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Abstract: To avoid overloading a network, it is critical to continuously monitor the natural environ-
ment and disseminate data streams in synchronization. Based on self-maintaining technology, this
study presents a technique called self-configuration management (SCM). The purpose is to ensure
consistency in the performance, functionality, and physical attributes of a wireless sensor network
(WSN) over its lifetime. During device communication, the SCM approach delivers an operational
software package for the radio board of system problematic nodes. We offered two techniques to
help cluster heads manage autonomous configuration. First, we created a separate capability to
determine which defective devices require the operating system (OS) replica. The software package
was then delivered from the head node to the network’s malfunctioning device via communication
roles. Second, we built an autonomous capability to automatically install software packages and
arrange the time. The simulations revealed that the suggested technique was quick in transfers and
used less energy. It also provided better coverage of system fault peaks than competitors. We used
the proposed SCM approach to distribute homogenous sensor networks, and it increased system
fault tolerance to 93.2%.

Keywords: WSN; cluster head; sensor node; self-configuration; self-diagnosis; self-maintain

1. Introduction

Wireless sensor networks (WSNs) have a large number of sensory devices that are
deployed in an area and integrated to work wirelessly together. As a result, implementing a
sensor node is a key difficulty in WSNs. This has a significant impact on efficiency and costs.
So, when we deploy a sensor node, we must consider factors such as the deployment’s goal,
as well as the topography and coverage capability of the sensor node. A WSN’s primary
goal is to provide broad coverage with as few sensor nodes as possible. Wireless communi-
cation has been around for a long time, dating back to the first infrared link. People have
been attempting to develop wireless connections between electronic items and computers
for a long time. Due to the rapid development of compact, dense radio-frequency inte-
grated circuits (RFICs) and filters during the last five to ten years. In addition to scientific
advances in spread-spectrum technologies, many wireless technology standards have been
developed, allowing many manufacturers and implementers to achieve interoperability
between many devices [1]. In the subject of comprehensive monitoring, habitat monitoring
often entails continuous operation for many months, whereas structural monitoring (such
as bridge monitoring) may take several years. A recent study has demonstrated that these
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wireless networks can cause numerous system problems in dispersed networks, known as
Byzantine flows. A system issue can be identified by the fact that some network nodes fail
to react or respond with inaccurate information. This can be accomplished by dynamically
adjusting node duty cycles in dense sensor networks. As a result, many academics have
specialized in putting specific nodes into hibernation (or failure-mode coverage) while the
remaining active nodes continue to provide uninterrupted service. A fundamental issue is
minimizing the number of active nodes while maintaining an adequate level of service for
applications. Maintaining enough sensing coverage and network connectivity with active
nodes, in particular, are critical criteria in sensor networks [2].

A system error is a circumstance that infects an operating system, particularly a
distributed computer system, in which a component may fail and information regarding
whether or not a component has failed is insufficient. The word is derived from the
story “The Problem of the Byzantine Generals” [3], which was designed to illustrate
a circumstance in which the hardware components of the system have failed. A chief
node can exist in both failed and working failure-detection systems, displaying various
symptoms to different observers. It is difficult for the other components to announce it
failed and disconnect it from the network since they must first agree on which component
failed. As a result, system fault tolerance (SFT) refers to a fault-tolerant network system’s
resistance to such scenarios [4].

As a result, typical WSN research has focused on network configuration, network
operations, and performance evaluation of WSNs that execute the primary function. The
Internet of Things (IoT) is becoming a reality as sensor technology advances, allowing
the installation of inexpensive, compact, and computationally efficient sensor devices.
Although collecting and monitoring sensor data does not necessitate considerable local data
processing for decision-making at sensor nodes, some new WSN applications necessitate
fast and dependable device decision-making. Because of the large number of IoT devices
that require high bandwidth and cause network connectivity challenges, on-device self-
configuration eventually leads to increased computing capabilities of sensor nodes to
supplement local data monitoring.

Efforts are being made in the proposed self-configuration management (SCM) to use
fault tolerance mechanisms to restore the network to its original state. This study will
address the programmatic platform for WSNs as follows: (1) Self-detection for infected
device nodes in each cluster. After each round, each group leader performs a monitoring
task for the clustering elements, then it computes the dimensions of the location of a faulty
node in its hop. (2) Self-directing for conveying data from the clustering head to obtain
reliable data transmission, using the synchronous and distributed fair scheduler. (3) Self-
install to allow all detected nodes to complete their installations in the shortest possible
time T (n2). Finally, the paper is laid out as follows: Section 2 includes articles relevant to
this work. Section 3 shows the problem’s preliminary stages and details the proposal (SCM)
technique and suggested algorithms. Section 4 presents the findings of the evaluation
and analysis.

2. Related Works

Wireless sensor networks (WSNs) are widely used across various technical fields.
When coupled with Internet of Things (IoT) technologies, WSNs can collect information
from different locations, ultimately improving the quality of life for people. Infrastructure
WSNs, where sensor nodes and sink nodes self-configure, are suitable for most applications
like building and structural health monitoring, environmental monitoring in greenhouses,
water resources monitoring, and smart meters for homes and buildings. Wireless technolo-
gies are constantly evolving to cater to specific and unique markets. However, there is
no single wireless technology suitable for all network systems that can be continuously
deployed for long periods. When deciding on a wireless network standard, it is critical to
consider the requirements and needs of the network. This section highlights relevant work
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on fault tolerance for system defects in WSNs in brief, with a focus on distributed fault
tolerance techniques based on cutting-edge technologies.

We have gathered more information about the subject after thorough consideration
and analysis. Researchers have developed many approaches to detect errors in WSNs that
do not have processors/central processing units (CPU). Due to performance constraints,
these algorithms are unable to detect faults in WSN CPUs/software. Yu et al. suggested a
fault-tolerant consensus algorithm based on double grouping signatures for global practical
Byzantine fault tolerance (GPBFT) in July 2022. This system chooses master node and pool
administrators based on creditworthiness, groups new customers, and creates signatures
using a group court signature procedure. The trace phase is likewise supported by the
GPBFT approach, allowing the group administrator to verify the true identity of unwanted
newcomers and cancel their access. The proposed practical Byzantine fault tolerance (PBFT)
consensus algorithm (GPBFT) combines the advantages of group signatures with a longer
run time, greater application, and new verifiable data for administrators. The experimental
results revealed a decrease in communication cost and volume, as well as an increase in
communication efficacy. The GPBFT algorithm can additionally incorporate a control that
extends to new malevolent users, increasing its effectiveness in detecting flaws [5].

In the period 2016–2022, many studies used performance assessment criteria to conduct
a comprehensive evaluation to examine the limitations of current fault-tolerance techniques.
Despite the thorough examination, there are still unanswered questions concerning the
specified phrase. Adday et al. [6] presented a thorough investigation of fault tolerance
structures identifying key components and categorizing faults from various angles. They
also examined existing fault-tolerance strategies using eight criteria, emphasizing the
significance of a network’s capacity to withstand failures in wireless sensor networks
(WSNs). The authors discovered that employing a fault-tolerance strategy can dramatically
reduce overall WSN faults while also improving network functionality.

Chang et al. [7] suggested a technique to increase the effectiveness of data aggre-
gation in wireless sensor networks (WSNs) through node cooperation in January 2022.
According to the findings of the study, utilizing a multi-cluster network design with an
adequate fault tolerance value can increase the success rate of achieving a data consensus
and transmitting data to the sink. They also discovered that cluster heads (CHs) can make
distributed network management and consensus computation more complex, resulting in
a non-deterministic polynomial issue. Furthermore, the study yielded two major discover-
ies. To begin, using the Byzantine fault tolerance technique may prevent malfunctioning
nodes from interfering with regular network operation and increase the network life cycle.
Second, employing the MC method can cut sensor node energy consumption and data
aggregation time.

Cotroneo et al. [8] introduced a practical Byzantine fault tolerance (PBFT) model at
the same time. Certain violations discovered by ByzzFuzz were not detected by it. These
problems involve a process error that corrupts a message’s sequence number with the
sequence number of a future round, which a twin duplicate cannot provide. Although
PBFT permits copies to fall behind by losing some process information, it does not introduce
incorrect messages with protocol message field values in the future. ByzzFuzz and PBFT,
we think, may be used in tandem, complementing each other by methodically evaluating
Twin’s collection of adversary behaviors and ByzzFuzz’s sampling from a broader variety
of problematic process behaviors.

In December 2022, a model for optimizing the node structure of a big consortium
chain was suggested. This was accomplished by splitting the vast network nodes into
various institutions to form autonomous consensus groups using clustering characteristics.
A respectable rating incentive system was also presented to boost the consortium chain’s
consensus efficiency. This system featured a formula for calculating reputation scores,
which was used to pick master nodes with high reputations. A replacement cycle was
performed to improve the chain’s consensus efficiency even further. This cycle replaced
nodes with high reputation with nodes with poor reputation. Feature grouping and credit
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optimization Byzantine fault tolerance (FCBFT) have lower latency and greater throughput
of the transaction processing system (TPS) than PBFT, according to experimental data [9].

The researchers presented a solution in 2023. Algorithms for fault identification are
often based on statistical approaches such as repeated testing or machine learning. These
procedures, however, can be difficult and time-consuming. To solve these concerns, the
researchers suggest a one-shot likelihood ratio test (LRT) for evaluating a sensor node’s
failure state in a wireless sensor network. The suggested approach entails computing the
mean and variance of the received data over time and then comparing the probability
ratio with a threshold value linked with a specific tolerance limit. As a result, they were
able to detect intermittent problems in the nodes with high accuracy, without the need for
repetitive testing or computationally intensive machine-learning algorithms [10].

In August 2023, Goud et al. [11] outlined the three approaches utilized by WSNs
to recover from failed nodes: LDTR, FNR, and GD algorithms. They compared these
techniques to the proposed system, which incorporates a path arbitrator and the RAFT
blockchain consensus methodology. According to the article, the proposed failure recovery
technique, which is based on the RAFT blockchain consensus mechanism, can aid in the
control of Byzantine failures in wireless sensor networks as well as the recovery from
malicious activities. In simulations, the suggested algorithm was assessed based on energy
utilization, defect detection precision, packet delivery ratio, number of dead nodes, and
time number of neighbor nodes.

3. Self-Configuration Management (SCM)

The introduction of a self-configuration management paradigm that addresses soft-
ware flaws is the main goal of our suggested approach. The SCM model, which includes
the network, radio, and system fault models, will be used to do this. We are currently
trying to finish the suggested plan and expand on prior work [12]. In essence, the SCM
method strives to develop a dual-integrated approach that combines IOT technology with
our suggested network. To link and exchange software packets among selected network
nodes and systems over the internet, it will be necessary to integrate sensors, software, and
monitoring values from many fields. Table 1 provides the notations and their explanations.

Table 1. The notations used in modeling the proposed distributed SCM technique.

Symbol Explanation
S Set of sensor nodes in sensor networks
Si A sensor node distributed on Pi(xi, yi)
N Number of deployed sensor nodes
PR Likelihood of faulty sensor nodes in sensor networks
S1 Set of sensor nodes experiencing error-free deadlocks in sensor networks, S1 ∈ S
S2 Set of sensor nodes where deadlocks occur when sensor networks fail, S2 ∈ S
S3 Set of sensor nodes experiencing random failures in sensor networks. S3 ⊂ S
NCONF. The number of faulty sensor nodes that were configured, NCONF. < N
SF Set of faulty sensor nodes in sensor networks, SF ⊂ S
SH Set of error-free sensor nodes in sensor networks, SH ⊂ S
CTi Table of clustering of si which contains all the information about each sensor node and its neighbors.
SFI Failure status of sensor node Si.
DTr Distance range will be covered by a predefined transfer rate
CI The cluster supervisor is in charge of the configuration mode and is usually the head of the group.
C (bps) Channel throughput capacity (bandwidth), measured in bits per second.
B The frequency bandwidth in Hertz, and
M the number of levels a single signal can take on.
SNR Desired signal-to-noise ratio at the receiving node.
NR Receiver signal-to-noise ratio.
Gant Transmit antenna gain.
ET Consumed energy in bit transfers.
Encnode Encoder power consumption.
Nb Total number of bits transmitted.
Etb Energy consumption when transmitting a single bit from a node.
Erb Energy consumption when a single bit is received by a node.
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3.1. Network Model & Problem Sanrio Preliminaries

IRIS sensor units, which may be dispersed randomly or in a set location around the
environment, have been used to design a wireless sensor network. The network employs a
multi-hop method for sensor transmission. The network should be set up using existing
wireless network deployment and training procedures. A representative node is chosen to
serve as the cluster head (CH) for each cluster, and a predetermined number of clusters
(C) are also set. A distributed method is created when the cluster leaders make local
decisions based on data received by cluster members and convey these decisions to the base
station (BS). Each sensor node in the sensor network has a specific identification number
and is aware of its location. Using the LEACH routing protocol, the group members
broadcast beacon messages across the network during the mobility phase. Aggregation
nodes are inserted into the network to remedy system flaws. These nodes reduce the
number of messages sent between nodes and conserve energy by receiving data from
malfunctioning nodes, processing it, and then sending the filtered data to the following
hop. Communication between sensor nodes inside a cluster passes through the CH until
it reaches the base station. Sensor nodes are grouped into clusters with a CH acting as
the leader. Through specified Mac & IP addresses of the clustering devices, the CH may
identify working devices and available aggregation devices in the network. Additionally, it
can track the development of ongoing processes and receive alerts when both processes
are finished.

The sensor nodes can communicate with one another using the fundamental one-to-
many transmission mechanism. It is assumed that each sensor node’s transmission range
is the same. The network was built during the implementation of the specified network
assumptions and complies with the international resource identification system (IRIS) for
wireless sensor networks (WSNs). Data is transferred by the IRIS sensors at a rate of
250 kb/s. Two AA batteries (3 V) with a current capacity of 2200 mAh−1 are required to
power each sensor [13]. The initial battery capacity is calculated using the formula battery
capacity = 3 × 2.2 × 3600. The processor’s computational capacity, when in full operation
mode, can reach up to 7.37 MHz.

During deployments, the communication model generated a random network topol-
ogy. In the transmission range Tr of Ci, each sensor node is referred to as a connected
cluster. Any sensor node located within Tr of Ci’s communication range is referred to as a
linked cluster. When two sensor nodes are connected, the healthy sensor is given the job
of the damaged sensor if the distance between Sensor Si and its neighboring Sensor Sj is
smaller than DTr in fault status. Each node in the sensor network, if it is tightly connected,
is a member of the cluster and has a set of nearby sensor nodes (SNegi). It stores the
information locally in memory and sends it to its leaders for evaluation.

By defining Ci as the ratio between the total number of sensor nodes covered by the
configuration in the network provided and the sum of all the sensor nodes’ degrees, the
average degree of adaptation of the configured sensor nodes during the operational cycles
was computed as:

DCONF. = ∑N
I=1 NCONF./Ni (1)

3.2. Data and Radio Model

We used sensor nodes equipped with wireless transceivers to enable continuous
connectivity and integrated coverage. If the distance between two nodes is less than the
communication area Ca the two nodes can communicate directly, then |S1 & S2|< Ca.
To enable data transfer without human intervention, distinctive identities were given to
the sensing devices in the network. System replicas were transferred between devices
with the use of the main node’s services. Additionally, it chooses the main node CHi for
each cluster and serves as a manager device, with the main node managing the transfer of
system replicas across devices.

We created the radio system with self-configuration techniques in mind. Every clus-
ter’s N-nodes are included in the communication path, starting with n1, moving on to
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n2, n3, n4, and so forth until it reaches Nc. It is crucial to remember that a package size
is sent from S1 to SN within the time interval [0, t]. We may calculate the size of the sent
software package in bits per configuration by specifying the configuration flow rate Pi. The
transmission duration for each cycle can be written as S1→ Si + 1, and the time interval ti
can then be determined.

ti =
n /Pi × Ri (1)

Let us say that β1 represents the energy needed by the transmitter, and β2 represents
the energy required by the amplifier-receiver electronics. To calculate the total energy
necessary for transmitting and receiving a volume of Pi over a distance of D, the formula
for transmission energy, (ET(Pi, D)) can be used as:

ET(Pi, D) = Pi(αβ1 + α× D) (3)

α is a spacing coefficient that can vary from 2 to 4 [14].
In addition, we developed a model to determine how much energy was lost through-

out the package exchanges. This model accounts for the energy used by the sensors in
the previous transfer mode (ET) as well as the radio frequency transceiver power (RF
transceiver), a parameter Ci that affects transmission quality in terms of bit error rate
and noise.

Ei = RF–(ET × Ci × ti) (4)

Based on this, the receiving model (ER) can be determined using the following equation:

ER(Pi, D) = Pi × αβ2 (5)

The radio communication (RC) model was used to create a network connection be-
tween sensors within each cluster in the proposed network. The relationship between
tolerance and connectivity was analyzed and then the cost of RC was calculated based
on configuration energy

(
Econ f .

)
, tolerance energy (Eto.), and performance. Using these

calculations, the most efficient power consumption for (ERC ) was evaluated.

C(bps) = 2B× log2M (6)

Eto. = ∑m
i=1 Nb × Erb × Eencod. (7)

Econ f . =
SNR× NR× Eto × C(bps)

Gant × Etb × B
(8)

ERC = ∑m
i=1(E R , Econ f ., Eto. , ET , Ei

)
(9)

The suggested technique for finding defects in a distributed system is divided into
two phases and follows an established methodology. It seeks to make it possible for the
system to recognize and fix any configuration problems on its own.

¶ Phase 1: Distributed soft fault detection model (DFD)

In sensor networks, we assumed that all error-free sensor nodes measure the same
physical value at time t. Different physical quantities are measured by WSN sensor nodes
with errors (data collected at time t by sensor node Si). The data model requires that the
mean value M must be the same for all healthy sensor nodes. However, the unpredictability
(sometimes referred to as misconduct or misbehaving) that various sensor nodes measure
may vary. The WSN literature frequently assumes that this sensor data pattern can identify
faulty sensor nodes. As a result of the sensor circuitry producing inaccurate data, we
suggest the set S of sensor nodes is susceptible to inaccuracy. We presumed that all error-
free sensor nodes in sensor networks measure the identical physical value at time t. With
faults, WSN sensor nodes measure various physical quantities (data collected at time t
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by sensor node Si). The data model stipulates that for all healthy sensor nodes, the mean
value M must be the same. However, the degree of unpredictable behavior—also known as
misconduct or misbehavior—that different sensor nodes measure may differ. The premise
in the WSN literature is that this sensor data pattern can spot malfunctioning sensor nodes.
We propose that the set S of sensor nodes is subject to inaccuracy because the sensor
circuitry generates erroneous data. It deployed S1, S2, and S3 to the set of randomly selected
sensor nodes suffering from zero blocking, one blocking, and random failures. Thus, the set
of healthy sensor nodes present in the network is SH = S − SF, where SF ⊂ {S1 ∪ S2 ∪ S3}.

Each sensor node verifies its group at the start of the radio communication phase
by transmitting a pulse-of-life notification message that includes information about its
heartbeat intensity, energy, transmission duration, and distance. It then produces data
based on the surroundings where the sensor is being used. As a result, the data from the
sensors that were fixed in accordance with the clusters of the designated network (C1, C2,
C3... Cn) was provided. The data generated is evaluated to classify the information of the
impulses sent, according to hypothesis H1, for which the CH credits the integrity of the
node-set responses. While redundant impulses are categorized as hypothesis H2 (transient
unstable impulses) and are regarded as system failures. H2 is another symbol for functional
system disorder over discrete timescales. The error data concluded at the sensor node (E)
are classified based on comparing accurate information coming from sensors of each cluster,
and data of redundant and unstable sensors. Therefore, partial fault state coverage will
be applied based on the faulted node’s neighboring nodes SNegi from the received data Xj.
Fault detection was based on testing the former binary hypotheses. Let us hypothesize
that hij has the binary decision (0 or 1) caused by testing information si by Sj, where si ∈
S and Sj ∈ Negi. Accordingly, let us say that hij = 0 if the sensor node decides the error
hypothesis H2, whereas hij = 1 if it comes true and hypothesis H1 and healthy data decide
it. Algorithm 1 illustrated the distributed system-fault detection method at the CH level.

Algorithm 1. Distributed system fault detection (DSFD) method at the CH level.

Input: Sensor position, Dx distance, transmission rang Rt, M.
Output: system fault status of sensor (fsystem)
Initialization phase

Each sensor Si∈S, each sensor discovers its neighbor SNegi; and Si is considered a free fault sensor (Hardware
physical composition is healthy)

Radio phase
For i = 1 to S do

1. Send a live-pulse message to CH synchronically;
2. CH delivers a periodic sensor message M and checks it timely ti;
3. CH establishes vector Shealthy = S + Shealthy;
4. CH establishes vector Sfaulty= S + Sfaulty;
5. Conduct fault detection.

Fault detection phase
For i = 1 to S
If S fails to respond within transfer time ti

CH set H2 in its memory
Sfaulty = fsystem + Sfaulty

End else
If M is incorrect information signals

CH set H2 in its memory
Sfaulty = fsystem + Sfaulty

End else
CH set H1 in its memory
Shealthy = S + Shealthy
End
End

· Phase 2: Self-Configuration Model

The self-configuration model is managed through the succeeding sequences:

� Cluster head level



J. Sens. Actuator Netw. 2023, 12, 74 8 of 20

After the discovery phase, the CH would manage the network and should test the
health of the network during its deployment. The network status includes the connection
status and each node’s location and battery level. To check the network status, the CH
needs to receive this information from the deployed nodes to confirm its test. Then, it
establishes a status table of the attached clustering devices. Through the status table, CH in
each cluster settles on defective nodes that issued the system fault in its cluster, and also the
distance dimensions of that node for its location. Next, CHs in each cluster cooperate with
the IoT service to cover the faulty nodes by dispatching the picked package to them across
the network layer. The network layer encapsulates the software packet in datagrams and
handles a message at the sending and receiving nodes. This includes the time to prepare the
message (adding header, trailer, and error correction information), the time to execute the
routing algorithm, and the time to establish an interface between the routing node and the
receiving node. The delay incurred only once for a single packet transfer. This is known as
startup time (ts) and is the time that requires the head to initiate configuration-communicate
capability and accept to route that packet to the transport layer for delivering the packet to
the decided node. Through that level, The CH could designate which device will receive
the software packet, by deciding on it from the status table. The table comprehends:

1. Sensor ID and its distance;
2. Sensor Mac address;
3. Sensor energy level;
4. Activity mode (idle, active, sleep).

The steps of installation for the problematic node may also be selected, as well as what
would happen once the software installation is complete. Additionally, it has the ability
to postpone the program installation and transfer in the event that significant obstacles
arise at the same moment. Low battery life, limited computational power, and ineffective
communication resource use are a few of these difficulties. Figure 1 depicts the key steps of
the distributed configuration. The setup dialog that was carried out under the direction
of the admin node, represented as CH at that phase, is highlighted in this figure. The CH
chooses which device will receive the software replica first after determining the status
table of the malfunctioning sensors that were sent to the BS (base station). The BS accepts
the chosen course of action and grants permission for the networking system’s setup and
transfer processes. Following the approval log, CH creates a record containing a replica
and installation details for each SF in its cluster after planning installation procedures
and assigning sensor distances. The Byzantine sensor SFI receives the installation data
via intranet networking, together with executable files, and the installation process works
as follows.

� Byzantine sensor level:

The sensor (SFI) receives a configure notification message from CH. SFI accepts the
notification issued by the configuration message and starts to prepare to establish a commu-
nication interface among them, which is needed to execute its reconfiguration progress. It
is sent software packet as a request packet across a virtual circuit network from the source
(CH) to the destination (SFI). The time taken for configuration/programming the node
interface and transferring the routing information is independent of the packet length. The
sequence of the self-configuration of SFI was implemented as:

1. Sensor SFI receives a configure notification from CH.
2. SFI knows that there is a software packet going from CH that comes out through the

communication port established among them.
3. SFI opens the communication channels/sessions within the receiver module (R) for

passing the packet, ensuring they remain open and functional while data is being
transferred, and closing them when communication ends.

4. The receiver module (R) listens to the request packet through its amplifier.
5. R dispatches the setup request packet to the processor unit (P).
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6. P takes delivery of the setup request packet and then installs the software packet
based on the forthcoming basic configuration.
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The major computational module, which is a programmable component that provides
calculation and storage for the conveyor packets in the system, is formed by the processor
of a sensor node in the arrangement. After receiving the sent signal and processing
it using straightforward translations based on calibration data and sensory filters, the
computational module sends the data to the application. The correlation techniques used
in data fusion, which combine the software packets received from the chief sensor (CH)
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with its fundamental operational software to build a single software package within the
processing module (data fusion) for fault tolerance, are examples of correlation techniques
that can also be used in sensor processing. With the use of data fusion, a network can be
autonomously maintained and configured to offer coverage based on energy needs.

Since the emitter software packet requires configuration, it was assumed that IE is
the input emitter packet at the instant, and any changes to the input packet will create
a corresponding change in the collector configure packet in the period, TC. Thus, the
current transfer rate gain, Ri, is given as TOUT/TIN and determined by the same formula
TC/TE. Alpha (α), a configuration factor in the process, was initiated to acquire the
initial configuration period of the package (CPi), with typical values of alpha falling
between 0.980 and 0.995. The formula for calculating CPi is CPi = α (TC + TE). After the
configuration process, the packages configured inside the processing unit may change,
necessitating the stabilization and installation operations. To obtain the created stable
configuration period (CPd), CPi has therefore evolved across the stabilization factor (RC),
making it a function of RC = α * TC. Therefore, the value of CPd is equal to CPi + RC.
Therefore, any change in TE will also result in a change in Tc.

The common configuration model is adopted on analysis of these bases. First, the
alpha factor is inferred by:

∝=
TC
TE

, also α =
β

1− β
(10)

Thus
β =

α

1− α
(11)

Then,
TC =∝ ×TE (12)

Hence,

Ri =
TOUT
TIN

=
TC
TE
∼=

TC × RC
TE × RC

∼=
β

β + 1
∼= 1 (13)

By substituting, we obtain

Ri =∝
RC
RC
∼= 1 (14)

4. Simulation and Analytical Results

Based on the IRIS (international resource identifier system) specifications for wire-
less sensor networks (WSNs), we conducted a simulation to test our proposed network
hypotheses. The simulation was executed using the IRIS motes board (radio board) values
described in [14] during deployments. Our proposed work is an extension of our previous
studies [15,16]. The analytic simulation involved several phases, which are detailed below.

4.1. Communication-Initialization Phase

It is expected that the sensor network has been properly configured. Each sensor node
is aware of its group head (CH) and nearby Negi nodes, as well as their IDs. CH stores
this information in the status table (STi). During the initialization step, it is also assumed
that all sensor nodes are error-free. During this phase, the sensor node sends the locally
measured physical value Xi to the group leader (CH), who collects data from the group
members for defect diagnostics. It was broken into deployments according to the number
of rounds. Each round has three cycles: the authentication cycle, the dispatch cycle, and
the diagnosis cycle. Each CH in the planned network receives welcoming joined messages
and monitoring information from the elements of its cluster regularly. Following that, CH
begins analyzing the incoming data packets and is capable of detecting the state of each
sensor within its cluster. CH can establish the status table (STi) for the cluster individuals
through analyses, and then declare STi to base station (BS) to prepare the maintenance
process in which faulty deployed nodes are configured by automatic installation procedures
to obtain the basic configuration for system operation. In our simulation, we used relational
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datasets from IoT devices to collect temperature values throughout data radio transfer. In
our simulation, sensor nodes are randomly inserted and distributed over a square area
of 220 m × 220 m. Table 2 illustrates the measures of concluded parameters from this
simulation. At the beginning of each round, the CH collects heartbeat messages from all
nodes of the cluster to confirm joining its cluster.

Table 2. The results were revealed by applying SCM deployments.

Parameter Value

Deploy Area 220 × 220 m2

Initial Energy 2.0 J
Broadcast Time (Between Succession Packets) 300 µs.
Packet Size 256 byte
Size of Tiny OS replica 400 bytes
The Ratio of Dispatch Energy Cost ET ∼=60% of the battery size
The Ratio of Receipt Energy Cost ER ∼=30% of battery size
The Ratio of Dissipated Energy Cost Ei ∼=10% of battery size
Heartbeat Message “00000000”

The table illustrates the estimated deployment costs from our constructed WSN using
the proposed SCM approach. Through experiments, we eventually incorporated 100 s to
1000 s of autonomous sensor nodes that were spatially distributed through our planned
WSN. It used an NS3 simulator to plan twenty clusters. Temperatures can be detected,
treated, and sent via an RF emitter on the network by a sensor node within each cluster. The
sensor readings chosen for implementation, as well as the temperatures recorded in various
rooms of residences in one of Germany’s geographical districts. Due to a lack of additional
power, the sensors relied on the limited battery and approximated the peak voltage by
2 joules. The functioning radio, the status of the sensor, the distance between the nodes,
and the elapsed diffusion time all have a substantial impact on the energy consumption
of the sensor node as a result of the implementation. During communication, the most
power is consumed. It is worth noting that the Tiny operating system (OS) automates the
proposed network pieces. Tiny OS is a prominent platform for sensor network research
due to its ability to successfully address system difficulties. It is used by over a hundred
organizations throughout the world and supports a wide range of research topics and
applications. Tiny OS was chosen because it is a versatile, application-specific operating
system for sensor networks. It also allows for the execution of concurrent programs with
reduced memory needs.

In practice, we considered Tiny OS to be a tiny system with fewer than 400 bytes that
fits within 16 KB of memory space. Our fundamental operating system is under 400 bytes in
size, making it highly efficient and low-power in all duty cycles. Our experiences with Tiny
OS have been positive, and we have optimized sensor network apps and offered advances
in coverage speed and repair. In our implementation, the Tiny OS component method
worked well, and we reflect on our practical experiences. Table 3 records the selected
samples from STi responses of various infected clusters with system faults throughout
numerous deployment rounds.

Table 3 shows the two types of system errors that are taken into account. The first is
the fault-stop (in which the node fails and stops running) induced in the previous rounds
to return a result. S4 demonstrated this in R15. During deployments, we noted that S4
did not react with the result from the previous round R14, and this occurred again in R15.
Another sort of failure is an arbitrary-node failure, which includes a variety of failure types.
S4 in R10 made one response with an incorrect outcome. The second option is for S2 in R15
to respond with a deliberately deceptive response. Another option is to respond differently
to distinct members of the cluster, as seen in S4 in R5. In R10, S2 is afflicted by a failure to
synchronously respond.

Two approaches can be used to detect a system problem caused in the transmitted
data during transmission. The first is a request from the suspicious sensor to resend the
data within a preset time (t = 300 µs.) (head request query, HRQ). The second procedure
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involves comparing some nearby pieces of data to the original data from the sensor’s
transmitter. Comparing bits of data will detect the functional condition of the suspected
sensor, provided that the distance parameter was obtained at short distances (D) < 50 m,
and assuming that it is more effective in the reorganization of system malfunction. Through-
out the communication mode, we computed relative connectivity (RC) via each operational
round to ensure the network’s communication strength; RC was determined using the
following Equation:

RC =
number o f suspected nodes in the round (O f f beat)

total number o f lively nodes in the round
− 1(%). (15)

The details of fault-detect confirmation will be taken in the next system fault
tolerance section.

Table 3. Illustrated practical results recorded through communication for different clusters at three
diverse rounds.

Round # Cluster # Mac
Address Heartbeat Data

Elapsed
Diffusion
Time (µ)

Neighboring
Data D (m2) Status E *

R5 C3

192.168.3.1 “10000000”(29) 300 (24,41,31) 25 Traffic 1.0

192.168.3.2 “11000000” (29,24,41,31) CH 1.66

192.168.3.3 “11100000”(24) 260 (29,41,31) 30 Traffic 1.2

192.168.3.4 “11110000”(41) 300 (29,24,31) 40 Offbeat 1.0

192.168.3.5 “11111000”(31) 99 (29,24,41) 15 Traffic 1.48

RC 80%

R10 C12

192.168.12.1 “10000000”(29) 298 (32,30,18) 50 Traffic 0.77

192.168.12.2 “11000000”(32) 430 (29,30,18) 35 offbeat 0.90

192.168.12.3 “11100000”(30) 287 (29,32,18) 45 Traffic 0.84

192.168.12.4 “11110000”(18) 296 (29,32,30) 10 offbeat 0.92

192.168.12.5 “11111000” (29,32,30,18) CH 1.0

RC 60%

R15 C20

192.168.20.1 “10000000”(35) (35,29,41,38,37) CH 0.73

192.168.20.2 “11000000”(29,41) 264, 299 (35,38,37) 40 Offbeat 0.52

192.168.20.3 “11100000”(38) 274 (35,29,41,37) 30 Traffic 0.55

192.168.20.4 “11110000”(-) (35,29,41,38,37) 20 Fail-Stop 0.62

192.168.20.5 “11111000”(37) 182 (35,29,41,38) 40 Traffic 0.67

RC 60%

* Energy Level.

4.2. System Fault Correction-Management

System fault correction management (SFCM) is a self-alert algorithm that is divided
into two parts: autonomous detection and configuration. The SFCM operated well in
asynchronous systems (where there is no upper limit on when a response to a request
will be established). We optimized it to cut down on overhead. Its goal was to fix several
difficulties linked with system malfunctions and to correct existing solutions.

4.2.1. Fault Detection Method

We used the defect detection method based on alert theories during this period.
Initially, each head node Si essentially discovers the partial defect (responding with an
inaccurate result was rank1) by comparing the received data from the clustering nodes Ci
with the data from its neighbor sensors SNegi. The detection of errors is based on binary
hypothesis testing. Let us consider the binary decision (0 or 1) made by the sensor node Si
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on the Sj adjacent node. If high = 0, the head node determines that the sensor produced an
inaccurate result and declares a system error. Otherwise, the hypothesis hij = 1 is decided
on. Following that, it is applied to =Algorithm 1 to determine if the problematic node is
present in the cluster or not, and then each head node CH can estimate the mean of the
healthy nodes SH received from them.

We divided the preceding phase into two practical parts to optimize the computation
involved in faultfinding. The first stage was to use the neighbors to detect malfunctioning
sensor nodes. If the node did not locate a defect, it proceeds to the second stage of searching
for an identical faulty node in the planned network using a detection alarm. This was
discovered alarmingly during the suggested network programming known as a system
error detection alarm (SEDA). We employed the alarm system to monitor network traffic for
sent packets and send a quick alert to CH if it exceeded a specified period. This diagnosed
rank 2 is the response with two different timings of the special broadcast round.

In addition, the system monitored a network on a regular basis for repeated dispatch
operations within the same time slot in distribution. This was classified as a forbidden
activity with a ranking of 3 or produced an incorrect result. We documented each forbidden
behavior centrally to the CH by warning it twice with alert beats using the SEDA system.
Otherwise, the sensor node gives all clustering nodes Ci, which are most likely fault-free.
Table 4 examined the observed problems in the proposed network utilizing the alarm
system during dissemination cycle 22.

Table 4. The detection-chain mechanism of the number alarm: alert status; heartbeat status is sent for
the cluster head; node status.

Alarm Incoming
Reading

Inward Passed
Time Mac Address Status CH Alert Heartbeat Rank

Alarm ON 29 257 192.168.16.1 Normal
Alarm ON 29 253 192.168.3.2 Normal
Alarm ON 41 255 192.168.5.3 Ab Normal 0 11100000-5
Alarm ON 38 255 192.168.3.2 Normal 000-000
Alarm ON 29 253 192.168.3.5 Normal
Alarm ON 42 252 192.168.10.1 Ab Normal 0 10000000-10
Alarm ON 30 317 192.168.12.2 Ab Normal 000 11000000-12
Alarm ON 30 316 192.168.11.3 Ab Normal 000 11100000-11
Alarm ON 29 316 192.168.9.4 Ab Normal 000 11110000-9
Alarm ON 29 214 192.168.2.2 Normal
Alarm ON 42 314 192.168.20.1 Ab Normal 000 10000000-20
Alarm ON 42 312 192.168.2.2 Ab Normal 000-000 11000000-2
Alarm ON 29 246 192.168.16.3 Normal
Alarm ON 29 257 192.168.20.4 Normal
Alarm ON 29 255 192.168.14.5 Normal

Table 4 lists a sample of the alarm system’s reactions during the implementation of
deployment round No. 22. The data clarify that the system transferred alert responses to
the cluster head, to avoid receiving such misleading readings/system faults from the sensor
elements in the cluster. The alert system acts as a check circuit that checks all outgoing
readings from the network elements throughout the duty cycle in every round. It organizes
the traffic of the readings to each CH in the designated network. Additionally, the alarm
catches the temperature-encapsulated data packets corresponding to a predefined default
time (t = 300 µ) coming from all network elements in that round. Then, it sorts normal
nodes and abnormal nodes according to the difference formula:

Si – Sj = {N|N ∈ Si and Sj /∈ s} (16)

where Si and Sj must be compatible and have the same cluster-parity. Behind that, the alert
system operates as a clock measuring the elapsed access time compared to t. If the elapsed
inward time exceeds t and has happened at elapsed times 317, 316, 316, 314; it considers the
system fault and codded it as rank 2. Whereas, if the inward time repeats in the sending
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period or other epochs, it logs the fault in rank 3 and sends an alert with code “000-000”.
The head node receives the SF alert status and heartbeat status to prepare the configuration
model for these detected sensors and complete the software fault tolerance measurements.
In this phase, all alert messages were realized in SCM and tolerated up to 98.86% of the
injected system faults.

4.2.2. Fault Configuration Method

The CH attempts to supply software replication for system failure states infecting the
surprise operation of active nodes in the system during this period. In a configuration-
enabled distributed system, nodes are arranged sequentially, with one node serving as
the head (or leader node) and the rest serving as secondary (or clustering nodes). It is
important to note that any eligible node in the system can become primary by switching
from secondary to primary (often when a primary node fails). The goal is for the leading
node to use the emitter packet’s gain to assist all honest nodes in achieving state-aware
coverage. A practical system configuration model was used, as long as the maximum
number of failed nodes is less than or equal to one-third of the total number of nodes in
the system. The system gains confidence as the number of nodes grows. We divided the
configuration model’s rounds into five phases.

1. The alarm system sends an alert message M1 enclosed by heartbeat status within each
round to the cluster head (primary node); one message exchange (M1).

2. The primary (leading) node transmits the heartbeat status report M1 and a software de-
livery request (replicas) M2 to the receiving node (Sink node); two message exchange
(M1 + M2).

3. The sink node accepts the sent service request and then sends replicas in a prepared
message to each other, including the primary nodes (cluster head); and message
exchange (M1 ×M2).

4. The primary nodes forward all replicas and direct commit messages M3 to each faulty
node; message exchange ((M1 ×M2) + M3).

5. All nodes send a reply message M4 to their cluster head node to confirm their config-
uration of them. The head sends a memo to the sink after diffusion and fixes rounds
periodically for message exchange (M4 + 1).

We completed the request under the condition that each cluster head returns a “k + 1”
answer, confirming that system sick nodes are at least one-third of the system’s nodes, where k
is the maximum allowable number of unhealthy nodes.

Total message exchange = M1 + (M1 + M2) + (M1×M2) + ((M1×M2) + M3) + (M4 + 1) (17)

In practice, it was testing the aforementioned condition, and the software package
transfer process began to execute the required configuration for the detected system fault
sensors, as indicated in the previous step. At this point, we attempted to provide the reader
with a computation of the elapsed configuration period, which includes the emitter of
the software, removal, and change times, as well as periods of initial configuration and
installation of the software package, via epochs. Table 5 summarizes the head’s memo in
one of the duty cycles and the time spent (in seconds) in the configuration process, which
evaluates the complementation of the fault tolerance technique to configure the discovered
Byzantine sensors in the previously mentioned round.

Table 5 shows how successful each cluster’s head is at covering the amount of detected
defective nodes and reconfiguring during each duty cycle in a short time. When the head
received “k + 1” replies from faulty nodes in the network, it satisfied the CH request.
Similarly, we discovered that it survived numerous defective nodes over the service cycle.
The head node is changed at each cycle of the practical implementation. If a preset period
has passed without the head node broadcasting the memo message, it can be replaced with
another, as seen in Figure 2. If necessary, a majority of clustering nodes can vote on the
legitimacy of the current leading node and replace it with the cluster’s next leading node.
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Table 5. Summary of primary nodes’ memos through the duty cycle for a number of the
participating nodes.

Address Sf
Heartbeat TC TE CPi CPd Memo Status

192.168.16.1 Talk Normal
192.168.3.2 Talk Normal
192.168.5.3 11100000 170 84 249 415.60 M4 Configured
192.168.3.5 Talk Normal
192.168.10.1 10000000 101 98 195 293.98 M4 Configured
192.168.12.2 11000000 257 79 329 580.86 M4 Configured
192.168.11.3 11100000 182 56 233 411.36 M4 Configured
192.168.9.4 11110000 162 39 250 408.71 M4 Configured
192.168.17.2 Talk Normal
192.168.20.1 10000000 200 66 261 457 M4 Configured
192.168.2.2 11000000 128 95 219 344.44 M4 Configured
192.168.16.3 Talk Normal
192.168.20.4 Talk Normal
192.168.14.5 Talk Normal
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Figure 2. The SCM fault tolerance mechanism paralleling in actions of detection and configuring for
the infected sensors.

During that phase, we attempted to calculate an efficient fault tolerance ratio in
the operational round by estimating the response haste of each configured sensor Si in
the message exchange in all models, based on the number of sensor nodes N present
in the network and the number of times a sensor node needs to broadcast the message.

RTi =
S f i
N .( S f

S f
∑

i=1
Cpd ). In the proposed configuration model, we achieved efficient fault

tolerance, which was estimated at 93.2%.
Figure 2 demonstrated that the results of experimental trials of detection and configu-

ration operations were equalizing. This demonstrates that the progress timeline is parallel.
During the defect detection phase, we counted the number of false alarm messages gener-
ated by the implementation. Detection accuracy (DA) was calculated during deployments
by dividing the total number of messages sent by the average degree of malfunctioning
sensors that emitted the fraudulent data (Xi). Throughout numerous deployments, we
achieved a detection accuracy (DA) of 98.8%. DAi was given by,
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DA =
number of the alarm messages outgoing nodes that were injected in the round

participated nodes in the network through the round
% (18)

Following simulation experiments, MATLAB R2019b was utilized to evaluate config-
uration parameters implemented by experiments. We evaluated the proposed network’s
efficiency in delivering data and verifying the network for defects. So, it was giving the
specified networks a vast volume of temperature measurements from inner and outside
sensors with varying ranges, examining whether or not alert messages appeared, and
its ability to correct them. The study included configuration characteristics such as the
distance between the sender head node and the receiving node, packet elapsed arrival time,
packet size, transmitted node power level, detection latency, received signal strength, and
successful/failed packet delivery. As shown in Figure 3, we implemented many datasets
ranging in size from 16 to 1024 bits.
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Figure 3. Illustrated are two plots of the received signal strength picking through different dataset
samples to detect and configure, they are listed as (a) demonstration of the gained signal strength
yielded after fault-configuration progress for various data samples injected in the radio and detection
phase; (b) another plot is showed the synchronized coverage, and the produced signal strength of the
faulty sensors by collaborating among the two phases throughout the synchronic implementation of
the serial SCM model.

Figure 3 depicts two charts describing signal strength in a large number of trials.
Through the configuration technique, we obtained a high-bandwidth signal strength in
the domain of the reaction speed term, which surpassed the signal strength generated by
the phase of communication and error identification. We obtained excellent results for the
values of the given configuration network parameters when compared to a comparable
technique that investigated the configuration parameters on a similar sensor network [17].

We have calculated the costs of the transmission of the message through implementa-
tion, which is defined as the total time required to transfer a message over a network to the
target destination comprising:

� Startup time (t): the time spent sending and getting nodes;
� Transfer time per bit (tb): This period includes all overhead costs that are determined

by message length, error checking, and correction;
� Transit time per hop (th): This period includes parameters like detection latency and

network transmission delays.
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In terms of scalability and time to finish the algorithms, our suggested DSFD algo-
rithm was determined to be more efficient than existing algorithms. The suggested DSFD
technique needed fewer messages to be transferred among nodes than current algorithms
that rely on heavy communication. The time required to finish the algorithm, on the other
hand, varied, possibly due to network connections. The experimental results demonstrated
that the position of the sink deployment could alter the overall network’s data aggrega-
tion time. The placements of the sensor nodes, CHs, and sink, as well as the distances
between them, will all result in variable data aggregation and transmission durations in
a clustered network. Figure 4 demonstrates that the overall network environment’s de-
ployment strategy of CHs and sensor nodes produces the best results in terms of messages
exchanged synchronously, known as the packet delivery ratio. This metric compares the
number of transmitted packets to the number of received packets, as well as the node
energy consumption and data transmission time. The research revealed that as the number
of participating nodes increased, the amount of messages exchanged in DSFD decreased.
When compared to the PAR and LRT approaches, the overall time required to execute
the DSFD algorithm decreased with increasing node count, with an average reduction of
0.24 µs [10,11]. By expanding the number of sensors in the network, LRT and PAR increased
exchange time/delay. DSFD began with 100 messages and gradually increased to 2000 mes-
sages for 150 nodes in terms of message exchange. The findings also reveal that when the
injected error (E) is more than or equal to 0.25, the test rule achieves 100% accuracy, as
shown in Figure 4a. We calculated the overall cost of communicating across the network to
send m-bit messages.

tcomm = ∑m
i=1 ts, (mtb + th)l (19)

Figure 4 depicts two charts that demonstrate how, when a sensor network is opera-
tional, the overall traffic of exchange messages increases as the number of sensors inside
the network increases. As a result, the delay time grows dramatically with the number
of rounds. The study also discovered that the number of messages transferred between
nodes had a quick effect on the total energy consumption of the nodes. Otherwise, the
study discovered that the amount of messages exchanged between nodes falls when the
number of participants’ sensors diminishes. In practice, the proposed method’s overall
energy usage tends to be steady after 1000 rounds. It was discovered through studies
that changes in the number of surviving nodes, after 1000 rounds of experiments, have
no meaningful impact on how much energy is consumed. Where it is noticed that the
transfer energy climbs just slightly in the proposed method, energy efficiency reaches
50% of the network’s total energy. In contrast, it increased greatly when compared to
other algorithms LRT [10] and PAR [11], as shown in Figure 4b. This means that, in the
simulated experiment, the proposed technique can maintain a higher node survival rate.
The results obtained in this section of the study demonstrate that the message exchange
rates of other algorithms increased exponentially, resulting in significant energy loss. The
DSFD method, on the other hand, has a fixed linear growth rate. The proposed method
has much-improved performance in terms of node energy consumption and survival time,
which can effectively extend the overall network’s working performance. This is owing
to fact that adopting a fault-tolerance technique and deploying the sensed data in a dis-
tributed manner is an adequate and well-organized mechanism for transfers and message
exchange. This points out that the proposed fault detection methodology has significantly
lower computational complexity and processing time than other methods. Furthermore,
the study established a relationship between message exchange parameter efficiency and
lower network energy consumption, which improves network performance by 96.4% and
increases network lifetime.

The suggested SCM was put through its paces on a variety of system executions with
an infinite number of network problems. During testing, the proposed DSFD reported
dropped messages, increased Byzantine process problems, and omitted and damaged
messages. The average degree of sensor nodes in the network influenced detection accuracy,
while the total number of messages required varied based on the methods used. The overall
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number of messages exchanged by all of the proposed methods was influenced by the
network’s number of sensor nodes as well as the energy needed by the sensors to send
messages. To improve the system’s efficiency, DSFD uses a feedback mechanism and tasks
supervisory nodes (CHs) within each cluster to ensure the reliability of the primary node.
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tions in a clustered network. Figure 4 demonstrates that the overall network environ-
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of messages exchanged synchronously, known as the packet delivery ratio. This metric 
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5. Conclusions

In this study, we proposed self-configuration management for the correction of system
faults that are influencing the effectiveness of performance in a WSN’s operating system
platform. To account for poor detector faults, we suggested a self-sensible distributed fault
identification technique. It put its abilities to the test by injecting random spots into the
chosen sensor networks in order to detect the aforementioned aberrant circumstances. In
each round, the cluster head collects data from the clustering sensors and then diagnoses
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its functional condition using the suggested DSFD algorithm. The research work in this
phase resulted in practice characteristics such as detection accuracy and false alarm rate.
The suggested DSFD technique detected the malfunctioning software sensors with over
98.8% detection accuracy, converging the proportion of passing-alarm message accuracy,
while maintaining a minimal (at most 2%) false alarm rate. There was a 2% improvement
in detection accuracy. Following that, we created configuration policies in response to
the system answers. These policies were used to configure recognized defective nodes
that are part of the planned network. The IoT service was used to transfer all software
replicas by primary nodes and direct commit messages M3 to each defective node for
error configuration.

The reaction assessments observed efficiently and automatically respond to a wide
range of system problems on the network over brief epochs. The fault configuration man-
agement achieved a 93.2% efficiency in correcting the software within the limited time
frame estimated in seconds. To achieve optimal network setup and improve WSN perfor-
mance, configuration parameters were created, to refine the proposed network performance
and increase indications of WSN lifespan prolongation. Based on the above parameters,
the actual network lifetime was calculated by subtracting the entire configuration length
from the operational communication duration. The overall network lifetime is estimated
by adding the period after delivering coverage messages to the continuous running time of
the network prior to the warning message export, which indicates the data delivery ratio
going below its predefined threshold. To ensure the success of the trials in this part, we set
both criteria at 90.
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