
Citation: Mrabet, K.; El Bouanani, F.;

Ben-Azza, H. Dynamic Decentralized

Reputation System from Blockchain

and Secure Multiparty Computation.

J. Sens. Actuator Netw. 2023, 12, 14.

https://doi.org/10.3390/jsan12010014

Academic Editor: Lei Shu

Received: 21 December 2022

Revised: 29 January 2023

Accepted: 2 February 2023

Published: 7 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Actuator Networks
Sensor and

Article

Dynamic Decentralized Reputation System from Blockchain
and Secure Multiparty Computation
Khalid Mrabet 1,* , Faissal El Bouanani 1 and Hussain Ben-Azza 2

1 ENSIAS College of Engineering, Mohammed V University, Rabat 10000, Morocco
2 ENSAM National High School of Arts and Trades, Moulay Ismail University, Meknes 50500, Morocco
* Correspondence: khalid_mrabet@um5.ac.ma

Abstract: In decentralized environments, such as mobile ad hoc networks (MANETs) and wireless
sensor networks (WSNs), traditional reputation management systems are not viable due to their
dependence on a central authority that is both accessible and trustworthy for all participants. This
is particularly challenging in light of the dynamic nature of these networks. To overcome these
limitations, our proposed solution utilizes blockchain technology to maintain global reputation
information while remaining fully decentralized, and to secure multiparty computation to ensure
privacy. Our system is not limited to specific settings, such as buyer/seller or provider/client
scenarios, where only a subset of the network are raters while the others are ratees. Instead, it allows
all nodes to participate in both rating and being rated. In terms of security, the system maintains
feedback privacy in the semi-honest model, even in the presence of up to n− 2 dishonest parties,
while requiring only O(n) messages and having an O(n) computation overhead. Furthermore,
the adopted techniques enable the system to achieve unique characteristics such as accessibility,
consistency, and verifiability, as supported by the security analysis provided.

Keywords: blockchain; decentralized reputation system; privacy; secure multiparty computation

1. Introduction

The reputation of a party is a metric that reflects the level of trust and confidence
that other parties have in it. This metric is derived from the actions and conduct of the
party in question, as well as the judgments made by other parties regarding those actions.
Depending on the context, a party may be expected to adhere to certain codes of conduct
or perform specific actions, and the quality of those actions will be evaluated by other
parties, leading to the formation of a rating [1,2]. A party’s reputation can be influenced
by a multitude of factors, including its past actions, behavior, and the opinions of others.
A strong reputation can be beneficial for a party as it can lead to increased trust and
cooperation from other parties, whereas a poor reputation can have the opposite effect. To
facilitate the monitoring and evaluation of a party’s reputation, reputation management
systems are often utilized, providing a basis for other parties to make informed decisions
about their interactions with the party in question.

E-commerce platforms often include built-in reputation systems that gather user
feedback on items and sellers. They present this aggregated data to consumers, helping
them make decisions about which products to buy and from whom. This type of reputation
system is known as a centralized reputation system, which relies on a trusted central
authority, such as a market operator (Airbnb, eBay, or Amazon), to provide oversight and
ensure the authenticity of the feedback.

However, there are certain contexts where a central authority is not present. This in-
cludes decentralized social networks (DSNs), MANETs, peer-to-peer systems (P2P), WSNs,
and other types of systems. In such scenarios, traditional centralized reputation systems are
not effective. This is where decentralized reputation systems (DRSs) come into play [3–5].

J. Sens. Actuator Netw. 2023, 12, 14. https://doi.org/10.3390/jsan12010014 https://www.mdpi.com/journal/jsan

https://doi.org/10.3390/jsan12010014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://orcid.org/0000-0001-9474-1018
https://orcid.org/0000-0001-8141-6793
https://orcid.org/0000-0003-4087-7010
https://doi.org/10.3390/jsan12010014
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/article/10.3390/jsan12010014?type=check_update&version=1

J. Sens. Actuator Netw. 2023, 12, 14 2 of 30

These systems are designed to operate without a central authority and instead rely on the
collective input of network participants to establish trust and evaluate reputations.

It is worth mentioning that centralized and decentralized reputation systems are two
distinct approaches to managing and evaluating reputation within systems or networks.

Centralized reputation systems are characterized by the presence of a central authority,
such as a company or organization, that is responsible for collecting, analyzing, and
determining reputational scores [2]. This central authority also makes decisions about
access or privileges based on those scores. However, this approach can be vulnerable to
manipulation or bias due to the reliance on a single source of truth for reputation data.

On the other hand, decentralized reputation systems do not rely on a central authority
for managing reputation data [6]. Instead, the reputation data is distributed across a
network of individuals or entities, and decisions about access or privileges are made
based on consensus among those individuals or entities, which increases the fairness and
resilience of those systems, making them less prone to failure or censorship as they have no
central point of control.

It is evident that the centralized paradigm does not apply in situations where there is a
lack of a central authority. In such scenarios, distributed reputation systems (DRSs) provide
an alternative solution. DRSs employ various techniques for the collection and distribution
of reputation data [3–5]. In (MANETs), for instance, a node can gather reputation informa-
tion about its peers through previous interactions and use this information to inform its
future decisions. When a node has no prior experience with a peer or is new to the network,
the conventional approach is to seek out the reputation information of other peers in the
network and use it to make decisions regarding interactions with the targeted node.

One of the key considerations in implementing DRSs is feedback privacy [6]. If peers’
feedback is disclosed for any reason, particularly when their identities are publicly known,
they may face retaliation attacks and receive low ratings, for example, [7]. Addition-
ally, there is a potential for ratings to be provided for the purpose of reciprocation, with
a user giving an unjustified high rating in anticipation of receiving a similar rating in
future interactions.

To address the challenges associated with the protection of privacy in decentralized
reputation systems, researchers have proposed various privacy-preserving decentralized
reputation systems (PDRSs) [6–10]. These systems enable parties to avoid directly trans-
mitting their reputation information to the requesting party and instead employ protocols
that allow them to compute reputation as a function of their rating values while maintain-
ing the privacy of these values. The outcome of this computation is then revealed to the
requesting party.

However, it should be noted that the reputation information gathered by such systems
is typically limited to the users’ direct experiences and recommendations from neighbors
and acquaintances, resulting in incomplete and inconsistent reputation data across the
network. This raises the question of how to aggregate ratings effectively in a decentralized
network and maintain global reputation scores while preserving the ratings’ privacy.

1.1. Contributions

In this paper, we propose an efficient and dynamic decentralized reputation system
that maintains global reputation information by integrating secure multiparty compu-
tation techniques [11] with blockchain technology [12]. The proposed system guaran-
tees the privacy of individual ratings while making the aggregated reputation scores
publicly accessible.

Additionally, we analyze several reputation system models in the literature and
develop a general-purpose reputation system that is not restricted to scenarios where
nodes are either raters or ratees, such as buyers/sellers or providers/clients. Instead, any
participant in the network can function both as a rater and a ratee simultaneously.

J. Sens. Actuator Netw. 2023, 12, 14 3 of 30

Furthermore, we design a blockchain-based architecture that implements the proposed
reputation system while reducing the on-chain storage and computation overhead with an
off-chain phase. Security analysis demonstrates the reliability of the proposed system.

In contrast to previous works on the subject, the proposed system achieves unique
properties such as accessibility, consistency, conservation, and verifiability.

In summary, the main contributions of this paper can be summarized as:

• Propose an efficient and dynamic decentralized reputation system that maintains
global reputation scores;

• Develop a general-purpose reputation system that is not restricted to scenarios where
nodes are either raters or ratees;

• Design a blockchain-based architecture that reduces the on-chain storage and compu-
tation overhead with an off-chain phase;

• Achieve unique properties such as privacy, accessibility, consistency, conservation,
and verifiability.

Remarkably, some of the properties mentioned above can be trivial in the context of
centralized reputation systems. But in dynamic PDRSs, they are challenging.

1.2. Organization

The rest of the paper is structured as follows: the second section comprises a review of
the relevant literature in the field, followed by an introduction of the key components of our
system, including any modifications or adaptations made. We also provide definitions for
the concepts of trust and reputation, which are vital for the system’s operation, and discuss
the security considerations that informed our design choices. The third section offers a
comprehensive overview of the system and its various phases. The fourth section presents
the results of our testing and evaluation efforts, including the methods used to assess
the system’s performance. In addition, the security proof and analysis are included in
Appendix A. The conclusion summarizes the main contributions of the paper and identifies
potential areas for future research that could build upon the work presented here.

2. Preliminaries

In this section, we first provide an overview of the current state of the art in decen-
tralized reputation systems. We then present an introduction to both blockchain and SMC
(Secure Multi-Party Computation), including any modifications or adaptations that have
been made, and highlight specific features that are suitable for our proposed use case.
Finally, we provide definitions for relevant concepts related to the proposed system and
discuss important security considerations.

2.1. Related Works

In PDRSs, there are two primary approaches to ensuring privacy [13]. The first
approach prioritizes user anonymity, while the second approach emphasizes feedback
confidentiality. The distinction between these two approaches can be summarized as
follows [13]:

• The first approach, known as user anonymity-oriented systems, assigns one or more
pseudonyms to users that cannot be linked to their true identities to preserve anonymity.
These systems allow the users to conduct transactions and provide feedback without
hiding it because they are not associated with their true identities.

• The second approach, known as feedback confidentiality-oriented systems, assigns
unique pseudonyms to each user, and feedback is kept private. These systems do not
aim to conceal the identities of the users providing feedback, but rather to hide the
specific feedback values. In theory, these systems should not reveal any information
about feedback other than the aggregated reputation.

The current study adopts the second approach as it is more pragmatic and realistic.
This is because, in reality, complete anonymity is not always feasible in everyday situations.

J. Sens. Actuator Netw. 2023, 12, 14 4 of 30

For instance, on e-commerce platforms, even if anonymity can be maintained online, the
exchange of physical goods sold on them may reveal customers’ identities. From this
perspective, feedback-confidentiality systems are a more viable option for enabling users
to give honest feedback without fear of retaliation.

Most traditional works in the field of PDRSs (e.g., [6,8–10]) focus on a scenario where
a querying party, denoted as Pq, wishes to interact with a target party, denoted as Pt, but
is uncertain of Pt’s trustworthiness. This may be due to a lack of information about Pt’s
past behavior, or limited or outdated experience with Pt. Let {P(t)

1 , P(t)
2 , . . . , P(t)

N } represent
the set of parties that possess reputation information about Pt, referred to as witnesses or
source parties. In such cases, Pq can consult a selected subset of source parties, namely

{P(t)
i1

, P(t)
i2

, . . . , P(t)
in } (n ≤ N), who will execute a protocol to compute Pt’s reputation score

securely and then send the result to Pq.
In line with this setting, one of the earliest works in the field is presented in [6].

The authors proposed a system that relies on random witness selection and additive
secret sharing. The system offers three different levels of security and demonstrates the
feasibility of witness selection schemes that produce at least two honest witnesses with high
probability. Despite being fully decentralized and suitable for general use, the system is not
able to compute and store global reputation scores. Instead, each party in the system must
retain its gathered information locally, and reputation is determined solely by feedback from
neighboring parties. Additionally, the system demands the exchange of O(n2) messages
for each reputation request.

The authors of [7,9] expanded upon the work presented in [6] with the k-shares
reputation system, which is designed for the semi-honest and malicious adversarial model,
respectively. Their system enhances efficiency by reducing communication costs to O(n)
messages. Furthermore, it increases the probability of keeping reputation information
private by enabling users to choose witnesses with good reputation scores while avoiding
those they do not trust.

The previous systems presented in [6,7,9] are not well-suited for dynamic networks
due to a number of limitations. Specifically, in dynamic networks, the number of available
source parties, or parties currently participating in the network, may be smaller than in
a static network. Furthermore, when a party leaves the network, all of its reputation
information becomes inaccessible, as each party stores its information locally. As a result,
reputation is likely to be computed with a different set of present parties each time a party
requests it, leading to inconsistent and changing reputation information at each request.

To address these challenges, authors in [10] proposed a system that enables parties
leaving the network to delegate their reputation information in order to prevent its loss.
However, this approach comes with an increase in computation and communication costs
and requires the leaving user to divide the entrusted information among a group of users
(through secret-sharing) before leaving. Additionally, if a member of the delegation group
leaves, the information must be re-delegated, making the recovery and reconstruction of
the delegated information more challenging as the number of parties involved increases
and the data become fragmented.

Despite the efforts made to prevent the loss of reputation information, it is evident
that the previously mentioned solutions remain incapable of computing and storing global
reputation scores. These methods rely on users’ direct experiences and recommendations
from neighbors and acquaintances, resulting in incomplete and inconsistent reputation
data that are primarily shared locally.

To structure the literature review effectively, we assess and classify related works
according to the following criteria:

1. Full Decentralization: Reputation systems that do not depend on central entities for
the collection, computation, or dissemination of reputation scores [14]. Instead, the
information is distributed among parties, who share it to evaluate the trustworthiness
of potential transactional partners.

J. Sens. Actuator Netw. 2023, 12, 14 5 of 30

2. General-Purpose Reputation Systems: These systems are designed to be utilized in
various network environments and are not limited to specific settings such as service
providers/consumers in online marketplaces or servers/clients in IoT [6,9,10]. They
are flexible enough to adapt to various networks, including P2P, MANETs, or WSNs.

3. Global Reputation Systems: These systems collect ratings from all over the network
and aggregate them into global reputation scores that are accessible to all users across
the network [15].

4. Privacy: refers to the ability of a reputation system to compute and disseminate
reputation scores while preserving feedback privacy [7,10].

It is worth noting that many proposed systems in the literature are not general-purpose
systems. Rather, they are tailored to specific contexts such as online marketplaces [16–18] or
the Internet of Things (IoT) [19–22], where the network is divided into two distinct groups:
ratees and raters. In online marketplaces, users are either consumers (raters) or service
providers (ratees), while in IoT, they are either server nodes or clients. However, in other
contexts, such as P2P networks, MANETs, VANETs, DSNs, and WSNs, users often have to
play both the role of a rater and a ratee.

We emphasize that such proposed systems are often too specific or incompatible with
fully distributed settings such as P2P networks, MANETs, or WSNs. One example is
PrivBox [23], a verifiable reputation system for online marketplaces. It enables consumers
to rate retailers and submit their feedback in an encrypted form using homomorphic
encryption to a public bulletin board (PBB). The system makes reputation information
publicly accessible and verifiable without disclosing the individual ratings. However, the
system leaves the reputation computation task to any customer who wishes to compute
the reputation of a particular vendor. The system employs zero-knowledge proofs to
demonstrate that the ratings are well-formed.

Another example of such a system is PrivRep [24], which builds upon the work
presented in [23]. The system utilizes a public bulletin board (PBB) in combination with a
reputation engine (RE) to calculate reputation from homomorphically encrypted feedback.
The RE is controlled and operated by the marketplace, rather than regular users, and it has
the authority to reject feedback deemed untrustworthy. It is evident that the use of two
central entities, namely the RE for computation and the PBB for storage, undermines the
decentralized nature of the proposed system.

Similarly, the system proposed in [15] for the Social Internet of Things also relies on
a PBB. However, the authors mention the possibility of implementing it as a blockchain
or a mirrored server, which may address the issue of centralization and enhance the
decentralized aspect of the system.

In [17], the authors proposed a blockchain-based cross-platform reputation system for
e-commerce, referred to as RepChain. The system interconnects various e-commerce plat-
forms and enables them to share their users’ reputations through a consortium blockchain.
While the system is not entirely decentralized, as each platform relies on its central-
ized entity, the top layer interconnecting platforms are decentralized owing to the use
of blockchain technology.

The authors in [25] propose a solution to blockchain usage limitations in the Internet
of Things (IoT) reputation systems, especially their lack of scalability. They introduce a
distributed ledger combining Tangle and blockchain as a reputation framework. Combining
Tangle with blockchain is destined to provide maintainability of the former and scalability
of the latter. Consequently, the proposed ledger could handle a more significant number of
IoT devices and transactions.

Blockchain has had a wide range of applications due to its outstanding features such as
security and reliability, especially in distributed settings [26–29]. Among other applications
is fog computing, where blockchain may achieve secure decentralized reputation systems
and identity management [30].

Similarly, the authors in [21] proposed a decentralized reputation management system
for the Internet of Things (IoT) that takes into account geospatial information. The proposed

J. Sens. Actuator Netw. 2023, 12, 14 6 of 30

system recognizes that the trustworthiness of a device can be affected by various factors,
including its geographical location. The system utilizes a cloud–fog–edge architecture,
in which the fog layer employs blockchain technology to create a decentralized network
among fog nodes, allowing for transparent and decentralized management. The location-
based system component stores geographical information in smart contracts, enabling
reputation values to vary based on the device’s location.

In the field of VANETs, decentralized reputation systems were proposed in works
such as [31], where the authors utilized a Bayesian filter to enable nodes to detect malicious
vehicles based on their trust scores. Additionally, the authors in [32] proposed a two-layered
blockchain-based reputation system comprising a local, one-day message blockchain and a
global vehicle reputation blockchain. The local blockchain efficiently manages local traffic
information, reducing the memory overhead for vehicles, while the global one maintains
reputation scores.

Based on the literature review and the classification of related works according to
four criteria, namely: Full Decentralization, General-Purpose, Global Reputation, and
Privacy (as summarized in Table 1), it is clear that a portion of the related works are
fully decentralized reputation systems and general-purpose, but do not maintain global
reputation scores and rely on locally stored information. As a result, their produced
reputation information is partial and inconsistent across the network, as it is limited to
users’ direct experience and recommendations from neighbors and acquaintances. On the
other hand, another portion of related works is proposed for specific settings and achieves
global reputation and some form of decentralization, but they are not general-purpose
systems. The current work objective is to fill this gap by proposing a global reputation
system that is both general-purpose and fully decentralized.

Table 1. A Comparative study of privacy-preserving decentralized reputation systems.

Paper Reference Year Fully Decentralized Global Reputation General-Purpose Privacy

Pavlov, et al. [6] 2004 X x X X
Hasan , et al. [9] 2013 X x X X
Clark, et al. [10] 2017 X x X X
Debe, et al. [19] 2019 x X x x
Liu, et al. [20] 2019 x X x X

Azad, et al. [23] 2018 x X x X
Bag, et al. [24] 2018 x X x X

Azad, et al. [15] 2020 x X x X
Li, et al. [17] 2021 x X x X

Najafi, et al. [31] 2021 x X X x
Lee, et al. [32] 2022 x X x X

Weerapanpisit, et al. [21] 2022 x X x x
Our system. X X X X

2.2. Blockchain

Typically, a blockchain can be seen as a distributed public database from which every
user can read, but not any user can write. Rather, users need to reach a consensus over
the network before the writing is accepted [33]. All actions that modify this database are
recorded and broadcast to all users in blocks. Once a block is received and accepted by
network users, it becomes immutable after a few following blocks. Furthermore, blockchain
is reputed for recording transactions efficiently in a verifiable and permanent way. Owing
to this fact, it is considered an append-only database.

From another point of view, blockchain can be regarded as a data structure composed
of an ordered list of blocks as depicted in Figure 1. The result of all actions in all blocks at a
given moment constitutes the state of the blockchain.

J. Sens. Actuator Netw. 2023, 12, 14 7 of 30

Block Header

Transactions List

Body

Block Header

Transactions List

Block Header

Transactions List

PreviousBlockHashPreviousBlockHash

BlBl-1B0

Body Body

...

Figure 1. Blockchain structure.

Let (Bi)(0≤i≤l) be a blockchain, where the first block B0 is the genesis block, while Bl is
the last validated block. Each block Bi contains a cryptographic hash of its precedent block
Bi−1, which makes the blockchain resistant to modification by design. Once recorded, the
data in any given block cannot be modified without altering all the previous blocks, which
requires the consensus of the network majority. A blockchain is typically managed by a
P2P network adhering to a communication protocol.

The ith block Bi is composed of a block header Hi and a series of transactions Ti. The
block header Hi includes a collection of relevant data fields, whereas the transactions
series Ti = (Tx(1)i , . . . , Tx(n)i) is the list of transactions comprised in this block. Specifically,
transactions are organized in each block as a Merkle tree data structure. In addition, the
Merkle tree has its root hash called TransactionsRoot in the block header.

For simplicity, a block can be formulated as:

Bi = {Hi, (Tx(1)i , . . . , Tx(n)i)} (1)

where Hi includes several data fields, among them [33,34]:

• PreviousBlockHash: The hash of the previous block’s header.
• StateRoot: The hash of the root node of the state tree.
• TransactionsRoot: The hash of the root node of the transactions’ Merkle tree.

A transaction Tx is a single instruction constructed by a party and signed cryptograph-
ically. It is traditionally used to transfer a sum of coins (virtual money). In our context, it is
also used to submit parties’ feedback to the blockchain and to join source parties’ lists (c.f.
Section 3). Mainly, it contains some common data fields, namely:

• Nonce: A scalar value equal to the number of transactions issued by the sender;
• Recipient: The address of the recipient.
• Type: The transaction type: Trans f er for coins transfer; Rate for rating peers; and Join

for the joining recipient’s source parties list.
• Data: A value that depends on the transaction type.
• Signature: The transaction signature, also used to recover the sender’s address.

Tx =< Nonce; Recipient; Type; Data; Signature > (2)

2.2.1. State

The state, as described in [34,35], is a mapping between parties’ addresses and their
state accounts. It is implemented and maintained in the form of a modified Merkle tree.
It is a simple database linked to blocks, but not stored on the blockchain. The state
database can be considered a condensed version of the blockchain, as it only contains the
essential information for regular users, specifically accounts and balances. It is the only data
structure, in addition to the blocks’ headers, required for non-miner users to participate
in the network. In the context of this work, reputation scores are also stored in the state.
Ethereum is an example of a blockchain that implements a state database, unlike Bitcoin,
which does not have an equivalent structure, as stated in [36].

We denote the state database as σ and use a party’s address a to reference its account
denoted by σ(a). In the context of this research, the account state includes the following
data fields:

J. Sens. Actuator Netw. 2023, 12, 14 8 of 30

• Nonce: The number of transactions sent from this address, denoted σ
(a)
n .

• Balance: The number of coins owned by this address, denoted σ
(a)
b .

• Reputation: The reputation score, denoted σ
(a)
r .

• Weight: The number of feedback received so far, denoted σ
(a)
w .

• Source Parties List: The list of source parties’ addresses, denoted σ
(a)
l [].

Figure 2 shows all the blockchain components and how they are linked.

Nonce

������

Root

Node

Transac�ons Tree

 !�"

Bl

Reputa�on

Weight

...

Balance

Nonce

Account State

Root
Node

State Tree

Bl+1Bl-1

 !�"

������

Transac�ons Tree

...

 !�"

������

Transac�ons Tree

Data

Signature

Recipient
Type

Transaction

StateRoot

PreviousBlockHash

...

Transac�onsRoot

StateRoot

PreviousBlockHash

...

Transac�onsRoot

StateRoot

PreviousBlockHash

...

Transac�onsRoot

Figure 2. Blockchain components with the state.

2.2.2. Consensus

The creation of blocks is controlled by a mechanism that varies between different
blockchain algorithms. The first mechanism used to reach consensus [37] on newly created
blocks was the Proof-of-Work (PoW). The concept started with the blockchain/currency
Bitcoin [12] and was followed by several alternative coins launched using similar ideas.

The mechanism of PoW requires block creators, called miners, to prove that they
performed a certain amount of work to write to the blockchain. Usually called mining, this
task consists of finding a partial collision using hash functions, which is a power-consuming
process often requiring dedicated hardware [38].

With the advent of PPCoin [39] developed further by BlackCoin [40], NXT [41], and
NeuCoin [42], a new family of blockchain-based systems was born, replacing PoW with
the concept of Proof-of-Stake (PoS).

With the PoS, every participant randomly gains the right to write to the blockchain with
a probability proportional to their stake, i.e., the number of coins they staked. Therefore,
the additional computing power used in PoW becomes useless. Accordingly, it is less costly
to run the PoS and particularly much faster to create new blocks under it. After some of
its inherent issues were tackled [39,40,42], it is perfectly reasonable today to maintain a
distributed consensus using the PoS. In this regard, we consider the PoS more appropriate
in our context than the PoW.

J. Sens. Actuator Netw. 2023, 12, 14 9 of 30

During the block creation process, miners, also known as validators, perform various
tasks. Among them, they record new transactions and validate new blocks. Usually, a new
block is validated on regular periods. When transactions become part of an accepted block,
they are considered confirmed. Consequently, all the concerned users’ state accounts are
updated to reflect the changes made by the transactions in that block.

Whether the consensus mechanism uses mining in the case of PoW or validation in
the case of PoS, block creation has a cost for miners/validators. This task is attractive for
them only because they are rewarded by earning transaction fees. In this regard, it is crucial
to highlight that the role of a reputation system is to support the network’s operation by
establishing trust between the users and encouraging participation and good behavior.
Thus, it is counterproductive to impose fees on users that provide their feedback, as it is
already challenging to persuade them to do so without fees. Additionally, assuming some
activity and transactions in the network other than rating and reputation—otherwise, the
very existence of the network would be pointless—it is those types of transactions that
have to pay for the block creation process. Because reputation functionalities are essential
functionalities just like security, we cannot compare them with financial transactions,
for example.

2.3. Secure Multiparty Computation

Using SMC, a set of parties can collaboratively compute a function over their private
inputs without disclosing them. With n parties (Pi)1≤i≤n, each one holding a secret input
xi, and f an agreed-upon function that accepts n inputs: A protocol Π is a SMC one if it
allows (Pi)1≤i≤n to compute y = f (x1, ..., xn) while meeting the following criteria:

• Correctness: The protocol Π correctly computes the value of y;
• Privacy: ∀i/1 ≤ i ≤ n The n− 1 parties (Pj)1≤j 6=i≤n cannot learn any information

about xi, but y from the protocol.

In order to calculate a function f , which is typically represented as a Boolean or
arithmetic circuit, one must evaluate the equivalent circuit gate by gate. There are cur-
rently two paradigms for Secure Multi-Party Computation (SMC) implementation: secret
sharing [43–46], and garbled circuits [47–49]. Each paradigm has its own advantages and
development trajectory. In our system, we use secret sharing, as it is more adapted to
arithmetic circuits.

In the following paragraphs, we will introduce the variant of SMC used in our system,
which is adapted from [50] for arithmetic circuits. This protocol is considered in the semi-
honest adversarial model. However, we do not use the entire protocol. Instead, we only
include the elements of the protocol that are pertinent to our setting and particularly
appropriate for the reputation-related functions we are focusing on (c.f. Section 2.4.1).

Reputation functions typically determine reputation scores from ratings provided by
users. They usually take the form of a sum, an average, or a weighted average, which
we can represent as linear functions of the kind f (x1, . . . , xn) = a1x1 + . . . + anxn where
{xi}1≤i≤n are private values and {ai}1≤i≤n are public. Remarkably, these functions employ
only addition and multiplication by public values.

Let us assume that the desired function f is given as an arithmetic circuit composed of
only addition and multiplication by public values.

In accordance with this protocol, secret-sharing a value x ∈ Zp entails sampling n− 1
uniform random shares {x(i)}1≤i≤n−1 ⊂ Zp and taking the nth share as x(n) = x−∑n

i=1 x(i)

mod p. The outcome is an additive secret sharing of x, which is represented by [x] =
([x]1, . . . , [x]n), where [x]i = x(i) for 1 ≤ i ≤ n. Practically speaking, a party can generate
[x] as indicated and send a share [x]i to each party if it wishes to share its secret x with
n− 1 parties. The value of x will remain private as long as the party keeps the nth share
secret, and adding the n shares is sufficient to recover x.

The SMC protocol for n parties {Pi}1≤i≤n computing y = f (x1, . . . , xn) from their
respective private inputs, works as follows:

J. Sens. Actuator Netw. 2023, 12, 14 10 of 30

1. Input: Every party Pi secret-shares its private input xi by generating [xi] and sending
{[xi]j}1≤j 6=i≤n, respectively, to {Pj}1≤j 6=i≤n while keeping [xi]i secret.

2. Computation: Each party Pi calculates f over the shares they received
[y]i = f ([x1]i, . . . , [xn]i) by evaluating operations in the order and precedence. The
operations are realized as follows:

(a) Addition: For example, y = x1 + x2 is realized by each party Pi computing
[y]i = [x1]i + [x2]i.

(b) Multiplication by a public value: For example, y = a × x for a public and x
private is computed by each party Pi evaluating [y]i = a[x]i.

3. Output: A party Pi can learn the result of computation y by each party Pj sending [y]j
to Pi and party Pi reconstructing y = [y]1 + · · ·+ [y]n.

It is simple to check that the protocol computes f precisely. The protocol is secure
against any passive adversary controlling up to n− 1 parties. Indeed, the adversary cannot
unveil the value of x unless he knows all shares in the representation [x].

From the previously mentioned operations, the SMC protocol can handle any linear
function f (x1, . . . , xn) = a1x1 + . . .+ anxn, which is amply sufficient for reputation functions.

The original protocol is broader than described above. It can handle the multipli-
cation of two private values and, by extension, any arithmetic circuit since addition and
multiplication form a complete basis for arithmetic circuits.

2.4. Problem Setting & Definitions

We model our environment as a multi-agent environment, where each agent represents
a user or any devices executing the necessary computation and communication on behalf of
them. We often use the word "party" instead of "agent" without changing the meaning. Let
P be the set of all parties existing in the environment and N = |P|. We associate with each
party Pi ∈ P an account that is controlled by a pair of private/public keys, denoted (p(i)r ,
p(i)u). A party and its associated account are usually identified by a short address ai derived
from its public key p(i)u by taking the right-most 160-bits of its 256-bit SHA-3 hash [34]:

ai = Address(p(ai)
u) = Bits96..255(SHA3256(p(ai)

u)) (3)

2.4.1. Trust and Reputation

Let us introduce the following notations:

• T ⊆ P×P denote the set of all trust relationships between parties in P, where (a, t) ∈ T
(or aTt) implies that the party a has a trust relationship towards a target party t. Mainly,
T is a binary relation that is not necessarily symmetric, as trust is a directional relation.

• A denotes the set of all actions, e.g., "upload authentic content", or "report an event".
• Exec refers to the function

Exec : P×A→ {true, f alse} (4)

such that Exec
(
t, ψ
)

outputs true if party t executes the action ψ anticipated by party
a, or outputs f alse if t does not perform the anticipated action. Let the subjective
probability Pr[Exec(t, ψ) = true]a denote party a’s belief that party t will accomplish
the action.

Without a loss of generality and for practicality’s sake, we can assign to the subjective
belief mentioned above an equivalent integer value in the interval [0, M] where M is
a fixed positive integer. The integer value is obtained by normalizing the probability
Pr[Exec(t, ψ) = true]a to the scale [0, M], which is done by multiplying by M, adding 1/2
and taking the floor. The result is an integer in the range [0, M].

J. Sens. Actuator Netw. 2023, 12, 14 11 of 30

Definition 1 (Trust). Let P be the set of all parties, A be the set of all actions and a, t ∈ P. The
trust of party a in party t expressed as an integer and reported to the scale [0, M] is given as:

τ
(a)
t = bPr[Exec(t, ψ) = true]a ×M + 1/2c (5)

where ψ ∈ A and M ∈ Zp with p a prime number.

A party a is said to be a source party of a target party t in the context of an action ψ
if a has trust in t in the context ψ. The set of all source parties of a party t in context ψ is
denoted St,ψ. When the context (action) is clear, the notation St is used. We also refer to a’s
trust in party t as a’s feedback on t or the rating.

Definition 2 (Reputation). A reputation function is any chosen function Rep such that Rep :
[0, M]n → R (M ∈ Zp). Let St = {a1...an} be the set of source parties of party t in the context
ψ. If Rep is the adopted reputation function, then the reputation of party t in the context ψ is
defined as:

ρt,ψ = Rep(τ(a1)
t , . . . , τ

(an)
t) (6)

where τ
(ai)
t is the trust of party ai in party t for 1 ≤ i ≤ n. ρt,ψ is also denoted ρt when the context

is clear.

Reputation, in general, is the outcome of evaluations from various sources. It is often
represented as a function of these evaluations, such as the sum or average [2]. There are a
variety of methods for aggregating reputation from ratings, including counting [51], proba-
bilistic [52], discrete [53], flow [54], and fuzzy approaches [55]. However, a comprehensive
examination of these methods is beyond the scope of this study. In this work, we adopt
the counting approach for reputation, which is implemented as the average of feedback
values due to its simplicity and ease of comprehension by human users. Other linear
functions, such as the weighted average, could also be utilized without any alteration to the
proposed system. The reputation is recorded on the blockchain as a pair (σ(t)

r , σ
(t)
w) (refer to

Section 2.2.1), where σ
(t)
r = ρt represents the reputation score and σ

(t)
w = n represents the

number of ratings, also known as weight. This way, the weight of this measure is preserved.
The weight of a reputation score is an essential factor in determining its overall value,

as it reflects the number of ratings or evaluations that have been used to calculate the
reputation score. The higher the weight, the more evaluations have been taken into account,
making the reputation score more reliable and representative of the overall perception of an
entity. To ensure that the weight of the reputation score is preserved, we record it alongside
the reputation score on the blockchain. For further discussions on reputation aggregation,
one can refer to the works of [1,2].(

σ
(t)
r , σ

(t)
w

)
=
(

ρt, n
)

=
(

Rep(τ(a1)
t , . . . , τ

(an)
t), n

)
=
(∑n

i=1 τ
(ai)
t

n
, n
) (7)

2.4.2. Security Definition and Adversary Model

In the following, we present the adversary model for our system, some important
assumptions, and system requirements.

Adversary Model: In this paper, we consider the model of multiparty computation in the
presence of static semi-honest adversaries. Parties in such a model are supposed to follow
the protocol, but may try to learn more information than allowed during the execution of

J. Sens. Actuator Netw. 2023, 12, 14 12 of 30

the protocol using intermediate information and their internal states. We call any coalition
of dishonest parties adversaries.

Random Number Generator & Hash Function: All parties in the network are granted ac-
cess to a random number generator, denoted RandGen(), to achieve privacy for our system
and use the Keccak 256 algorithm [56] as the default hash function denoted h(). Kec-
cak is a robust hashing algorithm at the core of SHA-3 and is also part of Solidity [57]
and Ethereum.

Authentication: Our system uses public-key cryptography. It authenticates each user
through digital signatures enabling them to exchange messages and perform transactions.
Every user obtains a public and a private key forming his digital identity. They use the
private key to sign messages and transactions linking them to their identity, while other
users can verify the signer’s identity using the public key visible to all network participants.
A valid signature gives a recipient confidence that the message was created by a known
sender (authenticity) and was not altered in transit (integrity). Regularly, a signature
scheme is a tuple of algorithms (Gen(), Sign(), Verify()) where Gen() generates a private key
pr and a corresponding public key pu; Sign() returns a tag t on the inputs of the private key
pr, and a message m; and Verify() outputs accepted or rejected on the inputs of a public
key pu, a message m, and a tag t. In our context, the system uses the elliptic curve digital
signature algorithm (ECDSA) [58] specifically, the recoverable version of it [34] consisting
of three functions that are PUBKEY, SIGN and RECOVER, defined as follows:

• PUBKEY(pr) = pu returns pu, a 512-bit public key on the input of a randomly
generated 256-bit private key.

• SIGN(m, pr) = (v, r, s) returns a tag (v, r, s) as a signature on the inputs of a public
key pu and a message m.

• RECOVER(m, v, r, s) = pu returns the public key pu of the signer if (v, r, s) is a valid
signature or nothing otherwise.

Recoverable ECDSA is a variant of the ECDSA that allows for the recovery of the public key
used to generate a signature from the signature itself. This is useful in certain situations,
especially when multiple parties are signing a message, as it allows for a more efficient
verification process without the need to store multiple copies of each party’s public key.

Encryption: On the other hand, for privacy purposes, the Elliptic Curve Integrated Encryp-
tion Scheme (ECIES) [59] is used to encrypt messages between parties.

Communication channels: We assume that point-to-point channels exist between every
pair of parties and postulate that they are reliable and guarantee the authenticity of the
data sent through them. In addition, we assume they are private, so the adversary cannot
obtain messages sent between honest parties. Point-to-point private channels are emulated
in our context through signature and encryption.

Privacy in the Semi-Honest Model: Recall that in the semi-honest model, it is assumed
that the parties involved in SMC will follow the protocol as prescribed, but they may
attempt to gain additional information beyond what they are supposed to learn during the
computation. Privacy in this model refers to the ability of the parties to keep their inputs
confidential from one another during the computation, while still permitting the correct
output to be computed.

A SMC protocol is considered to privately compute a function f if the information obtained
by any subset of semi-honest parties during the execution of the protocol is the same as
what they could learn by just looking at their inputs and the outputs. In other words, the
protocol ensures that the parties do not learn any additional information about the inputs
of other parties beyond what can be inferred from their own inputs and the outputs.

In formal terms [60]: Let {a1, . . . , ak} be the parties participating in a SMC with the inputs
{x1, . . . , xk}, respectively, I = {i1, . . . it} ⊆ {1, . . . , k} a subset of semi-honest parties
representing the adversary, and viewΠ

I denotes their view on the protocol Π, which is

J. Sens. Actuator Netw. 2023, 12, 14 13 of 30

the set of all the information obtained by the adversary I from the protocol during its
execution. There exists a polynomial-time algorithm S known as a simulator that can
produce the same view from just the inputs of I xi1 , . . . , xit and the output f (x1, . . . , xk). In
computational security, this is expressed and equivalent to the indistinguishability of two

distributions
{
S(I, xi1 , . . . , xit , f (x))

}
x∈({0,1}∗)k

and
{

viewΠ
I (x)

}
x∈({0,1}∗)k

.

O. Goldreich [60] specifies the security definition of privacy for multiparty computation in
the semi-honest model as follows:

Definition 3. Let k ∈ N and x ∈ ({0, 1}∗)k where x = (x1, . . . , xk) . Let f : ({0, 1}∗)k →
{0, 1}∗ a deterministic functionality. We say that a protocol Π privately computes f if there
is a probabilistic polynomial time algorithm denoted S (a simulator) such that for every I =
{i1, . . . it} ⊆ {1, . . . , k}, it holds that:

1. outputΠ(x) = f (x) (Correctness)

2.
{
S(I, xi1 , . . . , xit , f (x))

}
x∈({0,1}∗)k

c≡
{

viewΠ
I (x)

}
x∈({0,1}∗)k

(Privacy)

where "Correctness" means that the protocol computes and outputs the desired function f (x),
namely outputΠ(x) = f (x).

Accessibility: Accessibility refers to the ability of a reputation system to facilitate the
utilization and access of reputation information for all users. In decentralized reputation
systems, this entails ensuring that all individuals, regardless of their location and the data
they possess, can utilize and benefit from others’ reputation scores.

Definition 4. We say that a reputation system Π achieves Accessibility if ∀a, t ∈ P a can query
for the reputation score of t at any time and always obtains a copy of ρt = σ

(t)
r according to its

request time.

Consistency:Consistency refers to the uniformity or unchanging nature of the reputation
system across the network. In decentralized reputation systems, consistency is crucial as it
ensures that the output reputation scores are comparable and reliable across the network
when requested simultaneously.

Definition 5. We say that a reputation system Π is Consistent if ∀a, b, t ∈ P, if a and b query for
the reputation score of t at the same time and obtain ρt and ρ′t, respectively, then ρt = ρ′t.

Conservation:Conservation in the context of decentralized reputation systems refers to the
safeguarding and preservation of reputation and feedback information. In more straight-
forward terms, it entails ensuring that valuable information is not lost, even when the
provider of feedback leaves the network.

Definition 6. We say that a reputation system Π conserves the reputation information if ∀t ∈ P
such that a party a has rated t before, then ρt remains a function of its rating even if a leaves
the network.

Verifiability: In decentralized reputation systems, verifiability refers to the capability for
reputation scores and rating transactions to be independently examined and confirmed
by any user, rather than being accepted solely based on trust or authority. This process
involves verifying the qualifications of raters, signatures, nonces, and the calculation of
reputation scores.

Definition 7. We say that a reputation system Π achieves verifiability if ∀t ∈ P such that the
system has received for t so far n feedback τ

(a1)
t , . . . , τ

(an)
t from parties a1...an, respectively: then

J. Sens. Actuator Netw. 2023, 12, 14 14 of 30

any party can check that the reputation score of t at this time is σ
(t)
r = Rep(τ(a1)

t , . . . , τ
(an)
t) and

that the number of ratings is σ
(t)
w = n.

2.4.3. Problem Definition

Let St = {a1, . . . , an} be the set of source parties of a target party t in the context
of a given action ψ. We assume that ψ is known and unique for simplicity. We examine
the situation where the set of t’s source parties St execute a reputation system Π, which
takes their private feedback τt = (τ

(a1)
t , . . . , τ

(an)
t), securely computes the functionality

ρt = Rep(τ(a1)
t , . . . , τ

(an)
t) =

∑n
i=1 τ

(ai)
t

n
, and outputs ρt the reputation score of target

party t. The reputation system Π is required to be decentralized and secure under the
semi-honest model.

3. The Reputation System
3.1. System Overview

The proposed system is structured into three distinct phases, as described below. Each
one has its specific objective and task. A graphical overview of the system is presented in
Figure 3 in addition to a summary of the system parameter choices in Table 2:

• In the first phase, each witness joins the list of source parties by submitting a JOIN
transaction. After successful validation, the witness is assigned to a subgroup U
consisting of k parties. The purpose of this phase is to ensure that witnesses are
legitimate and have the necessary credentials to participate in the rating process.

• The second phase is where most of the actual reputation calculation takes place. Each
subgroup runs the Secure Multi-Party Computation protocol, which allows parties to
jointly compute a reputation rating without revealing their individual inputs. Once
the joint rating is calculated, it is submitted to the blockchain via a RATE transaction.
This phase aims to ensure that the reputation calculation is secure, accurate, and
tamper-proof.

• In the final phase, the miners execute the RATE transaction and calculate the final
reputation score based on the received ratings. The reputation value is then updated
on the blockchain, making it publicly available for all participants. This phase aims to
ensure that the reputation value is accurate, transparent, and accessible to all parties
on the network.

Table 2. System parameters.

Parameters Values

Blockchain Ethereum or any Blockchain with a State
Consensus Proof of Stake
Transactions JOIN & RATE
SMC security Semi-honest
Reputation function The average
Subgroup cardinality k (fixed)
Thresholds Tr and Tw fixed for the reputation score and the weight, respectively.

J. Sens. Actuator Netw. 2023, 12, 14 15 of 30

n source par�es

RA
TE

 tr
an

sa
c�

on

RA
TE

 tr
an

sa
c�

on

RA
TE

 tr
an

sa
c�

on

i i

JO
IN

 tr
an

sa
c�

on

List of k source par�es

1≤i≤n 1≤i≤n

N
ew

 b
lo

ck

Mining a new block, recording last ra�ng
transac�ons and upda�ng the state

Each witness Joins the source parties
list and get assigned to a subgroup

Each subgroup computes a joint rating using
SMC and issues a RATE transaction

Miners execute trasactions and Update
reputation scores on the blockchain

Phase I Phase II Phase III

t
State

account
State

account

Updated

t

BlockchainBlockchain

Bl
oc

kc
ha

in

k

4

3

5

2

x1

x3

x4 x5

xk
x2

k par�es

 SMC
1

k

4

3

5

2

x1

x3

x4 x5

xk
x2

k par�es

 SMC
1

Figure 3. System overview.

3.2. System Specification

The system presumes that a particular action has been executed by the targeted party
and that the participating parties have based their evaluations on the quality of that action.
Furthermore, it is assumed that all participating parties possess a piece of data, referred to
as Trace, as evidence of the interaction that has transpired. Based on this evidence, they can
be added to the list of source parties and compute reputation collectively. Subsequently,
the resulting score is submitted to the blockchain for integration.

If a party is new to the network or possesses a poor reputation, it is unable to be added
to the list of source parties and, as a result, is unable to evaluate other parties. However, it
can enhance its reputation by exhibiting positive behavior and receiving positive feedback
from its peers. Nevertheless, only parties with reputation scores higher than a predefined
threshold Tr and the number of received evaluations exceeding Tw are permitted to evaluate
others (see Section 3.3).

Let St = {a1, . . . , an} be the set of source parties of a party t. We recall that, if ai ∈ St,
then ai represents the source party address and σ(ai) its account state. If the source parties
want to share their feedback and n is large, they are divided into subgroups that do not
exceed k parties, and each party is assigned to a subgroup. k is a system-wide fixed
parameter chosen to be as small as possible (see Section 3.4).

1. In the first phase specified in Algorithm 1, the source parties join the list of source
parties and are assigned to a subgroup U of k parties from the list.

2. Each subgroup runs the second phase specified in Algorithm 2 independently and
submits its result as a transaction to the blockchain. Any source party can initiate the
second phase by requesting parties in its subgroup U for SMC computation. We refer
to that party by a1 for simplicity and to the set of selected parties by U = {a1, . . . , ak}.

3. In the third phase specified in Algorithm 3, the miner that gained the right to form
the new block executes the transactions and updates the state.

J. Sens. Actuator Netw. 2023, 12, 14 16 of 30

Algorithm 1 Phase 1: Joining the list of source parties and forming subgroups.

for all ai ∈ St do
if ai issues a Join transaction Tx =< Noncei, t, Join, Tracei, Signaturei > then

The miner:
if RECOVER(Signaturei) 6= ∅ then

p(ai)
u ← RECOVER(Signaturei).

ai ← Address(p(ai)
u)

if: The Tracei is valid and not used before in previous JOIN transactions;
and
ai’s reputation score is σ

(ai)
r > Tr and its weight σ

(ai)
w > Tw;

and
Noncei = σ

(ai)
n + 1

then The miner appends the address of party ai to the list of t’s source parties
σ
(t)
l [] and assigns ai to a subgroup U of source parties according to its order in the queue.

end if
end if

end for

Algorithm 2 Phase 2: Secure multiparty computation.

Require: U a subgroup of k source parties

a1 sends requests to participants in U to start SMC computation.
Prepare Shares:
for all ai ∈ U do

ai prepares k shares of its private feedback τ
(ai)
t :

The shares denoted [τ
(ai)
t]1, · · · , [τ(ai)

t]k are prepared by generating the k− 1 random

integers {[τ(ai)
t]j}

j 6=i
1≤j≤k uniformly distributed over the large interval [0, p]

and selecting the last share [τ
(ai)
t]i such that ∑k

j=1[τ
(ai)
t]j = τ

(ai)
t mod p

[τ
(ai)
t]i = τ

(ai)
t −

k

∑
j=1j 6=i

[τ
(ai)
t]j mod p

end for
Send Shares: Every party ai sends the share [τ

(ai)
t]j signed and encrypted to party aj,

where j ∈ {1 . . . k} \ {i}.
Receive Shares: Each party ai then receives and decrypts shares from the parties in
U \ {i}, and verify their signatures.
Compute Sums: Every party ai computes δi the sum of all shares received plus its own

private share [τ
(ai)
t]i: δi =

k

∑
j=1

[τ
(aj)
t]i

Signature & Nonce: Each party ai signs δi: Sigi = SIGN(h(δi), p(ai)
r), and sets the nonce

to Noncei = σ
(ai)
n + 1

Send Signed Sums: Each party ai sends the tuple (Noncei, δi, Sigi) to a1.
Submit Transaction: a1 submit a transaction TxU to be included in the next block:
TxU = {< Nonce1, . . . , Noncek >; t; Rate;< δ1, . . . , δk >;< Sig1, . . . , Sigk >}

J. Sens. Actuator Netw. 2023, 12, 14 17 of 30

Algorithm 3 Phase 3: Reputation aggregation on-chain (performed by miners).

Require: TxU = {< Nonce1, . . . , Noncek >; t; Rate;< δ1, . . . , δk >;< Sig1, . . . , Sigk >}

Verify the transaction:
Check the signatures Sig1, . . . , Sigk are valid.
if RECOVER(Sigi) 6= ∅ for 1 ≤ i ≤ k then

Recover signers’ addresses a1, · · · , ak from the signatures Sig1, . . . , Sigk.
ai ← Address(RECOVER(Sigi)) for 1 ≤ i ≤ k
Verify the signers membership ai ∈ σ

(t)
l [] for 1 ≤ i ≤ k.

Check that the nonces in TxU verify Noncei = σ
(ai)
n + 1 for each party ai.

Record the transaction in the current mined block.

Compute reputation from the received sums δj for 1 ≤ i ≤ k: ρt = (
k

∑
j=1

δj)/k.

Update reputation scores and nonces in the account state of t:
σ
(ai)
n ← σ

(ai)
n + 1 for all ai ∈ U

σ
(t)
r ← (σ

(t)
r × σ

(t)
w + ρt × k)/(σ(t)

w + k)
σ
(t)
w ← σ

(t)
w + k

Remove the participating parties from the source parties list σ
(t)
l []

end if

3.3. Reputation Threshold

The system uses thresholds to ensure a minimum level of trustworthiness within the
network. Newcomers or parties with low reputations are not allowed to participate in
witness groups and cannot rate other parties. However, they can improve their reputation
score by exhibiting good behavior and receiving positive feedback from their peers. Both
the reputation score and the number of received ratings, called reputation weight, are taken
into account, with a threshold set for each. Therefore, the thresholds Tr and Tw represent
the minimum reputation score and weight required for parties to participate in the network.

The threshold on reputation weight is included in the system to ensure that feedback
from parties is coming from a diverse group of participants. By requiring a minimum
number of ratings before a party’s feedback is considered, the system aims to prevent
a single or small group of parties from having an outsized influence on the reputation
of others.

However, the threshold on reputation weight could also make it difficult for new
parties to establish a reputation and participate in the network, limiting the diversity
of the network, hence the need for a trade-off between security and decentralization.
The threshold can be adjusted depending on the desired balance between security and
decentralization for the network.

3.4. Which Value k for the System

Conducting a secure multiparty computation with all n source parties participating
simultaneously, especially in dynamic networks where parties may enter and exit the
network, is a challenging task. Furthermore, the task requires O(n2) messages, which can
be significantly reduced by dividing the set of source parties into subgroups of a fixed
number k. As per Theorem A1, privacy is ensured if each subgroup contains at least two
honest parties. The probability of having at least two honest parties in each subgroup,
when parties are selected uniformly at random, is equal to 1− [(n− b)(b

k−1) + (b
k)]/(

n
k),

where k is the number of participating parties, n is the total number of source parties, and b
is the total number of corrupt parties. We denote this probability as Pr(k) in relation to the
value of k.

Pr(k) = 1−
(n− b)(b

k−1) + (b
k)

(n
k)

f or 2 ≤ k ≤ n and b ≤ n (8)

J. Sens. Actuator Netw. 2023, 12, 14 18 of 30

from that we have:
Pr(k) = 0 i f f n− 1 ≤ b ≤ n (9)

Pr(k) = 1 i f f k ≥ b + 2 (10)

In the following, we take the number of corrupt parties b as a percentage of the total
number of source parties n. Figure 4 shows how Pr(k) behaves according to k values with
b set to different percentages of n. In Table 3, we vary b from 10% to 95% of the total
number of source parties n. We set some target values for Pr(k) to achieve and determine
the thresholds of k that ensure the probability Pr(k) is higher than the desired values:

10%

50%

70%

90%

10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0

Number of parties k

P
r(

k)

Figure 4. The Probability Pr(k) for different percentages of corrupt parties.

Table 3. Minimal values of k for desired Pr(k) according to b.

b 10% 20% 30% 50% 70% 90% 95%

Pr(k) ≥
0.8 2 3 4 5 9 29 59
0.9 3 4 4 7 12 38 77

0.95 3 4 5 8 14 46 93
0.99 4 5 7 11 20 64 130

0.999 5 7 9 14 27 89 181
0.9999 6 8 11 18 34 113 230

0.99999 7 10 13 22 41 136 279

3.5. Security Proof and Analysis

To demonstrate the robustness and dependability of the proposed system, we present
a security proof and analysis in Section A. This enables a thorough examination of its
security characteristics and renders a comprehensive understanding of the system and
its capabilities.

4. Performance Evaluation

In this section, we evaluate our proposed system’s effectiveness by measuring its
performance and analyzing its strengths and weaknesses. This evaluation is conducted in
two phases. Firstly, the communication and computation overhead complexity is estimated
and compared exclusively with fully decentralized reputation systems, as presented in
Table 4. Subsequently, a series of experiments are conducted on an Intel-Core i7-8750H

J. Sens. Actuator Netw. 2023, 12, 14 19 of 30

laptop under the Windows operating system. The experiments were repeated over a total
of ten sessions to ensure the reliability and robustness of the results. The results reported in
this paper are the average of the ten sessions.

Table 4. The complexity of reputation computation.

System Communication Computation

Pavlov, et al. [6] O(n2) & O(n3) Not provided
Hasan, et al. [7] O(n) Not provided
Clark, et al. [10] ≥ O(n2) Not provided

Our System O(n) O(n)

The proposed system efficiently computes reputation scores, as it necessitates only a
linear number of messages related to the number of feedback providers (n). Specifically,
with a fixed parameter k, the maximum number of messages that need to be exchanged
is 6kn− 4n + 1, thus the system’s complexity is O(n). In terms of computation overhead,
the system requires the generation of up to kn− n random numbers, the signature and
recovery of kn + 2n messages, the computation of kn + n addresses, and the encryption
and decryption of kn− n, which also results in a complexity of O(n).

In order to simulate the blockchain functionality in our system, we utilized Ganache [61],
an Ethereum simulator that enables the development of smart contracts on top of the
Ethereum blockchain. Ganache provides all of the necessary remote procedure call (RPC)
functions and features and can be programmatically accessed via Python or JavaScript.
Our on-chain logic is implemented using two smart contracts written in the Solidity
programming language [57], a widely-used object-oriented language on various blockchain
platforms, specifically Ethereum. These smart contracts are then deployed to Ganache
via Web3.js [62], the Ethereum JavaScript API, which facilitates interaction with Ethereum
nodes through RPC.

The first smart contract manages the list of source parties (refer to the listing in
Appendix B), while the second simulates the computation and updating of reputation data
on the blockchain, as well as performing signature, nonce, and membership verification
(refer to the listing in Appendix C). To estimate the computation cost of the RATE smart
contract, it was taken off-chain before testing.

The off-chain phase of our simulation was written in JavaScript, utilizing the Web3
RandomHex function for randomness generation, ECDSA for authentication, and ECIES
for encryption. It is worth noting that the JavaScript code does not use HTTP or Websocket.
Instead, it was run on the Node.js runtime environment [63] as a standalone application.
The parameters and settings used in our simulation are outlined in Table 5.

Table 5. Simulation parameters.

Parameters Values

Reputation function The average
Blockchain Ethereum

Total number of nodes 3000
Subgroups sets 2–300

Rating range 0–100
Shares bitlength 32-bit, 256-bit
ECDSA security 256-bit
ECIES security 256-bit

Our simulation verifies the soundness of the proposed system by demonstrating that
the generated reputation scores match the ratings’ averages. In addition, we conduct an
analysis of the effects of varying parameters, such as the subgroups cardinality k and

J. Sens. Actuator Netw. 2023, 12, 14 20 of 30

the shares bitlength, on system performance. Our simulation results provide insight into
the practical implementation of the proposed system and its potential performance in
real-world applications.

Experiment 1: We know from Section 3.4 that the minimal value of parameter k
required to maintain targeted privacy is proportional to the ratio of corrupt parties in the
system. Hence, to study the impact of increasing malicious parties’ ratio on performance,
it is sufficient to raise k and monitor the execution time. Figures 5, 6, and 7 illustrate the
experiment’s results and show a running time quasi-linear in k.

Experiment 2: The second parameter studied was the shares bitlength, which depends
solely on the finite field Fp prime number p. Shares are primarily generated randomly in Fp,
and they have the same bitlength as the parameter p regardless of the rating domain. The
experiment consists of changing shares’ bitlength by changing p accordingly and checking
any effect on the system performance/execution time. Namely, we set p’s bitlength to 32-
and 256-bit, as shown in Figures 5–8. The results reveal a mild effect on performance.

32 Bits

256 Bits

0 100 200 300
0

20

40

60

80

100

Number of parties k

C
om

pu
ta

ti
on

co
st

[m
s]

Figure 5. Computation cost of shares generation plus signature and encryption.

32 Bits

256 Bits

0 100 200 300
0

25

50

75

100

Number of parties k

C
om

pu
ta

ti
on

co
st

[m
s]

Figure 6. Cost of shares decryption and signatures verification.

J. Sens. Actuator Netw. 2023, 12, 14 21 of 30

32 Bits

256 Bits

0 100 200 300
0

10

20

30

Number of parties k

C
om

pu
ta

ti
on

co
st

[m
s]

Figure 7. Rate transaction computation cost.

32 Bits

256 Bits

0 100 200 300
0

0.2

0.4

0.6

0.8

1.0

Number of parties k

C
om

pu
ta

ti
on

co
st

[m
s]

Figure 8. Cost of the function computation over shares plus signature.

5. Conclusions and Future Directions

In this study, we propose a new dynamic, decentralized, and privacy-preserving repu-
tation system. Our system utilizes blockchain technology to store and update reputation
data and secure multiparty computation (SMC) to ensure the confidentiality of feedback.
By leveraging these technologies, we have developed a fully decentralized system that
maintains global reputation information without relying on a central authority. Our sys-
tem is suitable for general-purpose use cases where nodes can both provide and receive
feedback, and has been proven secure under the semi-honest adversarial model. However,
future work could investigate the system’s robustness under more advanced threat models,
such as covert and malicious attacks. Additionally, our system demonstrates an efficient
design, requiring only O(n) messages and having an O(n) computation complexity.

Future research directions include addressing other challenges that reputation systems
often face, such as oscillation, self-promotion, defamation, and whitewashing. To address
these challenges, advanced cryptographic techniques such as data obfuscation, homomor-
phic encryption, and homomorphic secret-sharing could be explored. Additionally, we plan
to investigate the application of reputation systems in location-sensitive networks, such as
MANETs and VANETs. In these environments, feedback is often relayed by closely-located

J. Sens. Actuator Netw. 2023, 12, 14 22 of 30

nodes, which poses a risk of identity violation. Our objective in these scenarios is to develop
a system that enables parties to submit feedback while remaining anonymous.

Another important consideration for decentralized systems like ours is scalability. The
number of transactions that a blockchain can handle in a given period is limited, and thus,
future work could investigate methods such as sharding or nested blockchains to increase
the capacity of our system.

Author Contributions: Conceptualization, K.M., F.E.B. and H.B.; methodology, K.M., F.E.B. and H.B.;
software, K.M., F.E.B. and H.B.; validation, K.M., F.E.B. and H.B.; formal analysis, K.M., F.E.B. and
H.B.; resources, K.M.; writing—original draft preparation, K.M.; writing—review and editing, K.M.,
F.E.B. and H.B.; visualization, F.E.B. and H.B.. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

P2P Peer-To-Peer
MANETs Mobile Ad-hoc Networks
WSNs Wireless Sensor Networks
VANETs Vehicular Ad-hoc Networks
DSNs Decentralized Social Networks
DRSs Decentralized Reputation Systems
PDRSs Privacy-Preserving Decentralized Reputation Systems
PoW Proof of Work
PoS Proof of Stake
PBB Public Bulletin Board
SMC Secure Multiparty Computation

Appendix A. Security Proof and Analysis

Let k ∈ N and τt = {τ(a1)
t , . . . , τ

(ak)
t } . Our system Π securely computes a deterministic

functionality Rep that is the average of its inputs: the feedback values Rep(τt) =
∑k

i=1 τ
(ai)
t

k
.

We can say that Π privately computes Rep if there is a probabilistic polynomial time algo-
rithm denoted S (a simulator) such that for every I = {i1, . . . is} ⊆ {1, . . . , k}, it holds that:

1. outputΠ(τt) = f (τt) (Correctness)

2.
{
S(I, τ

(ai1
)

t , . . . τ
(ais)
t , f (τt))

}
τt∈({0,1}∗)k

c≡
{

viewΠ
I (τt)

}
τt∈({0,1}∗)k

(Privacy)

Appendix A.1. Correctness

Each party of address ai ∈ U ⊂ St prepares the shares [τ(ai)
t] of its feedback value τ

(ai)
t

such that ∑k
j=1[τ

(ai)
t]j = τ

(ai)
t . The sum of the trust values of all parties in U = {a1, . . . , ak}

is given as ∑k
i=1 τ

(ai)
t . Thus, it can be stated as ∑k

i=1 τ
(ai)
t = ∑k

i=1 ∑k
j=1[τ

(ai)
t]j, which is the

sum of all shares of all parties in U. After preparing its shares, every party ai sends one
share [τ

(ai)
t]j to each party aj in U while keeping the share ai,i private. Each party then in

U computes the sum of the received shares and its private share δj = ∑k
i=1[τ

(ai)
t]j, signs it,

and sends it to a1. a1 issues a transaction with the sums and corresponding signatures. The

J. Sens. Actuator Netw. 2023, 12, 14 23 of 30

miner then verifies the transaction and computes the average of {δj}1≤j≤k, which equals
the average of the trust values of all parties, in U = {a1, . . . , ak} showed as follows:

outputΠ(τt) =
∑k

j=1 δj

k

=
∑k

j=1

(
∑k

i=1[τ
(ai)
t]j

)
k

=
∑k

j=1 ∑k
i=1[τ

(ai)
t]j

k

=
∑k

i=1 ∑k
j=1[τ

(ai)
t]j

k

=
∑k

i=1

(
∑k

j=1[τ
(ai)
t]j

)
k

=
∑k

i=1 τ
(ai)
t

k
= Rep(τt)

= ρt

(A1)

Let us assume σ
(t)
w = N and σ

(t)
r = R are the values in the account state of the party

t before executing the transaction. R represents the average of the N previous ratings

received so far. Since ρt =
∑ai∈U τ

(ai)
t

k
is the average of the k new ratings, then, after

executing the transaction, the new state becomes σ
(t)
w = N + k and σ

(t)
r =

R× N + ρt × k
N + k

the average of the total N + k ratings �
We note that a new account state is initiated with the values σ

(t)
r = 0 and σ

(t)
w = 0.

Appendix A.2. Privacy

During the execution of the protocol Π on the feedback values τ
(a1)
t , . . . , τ

(ak)
t , the view

of the ith party (1 ≤ i ≤ k) denoted by viewΠ
i (τt) is:

viewΠ
i (τt) = {τ(ai)

t ; [τ(a1)
t]i, . . . , [τ(ak)

t]i; δ1, . . . , δk, Rep(τt)} (A2)

The adversary here is semi-honest; therefore, its view is exactly as in the case where
the parties follow the protocol specification. Considering a participant party ai ∈ U in the
protocol, ai has to prepare k shares of its secret feedback value τ

(ai)
t as follows:

• The k− 1 shares {[τ(ai)
t]j}

j 6=i
1≤j≤k are random numbers generated uniformly over the

interval [0, p[, where p is a prime chosen large enough as stated in the problem settings.

• The last share [τ
(ai)
t]i is computed as [τ(ai)

t]i = τ
(ai)
t −

j 6=i

∑
1≤j≤k

[τ
(ai)
t]j mod p. Thus, it is

also uniformly distributed over [0, p[since it is a function of the previous k− 1 shares.

We conclude that all the shares are uniformly random, which means that one of them
{[τ(ai)

t]j}1≤j≤k does not reveal any information individually about τ
(ai)
t . The only way to

gain information about τ
(ai)
t is to know all k shares.

We note also that the sums {δi}1≤i≤k are sums of uniformly distributed random

numbers δi = ∑1≤j≤k[τ
(aj)
t]i, and hence are also uniformly distributed.

According to the protocol, every party ai then sends each share [τ
(ai)
t]j exclusively to

the corresponding party aj and keeps [τ(ai)
t]i private. So, from the party aj’s perspective

J. Sens. Actuator Netw. 2023, 12, 14 24 of 30

(1 ≤ j ≤ k), it receives from other parties the shares {[τ(ai)
t]j}

i 6=j
1≤i≤k, which are independent

and uniformly distributed over a large interval. Then it broadcasts the sum δj = τ
(aj)

j +

∑
i 6=j
1≤i≤k[τ

(ai)
t]j = ∑1≤i≤k[τ

(ai)
t]j. From the previous discussion, we can say that:

• To learn the k− 1 shares {[τ(ai)
t]j}

j 6=i
1≤j≤k prepared by ai, all the k− 1 parties {aj}

j 6=i
1≤j≤k

would have to collude (to be dishonest).
• If the k− 1 parties {aj}

j 6=i
1≤j≤k are colluding, then they can also learn the private share

[τ
(ai)
t]i of ai from the known δi as: [τ(ai)

t]i = δi −∑
j 6=i
1≤j≤k[τ

(aj)
t]i.

Thus, the protocol Π does not guarantee feedback privacy in the presence of k− 1
dishonest parties.

Theorem A1. The protocol Π guarantees feedback privacy in the presence of at least two honest parties.

Let us assume that at least two parties are honest. This means that the adversary can
form a coalition of up to k− 2 dishonest parties out of k. Let I ⊆ {1, ..., k} any coalition
of s parties such that s = |I| ≤ k− 2. For simplicity, we suppose that the first s parties
{a1, . . . , as} represent the coalition, and {as+1, . . . , ak} are the honest parties. The view of
the coalition during the execution of Π on the feedback values τ

(a1)
t , . . . , τ

(ak)
t is:

viewΠ
I (τt) =

{
I; τ

(a1)
t , . . . , τ

(as)
t ; {[τ(a1)

t]j}1≤j≤k, . . . , {[τ(as)
t]j}1≤j≤k,

{[τ(as+1)
t]j}1≤j≤s, , . . . , {[τ(ak)

t]j}1≤j≤s; {δi}1≤i≤k; Rep(τt)
} (A3)

which means the coalition has knowledge of all the feedback values except {τ(as+1)
t , . . . , τ

(ak)
t }

and has all the shares except those of parties {as+1, . . . , ak}, namely {[τ(as+1)
t]j}s+1≤j≤k,

, . . . , {[τ(ak)
t]j}s+1≤j≤k. Knowing that all shares {[τ(ai)

t]j}1≤i,j≤k and sums {δi}1≤i≤k in the
coalition view are uniformly distributed values, we show that there exists a probabilistic
polynomial time algorithm S that can derive any information the coalition can derive from
its view viewΠ

I (τt) by taking as input only the coalition’s feedback values {τ(a1)
t , . . . , τ

(as)
t },

the output Rep(τt), and some randomness. Let S be:

S(τ(a1)
t , . . . , τ

(as)
t , Rep(τt)) =

{
τ
(a1)
t , . . . , τ

(as)
t ; {r1

j }1≤j≤k, . . . , {rs
j}1≤j≤k; {rs+1

j }1≤j≤s,

, . . . , {rk
j }1≤j≤s; R1, . . . , Rk; Rep(τt)

} (A4)

where {ri
j}1≤i,j≤k and {Ri}1≤i≤k are random numbers uniformly generated over the same

corresponding large interval as the shares {[τ(ai)
t]j} and the sums {δi}.

The two distributions generated by S and viewΠ
I (τt) are computationally indistin-

guishable,

{
viewΠ

I (τt)
}
({0,1}∗)k

c≡
{

τ
(a1)
t , . . . , τ

(as)
t ; {[τ(a1)

t]j}1≤j≤k, . . . , {[τ(as)
t]j}1≤j≤k;

{[τ(as+1)
t]j}0≤j≤s, , . . . , {[τ(ak)

t]j}1≤j≤s; δ1, . . . , δk; Rep(τt)}
}

τt∈({0,1}∗)k

c≡
{

τ
(a1)
t , . . . , τ

(as)
t ; {r1

j }1≤j≤k, . . . , {rs
j}1≤j≤k;

{rs+1
j }1≤j≤s, , . . . , {rk

j }1≤j≤s; R1, . . . , Rk; Rep(τt)
}

τt∈({0,1}∗)k

c≡
{
S(τ(a1)

t , . . . , τ
(as)
t , Rep(τt))

}
({0,1}∗)k

(A5)

J. Sens. Actuator Netw. 2023, 12, 14 25 of 30

which means that any information the coalition can derive from its view can be derived
just from its input and output. Looking at what is possible to derive from the coalition
input and output, we can state that it is infeasible to uncover feedback values such as
{τ(as+1)

t , . . . , τ
(ak)
t } from them. Consequently, Π is secure with k− 2 dishonest parties.

We highlight that even if the miner is part of the adversary, their view does not add
any information to the coalition, as its view is poorer than a regular participating party:

viewΠ
miner(τt) = {U; {δi}1≤i≤k; Rep(τt)} (A6)

The target party t can also attempt to uncover parties’ ratings by corrupting other
participating parties. Fortunately, unless t controls k− 1 parties it cannot reach its goal. �

Appendix A.3. Accessibility

∀a, t ∈ P, querying for the reputation score of t comes down to searching the state
database for ρt = σ

(t)
r after updating its copy to the last one. Since each party a ∈ P has the

right to download and maintain a full copy of the blockchain or a light copy including only
headers and the state, then it has full access to all reputation scores. Therefore, we can say
that the reputation system Π achieves Accessibility.

Appendix A.4. Consistency

∀a, b, t ∈ P, if a and b query for the reputation score of t at the same time, assuming
that they have updated their copies of the state, therefore their copies are identical, and
they include the changes introduced by the last confirmed block. Intuitively, a and b are
querying the same database. So they will obtain the same reputation value. We can say
then that the reputation system Π is Consistent through the network.

Appendix A.5. Conservation

∀a, t ∈ P such that the party a has already rated t at least one time. We can say that a’s
rating is part of a transaction recorded in a specific block B(i0) on the blockchain, which
accordingly affects the resulting version of the state, and it especially affects σ(t) the account
state of t and σ

(t)
r its reputation score.

We recall that transactions are recorded on the blockchain in an immutable way and
that all the following blocks and resulting state versions after B(i0) are affected accordingly.
Therefore, if the party a leaves the network, then all its ratings remain part of the blockchain,
and σ

(t)
r the reputation score of t remains a function of its mentioned rating.

As a result, we can say that the reputation system Π conserves the reputation information.

Appendix A.6. Verifiability

Verifiability is an immediate result of blockchain properties that allow any user that
joins the network to grab a copy of the entire blockchain and to go through the list of
blocks and transactions that are all public, verifying their integrity and correctness. Indeed,
the user can go through the blockchain block by block, from the Genesis block to the
last one, executing every single transaction and reflecting on the state. By searching for
RATE transactions sent to a target party t, for example, counting the number of feedbacks
included in them and computing their average, the user can easily compare the results with
the reputation score and weight in t’s state account.

J. Sens. Actuator Netw. 2023, 12, 14 26 of 30

Appendix B. Source Parties’ Manager Smart Contract

Listing A1. Source Paries Management Smart Contract.

1 pragma solidity >=0.5.0 <0.7.0;
2
3 contract SourcePartiesManager {
4 address private owner;
5 /// Source paries ’ list: an Iterable mapping from uint256 to address

array;
6 uint32 k=10;
7 address [] sourceparties;
8 uint256 [] traces;
9 constructor(address _owner) public {

10 owner = _owner;
11 }
12
13 function getOwner () external view returns (address) {
14 return owner;
15 }
16
17 /// Join the source parties ’ list
18 function join(uint256 _trace , address party) public {
19 uint256 length = traces.length;
20
21 for (uint256 i = 0; i < length; i++) {
22 if (traces[i] == _trace) {
23 break;
24 }
25 }
26 sourceparties.push(party);
27 traces.push(_trace);
28
29 }
30
31 /// Get the source parties ’ list
32 function getParties ()
33 public
34 view
35 returns (address [] memory parties)
36 {
37 uint256 length = sourceparties.length;
38 parties = new address [](length);
39 if(length > k){
40 length = k;
41 }
42 for (uint256 i = 0; i < length; i++) {
43 parties[i] = sourceparties[i];
44 }
45 return parties;
46 }
47
48
49 /// Remove a party from souce parties ’ list
50 function removeParty(address party) public {
51 uint256 length = sourceparties.length;
52
53 for (uint256 i = 0; i < length; i++) {
54 if (sourceparties[i] == party) {
55 delete sourceparties[i];
56 }
57 }
58 }
59 }

J. Sens. Actuator Netw. 2023, 12, 14 27 of 30

Appendix C. Reputation Manager Smart Contract

Listing A2. Reputation Management Smart Contract.

1 pragma solidity >=0.5.0 <0.7.0;
2
3 contract ReputationManager {
4 struct rep {
5 uint256 sum;
6 uint256 ratingsNumber;
7 }
8 rep public reputation;
9

10 mapping(address => bool) private ratersList;
11
12 /// get reputation method
13 function getReputation () public view returns (uint256 , uint256) {
14 if (reputation.ratingsNumber != 0)
15 return (reputation.sum , reputation.ratingsNumber);
16 else
17 return (
18 reputation.sum / reputation.ratingsNumber ,
19 reputation.ratingsNumber
20);
21 }
22
23 /// rating method
24 function rate(
25 bytes4 [] memory ratings ,
26 bytes [] memory signatures
27) public {
28 address signer;
29 uint256 sum = 0;
30 address [] memory raters;
31 require(ratings.length == signatures.length);
32 for (uint256 i = 0; i < ratings.length; i++) {
33 bytes32 hash = keccak256(abi.encodePacked(uint32(ratings[i]))

);
34 signer = recoverSigner(hash , signatures[i]);
35 require(signer != address (0));
36 raters[i] = signer;
37 sum += uint32(ratings[i]);
38 }
39 sum = sum % uint256 (2**32);
40 for (uint256 i = 0; i < ratings.length; i += 2) {
41 require (! ratersList[raters[i]]);
42 }
43 SourcePartiesManager s = SourcePartiesManager(msg.sender);
44 for (uint256 i = 0; i < ratings.length; i++) {
45 ratersList[raters[i]] = true;
46 s.removeParty(raters[i]);
47 }
48 reputation.sum += sum;
49 reputation.ratingsNumber += ratings.length;
50 }
51
52 /// signature methods.
53 function splitSignature(bytes memory sig)
54 internal
55 pure
56 returns (
57 uint8 v,
58 bytes32 r,
59 bytes32 s
60)
61 {
62 require(sig.length == 65, ".");
63 assembly {
64 // first 32 bytes , after the length prefix.

J. Sens. Actuator Netw. 2023, 12, 14 28 of 30

65 r := mload(add(sig , 32))
66 // second 32 bytes.
67 s := mload(add(sig , 64))
68 // final byte (first byte of the next 32 bytes).
69 v := byte(0, mload(add(sig , 96)))
70 }
71 return (v, r, s);
72 }
73
74 function recoverSigner(bytes32 messageHash , bytes memory sig)
75 internal
76 pure
77 returns (address)
78 {
79 (uint8 v, bytes32 r, bytes32 s) = splitSignature(sig);
80 return ecrecover(messageHash , v, r, s);
81 }
82 }

References
1. Jøsang, A.; Ismail, R.; Boyd, C. A Survey of Trust and Reputation Systems for Online Service Provision. Decis. Support Syst. 2007,

43, 618–644. https://doi.org/10.1016/j.dss.2005.05.019.
2. Hendrikx, F.; Bubendorfer, K.; Chard, R. Reputation Systems: A Survey and Taxonomy. J. Parallel Distrib. Comput. 2015,

75, 184–197. https://doi.org/10.1016/j.jpdc.2014.08.004.
3. Aberer, K.; Despotovic, Z. Managing Trust in a Peer-2-peer Information System. In Proceedings of the Tenth International

Conference on Information and Knowledge Management, Atlanta, GR, USA, 5–10 October 2001; CIKM ’01; ACM: New York, NY,
USA, 2001; pp. 310–317. https://doi.org/10.1145/502585.502638.

4. Kamvar, S.D.; Schlosser, M.T.; Garcia-Molina, H. The Eigentrust Algorithm for Reputation Management in P2P Networks. In
Proceedings of the 12th International Conference on World Wide Web, Budapest, Hungary, 20–24 May 2003; ACM: New York, NY,
USA, 2003; WWW ’03, pp. 640–651. https://doi.org/10.1145/775152.775242.

5. Ganeriwal, S.; Srivastava, M.B. Reputation-Based Framework for High Integrity Sensor Networks. In Proceedings of the SASN
’04: The 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks, Washington, DC, USA, October 25 2004; ACM Press:
New York, NY, USA, 2004; pp. 66–77. https://doi.org/10.1145/1029102.1029115.

6. Pavlov, E.; Rosenschein, J.S.; Topol, Z. Supporting Privacy in Decentralized Additive Reputation Systems. In Proceedings of the
Trust Management; Jensen, C., Poslad, S., Dimitrakos, T., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 108–119.

7. Hasan, O.; Brunie, L.; Bertino, E. Preserving Privacy of Feedback Providers in Decentralized Reputation Systems. Comput. Secur.
2012, 31, 816–826. https://doi.org/10.1016/j.cose.2011.12.003.

8. Dimitriou, T.; Michalas, A. Multi-Party Trust Computation in Decentralized Environments. In Proceedings of the 2012 5th
International Conference on New Technologies, Mobility and Security (NTMS), Istanbul, Turkey, 7–10 May 2012; pp. 1–5.
https://doi.org/10.1109/ntms.2012.6208686.

9. Hasan, O.; Brunie, L.; Bertino, E.; Shang, N. A Decentralized Privacy Preserving Reputation Protocol for the Malicious Adversarial
Model. IEEE Trans. Inf. Forensics Secur. 2013, 8, 949–962. https://doi.org/10.1109/tifs.2013.2258914.

10. Clark, M.R.; Stewart, K.; Hopkinson, K.M. Dynamic, Privacy-Preserving Decentralized Reputation Systems. IEEE Trans. Mob.
Comput. 2017, 16, 2506–2517. https://doi.org/10.1109/TMC.2016.2635645.

11. Goldreich, O. Foundations of Cryptology; Cambridge University Press: Cambridge, UK.; New York, NY, USA, 2003; Volume 1.
12. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Bitcoin. 2008; Volume 4, no 2. Available online: https:

//bitcoin.org/bitcoin.pdf (accessed on 3 November 2022).
13. Hasan, O. A Survey of Privacy Preserving Reputation Systems. (Doctoral dissertation, LIRIS UMR 5205 CNRS/INSA de

Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon 2/École Centrale de Lyon), 2017. Available online: https:
//hal.science/hal-01635314/document (accessed on 12 January 2023).

14. Tian, C.; Yang, B. R2Trust, a Reputation and Risk Based Trust Management Framework for Large-Scale, Fully Decentralized
Overlay Networks. Future Gener. Comput. Syst. 2011, 27, 1135–1141. https://doi.org/10.1016/j.future.2011.03.006.

15. Azad, M.A.; Bag, S.; Hao, F.; Shalaginov, A. Decentralized Self-Enforcing Trust Management System for Social Internet of Things.
IEEE Internet Things J. 2020, 7, 2690–2703. https://doi.org/10.1109/JIOT.2019.2962282.

16. Kugblenu, C.; Vuorimaa, P. Decentralized Reputation System on a Permissioned Blockchain for E-Commerce Reviews. In
Proceedings of the 17th International Conference on Information Technology–New Generations (ITNG 2020), Las Vegas, NV,
USA, 5–8 April 2020; Advances in Intelligent Systems and Computing; Latifi, S., Ed.; Springer International Publishing: Cham,
Switzerland, 2020; pp. 177–182. https://doi.org/10.1007/978-3-030-43020-7_24.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://hal.science/hal-01635314/document
https://hal.science/hal-01635314/document

J. Sens. Actuator Netw. 2023, 12, 14 29 of 30

17. Li, M.; Zhu, L.; Zhang, Z.; Lal, C.; Conti, M.; Alazab, M. Anonymous and Verifiable Reputation System for E-Commerce Platforms
Based on Blockchain. IEEE Trans. Netw. Serv. Manag. 2021, 18, 4434–4449. https://doi.org/10.1109/TNSM.2021.3098439.

18. Qi, S.; Li, Y.; Wei, W.; Li, Q.; Qiao, K.; Qi, Y. Truth: A Blockchain-Aided Secure Reputation System With Genuine Feedbacks. IEEE
Trans. Eng. Manag. 2022, 1–15. https://doi.org/10.1109/TEM.2021.3128930.

19. Debe, M.; Salah, K.; Rehman, M.H.U.; Svetinovic, D. IoT Public Fog Nodes Reputation System: A Decentralized Solution Using
Ethereum Blockchain. IEEE Access 2019, 7, 178082–178093. https://doi.org/10.1109/ACCESS.2019.2958355.

20. Liu, D.; Alahmadi, A.; Ni, J.; Lin, X.; Shen, X. Anonymous Reputation System for IIoT-Enabled Retail Marketing Atop PoS
Blockchain. IEEE Trans. Ind. Inform. 2019, 15, 3527–3537. https://doi.org/10.1109/TII.2019.2898900.

21. Weerapanpisit, P.; Trilles, S.; Huerta, J.; Painho, M. A Decentralised Location-Based Reputation Management System in the IoT
Using Blockchain. IEEE Internet Things J. 2022, 9, 15100–15115. https://doi.org/10.1109/JIOT.2022.3147478.

22. Singh, S.K.; Park, J.H. TaLWaR: Blockchain-Based Trust Management Scheme for Smart Enterprises With Augmented Intelligence.
IEEE Trans. Ind. Inform. 2023, 19, 626–634. https://doi.org/10.1109/TII.2022.3204692.

23. Azad, M.A.; Bag, S.; Hao, F. PrivBox: Verifiable Decentralized Reputation System for Online Marketplaces. Future Gener. Comput.
Syst. 2018, 89, 44–57. https://doi.org/10.1016/j.future.2018.05.069.

24. Bag, S.; Azad, M.A.; Hao, F. A Privacy-Aware Decentralized and Personalized Reputation System. Comput. Secur. 2018,
77, 514–530. https://doi.org/10.1016/j.cose.2018.05.005.

25. Mirhosseini, S.A.M.; Fanian, A.; Gulliver, T.A. A Trust and Reputation System for IoT Exploiting Distributed Ledger Technology.
arXiv 2021, arXiv:2111.13500.

26. Wang, J.; Chen, W.; Wang, L.; Sherratt, R.; Alfarraj, O.; Tolba, A. Data Secure Storage Mechanism of Sensor Networks Based on
Blockchain. Comput. Mater. Contin. 2020, 65, 2365–2384. https://doi.org/10.32604/cmc.2020.011567.

27. Zhang, J.; Zhong, S.; Wang, J.; Yu, X.; Alfarraj, O. A Storage Optimization Scheme for Blockchain Transaction Databases. Comput.
Syst. Sci. Eng. 2021, 36, 521–535. https://doi.org/10.32604/csse.2021.014530.

28. Guruprakash, J.; Koppu, S. EC-ElGamal and Genetic Algorithm-Based Enhancement for Lightweight Scalable Blockchain in IoT
Domain. IEEE Access 2020, 8, 141269–141281. https://doi.org/10.1109/ACCESS.2020.3013282.

29. Jayabalasamy, G.; Koppu, S. High-Performance Edwards Curve Aggregate Signature (HECAS) for Nonrepudiation in
IoT-based Applications Built on the Blockchain Ecosystem. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 9677–9687.
https://doi.org/10.1016/j.jksuci.2021.12.001.

30. Alzoubi, Y.I.; Al-Ahmad, A.; Kahtan, H. Blockchain Technology as a Fog Computing Security and Privacy Solution: An Overview.
Comput. Commun. 2022, 182, 129–152. https://doi.org/10.1016/j.comcom.2021.11.005.

31. Najafi, M.; Khoukhi, L.; Lemercier, M. Decentralized Reputation Model Based on Bayes’ Theorem in Vehicular Networks. In
Proceedings of the ICC 2021—IEEE International Conference on Communications, Xiamen, China, 28–30 July 2021; pp. 1–6.
https://doi.org/10.1109/ICC42927.2021.9500491.

32. Lee, S.; Seo, S.H. Design of a Two Layered Blockchain-Based Reputation System in Vehicular Networks. IEEE Trans. Veh. Technol.
2022, 71, 1209–1223. https://doi.org/10.1109/TVT.2021.3131388.

33. Antonopoulos, A.M. Mastering Bitcoin: Programming the Open Blockchain; O’Reilly Media, Inc. 1005 Gravenstein Highway North,
Sebastopol, CA 95472. 2017.

34. Wood, D.G. Ethereum: A Secure Decentralised Generalised Transaction Ledger. Ethereum Project Yellow Paper; 2014. Available
online: https://ethereum.github.io/yellowpaper/paper.pdf (accessed on 26 Febuary 2022)

35. Tschorsch, F.; Scheuermann, B. Bitcoin and Beyond: A Technical Survey on Decentralized Digital Currencies. IEEE Commun. Surv.
Tutorials 2016, 18, 2084–2123. https://doi.org/10.1109/COMST.2016.2535718.

36. Garay, J.; Kiayias, A.; Leonardos, N. The Bitcoin Backbone Protocol: Analysis and Applications. In Proceedings of the Advances in
Cryptology—EUROCRYPT 2015; Oswald, E., Fischlin, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 281–310. https://doi.org/10.1007/978-3-662-46803-6_10.

37. Lamport, L.; Shostak, R.; Pease, M. The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 2016, 4, 382–401.
https://doi.org/10.1145/357172.357176.

38. Peck, M. The Bitcoin Arms Race Is On!—IEEE Spectrum. 2013. Available online: https://spectrum.ieee.org/computing/
networks/the-bitcoin-arms-race-is-on(accessed on 14 Febuary 2022).

39. King, S.; Nadal, S. PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake. Self-Published Paper, August, 2012, Volume 19,
no 1. Available online: https://bitcoin.peryaudo.org/vendor/peercoin-paper.pdf(accessed on 03 May 2022).

40. Vasin, P. BlackCoin’s Proof-of-Stake Protocol V2 2014. 2014, Volume 71. p. 2. Available online: https://blackcoin.co/blackcoin-
pos-protocol-v2-whitepaper.pdf(accessed on 03 May 2022).

41. Nxt Community. Nxt Whitepaper—Introduction: Nxt Whitepaper. Available online: https://nxtdocs.jelurida.com/Nxt_
Whitepaper (accessed 29 January 2023).

42. Davarpanah, K.; Kaufman, D.; Pubellier, O. NeuCoin: The First Secure, Cost-Efficient and Decentralized Cryptocurrency. arXiv
2015, arXiv:1503.07768.Available Online: https://arxiv.org/pdf/1503.07768 (accessed on 3 May 2022).

43. Damgård, I.; Pastro, V.; Smart, N.; Zakarias, S. Multiparty Computation from Somewhat Homomorphic Encryption. In Proceed-
ings of the Advances in Cryptology–CRYPTO 2012, Barbara, CA, USA, 19–23 August 2012; Lecture Notes in Computer Science;
Safavi-Naini, R., Canetti, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 643–662. https://doi.org/10.1007/978-3-642-
32009-5_38.

https://ethereum.github.io/yellowpaper/paper.pdf
https://spectrum.ieee.org/computing/networks/the-bitcoin-arms-race-is-on
https://spectrum.ieee.org/computing/networks/the-bitcoin-arms-race-is-on
https://bitcoin.peryaudo.org/vendor/peercoin-paper.pdf
https://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
https://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
https://nxtdocs.jelurida.com/Nxt_Whitepaper
https://nxtdocs.jelurida.com/Nxt_Whitepaper
https://arxiv.org/pdf/1503.07768

J. Sens. Actuator Netw. 2023, 12, 14 30 of 30

44. Damgård, I.; Keller, M.; Larraia, E.; Pastro, V.; Scholl, P.; Smart, N.P. Practical Covertly Secure MPC for Dishonest Majority –
Or: Breaking the SPDZ Limits. In Proceedings of the Computer Security–ESORICS 2013, Egham, UK, 9–13 September 2013;
Crampton, J., Jajodia, S., Mayes, K., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; pp.
1–18. https://doi.org/10.1007/978-3-642-40203-6_1.

45. Keller, M.; Pastro, V.; Rotaru, D. Overdrive: Making SPDZ Great Again. In Proceedings of the Advances in Cryptol-
ogy–EUROCRYPT 2018; 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, 29 April–3 May 2018; pp. 158–189. https://doi.org/10.1007/978-3-319-78372-7_6.

46. Keller, M. MP-SPDZ: A Versatile Framework for Multi-Party Computation. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event, USA, 9–13 November 2020; pp. 1575–1590.
https://doi.org/10.1145/3372297.3417872

47. Rindal, P.; Rosulek, M. Faster Malicious 2-Party Secure Computation with Online/Offline Dual Execution. In Proceedings of the
25th USENIX Conference on Security Symposium, Austin, TX, USA, 10–12 August 2016; SEC’16; USENIX Association: Berkeley,
CA, USA, 2016; pp. 297–314.

48. Wang, X.; Ranellucci, S.; Katz, J. Authenticated Garbling and Efficient Maliciously Secure Two-Party Computation. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017;
CCS ’17; Association for Computing Machinery: New York, NY, USA, 2017; pp. 21–37. https://doi.org/10.1145/3133956.3134053.

49. Gueron, S.; Lindell, Y.; Nof, A.; Pinkas, B. Fast Garbling of Circuits Under Standard Assumptions. J. Cryptol. 2018, 31, 798–844.
https://doi.org/10.1007/s00145-017-9271-y.

50. Goldreich, O.; Micali, S.; Wigderson, A. How to Play ANY Mental Game. In Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing, New York, NY, USA, 25–27 May 1987; STOC ’87; Association for Computing Machinery:
New York, NY, USA, 1987; pp. 218–229. https://doi.org/10.1145/28395.28420.

51. Dimitriou, T.; Karame, G.; Christou, I. SuperTrust – A Secure and Efficient Framework for Handling Trust in Super Peer Networks.
In Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing, Portland, OR, USA, 12–15
August 2007; pp. 374–375. https://doi.org/10.1145/1281100.1281180.

52. Jøsang, A.; Luo, X.; Chen, X. Continuous Ratings in Discrete Bayesian Reputation Systems. In Proceedings of the Trust
Management II, IFIP – The International Federation for Information Processing, Trondheim, Norway, 18–20 June 2008; Karabulut,
Y., Mitchell, J., Herrmann, P., Jensen, C.D., Eds.; Springer US: Boston, MA, USA, 2008; pp. 151–166. https://doi.org/10.1007/978-
0-387-09428-1_10.

53. Abdul-Rahman, A.; Hailes, S. Supporting Trust in Virtual Communities. In Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences, Maui, HI, USA, 4-7 January 2000; pp. 1–9. https://doi.org/10.1109/HICSS.2000.926814.

54. Zhou, R.; Hwang, K. PowerTrust: A Robust and Scalable Reputation System for Trusted Peer-to-Peer Computing. IEEE Trans.
Parallel Distrib. Syst. 2007, 18, 460–473. https://doi.org/10.1109/TPDS.2007.1021.

55. Nithyanand, R.; Raman, K. Fuzzy Privacy Preserving Peer-to-Peer Reputation Management. Cryptology ePrint Archive. 2009.
Available online: https://eprint.iacr.org/2009/442.pdf (accessed on 12 Febuary 2022).

56. Bertoni, G.; Peeters, M.; Assche, G.V.; Daemen, J. The KECCAK Reference; 2011. Available online: https://keccak.team/files/
Keccak-reference-3.0.pdf (accessed on 10 Febuary 2022).

57. Solidity. Solidity 0.8.17 Documentation. Available online: https://docs.soliditylang.org/en/v0.8.17/ (accessed on 11 November
2022).

58. Johnson, D.; Menezes, A.; Vanstone, S. The Elliptic Curve Digital Signature Algorithm (ECDSA). Int. J. Inf. Secur. 2001, 1, 36–63.
https://doi.org/10.1007/s102070100002.

59. Martínez, V.G.; Encinas, L.H.; Ávila, C.S. A Survey of the Elliptic Curve Integrated Encryption Scheme. J. Comput. Sci. Eng. 2010,
2, 7–13.

60. Goldreich, O. Foundations of Cryptography: Volume 2, Basic Applications; Cambridge University Press: Cambridge, UK, 2009.
61. Ganache. Ganache|Overview–Truffle Suite. Available online: https://trufflesuite.com/docs/ganache/ (accessed on 10

November 2022).
62. Web3.js. Ethereum JavaScript API—Web3.Js 1.8.0 Documentation. Available online: https://web3js.readthedocs.io/en/v1.8.0/

(accessed on 11 November 2022).
63. Node.js. Available online: https://nodejs.org/en/ (accessed on 8 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://eprint.iacr.org/2009/442.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://docs.soliditylang.org/en/v0.8.17/
https://trufflesuite.com/docs/ganache/
https://web3js.readthedocs.io/en/v1.8.0/
https://nodejs.org/en/

	Introduction
	Contributions
	Organization

	Preliminaries
	Related Works
	Blockchain
	State
	Consensus

	Secure Multiparty Computation
	Problem Setting & Definitions
	Trust and Reputation
	Security Definition and Adversary Model
	Problem Definition

	The Reputation System
	System Overview
	System Specification
	Reputation Threshold
	Which Value k for the System
	Security Proof and Analysis

	Performance Evaluation
	Conclusions and Future Directions
	Security Proof and Analysis
	Correctness
	Privacy
	Accessibility
	Consistency
	Conservation
	Verifiability

	Source Parties' Manager Smart Contract
	Reputation Manager Smart Contract
	References

