ? 300 76.8 connected
25 BikeNet opportunistic ? 20 250 sporadic
26 BriMon 62 116 125 250 sporadic
27 IP net ? ? 300 19.2 connected
28 Smart home ? ? 75–100 outdoor/20–30 indoor 250 connected
29 SVATS ? ? 400 38.4 connected
30 Hitchhiker ? 24 500 76.8 connected
31 Daily morning 180,000 2? 100 250 connected
32 Heritage 6 ? 125 250 intermittent
33 AC meter 60 default (configurable) ? 125 250 connected
34 Coal mine ? 7 4 m forced, 20 m max 38.4 intermittent
35 ITS varies 5*n ? 250 connected
36 Underwater 900 11 ? 0.3 intermittent
37 PipeProbe 72,000 ? 10 1,000 connected
38 Badgers 2,380+ 10 1,000 250 connected
39 Helens volcano configurable ? 9,600 250 connected
40 Tunnels 120 ? ? 250 connected

The data report rate varies significantly—some applications report once a day, while others perform
real-time reporting at 100 Hz. If we search for connection between Table 3 and Table 8, two conclusions
can be drawn: a low report rate is associated with a low duty cycle; yet, a low report rate does not
necessarily imply a low sampling rate—high-frequency sampling applications with a low report rate do
exist [24,48,49].

Typical data payload size is in the range if 10–30 Bytes. However, larger packets are used in
some deployments.

Design rule 15: The default packet size provided by the operating system should be at least 30 bytes,
with an option to change this constant easily, when required.

Typical radio transmission ranges are on the order of a few hundred meters. Some deployments use
long-range links with more than a 1-km connectivity range.

Design rule 16: The option to change radio transmission power (if provided by radio chip) is a valuable
option for collision avoidance and energy efficiency.

Design rule 17: Data transmission speed is usually below 1 MBit, theoretically, and even lower,
practically. This must be taken into account when designing a communication protocol stack.

J. Sens. Actuator Netw. 2013, 2 528

Eighty percent of deployments consider the network to be connected without interruptions
(Figure 6)—any node can communicate to other nodes at any time (not counting delays imposed by
Media Access Control (MAC) protocols). Only 12% experience interruptions, and 8% of networks have
only opportunistic connectivity.

Default networking protocols should support connected networks. Opportunistic connection support
is optional.

Figure 6. Deployment network connectivity—Eighty percent of deployments consider a
network to be continuously connected, while only 12% experience significant disconnections
and 8% use opportunistic communication.

3.8. Communication Media

Used communication media characteristics are listed in Table 9.

Table 9. Deployments: communication media.

Nr Codename Communication media Used channels Directionality used

1 Habitats radio over air 1 n
2 Minefield radio over air + sound over air ? n
3 Battlefield radio over air 1 n
4 Line in the sand radio over air 1 n
5 Counter-sniper radio over air 1 n
6 Electro-shepherd radio over air ? n
7 Virtual fences radio over air 2 y
8 Oil tanker radio over air 79 n
9 Enemy vehicles radio over air 1 n

10 Trove game radio over air 1 n
11 Elder RFID radio over air 1 n
12 Murphy potatoes radio over air 1 n
13 Firewxnet radio over air 1 y, gateways
14 AlarmNet radio over air 1 n
15 Ecuador Volcano radio over air 1 y

J. Sens. Actuator Netw. 2013, 2 529

Table 9. Cont.

Nr Codename Communication media Used channels Directionality used

16 Pet game radio over air 1 n
17 Plug radio over air ? n
18 B-Live wire mixed with radio over air ? n
19 Biomotion radio over air 1 n
20 AID-N radio over air 1 n
21 Firefighting radio over air 4 n
22 Rehabil radio over air 1? n
23 CargoNet radio over air 1 n
24 Fence monitor radio over air 1 n
25 BikeNet radio over air 1 n
26 BriMon radio over air 16 n
27 IP net radio over air 1 n
28 Smart home radio over air 16 ?
29 SVATS radio over air ? n
30 Hitchhiker radio over air 1 n
31 Daily morning radio over air 1 n
32 Heritage radio over air 1 n
33 AC meter radio over air 1 n
34 Coal mine radio over air 1 n
35 ITS radio over air 1 n
36 Underwater ultra-sound over water 1 n
37 PipeProbe radio over air and water 1 n
38 Badgers radio over air ? n
39 Helens volcano radio over air 1? y
40 Tunnels radio over air 2 n

With few exceptions, the communication is performed by transmitting radio signals over air.
Ultrasound is used as an alternative. Some networks may use available wired infrastructure.

Eighty-five percent of applications use one, static radio channel; the remaining 15% do switch
between multiple alternative channels. If radio channel switching is complex and code-consuming, it
should be optional at the OS level.

While directionality usage for extended coverage and energy efficiency has been a widely discussed
topic, the ideas are seldom used in practice. Only 10% of deployments use radio directionality
benefits, and none of these deployments utilize electronically switchable antennas capable of adjusting
directionality in real time [72]. A directionality switching interface is optional; users may implement it
in the application layer as needed.

J. Sens. Actuator Netw. 2013, 2 530

3.9. Network

Deployment networking is summarized in Table 10.

Table 10. Deployments: network.

Nr Codename Network topology Mobile motes Deployment area Max hop count Randomly deployed

1 Habitats multi-one-hop n 1,000 × 1,000 m 1 n
2 Minefield multi-one-hop y 30 × 40 m ? y
3 Battlefield multi-one-hop n 85 m long road ? y
4 Line in the sand mesh n 18 × 8 m ? n
5 Counter-sniper multi-one-hop n 30 × 15 m 11 y
6 Electro-shepherd one-hop y ? 1 y (attached to animals)
7 Virtual fences mesh y 300 × 300 m 5 y (attached to animals)
8 Oil tanker multi-one-hop n 150 × 100 m 1 n
9 Enemy vehicles mesh y, power node 20 × 20 m 6 n

10 Trove game one-hop y ? 1 y, attached to users
11 Elder RFID one-hop n (mobile RFID tags) < 10m2 1 n
12 Murphy potatoes mesh n 10,00 × 1,000 m 10 n
13 Firewxnet multi-mesh n 160 km2 4? n
14 AlarmNet mesh y, mobile body motes apartment ? n
15 Ecuador Volcano mesh n 8,000 × 1,000 m 6 n
16 Pet game mesh y ? ? y
17 Plug mesh n 40 × 40 ? n
18 B-Live multi-one-hop n house 2 n
19 Biomotion one-hop y, mobile body motes room 1 n (attached to predefined

body parts)
20 AID-N mesh y ? 1+ y, attached to users
21 Firefighting predefined tree y, human mote 3, 200m2 ? n
22 Rehabil one-hop y, human motes gymnastics room 1 y, attached to patients and

training machines
23 CargoNet one-hop y truck, ship or plane 1 n
24 Fence monitor one-hop? n 35 × 2 m 1? n
25 BikeNet mesh y 5 km long track ? y (attached to bicycles)
26 BriMon multi-mesh y, mobile BS 2,000 × 1 4 n
27 IP net multi-one-hop n 250 × 25 3 story

building + mock-up
town 500m2

? n

28 Smart home one-hop n ? ? n
29 SVATS mesh y, motes in cars parking place ? n
30 Hitchhiker mesh n 500 × 500 m 2? n
31 Daily morning one-hop y, body mote house 1 n (attached to human)
32 Heritage mesh n 7.8 × 4.5 × 26 m 6 n (initial deployment

static, but can be moved
later)

33 AC meter mesh n building ? y (Given to users who plug
in power outlets of their
choice)

34 Coal mine multi-path mesh n 8 × 4 × ? m ? n
35 ITS mesh n 140 m long road 7? n
36 Underwater mesh y ? 1 n
37 PipeProbe one-hop y 0.18 × 1.40 × 3.45 m 1 n
38 Badgers mesh y 1,000 × 2,000 m ? ? y (attached to animals)
39 Helens volcano mesh n ? 1+? n
40 Tunnels multi-mesh n 230 m long tunnel 4 n

A mesh, multi-hop network is the most popular network topology-used in 47% of analyzed cases
(Figure 7). The second most popular topology is a simple one-hop network: 25%. Multiple such

J. Sens. Actuator Netw. 2013, 2 531

one-hop networks are used in 15% of deployments. Altogether, routing is used in 57% of cases.
Maximum hop count does not exceed 11 in the surveyed deployments. A rather surprising finding is
that almost half of deployments (47%) have at least one mobile node in the network (while maintaining
a connected network).

Design rule 18: Multi-hop routing is required as a default component, which can be turned off, if
one-hop topology is used. Topology changes must be expected; at least 11 hops should
be supported.

Figure 7. Deployment network topologies—Almost half (47%) use a multi-hop mesh
network. One-hop networks are used in 25% of cases; 15% use multiple one-hop networks.

Additionally, 30% have random initial node deployment, increasing the need for a neighbor discovery
protocol. Neighbor discovery protocols (either explicit or built-in routing) should be provided by the OS.

3.10. In-Network Processing

In-network preprocessing, aggregation and distributed algorithm usage is shown in Table 11 and
visualized in Figure 8. Application level aggregation is considered here—data averaging and other
compression techniques with the goal to reduce the size of data to be sent.

Table 11. Deployments: in-network processing.

Nr Codename Raw data preprocess Advanced distributed algorithms In-network aggregation

1 Habitats n n n
2 Minefield y y ?
3 Battlefield y n y
4 Line in the sand y y ?
5 Counter-sniper y n y
6 Electro-shepherd n n n
7 Virtual fences n n n
8 Oil tanker n n n
9 Enemy vehicles y y y

J. Sens. Actuator Netw. 2013, 2 532

Table 11. Cont.

Nr Codename Raw data preprocess Advanced distributed algorithms In-network aggregation

10 Trove game n y n
11 Elder RFID n n n
12 Murphy potatoes n n n
13 Firewxnet n n n
14 AlarmNet y n n
15 Ecuador Volcano y y n
16 Pet game n n n
17 Plug y n n
18 B-Live y n n
19 Biomotion n n n
20 AID-N y n n
21 Firefighting n n n
22 Rehabil n n n
23 CargoNet n n n
24 Fence monitor y y n
25 BikeNet n n n
26 BriMon n n n
27 IP net y n n
28 Smart home y n ?
29 SVATS y y n
30 Hitchhiker n n n
31 Daily morning n n n
32 Heritage y n n
33 AC meter y n n
34 Coal mine y y y
35 ITS y n n
36 Underwater n y n
37 PipeProbe y n n
38 Badgers y n n
39 Helens volcano y n n
40 Tunnels n n n

As the results show, raw data preprocessing is used in 52% of deployments, i.e., one out of two
deployments reports raw data without processing it locally. The situation is even worse with distributed
algorithms (voting, distributed motor control, etc.) and data aggregation: it is only used in 20% and
10% of cases, respectively. Therefore, sensor network theoretical assumptions, “smart devices taking
in-network distributed decisions” and “to save communication bandwidth, aggregation is used”, prove
not to be true in reality. Raw data preprocessing and distributed decision-making is performed at the
application layer; no responsibility for the operating system is imposed. Aggregation could be performed
at the operating system service level. However, it seems that such additional service is not required for
most of the applications. Data packet aggregation is optional and should not be included at the OS level.

J. Sens. Actuator Netw. 2013, 2 533

Figure 8. Deployment in-network processing—Raw data preprocessing is used in half of
deployments; distributed algorithms and aggregation are seldom used.

3.11. Networking Stack

The networking protocol stack is summarized in Table 12.

Table 12. Deployments: networking protocol stack.

Nr Codename
Custom
MAC

Channel
access
method

Routing
used

Custom
routing

Reactive or
proactive routing

IPv6
used

Safe
delivery

Data priori-
ties

1 Habitats n Carrier
Sense
Multiple
Access
(CSMA)

n - - n n n

2 Minefield ? ? ? ? ? ? ? ?
3 Battlefield y CSMA y y proactive n y ?
4 Line in the sand y CSMA y y proactive n y n
5 Counter-sniper n CSMA y y proactive n n -
6 Electro-shepherd y CSMA - - - n n n
7 Virtual fences n CSMA - - - IPv4? n n
8 Oil tanker n CSMA - n - n y n
9 Enemy vehicles y CSMA y y proactive n n -

10 Trove game n CSMA n - - n n n
11 Elder RFID n CSMA n - - n n n
12 Murphy potatoes y CSMA y n proactive n n n
13 Firewxnet y CSMA y y proactive n y n
14 AlarmNet y CSMA y n ? n y y
15 Ecuador Volcano n CSMA y y proactive n y n
16 Pet game n CSMA y n ? n n n
17 Plug y CSMA y y ? n n n
18 B-Live ? ? n - - n ? ?

J. Sens. Actuator Netw. 2013, 2 534

Table 12. Cont.

Nr Codename
Custom
MAC

Channel
access
method

Routing
used

Custom
routing

Reactive or
proactive routing

IPv6
used

Safe
delivery

Data priori-
ties

19 Biomotion y Time
Division
Multiple
Access
(TDMA)

n - - n n n

20 AID-N ? ? y n proactive n y n
21 Firefighting n CSMA y, static n proactive n n n
22 Rehabil n CSMA n - - n n n
23 CargoNet y CSMA n - - n n n
24 Fence monitor n CSMA? y y proactive? n n n
25 BikeNet y CSMA y y reactive n y n
26 BriMon y TDMA y y proactive n y n
27 IP net n CSMA y y proactive ? ? ?
28 Smart home ? ? y ? ? n ? ?
29 SVATS n CSMA y n ? n n n
30 Hitchhiker y TDMA y y reactive n y n
31 Daily morning n CSMA n - - n n n
32 Heritage y TDMA y y proactive n y y
33 AC meter n ? y n proactive y y n
34 Coal mine n CSMA y y proactive n y n
35 ITS y? CSMA? y y reactive n y n
36 Underwater y TDMA n - - n n n
37 PipeProbe n ? n - - n n n
38 Badgers n CSMA y y proactive y n y
39 Helens volcano y TDMA y ? ? n y y
40 Tunnels n CSMA y y proactive n n n

Forty-three percent of deployments use custom MAC protocols, proving that data link layer problems
either really are very application-specific or system developers are not wanting to study the huge amounts
of MAC-layer-related published work.

The most commonly used MAC protocols can be divide into two classes: CSMA-based (Carrier
Sense Multiple Access) and TDMA-based (Time Division Multiple Access). The former class represents
protocols that check media availability shortly before transmission, while in the latter case, all
communication participants agree on a common transmission schedule.

Seventy percent use CSMA-based MAC protocols and 15% use TDMA, and the remaining 15% is
unclear. CSMA MACs are often used because TDMA implementation is too complex: it requires master
node election and time synchronization.

Design rule 19: The operating system should provide a simple, effective and generic CSMA-based
MAC protocol by default.

The TDMA MAC option would be a nice feature for the WSN OS, as TDMA protocols are more
effective in many cases.

Routing is used in 65% of applications. However, no single best routing protocol is selected—between
the analyzed deployment, no two applications used the same routing protocol. Forty-three percent of
deployments used custom routing, not published before.

J. Sens. Actuator Netw. 2013, 2 535

Routing can be proactive: routing tables are prepared and maintained beforehand; or it can be reactive:
the routing table is constructed only upon need. The proactive approach is used in 85% of the cases; the
remaining 15% use reactive route discovery.

As already mentioned above, the operating system must provide a simple, yet efficient, routing
protocol, which performs fair enough for most of the cases. A proactive protocol is preferred.

Design rule 20: The interface for custom MAC and routing protocol substitution must be provided.

Although Internet Protocol version 6 (IPv6) is a widely discussed protocol for the Internet of Things
and modifications (such as 6lowpan [73]) for resource-constrained devices have been developed, the
protocol is very novel and not widely used yet: only 5% of surveyed deployments use it. However, it
can be expected that this number will increase in the coming years. TinyOS [4] and Contiki OS [5] have
already included 6lowpan as one of the main networking alternatives.

Design rule 21: It is wise to include a IPv6 (6lowpan) networking stack in the operating system to
increase interoperability.

Reliable data delivery is used by 43% of deployments, showing that reliable communication in the
transport layer is a significant requirement for some application classes. Another quality-of-service
option, data stream prioritizing, is rarely used, though (only 10% of cases).

Design rule 22: Simple transport layer delivery acknowledgment mechanisms should be provided by
the operating system.

3.12. Operating System and Middleware

Used operating systems and middleware are listed in Table 13.

Table 13. Deployments: used operating system (OS) and middleware.

Nr Codename OS used Self-made OS Middleware used

1 Habitats TinyOS n
2 Minefield customized Linux n
3 Battlefield TinyOS n
4 Line in the sand TinyOS n
5 Counter-sniper TinyOS n
6 Electro-shepherd ? y
7 Virtual fences Linux n
8 Oil tanker ? n
9 Enemy vehicles TinyOS n

10 Trove game TinyOS n
11 Elder RFID TinyOS n
12 Murphy potatoes TinyOS n

J. Sens. Actuator Netw. 2013, 2 536

Table 13. Cont.

Nr Codename OS used Self-made OS Middleware used

13 Firewxnet Mantis OS [60] y
14 AlarmNet TinyOS n
15 Ecuador Volcano TinyOS n Deluge [74]
16 Pet game TinyOS n Mate Virtual Machine +

TinyScript [75]
17 Plug custom y
18 B-Live custom y
19 Biomotion no OS y
20 AID-N ? ?
21 Firefighting TinyOS n Deluge [74]?
22 Rehabil TinyOS n
23 CargoNet custom y
24 Fence monitor ScatterWeb y FACTS [76]
25 BikeNet TinyOS n
26 BriMon TinyOS n
27 IP net Contiki n
28 Smart home TinyOS n
29 SVATS TinyOS? n
30 Hitchhiker TinyOS n
31 Daily morning TinyOS n
32 Heritage TinyOS n TeenyLIME [77]
33 AC meter TInyOS n
34 Coal mine TinyOS n
35 ITS custom? y?
36 Underwater custom y
37 PipeProbe custom y
38 Badgers Contiki n
39 Helens volcano TinyOS n customized Deluge [74], remote

procedure calls
40 Tunnels TinyOS n TeenyLIME [77]

TinyOS [4] is the de-facto operating system for wireless sensor networks, as is clearly shown in
Figure 9: 60% of deployments use it. There are multiple reasons behind that. First, TinyOS has a
large community supporting it; therefore, device drivers and protocols are well tested. Second, as it has
reached critical mass, TinyOS is the first choice for new sensor network designers—it is being taught at
universities, it has easy installation and pretty well developed documentation and even books on how to
program in TinyOS [78].

J. Sens. Actuator Netw. 2013, 2 537

Figure 9. Operating systems used in analyzed deployments—Sixty percent of
deployments use the de-facto standard: TinyOS. Seventeen percent use self-made or
customized OSs.

At the same time, many C and Unix programmers would like to use their previous skills and
knowledge to program sensor networks without learning new paradigms, nesC language (used by
TinyOS), component wiring, etc. One piece of evidence of this statement is that new operating systems
for sensor network programming are being developed [5,71,79,80], despite the fact that TinyOS has been
here for more than 10 years. Another piece of evidence: in 17% of cases, a self-made or customized OS
is used; users either want to use their particular knowledge or they have specific hardware not supported
by TinyOS and consider porting TinyOS to new hardware to be too complex.

Deluge [74] and TeenyLIME [77] middleware are used in more than one deployment. Deluge is a
remote reprogramming add-on for TinyOS. TeenyLIME is a middleware providing a different level of
programming abstraction and, also, implemented on top of TinyOS.

Conclusion: middleware usage is not very popular in sensor networks. Therefore, there is open space
for research to develop an easy to use, yet powerful, middleware that is generic enough to be used in a
wide application range.

3.13. Software Level Tasks

User and kernel level tasks and services are described in Table 14. The task count and objectives
are an estimate of the authors of this deployment survey, developed based on information available from
research articles. Networking, time synchronization and remote reprogramming protocols are considered
kernel services, if not stated otherwise.

Table 14. Deployments: software level tasks.

Nr Codename
Kernel service
count

Kernel services
App-level
task count

App-level tasks

1 Habitats 0 1 sensing + caching to flash + data transfer
2 Minefield ? linux services 11
3 Battlefield 2 MAC, routing 2 + 4 Entity tracking, status, middleware (time sync, group

management, sentry service, dynamic configuration)
4 Line in the sand ? ? ? ?

J. Sens. Actuator Netw. 2013, 2 538

Table 14. Cont.

Nr Codename
Kernel service
count

Kernel services
App-level
task count

App-level tasks

5 Counter-sniper ? ? ? ?
6 Electro-shepherd ? - sense and send
7 Virtual fences ? MAC 1 sense and issue warning (play sound file)
8 Oil tanker 0 4 cluster formation and time sync, sensing, data transfer
9 Enemy vehicles ? ? ? ?

10 Trove game 1 MAC 3 sense and send, receive, buzz
11 Elder RFID 1 MAC 2 query RFID, report
12 Murphy potatoes 2 MAC, routing 1 sense and send
13 Firewxnet 2 MAC, routing 2 sensing and sending, reception and time-sync
14 AlarmNet ? ? 3 query processing, sensing, report sending
15 Ecuador Volcano 3 time sync, remote reprogram,

routing
3 sense, detect events, process queries

16 Pet game 2 MAC, routing ? sense and send, receive configuration
17 Plug 2 MAC, routing, radio listen 2 sensing and statistics and report, radio RX
18 B-Live ? ? 3 sensing, actuation, data transfer
19 Biomotion 2 MAC, time sync 1 sense and send
20 AID-N 3 MAC, routing, transport 3 query processing, sensing, report sending
21 Firefighting 1 routing 2 sensing and sending, user input processing
22 Rehabil 0? ? 1 sense and send
23 CargoNet 0? ? 1 sense and send
24 Fence monitor 2 MAC, routing 4 sense, preprocess, report, receive neighbor response
25 BikeNet 1 MAC 5 hello broadcast, neighbor discovery and task recep-

tion, sensing, data download, data upload
26 BriMon 3 Time sync, MAC, routing 3 sensing, flash storage, sending
27 IP net ? ? ? ?
28 Smart home ? ? ? ?
29 SVATS 2 MAC, time sync 2 listen, decide
30 Hitchhiker 4 MAC, routing, transport,

timesync
1 sense and send

31 Daily morning 1 MAC 1 sense and send
32 Heritage ? ?
33 AC meter ? ? 2 sampling, routing
34 Coal mine 2 MAC, routing 2 receive beacons, send beacon and update neighbor

map and report accidents
35 ITS 2 MAC, routing 1 listen for queries and sample and process and report
36 Underwater 2 MAC, timesync 3 sensing + sending, reception, motor control
37 PipeProbe 0? - 1 sense and send
38 Badgers 3 MAC, routing, User Datagram

Protocol (UDP) connection es-
tablishment

1 sense and send

39 Helens volcano 5 MAC, routing, transport, time
sync, remote reprogram

5 sense, detect events, compress, Remote Procedure
Call (RPC) response, data report

40 Tunnels 2 MAC, routing 1 sense and send

Most of deployments use not more than two kernel services (55%) (Figure 10). For some
deployments, up to five kernel services are used. The maximum service count must be taken into account
when designing a task scheduler—if static service maps are used, they must contain enough entries to
support all kernel services.

In the application layer, often, just one task is used, which is typically sense and send (33% of cases)
(Figure 11). Up to six tasks are used in more complex applications.

Design rule 23: The OS task scheduler should support up to five kernel services and up to six user level
tasks. An alternative configuration might be useful, providing a single user task to simplify the

J. Sens. Actuator Netw. 2013, 2 539

programming approach and provide maximum resource efficiency, which might be important for
the most resource-constrained platforms.

Figure 10. The number of kernel level software services used in deployments—fifty-five
percent of deployments use two or less kernel services. For 28%, the kernel service count is
unknown.

Figure 11. The number of application layer software tasks used in deployments.—
Thirty-three percent of deployments use just one task; however, up to six tasks are used in
more complex cases. The task count is unknown in 18% of deployments

J. Sens. Actuator Netw. 2013, 2 540

3.14. Task Scheduling

Table 15 describes deployment task scheduling attributes: time sensitivity and the need for preemptive
task scheduling.

Table 15. Deployments: task scheduling.

Nr Codename
Time sensitive
app-level tasks

Preemptive scheduling
needed

Task comments

1 Habitats 0 n sense + cache + send in every period
2 Minefield 7+ y complicated localization, network awareness and cooperation
3 Battlefield 0 n
4 Line in the sand 1 ? n
5 Counter-sniper 3? n localization, synchronization, blast detection
6 Electro-shepherd ? ?
7 Virtual fences ? n
8 Oil tanker 1 y user-space cluster node discovery and sync are time critical
9 Enemy vehicles 0 n
10 Trove game 0 n
11 Elder RFID 0 n
12 Murphy potatoes 0 n
13 Firewxnet 1 y sensing can take up to 200 ms; should be preemptive
14 AlarmNet 0 n -
15 Ecuador Volcano 1 y sensing is time-critical, but it is stopped, when the query is received
16 Pet game 0 n
17 Plug 0 n
18 B-Live 0 y
19 Biomotion 0 y preemption needed for time sync and TDMA MAC
20 AID-N 0 n
21 Firefighting 0 n
22 Rehabil ? ?
23 CargoNet 0 n wake up on external interrupts; process them; return to sleep mode
24 Fence monitor 0 n if preprocessing is time-consuming, preemptive scheduling is

needed
25 BikeNet 1 y sensing realized as an app-level TDMA schedule and is time-

critical. Data upload may be time-consuming; therefore, preemp-
tive scheduling may be required

26 BriMon 0 n sending is time critical, but in the MAC layer
27 IP net 0 ?
28 Smart home ? ?
29 SVATS 0 y preemption needed for time sync and MAC
30 Hitchhiker 0 y preemption needed for time sync and MAC
31 Daily morning 0 n
32 Heritage 1 y preemptive scheduling needed for time sync?
33 AC meter 0 n
34 Coal mine 0 n preemptive scheduling needed, if the neighbor update is time-

consuming
35 ITS 0 n
36 Underwater 0 y preemption needed for time sync and TDMA MAC
37 PipeProbe 0 n no MAC; just send
38 Badgers 0 n
39 Helens volcano 0 y preemption needed for time sync and MAC
40 Tunnels 0 n

Two basic scheduling approaches do exist: cooperative and preemptive. In the former case, the
switch between tasks is explicit—one task yields a processor to another task. A switch can occur only
in predefined code lines. In the latter case, the scheduler can preempt any task at any time and give the
CPU to another task. A switch can occur anywhere in the code.

J. Sens. Actuator Netw. 2013, 2 541

The main advantage of cooperative scheduling is resource efficiency: no CPU time and memory are
wasted to perform periodic switches between concurrent tasks, which could be executed serially without
any problem.

The main advantage of preemptive scheduling is that users do not have to worry about task
switching—it is performed automatically. Even if the user has created an infinite loop in one task,
other tasks will have access to the CPU and will be able to execute.

Preemptive scheduling can introduce new bugs, though; it requires context switching, including
multiple stack management. Memory checking and overflow control is much harder for multiple stacks,
compared to cooperative approaches with a single stack.

If we assume that the user written code is correct, preemptive scheduling is required only in cases
where at least one task is time-sensitive and at least one other task is time-intensive (it can execute for a
relatively long period of time). The latter may disturb the former from handling all important incoming
events.

Twenty percent of analyzed deployments have at least one time-sensitive application layer task (most
of them have exactly one), while 30% of deployments require preemptive scheduling. Even in some
cases (10%), where no user-space time-sensitive tasks exist, preemption may be required by kernel-level
services: MAC protocols and time synchronization.

Design rule 24: The operating system should provide both cooperative and preemptive scheduling,
which are switchable as needed.

3.15. Time Synchronization

Time synchronization has been addressed as one of the core challenges of sensor networks. Therefore,
its use in deployments is analyzed and statistics are shown in Table 16.

Table 16. Deployments: time synchronization.

Nr Codename Time-sync used Accuracy, µsec Advanced time-sync Self-made time-sync

1 Habitats n - - -
2 Minefield y 1000 ? ?
3 Battlefield y ? n y
4 Line in the sand y 110 n y
5 Counter-sniper y 17.2 (1.6 per hop) y y
6 Electro-shepherd n - - -
7 Virtual fences n - - -
8 Oil tanker y ? n y
9 Enemy vehicles n - - -
10 Trove game n - - -
11 Elder RFID n - - -
12 Murphy potatoes n - - -
13 Firewxnet y >1000 n y
14 AlarmNet n - - -
15 Ecuador Volcano y 6800 y n
16 Pet game n - - -

J. Sens. Actuator Netw. 2013, 2 542

Table 16. Cont.

Nr Codename Time-sync used Accuracy, µsec Advanced time-sync Self-made time-sync

17 Plug n - - -
18 B-Live n - - -
19 Biomotion y ? n y
20 AID-N n - - -
21 Firefighting n - - -
22 Rehabil n - - -
23 CargoNet n - - -
24 Fence monitor n - - -
25 BikeNet y 1 ms? n, GPS n
26 BriMon y 180 n y
27 IP net ? ? ? ?
28 Smart home ? ? ? ?
29 SVATS y, not implemented - - -
30 Hitchhiker y ? n y
31 Daily morning n - - -
32 Heritage y 732 y y
33 AC meter n - - -
34 Coal mine n - - -
35 ITS n - - -
36 Underwater y ? ? y
37 PipeProbe n - - -
38 Badgers n - - -
39 Helens volcano y 1 ms? n, GPS n
40 Tunnels n - - -

Reliable routing is possible if at least one of two requirements holds:

1. A 100% duty cycle is used on all network nodes functioning as data routers without switching to
sleep mode.

2. Network nodes agree on a cooperative schedule for packet forwarding; time synchronization
is required.

Therefore, no effective duty cycling and multi-hop routing are possible without time synchronization.
Time synchronization is used in 38% of deployments, while multi-hop routing is used in 57% of cases

(the remaining 19% use no duty-cycling).
Although very accurate time synchronization protocols do exist [81], simple methods, including GPS,

are used most of the time, offering accuracy in millisecond, not microsecond range.
Only one of deployments used a previously developed time synchronization approach (not including

GPS usage in two other deployments); all the others use custom methods. The reason is that despite many
published theoretical protocols, no operating system provides an automated and easy way to “switch on”
time synchronization.

Design rule 25: Time synchronization provided by the operating system would be of a high value,
saving sensor network designers time and effort for custom synchronization development.

J. Sens. Actuator Netw. 2013, 2 543

3.16. Localization

Another of the most addressed sensor network problems is localization, Table 17.

Table 17. Deployments: localization.

Nr Codename Localization used
Localization
accuracy, cm

Advanced Localization
Self-made
Localization

1 Habitats n - - -
2 Minefield y +/−25 y y
3 Battlefield y couple feet n y
4 Line in the sand n - - -
5 Counter-sniper y 11 y y
6 Electro-shepherd y, GPS >1 m n n
7 Virtual fences y, GPS >1 m n n
8 Oil tanker n - - -
9 Enemy vehicles y ? n y

10 Trove game n - - -
11 Elder RFID n - - -
12 Murphy potatoes n - - -
13 Firewxnet n - - -
14 AlarmNet y room n, motion sensor in rooms y
15 Ecuador Volcano n - - -
16 Pet game n - - -
17 Plug n - - -
18 B-Live n - - -
19 Biomotion n - - -
20 AID-N n - - -
21 Firefighting y <5 m? n y
22 Rehabil n - - -
23 CargoNet n - - -
24 Fence monitor n - - -
25 BikeNet y, GPS >1 m n n
26 BriMon n - - -
27 IP net n - - -
28 Smart home n - - -
29 SVATS y ? n, RSSI y
30 Hitchhiker n - - -
31 Daily morning y room n y
32 Heritage n - - -
33 AC meter n - - -
34 Coal mine y ? n, static y
35 ITS y, static ? n n
36 Underwater y ? n y
37 PipeProbe y 8 cm y y
38 Badgers n - - -
39 Helens volcano n - - -
40 Tunnels n - - -

J. Sens. Actuator Netw. 2013, 2 544

Localization is used in 38% of deployments: 8% use GPS and 30%, other methods. In contrast to time
synchronization, the localization problem is very application-specific. Required localization granularity,
environment, meta-information and infrastructure vary tremendously: in one case, localization of the
centimeter scale must be achieved; in another, the room of a moving object must be found; in another,
GPS is used in an outdoor environment. In 73% of the cases, where localization is used, it is custom
for this application. It is not possible for an operating system to provide a generic localization method
for a wide application class. Neighbor discovery service could be usable—it can help to solve both,
localization and routing problems.

4. A Typical Wireless Sensor Network

In this section, we present a synthetic example of an average sensor network, based on the most
common properties and trends found in the deployment analysis. This example can be used to describe
wireless sensor networks to people becoming familiarized with the WSN field.

A typical wireless sensor network:

• is used as a prototyping tool to test new concepts and approaches for monitoring specific
environments

• is developed and deployed incrementally in multiple iterations and, therefore, needs effective
debugging mechanisms

• contains 10–50 sensor nodes and one or several base stations (a sensor node is connected to a
personal computer) that act as data collection sinks

• uses temperature, light and accelerometer sensors
• uses low frequency sensor sampling with less than one sample per second, on average, in most

cases; some sensors (accelerometers) require sampling in the range 10–100 Hz, and some scenarios
(seismic or audio sensing) use high frequency sampling with a sampling rate above 10 kHz

• has a desired lifetime, varying from several hours (short trials) to several years; relatively often,
the desired final lifetime is specified; yet, a significantly shorter lifetime is used in the first
proof-of-concept trials with a 100% duty cycle (no sleep mode used)

• has at least one sensor node with increased energy budget—either connected to a static power
network or a battery with significantly larger capacity

• has specific sensing and packaging constraints; therefore, packaging and hardware selection are
important problems in WSN design

• uses either an adapted version (custom sensors added) of a TelosB-compatible [2] or a MicaZ
sensor node [3]; also, fully custom-built motes are popular

• contains MSP430 or AVR architecture microcontrollers on the sensor nodes, typically with eight-
bit or 16-bit architecture, 8 MHz CPU frequency, 4–10 KB RAM, 48–128 KB program memory
and 512–1,024 KB external memory

• has communication according to the 802.15.4 protocol; TI CC2420 is an example of a widely used
wireless communication chip [67]

• sends data packets with a size of 10–30 bytes; the report rate varies significantly—for some
scenarios, only one packet per day is sent; for others, each sensor sample is sent at 100 Hz

J. Sens. Actuator Netw. 2013, 2 545

• uses omnidirectional communication in the range of 100–300 m (each hop) with a transmission
speed less than 256 Kbps and uses a single communication channel that can lead to collisions

• considers constant multi-hop connectivity available (with up to 11 hops on the longest route),
with possible topology changes, due to mobile nodes or other environmental changes in the
sensing region

• has either a previously specified or at least a known sensor node placement (not random)
• is likely to use at least primitive raw data preprocessing before reporting results
• uses CSMA-based MAC protocol and proactive routing, often adapted or completely

custom-developed for the particular sensing task
• uses some form of reliable data delivery with acknowledgment reception mechanisms
• has been programmed using the TinyOS operating system
• uses multiple semantically simultaneous application-level tasks, and multiple kernel services are

running in background, creating the necessity for effective scheduling mechanisms in the operating
system and, also, careful programming of the applications; cooperative scheduling (each task
voluntarily yields the CPU to other tasks) is enough in most cases; yet, it requires even more
accuracy from the programmers

• requires at least simple time synchronization with millisecond accuracy for common duty cycle
management or data time stamping

• may require some form of node localization; yet, the environments pose very specific constraints:
indoor/outdoor, required accuracy, update rate, infrastructure availability and many other factors

5. OS Conformance

This section analyzes existing WSN operating system conformance to design rulesdiscussed in this
paper. Three operating systems are analyzed here:

• TinyOS [4]—de facto standard in the WSN community. Specific environment: event driven
programming in nesC language.

• Contiki [5]—more common environment with sequential programming (proto-threads [82]) in
American National Standards Institute (ANSI) C programming language

• LiteOS [71]—a WSN OS providing a Unix-like programming interface
• MansOS [84]—a portable, C-based operating system that conforms to most of the design

rulesdescribed in this paper.

The conformance to the design rulesis summarized in Table 18. The following subsections discuss
the conformance of the listed operating systems, without describing their structure in detail, as they are
already published in other publications [4,5,71,84].

As Table 18 reveals, the listed operating systems cover most of the design rules. Exceptions are
discussed here.

J. Sens. Actuator Netw. 2013, 2 546

Table 18. Existing OS conformance to proposed design rules.

Rule TinyOS Contiki LiteOS MansOS
General

1 Simple, efficient networking protocols + + ± +
2 Sink-oriented protocols + + +
3 Base station example + + +

Sensing
4 Temperature, light, acceleration API ± +
5 Low duty cycle sampling + + + +

Lifetime and energy
6 Auto sleep mode + + + +
7 Powered mode in protocol design + + +

Sensor mote
8 TelosB support + + +
9 Rapid driver development + + +
10 Rapid platform definition ± +
11 CC2420 radio chip driver + + + +
12 AVR and MSP430 architecture support + + ± +
13 External storage support + + + +
14 Simple file system + + +

Communication
15 Configurable packet payload (default: 30 bytes) + + + +
16 Configurable transmission power + + + +
17 Protocols for ≤ 1 Mbps bandwidth + + + +
18 Simple proactive routing + + ± +
19 Simple CSMA MAC + + +
20 Custom MAC and routing API + + +
21 IPv6 support + +
22 Simple reception acknowledgment + + +

Tasks and scheduling
23 five kernel and six user task support + + ± ±
24 Cooperative and preemptive scheduling + + +
25 Simple time synchronization + +

5.1. TinyOS

TinyOS conforms to the majority of the design rules, but not all of them. The most significant
drawback is the complexity of the TinyOS architecture. Although TinyOS is portable (the wide range of
supported platforms is a proof for it), code readability and simplicity is doubtful. The main reasons for
TinyOS complexity are:

J. Sens. Actuator Netw. 2013, 2 547

• The event-driven nature: while event handlers impose less overhead compared to sequential
programming, with blocking calls and polling, it is more complex for programmers to design
and keep in mind the state machine for split-phase operation of the application

• Modular component architecture: a high degree of modularity and code reuse leads to program
logic distribution into many components. Each new functionality may require modification in
multiple locations, requiring deep knowledge of internal system structure

• nesC language peculiarities: confusion of interfaces and components, component composition
and nesting and specific requirements for variable definitions are examples of language aspects
interfering with the creativity of novice WSN programmers

These limitations are at the system design level, and there is no quick fix available. The most
convenient alternative is to implement middleware on top of TinyOS for simplified access to non-expert
WSN programmers. TinyOS architecture is too specific and complex to introduce groundbreaking
improvements for readability while maintaining backwards compatibility for existing applications.

There are multiple TinyOS inconsistencies with the proposed design rules, which can be corrected by
implementing missing features:

• TinyOS provides an interface for writing data and debug logs to external storage devices; yet, no
file system is available. Third party external storage filesystem implementations do exist, such as
TinyOS FAT16 support for SD cards [85].

• TinyOS contains Flooding Time Synchronization Protocol (FTSP) time synchronization
protocol [9] in its libraries. However, it requires deep understanding of clock skew issues and
FTSP protocol operation to be useful

• The temperature, light, acceleration, sound and humidity sensing API is not provided

5.2. Contiki

Contiki is one of the most successful examples regarding conformance to the design rulesproposed in
this paper.

Contiki does not provide a platform-independent API for popular sensor (temperature, light, sound)
and analog-to-digital converter (ADC) access. The reason is that Contiki’s mission is not dedicated
specifically to sensor networks, but rather to networked embedded device programming. Some of the
platforms (such as Apple II) may not have sensors or ADC available; therefore, the API is not explicitly
enforced for all the platforms.

Surprisingly, there is no base station application template included. Contiki-collect is provided as
an alternative—a complete and configurable sense-and-send network toolset for simple setup of simple
sensor network applications.

Portability to new platforms is partially effective. MCU architecture code may be reused. However,
the existing approach in Contiki is to copy and duplicate files, even between platforms with a common
code base (such as TelosB and Zolertia Z1 [63]). Portability of Contiki can be improved by creating
architecture and design guidelines, where a common code base is shared and reused among platforms.

J. Sens. Actuator Netw. 2013, 2 548

5.3. LiteOS

LiteOS conforms to the proposed design rulesonly partially.
The LiteOS operating system does not include the networking stack at the OS level. Instead, example

routing protocols are implemented at the user level, as application examples. No MAC protocol is
available in LiteOS, nor is a unified API for custom MAC and routing protocol development present.
The provided routing implements geographic forwarding, without any powered sink node consideration.
No IPv6 support or packet reception acknowledgment mechanisms are provided.

Temperature and light sensor reading API is present in LiteOS; the acceleration sensor must be
implemented by users.

Only AVR-based hardware platforms are supported, but no TelosB. The source code is, therefore, not
optimized for porting to new hardware platforms.

Only preemptive multithreading is available in LiteOS, but no cooperative scheduling. By default, a
maximum of eight simultaneous threads are allowed. Additionally, this constant can be changed in the
source files. However, each thread requires a separate stack, and running more than eight parallel threads
simultaneously on a platform with 4 KiB RAM memory is a rather dangerous experience that can lead
to stack overflows and hardly traceable errors. Many parallel task execution is therefore realistic only in
scheduling mechanisms sharing stack space between multiple threads.

No time synchronization is included in the LiteOS code base.

5.4. MansOS

MansOS [83] is a portable and easy-to-use WSN operating system that has a smooth learning curve
for users with C and Unix programming experience, described in more detail in [84]. One of the main
assumptions in MansOS design was the need to adapt it to many different platforms. As the deployment
survey shows, this is a very important necessity.

MansOS satisfies all design ruleswith two exceptions:

• IPv6 support is not built into the MansOS core; it must be implemented at a different level
• MansOS provides both scheduling techniques: preemptive and cooperative. In the preemptive

case, only one kernel thread and several user threads are allowed. Multiple kernel tasks must
share a single thread in this case. For the cooperative scheduler (protothreads, adopted from
Contiki [82]), any number of simultaneous threads is allowed, and they all share the same stack
space; therefore, the stack overflow probability is significantly lower, compared to LiteOS.

5.5. Summary

The examined WSN operating systems, TinyOS, Contiki, LiteOS and MansOS, conform to the
majority of the proposed design rules. However, there is space for improvement for every OS. Some
of the drawbacks can be overcome by straight-forward implementation of some missing functionality.
However, in some cases, a significant OS redesign is required.

J. Sens. Actuator Netw. 2013, 2 549

6. Conclusions

This paper surveys 40 wireless sensor network deployments described in the research literature. Based
on thorough analysis, design rules for WSN operating system design are proposed. The rules include
suggestions related to the task scheduler, networking protocol and other aspects of OS design. Some of
the most important concluding design rules:

• In many cases, customized commercial sensor nodes or fully custom-built motes are used.
Therefore, OS portability and code reuse are very important.

• Simplicity and extensibility should be preferred over scalability, as existing sensor networks rarely
contain more than 100 nodes.

• Both preemptive and cooperative task schedulers should be included in the OS.
• Default networking protocols should be sink-oriented and use CSMA-based MAC and proactive

routing protocols. WSN researchers should be able to easily replace default networking protocols
with their own to evaluate their performance.

• Simple time synchronization with millisecond (instead of microsecond) accuracy is sufficient for
most deployments.

The authors believe that these design rules will foster more efficient, portable and easy-to-use WSN
operating system and middleware design.

Another overall conclusion based on analyzed data-existing deployments is rather simple and limited.
There is still the need to test larger, more complex and heterogeneous networks in real-world settings.
Creation of hybrid networks and “networks of networks” are still open research topics.

Acknowledgments

The authors would like to thank Viesturs Silins for the help in analyzing deployment data and Modris
Greitans for providing feedback during the research.

This work has been supported by the European Social Fund, grant Nr. 2009/0138/
1DP/1.1.2.1.2/09/IPIA/VIAA/004 “Support for Doctoral Studies at the University of Latvia” and the
Latvian National Research Program “Development of innovative multi-functional material, signal
processing and information technologies for competitive and research intensive products”.

References

1. Global Security.org. Sound Surveillance System (SOSUS). Available online:
http://www.globalsecurity.org/intell/systems/sosus.htm (accessed on 8 August 2013).

2. Polastre, J.; Szewczyk, R.; Culler, D. Telos: Enabling Ultra-low Power Wireless Research. In
Proceedings of the 4th International Symposium on Information Processing in Sensor Networks,
(IPSN’05), UCLA, Los Angeles, CA, USA, 25–27 April 2005.

3. Crossbow Technology. MicaZ mote datasheet. Available online: http://www.openautomation.net/
uploadsproductos/micaz datasheet.pdf (accessed on 8 August 2013).

J. Sens. Actuator Netw. 2013, 2 550

4. Levis, P.; Madden, S.; Polastre, J.; Szewczyk, R.; Whitehouse, K.; Woo, A.; Gay, D.; Hill, J.;
Welsh, M.; Brewer, E.; et al. Tinyos: An operating system for sensor networks. Ambient Intell.
2005, 35, 115–148.

5. Dunkels, A.; Gronvall, B.; Voigt, T. Contiki-A Lightweight and Flexible Operating System for Tiny
Networked Sensors. In Proceedings of the Annual IEEE Conference on Local Computer Networks,
Tampa, FL, USA, 17–18 April 2004; pp. 455–462.

6. Madden, S.; Franklin, M.; Hellerstein, J.; Hong, W. TinyDB: An acquisitional query processing
system for sensor networks. ACM Trans. Database Syst. (TODS) 2005, 30, 122–173.

7. Muller, R.; Alonso, G.; Kossmann, D. A Virtual Machine for Sensor Networks. ACM SIGOPS
Operat. Syst. Rev. 2007, 41.3, 145–158.

8. Demirkol, I.; Ersoy, C.; Alagoz, F. MAC protocols for wireless sensor networks: A survey. IEEE
Commun. Mag. 2006, 44, 115–121.

9. Maróti, M.; Kusy, B.; Simon, G.; Lédeczi, Á. The Flooding Time Synchronization Protocol.
In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems,
(Sensys’04), Baltimore, MD, USA, 3–5 November 2004; pp. 39–49.

10. Mao, G.; Fidan, B.; Anderson, B. Wireless sensor network localization techniques. Comput. Netw.
2007, 51, 2529–2553.

11. Mainwaring, A.; Culler, D.; Polastre, J.; Szewczyk, R.; Anderson, J. Wireless Sensor Networks for
Habitat Monitoring. In Proceedings of the 1st ACM International Workshop on Wireless Sensor
Networks and Applications, (WSNA’02), Atlanta, GA, USA, 28 September 2002; pp. 88–97.

12. Merrill, W.; Newberg, F.; Sohrabi, K.; Kaiser, W.; Pottie, G. Collaborative Networking
Requirements for Unattended Ground Sensor Systems. In Proceedings of IEEE Aerospace
Conference, Big Shq, MI, USA, 8–15 March 2003, pp. 2153–2165.

13. Lynch, J.; Loh, K. A summary review of wireless sensors and sensor networks for structural health
monitoring. Shock Vib. Digest 2006, 38, 91–130.

14. Dunkels, A.; Eriksson, J.; Mottola, L.; Voigt, T.; Oppermann, F.J.; Römer, K.; Casati, F.; Daniel, F.;
Picco, G.P.; Soi, S.; et al. Application and Programming Survey; Technical report, EU FP7 Project
makeSense, Swedish Institute of Computer Science: Kista, Sweden, 2010.

15. Mottola, L.; Picco, G.P. Programming wireless sensor networks: Fundamental concepts and state
of the art. ACM Comput. Surv. 2011, 43, 19:1–19:51.

16. Bri, D.; Garcia, M.; Lloret, J.; Dini, P. Real Deployments of Wireless Sensor Networks. In
Proceedings of SENSORCOMM’09, Athens/Glyfada, Greece, 18–23 June 2009; pp. 415–423.

17. Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008,
52, 2292–2330.

18. Latré, B.; Braem, B.; Moerman, I.; Blondia, C.; Demeester, P. A survey on wireless body area
networks. Wirel. Netw. 2011, 17, 1–18.

19. He, T.; Krishnamurthy, S.; Stankovic, J.A.; Abdelzaher, T.; Luo, L.; Stoleru, R.; Yan, T.; Gu, L.;
Hui, J.; Krogh, B. Energy-efficient Surveillance System Using Wireless Sensor Networks. In
Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services,
(MobiSys’04), Boston, MA, USA, 6–9 June 2004; pp. 270–283.

J. Sens. Actuator Netw. 2013, 2 551

20. Arora, A.; Dutta, P.; Bapat, S.; Kulathumani, V.; Zhang, H.; Naik, V.; Mittal, V.; Cao, H.;
Demirbas, M.; Gouda, M.; et al. A line in the sand: A wireless sensor network for target detection,
classification, and tracking. Comput. Netw. 2004, 46, 605–634.

21. Simon, G.; Maróti, M.; Lédeczi, A.; Balogh, G.; Kusy, B.; Nádas, A.; Pap, G.; Sallai, J.;
Frampton, K. Sensor Network-based Countersniper System. In Proceedings of the 2nd
International Conference on Embedded Networked Sensor Systems, (SenSys’04), Baltimore, MD,
USA, 3–5 November 2004; pp. 1–12.

22. Thorstensen, B.; Syversen, T.; Bjørnvold, T.A.; Walseth, T. Electronic Shepherd-a Low-cost,
Low-bandwidth, Wireless Network System. In Proceedings of the 2nd International Conference
on Mobile Systems, Applications, and Services, (MobiSys’04), Boston, MA, USA, 6–9 June 2004;
pp. 245–255.

23. Butler, Z.; Corke, P.; Peterson, R.; Rus, D. Virtual Fences for Controlling Cows. In Proceedings
of the 2004 IEEE International Conference on Robotics and Automation, (ICRA’04), Barcelona,
Spain, 18–22 April 2004; Volume 5, pp. 4429–4436.

24. Krishnamurthy, L.; Adler, R.; Buonadonna, P.; Chhabra, J.; Flanigan, M.; Kushalnagar, N.;
Nachman, L.; Yarvis, M. Design and Deployment of Industrial Sensor Networks: Experiences
from a Semiconductor Plant and the North Sea. In Proceedings of the 3rd International Conference
on Embedded Networked Sensor Systems, (SenSys’05), San Diego, CA, USA, 2–4 November
2005; pp. 64–75.

25. Sharp, C.; Schaffert, S.; Woo, A.; Sastry, N.; Karlof, C.; Sastry, S.; Culler, D. Design and
Implementation of a Sensor Network System for Vehicle Tracking and Autonomous Interception.
In Proceeedings of the Second European Workshop on Wireless Sensor Networks, Istanbul, Turkey,
31 January–2 February 2005; pp. 93–107.

26. Mount, S.; Gaura, E.; Newman, R.M.; Beresford, A.R.; Dolan, S.R.; Allen, M. Trove: A
Physical Game Running on an Ad-hoc Wireless Sensor Network. In Proceedings of the 2005
Joint Conference on Smart Objects and Ambient Intelligence: Innovative Context-Aware Services:
Usages and Technologies, (sOc-EUSAI’05), Grenoble, France, 12–14 October 2005; pp. 235–239.

27. Ho, L.; Moh, M.; Walker, Z.; Hamada, T.; Su, C.F. A Prototype on RFID and Sensor Networks for
Elder Healthcare: Progress Report. In Proceedings of the 2005 ACM SIGCOMM Workshop on
Experimental Approaches to Wireless Network Design and Analysis, (E-WIND’05), Philadelphia,
PA, USA, 22 August 2005; pp. 70–75.

28. Langendoen, K.; Baggio, A.; Visser, O. Murphy Loves Potatoes: Experiences from a Pilot Sensor
Network Deployment in Precision Agriculture. In Proceedings of the 20th International IEEE
Parallel and Distributed Processing Symposium, (IPDPS 2006), Rhodes Island, Greece, 25–29
April 2006; pp. 1–8.

29. Hartung, C.; Han, R.; Seielstad, C.; Holbrook, S. FireWxNet: A Multi-tiered Portable Wireless
System for Monitoring Weather Conditions in Wildland Fire Environments. In Proceedings of
the 4th International Conference on Mobile Systems, Applications and Services, (MobiSys’06),
Uppsala, Sweden, 19–22 June 2006; pp. 28–41.

J. Sens. Actuator Netw. 2013, 2 552

30. Wood, A.; Virone, G.; Doan, T.; Cao, Q.; Selavo, L.; Wu, Y.; Fang, L.; He, Z.; Lin, S.; Stankovic, J.
ALARM-NET: Wireless Sensor Networks for Assisted-Living and Residential Monitoring; Technical
Report; University of Virginia Computer Science Department, Charlottesville, VA, USA, 2006.

31. Werner-Allen, G.; Lorincz, K.; Johnson, J.; Lees, J.; Welsh, M. Fidelity and Yield in a Volcano
Monitoring Sensor Network. In Proceedings of the 7th Symposium on Operating Systems Design
and Implementation, (OSDI’06), Seattle, WA, USA, 6–8 November 2006; pp. 381–396.

32. Liu, L.; Ma, H. Wireless Sensor Network Based Mobile Pet Game. In Proceedings of 5th ACM
SIGCOMM Workshop on Network and System Support for Games, (NetGames’06), Singapore,
Singapore, 30–31 October 2006.

33. Lifton, J.; Feldmeier, M.; Ono, Y.; Lewis, C.; Paradiso, J.A. A Platform for Ubiquitous Sensor
Deployment in Occupational and Domestic Environments. In Proceedings of the 6th International
Conference on Information Processing in Sensor Networks, (IPSN’07), Cambridge, MA, USA,
25–27 April 2007; pp. 119–127.

34. Santos, V.; Bartolomeu, P.; Fonseca, J.; Mota, A. B-Live-a Home Automation System for Disabled
and Elderly People. In Proceedings of the International Symposium on Industrial Embedded
Systems, (SIES’07), Lisbon, Portugal, 04–06 July 2007; pp. 333–336.

35. Aylward, R.; Paradiso, J.A. A Compact, High-speed, Wearable Sensor Network for Biomotion
Capture and Interactive Media. In Proceedings of the 6th International Conference on Information
Processing in Sensor Networks, (IPSN’07), Cambridge, MA, USA, 25–27 April 2007; pp. 380–
389.

36. Gao, T.; Massey, T.; Selavo, L.; Crawford, D.; Chen, B.; Lorincz, K.; Shnayder, V.; Hauenstein, L.;
Dabiri, F.; Jeng, J.; et al. The advanced health and disaster aid network: A light-weight wireless
medical system for triage. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 203–216.

37. Wilson, J.; Bhargava, V.; Redfern, A.; Wright, P. A Wireless Sensor Network and Incident
Command Interface for Urban Firefighting. In Proceedings of the 4th Annual International
Conference on Mobile and Ubiquitous Systems: Networking Services, (MobiQuitous’07),
Philadelphia, PA, USA, 6–10 August 2007; pp. 1–7.

38. Jarochowski, B.; Shin, S.; Ryu, D.; Kim, H. Ubiquitous Rehabilitation Center: An Implementation
of a Wireless Sensor Network Based Rehabilitation Management System. In Proceedings of
the International Conference on Convergence Information Technology, (ICCIT 2007), Gyeongju,
Korea, 21–23 November 2007; pp. 2349–2358.

39. Malinowski, M.; Moskwa, M.; Feldmeier, M.; Laibowitz, M.; Paradiso, J.A. CargoNet: A
Low-cost Micropower Sensor Node Exploiting Quasi-passive Wakeup for Adaptive Asychronous
Monitoring of Exceptional Events. In Proceedings of the 5th International Conference on
Embedded Networked Sensor Systems, (SenSys’07), Sydney, Australia, 6–9 November 2007; pp.
145–159.

40. Wittenburg, G.; Terfloth, K.; Villafuerte, F.L.; Naumowicz, T.; Ritter, H.; Schiller, J. Fence
Monitoring: Experimental Evaluation of a Use Case for Wireless Sensor Networks. In
Proceedings of the 4th European Conference on Wireless Sensor Networks, (EWSN’07), Delft,
The Netherlands, 29–31 January 2007; pp. 163–178.

J. Sens. Actuator Netw. 2013, 2 553

41. Eisenman, S.B.; Miluzzo, E.; Lane, N.D.; Peterson, R.A.; Ahn, G.S.; Campbell, A.T. BikeNet: A
mobile sensing system for cyclist experience mapping. ACM Trans. Sen. Netw. 2010, 6, 1–39.

42. Chebrolu, K.; Raman, B.; Mishra, N.; Valiveti, P.; Kumar, R. Brimon: A Sensor Network System
for Railway Bridge Monitoring. In Proceedings of the 6th International Conference on Mobile
Systems, Applications, and Services (MobiSys’08), Breckenridge, CO, USA, 17–20 June 2008;
pp. 2–14.

43. Finne, N.; Eriksson, J.; Dunkels, A.; Voigt, T. Experiences from Two Sensor Network
Deployments: Self-monitoring and Self-configuration Keys to Success. In Proceedings of the
6th International Conference on Wired/wireless Internet Communications, (WWIC’08), Tampere,
Finland, 28–30 May 2008; pp. 189–200.

44. Suh, C.; Ko, Y.B.; Lee, C.H.; Kim, H.J. The Design and Implementation of Smart Sensor-based
Home Networks. In Proceedings of the International Symposium on Ubiquitous Computing
Systems, (UCS’06), Seoul, Korea, 11–13 November 2006; p. 10.

45. Song, H.; Zhu, S.; Cao, G. SVATS: A Sensor-Network-Based Vehicle Anti-Theft System. In
Proceedings of the 27th Conference on Computer Communications, (INFOCOM 2008), Phoenix,
AZ, USA, 15–17 April 2008; pp. 2128–2136.

46. Barrenetxea, G.; Ingelrest, F.; Schaefer, G.; Vetterli, M. The Hitchhiker’s Guide to Successful
Wireless Sensor Network Deployments. In Proceedings of the 6th ACM Conference on Embedded
Network Sensor Systems, (SenSys’08), Raleigh, North Carolina, 5-7 November 2008; pp. 43–56.

47. Ince, N.F.; Min, C.H.; Tewfik, A.; Vanderpool, D. Detection of early morning daily activities
with static home and wearable wireless sensors. EURASIP J. Adv. Signal Process. 2008,
doi:10.1155/2008/273130.

48. Ceriotti, M.; Mottola, L.; Picco, G.P.; Murphy, A.L.; Guna, S.; Corra, M.; Pozzi, M.; Zonta, D.;
Zanon, P. Monitoring Heritage Buildings with Wireless Sensor Networks: The Torre Aquila
Deployment. In Proceedings of the 2009 International Conference on Information Processing
in Sensor Networks, (IPSN’09), San Francisco, USA, 13-16 April 2009; pp. 277–288.

49. Jiang, X.; Dawson-Haggerty, S.; Dutta, P.; Culler, D. Design and Implementation of a
High-fidelity AC Metering Network. In Proceedings of the 2009 International Conference on
Information Processing in Sensor Networks, (IPSN’09), San Francisco, CA, USA, 13–16 April
2009; pp. 253–264.

50. Li, M.; Liu, Y. Underground coal mine monitoring with wireless sensor networks. ACM Trans.
Sens. Netw. (TOSN) 2009, 5, 10:1–10:29.

51. Franceschinis, M.; Gioanola, L.; Messere, M.; Tomasi, R.; Spirito, M.; Civera, P. Wireless Sensor
Networks for Intelligent Transportation Systems. In Proceedings of the IEEE 69th Vehicular
Technology Conference, VTC Spring 2009, Barcelona, Spain, 26–29 April 2009; pp. 1–5.

52. Detweiler, C.; Doniec, M.; Jiang, M.; Schwager, M.; Chen, R.; Rus, D. Adaptive Decentralized
Control of Underwater Sensor Networks for Modeling Underwater Phenomena. In Proceedings
of the 8th ACM Conference on Embedded Networked Sensor Systems, (SenSys’10), Zurich,
Switzerland, 3–5 November 2010; pp. 253–266.

J. Sens. Actuator Netw. 2013, 2 554

53. Lai, T.T.T.; Chen, Y.H.T.; Huang, P.; Chu, H.H. PipeProbe: A Mobile Sensor Droplet for Mapping
Hidden Pipeline. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor
Systems, (SenSys’10), Zurich, Switzerland, 3–5 November 2010; pp. 113–126.

54. Dyo, V.; Ellwood, S.A.; Macdonald, D.W.; Markham, A.; Mascolo, C.; Pásztor, B.; Scellato, S.;
Trigoni, N.; Wotextcolorreders, R.; Yousef, K. Evolution and Sustainability of a Wildlife
Monitoring Sensor Network. In Proceedings of the 8th ACM Conference on Embedded Networked
Sensor Systems, (SenSys’10), Zurich, Switzerland, 3–5 November 2010; pp. 127–140.

55. Huang, R.; Song, W.Z.; Xu, M.; Peterson, N.; Shirazi, B.; LaHusen, R. Real-world sensor network
for long-term volcano monitoring: Design and findings. IEEE Trans. Parallel Distrib. Syst. 2012,
23, 321–329.

56. Ceriotti, M.; Corrà, M.; D’Orazio, L.; Doriguzzi, R.; Facchin, D.; Guna, S.; Jesi, G.; Cigno, R.;
Mottola, L.; Murphy, A.; et al. Is There Light at the Ends of the Tunnel? Wireless Sensor Networks
for Adaptive Lighting in Road Tunnels. In Proceedings of the 10th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN/SPOTS), Chicago, IL, USA,
12–14 April 2011; pp. 187–198.

57. Shafi, N.B. Efficient Over-the-Air Remote Reprogramming of Wireless Sensor Networks. MS.c
Thesis, Queen’s University, Kingston, ON, Canada, 2011.

58. Dutta, P. Sustainable sensing for a smarter planet. XRDS 2011, 17, 14–20.
59. Sensoria. Wireless Integrated Network Sensors (WINS) Next Generation.

Technical Report, Defense Advanced Research Projects Agency (DARPA). Available online:
http://www.trabucayre.com/page-tinyos.html (accessed on 8 August 2013) , 2004.

60. Bhatti, S.; Carlson, J.; Dai, H.; Deng, J.; Rose, J.; Sheth, A.; Shucker, B.; Gruenwald, C.;
Torgerson, A.; Han, R. MANTIS OS: An embedded multithreaded operating system for wireless
micro sensor platforms. Mobile Netw. Appl. 2005, 10, 563–579.

61. TU Harburg Institute of Telematics. Embedded Sensor Board. Available online: http://wiki.ti5.tu-
harburg.de/wsn/scatterweb/esb (accessed on 8 August 2013).

62. Picco, G.P. TRITon: Trentino Research and Innovation for Tunnel Monitoring. Available online:
http://triton.disi.unitn.it/ (accessed on 8 August 2013).

63. Zolertia. Z1 Platform. Available online: http://www.zolertia.com/ti (accessed on 8 August 2013).
64. Crossbow Technology. MICA2 Wireless Measurement System datasheet. Available on-

line: http://bullseye.xbow.com:81/Products/Product pdf files/Wireless pdf/MICA2 Datasheet.pdf
(accessed on 8 August 2013)

65. Lo, B.; Thiemjarus, S.; King, R.; Yang, G. Body Sensor network–A Wireless Sensor Platform for
Pervasive Healthcare Monitoring. In Proceedings of the 3rd International Conference on Pervasive
Computing, Munich, Germany, 08–13 May 2005; Volume 191, pp. 77–80.

66. Texas Instruments. CC1000: Single Chip Very Low Power RF Transceiver. Available online:
http://www.ti.com/lit/gpn/cc1000 (accessed on 8 August 2013).

67. Texas Instruments. CC2420: 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver. Available
online: http://www.ti.com/lit/gpn/cc2420 (accessed on 8 August 2013).

J. Sens. Actuator Netw. 2013, 2 555

68. Martinez, K.; Basford, P.; Ellul, J.; Spanton R. Gumsense-a High Power Low Power Sensor Node.
In Proceedings of the 6th European Conference on Wireless Sensor Networks, (EWSN’09), Cork,
Ireland, 11–13 February 2009.

69. Atmel Corporation. AVR 8-bit and 32-bit Microcontroller. Available online:
http://www.atmel.com/products/microcontrollers/avr/default.aspx (accessed on 8 August 2013).

70. Hill, J.; Szewczyk, R.; Woo, A.; Hollar, S.; Culler, D.; Pister, K. System architecture directions for
networked sensors. ACM Sigplan Not. 2000, 35, 93–104.

71. Cao, Q.; Abdelzaher, T.; Stankovic, J.; He, T. The LiteOS Operating System: Towards Unix-Like
Abstractions for Wireless Sensor Networks. In Proceedings of the 7th International Conference on
Information Processing in Sensor Networks, (IPSN’08), St. Louis, MO, USA, 22–24 April 2008;
pp. 233–244.

72. Prieditis, K.; Drikis, I.; Selavo, L. SAntArray: Passive Element Array Antenna for Wireless Sensor
Networks. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems,
(SenSys’10), Zurich, Switzerland, 3–5 November 2010; pp. 433–434.

73. Shelby, Z.; Bormann, C. 6LoWPAN: The Wireless Embedded Internet; Wiley Publishing:
Chippenham, Wiltshire, UK, 2010.

74. Hui, J.W.; Culler, D. The Dynamic Behavior of a Data Dissemination Protocol for Network
Programming at Scale. In Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems, (SenSys’10), Zurich, Switzerland, 3–5 November 2010; pp. 81–94.

75. Levis, P.; Culler, D. Mate: A tiny virtual machine for sensor networks. Sigplan Not. 2002,
37, 85–95.

76. Terfloth, K.; Wittenburg, G.; Schiller, J. FACTS: A Rule-Based Middleware Architecture for
Wireless Sensor Networks. In Proceedings of the 1st International Conference on Communication
System Software and Middleware (COMSWARE), New Delhi, India, 8–12 January 2006.

77. Costa, P.; Mottola, L.; Murphy, A.L.; Picco, G.P. TeenyLIME: Transiently Shared Tuple Space
Middleware for Wireless Sensor Networks. In Proceedings of the International Workshop
on Middleware for Sensor Networks, (MidSens’06), Melbourne, Australia, 28 November 2006;
pp. 43–48.

78. Levis, P.; Gay, D. TinyOS Programming, 1st ed.; Cambridge University Press: New York, NY,
USA, 2009.

79. Saruwatari, S.; Suzuki, M.; Morikawa, H. A Compact Hard Real-time Operating System for
Wireless Sensor Nodes. In Proceedings of the 2009 Sixth International Conference on Networked
Sensing Systems, (INSS’09), Pittsburgh, PA, USA, 17–19 June 2009; pp. 1–8.

80. Eswaran, A.; Rowe, A.; Rajkumar, R. Nano-RK: An Energy-aware Resource-centric RTOS for
Sensor Networks. In Proceedings of the 26th IEEE International Real-Time Systems Symposium,
(RTSS 2005), Miami, FL, USA, 6–8 December 2005; pp. 265–274.

81. Ganeriwal, S.; Kumar, R.; Srivastava, M.B. Timing-sync Protocol for Sensor Networks. In
Proceedings of the 1st International Conference on Embedded Networked Sensor Systems,
(SenSys’03), Los Angeles, CA, USA, 5–7 November 2003; pp. 138–149.

J. Sens. Actuator Netw. 2013, 2 556

82. Dunkels, A.; Schmidt, O.; Voigt, T.; Ali, M. Protothreads: Simplifying Event-Driven Programming
of Memory-Constrained Embedded Systems. In Proceedings of SenSys’06, Boulder, CO, USA, 31
October–3 November 2006; pp. 29–42.

83. MansOS—Portable and easy-to-use WSN operating system. Available online: http://mansos.net
(accessed on 8 August 2013).

84. Elsts, A.; Strazdins, G.; Vihrov, A.; Selavo, L. Design and Implementation of MansOS: A Wireless
Sensor Network Operating System. In Scientific Papers; University of Latvia: Riga, Latvia, 2012;
Volume 787, pp. 79–105.

85. Goavec-Merou, G. SDCard and FAT16 File System Implementation for TinyOS. Available online:
http://www.trabucayre.com/page-tinyos.html (accessed on 8 August 2013).

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Methodology
	Survey Results
	Deployment State and Attributes
	Sensing
	Lifetime and Energy
	Sensor Mote
	Sensor Mote: Microcontroller
	Sensor Mote: External Memory
	Communication
	Communication Media
	Network
	In-Network Processing
	Networking Stack
	Operating System and Middleware
	Software Level Tasks
	Task Scheduling
	Time Synchronization
	Localization

	A Typical Wireless Sensor Network
	OS Conformance
	TinyOS
	Contiki
	LiteOS
	MansOS
	Summary

	Conclusions
	Acknowledgments

