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Abstract: This work solves the problem of identification of the machine code architecture in cy-
berphysical devices. A basic systematization of the Executable and Linkable Format and Portable
Executable formats of programs, as well as the analysis mechanisms used and the goals achieved, is
made. An ontological model of the subject area is constructed, introducing the basic concepts and
their relationships. The specificity of the machine code is analyzed, and an analytical record of the
process of identifying the architecture of the machine code (MC) processor is obtained. A method
for identifying the MC architecture has been synthesized, which includes three successive phases:
unpacking the OS image (for a set of identified architectures); building signatures of architectures
(their “digital portraits” from the position of MC instructions); identification of the MC architecture
for the program under test (using the collected architecture signatures), implemented using four
operating modes. A software tool for identifying the MC architecture has been developed in the form
of a separate utility that implements the algorithms of the method. The principle of operation of
the utility is presented in the form of functional and informational diagrams. Basic testing of the
identification utility has been conducted. As a result, a probabilistic assessment of the utility’s work
was obtained by assigning various programs to the Top-16 selected architectures.

Keywords: machine code; binary code; identification of machine code architecture; cyberphysical
device; SVM; machine learning

1. Introduction
1.1. Relevance

Cyber physical devices (abbreviated as CyberDevices) can be found in almost all
spheres of life: in residential buildings [1], on roads [2] and in intelligent vehicles [3], in
industry [4], during rescue operations [5], in the interests of occupational safety and
health [6], in medicine [7], etc. The essence of CyberDevice, which provides such a
wide application, is the close integration of information technology (essentially software)
with physical entities. At the same time, it is necessary to note the critical feature of
CyberDevice—this is the influence of information on the physical world and vice versa.
Therefore, physical damage may be the result of information attacks [8,9]. In addition,
physical security depends more than ever on information [10–12]. It is possible to counter-
act physical damage by ensuring the safe operation of programs that control the operation
of the CyberDevice. The CyberDevice often form entire closely interacting cyber-physical
information systems. One of the ways to ensure security is the static analysis of such
information systems and their devices [13,14], which are subject to attacks or in which the
carriers of malicious actions themselves [15] operate.
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The hardware component of CyberDevice can be built on a huge number of MC pro-
cessor architectures (hereinafter—the Architecture), and CyberDevice programs are in the
form of machine code (MC); however, the format of such programs has two most popular
types: Executable and Linkable Format (ELF) and Portable Executable (PE). Methods of
code analysis, in general, are not cross-architecture and are tied to the specifics of the
instruction of the MC execution processor (however, there are alternative approaches to
program auditing [16]).

As a result, an important scientific controversy arises in the area of CyberDevice
security. On the one hand, an analysis of CyberDevice programs is required, the MC
of which can be intended for a whole set of Architectures. On the other hand, modern
methods of analysis are designed for specific (often single) types of Architectures.

Partial resolution of the contradiction can be carried out by automatically determining
Architectures, which will allow one to quickly select methods (or adjust their parameters)
for analyzing MC both to prevent attacks on CyberDevice and quickly investigate incidents
that have occurred.

It is important to note that, during the implementation of the attack, CyberDevice can
be physically disabled, which will also affect the contents of the program (for example,
by physically destroying memory areas with MC on storage devices). This should also be
taken into account when preparing for the analysis of the MC.

Thus, the first step in ensuring the security of the CyberDevice operation is certainly
the definition of the Architecture, taking into account the possible incompleteness of
information about it (loss of instructions, program headers, division into sections of code
and data, etc.).

At the same time, not only an assessment of the theoretical possibility of this is required
(which was already conducted by the authors earlier [17]), but also a specific method, as
well as practical experiments with it. Therefore, the topic of the current study is certainly
relevant.

1.2. Problem Statement

Based on the relevance of this problem, the following scientific and technical research
task can be set:

“Development of a method and software tool for machine code architecture identification”.

The statement of this problem is a continuation of the previous author’s study [17],
which described the MC model that reflects its architecture.

1.3. Research Results

The main scientific results of the work are as follows.
Firstly, a review of scientific papers on the research topic was made and a basic

systematization of the ELF and PE program formats mentioned by them, the analysis
mechanisms used and the goals achieved were made. In addition, an ontological model
of the subject area was built, introducing the basic concepts and their relationships. The
model is a development of the previous author’s model [17].

Secondly, the specifics of the MC were analyzed and an analytical record of the
process of identifying the architecture of the MC processor was obtained. An analytical
record is a formal record of the identification process logic using a set of formulas. The
input arguments of the formulas are the MC of previously known architectures and the
identified program, and the output arguments are the identified processor architecture.
The prerequisites for the creation of the corresponding method (hereinafter—the Method)
are formulated.

Thirdly, the MC Architecture Identification Method was synthesized, which includes
three consecutive phases:

• Unpacking the OS image (for a set of identified Architectures);
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• Building signatures of Architectures (their “digital portraits” from the standpoint of
MC instructions);

• Identification of the MC Architecture of the program under test (using the collected
signatures of the Architecture).

These phases are realized with the help of four operating modes. In addition to them,
the Method is based on a set of research modes. These modes are intended not for practical
identification, but for determining the limits of the Method’s applicability: calculation of
the error matrix, operation in the absence of program headers, small size of the MC code,
destruction of the MC, and mixing of the MC of two different Architectures. Exploratory
modes and the results of their testing are beyond the scope of the current work and will be
described in the next article.

Fourthly, a software tool for identifying the MC Architecture was developed in the
form of a separate utility (hereinafter—the Utility), which implements the algorithms of
the Method. The principle of operation of the Utility is presented in the form of functional
and informational diagrams.

Fifthly, basic testing of the Identification Utility was conducted. As a result, a proba-
bilistic assessment of the work of the Utility was obtained to classify various programs in
the Top-16 selected Architectures.

1.4. Novelty

The novelty of the research is determined by the main scientific results obtained and
consists of the following:

• In contrast to a large number of multi-stage investigations, each of which can be carried
out by separate teams of scientists and using their own (or different) terminological
devices, this study initially introduces and uses a single ontological model of the
subject area, which is distinguished by a clear formulation of the basic concepts that
connect the features of the MC and its Architecture (from the previous research phase),
as well as identification tools (from the current research phase);

• For the first time, an analytical record of the Identification Method (in the form of
logical formulas) is presented, also based on the author’s analytical record of the MC
model and the identification hypothesis;

• The identification method differs from analogues in its completeness, since, in addition
to the actual definition of the MC Architecture, it allows for obtaining an information
base (in this work, training and test sets for machine learning) for building signatures
of the MC Architectures, and is also extended by a number of modes for studying the
boundaries of the Method’s applicability;

• The identification utility is original (i.e., new) because it implements the author’s
modes of the Method and uses the previously obtained author’s MC model;

• The probability matrix for assigning the tested files to the Top-16 MC Architectures,
obtained on the basis of Gentoo OS assemblies [18,19], has no analogues in such a
level of detail.

1.5. Contribution

The theoretical significance of the work lies in expanding the classes of methods for
identifying the MC Architecture in terms of constructing the MC signature and comparing
it with template ones. The idea of the method in the article is presented in three notations:
analytical, block diagram, and pseudo-algorithmic. The practical significance of the work
lies in the creation of a Utility that implements the method and allows one to identify
the MC Architecture. In addition, with the help of the Utility, a probability matrix for
classifying the tested files from the Gentoo OS assembly to one of the Top-16 Architectures
was obtained.
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1.6. Content

The structure of the article corresponds to the sequence of research stages. Section 2
provides an analytical review of relevant work with an emphasis on the analysis of exe-
cutable files to further identify the MC Architecture. Section 3 is devoted to the ontological
model of the subject area of research, on the basis of which all subsequent stages are built.
The scheme of the model and the description of all its elements are given. Section 4 de-
scribes the scheme of the Identification Method, gives its formal notation, and also provides
algorithms for its main modes of operation. Section 5 describes the Utility that implements
the MC Architecture Identification Method. In Section 6, experiments are made with the
developed Identification Method and Utility for the Top-16 Architectures. A matrix is
constructed for assigning the tested files to the selected Architectures. The analysis of the
results of the experiment is carried out. Section 7 discusses the features of the proposed
solution and compares it with analogues.

2. Analysis of Existing Review Works

Let us make a review of the works devoted to the areas of software security, in the
interest of which the analysis of meta-information in programs is required—header fields,
sequences of instructions and their entropy, and other information. At the same time, we
will take both the ELF format (mainly used in the Internet of Things and similar devices
based on Linux OS) and the PE format (mainly used in Desktop computers based on
Windows OS) as program types. In addition, although the aspect of consideration will be
the applicability of methods for identifying the MC Architecture, nevertheless, we will
evaluate the elaboration in related areas. Otherwise, due to the low elaboration of the
field, the review will consist of only a few articles directly related to this problem, although
other relevant studies reflecting certain aspects of this topic will also be considered. When
searching for articles, the IEEE Xplore, Scopus, MDPI, ResearchGate, and Google Scholar
databases were used. The following keywords (and their variations) were taken as queries:
identification of processor architecture, detection of processor architecture, detection of
code architecture, detection of code processor, binary code identification, binary code
processor, binary architecture detection, instruction processor detection, instruction set
architecture detection, instruction set architecture classification, architecture binary analysis,
ELF architecture, and portable executable.

The work [20] can be considered quite close to the current research. Thus, the authors
of the article are engaged in the analysis of the binary code to determine the following
meta-information: code and data areas, byte order and MC architecture. As a way to
determine the MC Architecture, a byte histogram is used, supplemented by the number of
data pairs 0x0001 and 0x0100, which takes into account the order of bytes. At the same time,
information entropy [21] is used to highlight areas in the program that contain MC and data.
Thus, since the MC consists of a byte representation of sequentially executed instructions
of completely different purposes (for example, arithmetic operations with numbers, jumps
to addresses, function calls, etc.) [22], then the entropy of such a section will have high
values. In contrast, the data section will have lower entropy values, since it contains more
meaningful and ordered values (for example, text strings from the character set of the
same alphabet, tables of numbers from the same range, just the same byte sequences,
etc.) [23]. The following machine learning algorithms are used to classify architectures:
Neural Network, AdaBoost, Random Forest, K-nearest neighbors (kNN), Tree, Support
Vector Machine (SVM), Naive Bayes and Logistic Regression. The Binwalk software tool
that implements the author’s Method has been developed. The authors experimented with
binaries from a Debian 7.0 build for the following architectures: amd64, i386, armhf, armel,
mips, mipsel, and powerpc. The results of the experiment show almost 100% correctness of
determining the program architecture for all machine learning algorithms. If there are less
than 80% of files for Identification, the correctness of some (and then all) algorithms starts
to decrease. This solution is a development of the works of other authors [24].
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The work [25] is devoted to the search for a binary code that is similar in functionality,
but executed either on different processor architectures, or on the same architecture, but
with different compiler settings. The relevance of this task is also indicated when malicious
code is detected. The essence of the proposed solution lies in the sequence of steps:
code disassembly, creation of a control flow graph, analysis of blocks and transitions
in the graph, definition of subroutine arguments, definition of switch statements, and
emulation of subroutine execution. The results of such an analysis make it possible to create
appropriate patterns of the program’s functioning, according to which semantic signatures
are calculated. MinHash [26] is used to compare the digital signatures of the MC in advance
known and investigated (for proximity) subroutines. Architectural invariance is achieved
by using a platform-independent representation of information about subroutines. An
implementation of a software prototype called CACompare is proposed. The efficiency of
the prototype is rated as high. Machine learning is not used in the solution.

In [27], a problem close to [25] is solved. The same shortcomings are indicated—a
strong dependence on processor architectures and a decrease in efficiency with different
compiler switches. One of the main differences between this work, and [25] is the use of
subroutines that implement kNN instead of MinHash for comparison.

The work [28] is devoted to an overview of possible ways to search for malicious
software in binary images of the Internet of Things (IoT). It is indicated that the typical
format of binary programs is ELF, and a large number of architectures used (x86, ARM,
MIPS, SPARC, AARCH64, PowerPC, Renesas SH, Motorola 68020) is one of the problems
for effective malware detection in the code. The specific architecture of the IoT binary image
can be obtained from the ELF header. However, the work aims to develop methods that
are independent of a specific architecture and use certain features of the MC. Based on the
work, the following taxonomy of features (underlying the corresponding search methods)
can be distinguished in a hierarchical form; the CAF label indicates Cross-Architectural
Features—i.e., those that can be applied to any programs, regardless of their Architecture,
which is especially important in the aspect of solving the problem of the current research:

• Static analysis:

– Based on metrics:

* Highlevel:

· ELF-header (CAF);
· System API (CAF);
· Strings (CAF);
· Symbol table;

* Lowlevel:

· Opcodes;
· Mnemonics;

* Atomic (in the original—Machine level):

· Emulated environment (in the original—Static emulation);

– Based on graphs:

* (no subgroup)

· Opcode graph;
· Control Flow Graph (CAF);
· Function call graph;
· API call graph;
· Abstract Syntax Tree;

– Based on sequences:

* One-demension:

· Bytes (CAF);
· Assembler Instructions (CAF);
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· Entropy;
· Byte sets (n-grams);

* Two-demension:

· Black and White (CAF);
· Color Image (CAF);

* Three-demension:

· Hidden projection;

– Based on relations:

* File reputation:

· File vs Machine;
· File vs File;

• Dynamic analysis:

– Tracing:

* (no subgroup)

· API call;
· Network traffic;
· File access;
· Order of execution of instructions;

– Usage:

* (no subgroup)

· Memory;
· Registers.

Note that, for static atomic analysis based on metrics, the taxonomy indicated Static
emulation, for which it is possible to use dynamic analysis of MC (for example, using
QEMU [29]). However, from the point of view of the features used, it is more correct to give
the name of the taxonomy element as Emulated environment. In addition, in this work,
static low-level analysis based on metrics using opcodes was marked as CAF, which is not
correct because the metrics depend on the architecture of the instruction set.

The given taxonomy can be presented in a more visual form using the diagram in
Figure 1.

Thus, of all the features, the following eight belong to cross-architectural (i.e., those
that have the CAF label):

• ELF header describing properties of the program executed on one of the possible
Architectures;

• System API, which defines the mechanism of interaction with the operating system,
regardless of the MC Architecture;

• Lines containing text in some formalized language (natural, artificial) not related to
specific MC instructions;

• Control flow graph that describes the middle and high-level logic of the program
execution, and not the low-level instructions of the MC;

• Bytes and Assembly instructions that are converted into a one-dimensional sequence,
thereby losing the semantic features of the Architecture instructions;

• Black and white and color image, which only display the MC byte sequences in a
visual form.

In most binary code analysis methods that use various features, machine learning
is used.

A fairly brief article [30] presents a Web service for checking malware by dynamic
analysis. To do this, based on the ELF header, the architecture of the binary code processor
is determined (one of the ARM, MIPS, X86, X86-64, PPC, SPARC, SH4 and m68k), and the
program is launched. During operation, the IoT environment is emulated. Then, the logs of
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system calls and network traffic are collected. Applying kNN to logs allows you to classify
a user ELF program as safe or malicious.

Figure 1. Taxonomy of features for binary code analysis methods. Note.The following cell background
colors are used: yellow—1st level subgroup, blue—2nd level subgroup, green—3rd level subgroup,
gray—3rd level subgroup is absent (according to the original taxonomy), red—presence of the CAF
property, white–other property.

The work [31] is devoted to the problem of reverse engineering of the executable
code. The binary code ELF files for Linux and Java byte code (JBC) are considered, and the
structure of their headers is given. The purpose of the proposed method is to determine
the compiler of the program’s executable code. Meta-information about files was taken as
features to determine the compiler type, for example: for Java—release level, constant pool
entries number, method info structures number, etc.; for ELF—entry point address, section
header table offset, program headers number, etc. For classification, the General Regression
Neural Network machine learning model is used.

The work [32] is devoted to finding errors in a binary code. At the same time, the
shortcomings of the existing search methods are emphasized—the requirement of the
source code, work with a specific instruction architecture, and the use of dynamic anal-
ysis. Therefore, cross-architecture signature search is used in the work. To do this, the
instruction code is translated into an intermediate representation that is not related to the
execution architecture. Then, code signatures are built, which are compared with templates
corresponding to errors. A prototype has been developed that implements the method and
supports x86, ARM, and MIPS architectures.

Ref. [33] belongs to the field of reverse engineering and is devoted to detecting
areas of obfuscated code. To do this, the binary code is translated into an intermediate
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representation—using the Binary Analysis Platform Framework. Then, this representation
is processed for protection against analysis (i.e., obfuscation) using the rules of an expert
system. The solution has the form of a REDIR debugging software module (abbr. from the
Rule Engine Detection by Intermediate Representation), which, unlike similar solutions,
works with a static code form.

Ref. [34] is devoted to the identification of subroutines in code that has been ported
from one processor architecture to another. Thus, if the source code remains 99% unchanged,
then the binary code for different architectures will change significantly. To solve the
identification problem, semantic signatures are used, which mean a set of conditional
transitions and calls in the MC. If two different programs consist of a conditional branch, in
each branch of which there is the same API function call, then the semantic signatures of
the programs will be the same (or at least close). Thus, since this signature defines some
execution logic like “make compare + call API function”, it can be considered platform
independent. The Jaccard index is used to determine the similarity of signatures.

Ref. [35] relates to the field of auditing information systems and is aimed at identifying
ELF programs. For this, a metric classification is used. The detection method consists of
three successive steps. First, 118 features are extracted from ELF files, which are the
frequencies of occurrence of assembler commands (add, mov, jmp, etc.). Secondly, the
Minkowski metric [29] is calculated for the identified file and samples from the database.
Thirdly, it evaluates how close the tested file is to each sample from the database. For file
comparison, the following three methods are applied and evaluated: center of mass, k-NN,
and STOLP (selection of reference objects for the metric classifier).

Ref. [36] is devoted to ensuring the security of software IoT devices. The importance of
the cross-platform solution is emphasized, and ELF is justified as the most relevant program
format. The essence of the malware detection method is to consider ELF files as a sequence
of bytes from the address of the entry point to the program. Then, classical classification
based on machine learning is applied using Levenshtein distance [37] and p-spectrum
[38]. For testing, firmware images of IoT devices of the following seven architectures were
selected: ARM, MIPS, x86, x86, PowerPC, SPARC, Renesas. kNN and SVM were chosen as
classifiers. The obtained malware detection accuracy is 99.9%.

Ref. [39] describes one of the methods for identifying malicious PE files. To do this,
information such as code size, section order, etc. is extracted from the executable file.
This information is fed to the input of a binary machine learning classifier. The result of
the classifier’s work is the fact that the program is safe or malicious. The following are
selected as machine learning models: Naive Bayes, Decision Tree, Random Forests, Logistic,
Regression and Artificial Neural Networks. The best obtained malware detection accuracy
is 97%.

Ref. [40] belongs to the field of forensics. The paper proposes an extended procedure
for forensic analysis of executable files in PE format. The procedure for their research
consists of five stages implemented by the corresponding modules: identifying string
constants and program functions, services in the operating system, statistical data about
the program, and generating a final report with detailed information. The authors include
the following statistics about the PE file: general information, binary form (in HEX format),
lines read, and network/registry/file activity.

Ref. [41] is devoted to a full-fledged framework aimed at analyzing PE files in order
to detect malware. For this, 60 basic and 10 derived features were identified from the
program. Then, the features were subjected to data mining and static analysis using the
following techniques: building frequencies and distributions of features, their ratios and
ranges, obtaining the corresponding derived indicators for normal and malicious programs,
building detection rules based on the divergence of indicators, introducing levels for the
divergence of metrics. The frequency of occurrence, ranges and ratio of features were
determined for both normal and malicious programs. As a result, 34 indicators were
obtained that have significant differences for safe and malicious programs. Based on
this, the corresponding rules were built. Some of the most significant indicators were
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as follows: the size of the last section, the physical properties of the file (for example,
code architecture), the number of sections, etc. The total number of rules was 32, and the
accuracy of determination was 95%.

Ref. [42] is devoted to the detection of malware by comparing the fuzzy hash of
the file under investigation with the same hashes in the database of virus instances. As
hashes in the study, Ssdeep (a contextual piecewise hash separately for the entire file and its
resources), Imphash (a hash by import sections) and PeHash (a hash of the characteristics
of a PE header and its sections) were selected. Experiments have shown high efficiency in
detecting malware using fuzzy hashes.

Ref. [43] is devoted to the detection of PE files containing packaged code that can
potentially be malicious. For this, machine learning based on SVM is used. The following
features were used: the starting address, unknown fields in the optional header, the number
of sections with certain characteristics (accessibility for reading, writing, executing, etc.), the
number of imported functions, and the entropy of sections. The authors see the continuation
of the study in the refinement of the mechanism for detecting packaged PE programs using
malicious code detection methods.

Ref. [44] is devoted to the detection of malicious programs. Insufficient effectiveness
of the use of signature methods is indicated, since the code of viruses can change. As a
solution, it is proposed to use a histogram of operation codes. An implemented solution is
described that takes a PE program as input and compares its histogram with others from
the virus database. To assess the similarity of histograms, the Minkowski distance is used.

Ref. [45] is devoted to the detection of malicious PE programs using machine learning.
To do this, 28 features are extracted from the PE file, divided into the following groups: file
metadata (number of sections, compilation time, number of characters, etc.), file packing
(Shannon entropy, presence of raw data and certain string occurrences in section names),
imported files and imported functions (of certain types). To identify malware, a binary
classifier of one of the following algorithms was used: kNN, decision tree, SVM, and
random forest. The method and classifiers were evaluated for four types of malware:
backdoor, virus, trojan, and worm. The random forest algorithm showed the best results.

In [46], it is proposed to take into account the structural features of PE files to identify
embedded malware. Thus, if the malicious code was built into the original one, then part
of the program will have anomalous homogeneity. The PEAT toolkit (abbr. from Portable
Executable Analysis Toolkit) is described, which performs simple static checks (for example,
the address of the entry point or instructions for determining the address of the virus in
memory), visualizes information about the program (for example, code areas, lines, etc.).,
etc.) and automates statistical analysis (for example, instruction frequency, opcode entropy,
etc.).

Ref. [47] uses a PE file header to detect ransomware, represented as a sequence of
1024 bytes. For classification, artificial neural networks of the following types are used:
Long Short Term Memory and multilayer. The method was tested on safe and malicious
programs of five families Cerber, Locky, Torrent, Tesla and Wannacry. The results show
high performance with little gain for the first family.

Let us give a brief analysis of the above works based on the following characteristics
for each article (Table 1):

• Ref.—reference to the article;
• Title—title of the article;
• Year—article publication year;
• Format—the format of the program to be emphasized (ELF/PE/JBC/Any);
• Mechanism (Mech.) the main mechanism used to solve the problem:

– ML—classical ML models and methods that use MC features (for example, classi-
fication of ELF programs into normal and malicious ones based on the analysis of
system call logs and network traffic [30]);

– Signature (Sign.)—definition of a digital signature from MC elements (for exam-
ple, a sequence of conditional jumps and function calls [34]);
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– Metric (Metr.)—calculation of various derivative complex indicators by MC (for
example, the Minkowski metric for the histogram of command opcodes [44]);

– Hash—applying hash functions to the MC area or its indicators (for example,
comparing fuzzy hashes of the program under investigation with hashes from
the malware database [42]);

– Rules—application of strict detection rules (for example, creating rules for de-
tecting malware by comparing their indicators with the maximum allowable
[41]);

– Statistic (Stat.)—collection and analysis of statistical information about the MC
(for example, identification of an embedded malicious code by the statistical
anomaly of its instruction appearance [46]);

• Proposal (Prop.) application target (Information Detection (ID), Malware Detection
(MD), Packing Detection (PD), Duplicate Detection (DD), Obfuscation Detection (OD),
File Detection (FD)).

Table 1. Publications’ characteristics.

Ref. Title Year Format Mechanism Proposal

[20] Binary Analysis with Architecture and Code Section Detection using
Supervised Machine Learning 2020 ELF ML/Sign. ID

[25] Binary Code Clone Detection across Architectures and Compiling
Configurations 2017 ELF Hash/Sign. DD

[27] Efficient Features for Function Matching in Multi-Architecture Binary
Executables 2021 ELF ML/Sign DD

[28] A Survey on Cross-Architectural IoT Malware Threat Hunting 2021 ELF All MD

[30] ELF Analyzer Demo: Online Identification for IoT Malware with Multiple
Hardware Architectures 2020 ELF ML MD

[31] A compiler classification framework for use in reverse engineering 2009 ELF/JBC ML ID
[32] Cross-Architecture Bug Search in Binary Executables 2015 Any Sign. ID

[33] REDIR: Automated static detection of obfuscated anti-debugging
techniques 2014 ELF Rules OD

[34] Cross-Architecture Binary Semantics Understanding via Similar Code
Comparison 2016 ELF Sign. DD

[35] The method of elf-files identification based on the metric classification
algorithms 2016 ELF Metr. FD

[36] IoT-Malware Detection Based on Byte Sequences of Executable Files 2020 ELF ML/Metr. MD

[39] On the Design of Supervised Binary Classifiers for Malware Detection
Using Portable Executable Files 2019 PE ML MD

[40] Detecting forensically relevant information from PE executables 2014 PE Stat. ID
[41] Implementation of Portable Executable File Analysis Framework (PEFAF) 2019 PE Rules/Stat. MD

[42] Detection of Malicious Portable Executables Using Evidence
Combinational Theory with Fuzzy Hashing 2016 PE Hash MD

[43] Detection of packed executables using support vector machines 2011 PE ML/Stat. PD

[44] Opcodes histogram for classifying metamorphic portable executables
malware 2012 PE Metr./Stat. MD

[45] Investigation of malicious portable executable file detection on the network
using supervised learning techniques 2017 PE ML/Stat. MD

[46] A toolkit for detecting and analyzing malicious software 2002 PE Stat. MD
[47] Static Detection of Ransomware Using LSTM Network and PE Header 2021 PE ML MD

Based on the analysis of the studies, the following preliminary conclusions can be
drawn. First, according to the publication date, they were all published between 2000
and 2021. At the same time, articles with an emphasis on the ELF format have later dates.
This is most likely due to the increasing popularity of IoT, for which this format can
be considered “native”. Secondly, there is no advantage over the analysis of ELF or PE
programs (10 papers belong to ELF, 9—to PE, 1—without specifying the format). Thirdly,
although the mechanism most often used in decisions is ML (9 works), nevertheless, others
are used separately or in combination with it (in descending order of frequency): Statistic—
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6 works, Signature—5 works, Metrics—3 works, Hash and Rules—2 works each. Ref. [28]
is an overview and includes all mechanisms. At the same time, slightly more than half of
the ML mechanisms (5 out of 9) are used in conjunction with others. In addition, fourthly,
the main target application is malware detection (11 works), followed by the collection of
meta-information about the program (4 works) and the search for information duplicated
in programs (3 works). In addition, one work is presented on the definition of the same
packed and obfuscated data, as well as one work on the identification of programs. Thus,
the current task of research on the identification of the MC Architecture, although not the
most frequently covered, is nevertheless in second place in terms of relevance.

3. Ontological Model of the Subject Area and Research Stages

For a better formation of the terminology of the subject area and based on the foregoing,
we propose the following ontological model that expands the previous author’s one [17].
This model defines the main concepts and relationships between them for the current study
(similar to [48]). All subsequent definitions will be given in terms of the problem being
solved, and not as uniform for the entire scientific and practical sphere.

3.1. Model Diagram

The ontological model of the subject area of this study is shown in Figure 2. Model
elements with a gray background refer to the previous author’s MC model, and elements
with a white background refer to its extension in the current study.

Figure 2. Representation of the domain ontological model.
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The elements of the previous author’s model are also necessary because, without them,
the current model would not be complete.

3.2. Terminology

Let us further interpret the main elements of the model, repeating those described
earlier in [17] and introducing new ones. Elements are present in this is as follows (given in
short form):

• CyberDevice—a device whose operation is determined by the program code running
on the processor;

• File—an information object of the CyberDevice storage;
• Program—a file type with executable code and additional metainformation;
• Header (of a program)—an area with metadata at the beginning of a program that

defines its structure and execution parameters;
• Section (programs)—a program area with data of the same type;
• MC—a program code in the code section, executed by the CyberDevice processor;
• Data—information in the data section used by the MC;
• Processor—an electronic unit or an integrated circuit for performing MC;
• Architecture (of the processor and MC)—a given set of MC instructions is formalized;
• MC class—a set of MC for one Architecture;
• Identification (Architectures)—the process of identifying a particular type of CyberDe-

vice Architecture;
• Model (MC)—the formalized description of MC suitable for its identification;
• Private signature or simply signature (MC)—the byte-frequency distribution of the

MC of a single program for CyberDevice;
• Template signature (architecture and MC class)—the byte-frequency distribution of

MC of a certain class, collected from a sufficiently large number of programs of this
CyberDevice Architecture;

• Byte-Frequency Distribution (MC)—the normalized distribution of MC byte values
(i.e., frequency of occurrence of each of the 256 byte values).

New elements introduced to the model include:

• Method (identification)—a unique technique (algorithm) or a set of known techniques
(algorithms) that solve the problem of MC identification based on the MC model is
the main theoretical result of the current study;

• Utility (identification)—a software tool that implements the Method (i.e., all its modes)
using template Signatures—is the main practical result of the current research;

• Operating mode (Methods and Utilities)—the operating mode of the Utility, which is
the main one in the current study; the mode is intended for direct determination of
the File Architecture; used in an experiment to confirm the main results of the current
study;

• Research mode (Utilities)—the mode of operation of the Utility, which is additional,
is outside the scope of the current study; the mode is designed to assess the limits of
applicability of the Method and Utility.

This ontological model will allow for correctly interpreting the course and results of
the study. In addition, it gives a deeper understanding of the subject area.

3.3. Study Stages

Based on the task of the study, we can assume the following stages of the study (and
the requirements for them), which should lead to the creation, practical implementation
and evaluation of the MC Architecture Identification Method.

Stage 1. Analysis of MC features (its meta-information and methods of its processing)
and selection of MC Classes for Identification. The result of the stage should be a MC
Model suitable for Identification.
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Stage 2. Synthesis of the Identification Method using the MC model. The result of the
Method operation should be the determination of the MC Architecture by the program file
containing it. In its operation, the Method must use template and private signatures.

Stage 3. Implementation of the Identification Utility that automates the work of
the Method. The utility should compare the signature of the MC test set with template
Architecture Signatures for different MC Classes. In addition, the Utility’s algorithm must
allow the selection of the closest template Signature. It would be advisable to include in
the algorithm for calculating the probability of belonging of the MC from the test sample to
each of the Classes—to determine the degree of reliability of the result.

Stage 4. Conducting the main experiment on the test sample of the MC for the Identi-
fication of the MC Architecture using the Method and the Identification Utility. Firstly, it is
required to check the overall functioning of the Identification process—to give a qualitative
assessment (i.e., to evaluate the performance of the Method). In addition, secondly, it is re-
quired to estimate the effectiveness of the Identification—to give a quantitative assessment
(i.e., to evaluate the effectiveness of the Method).

Stage 5. Processing the results of the study (Method, Utility and experiment with them)
and the formation of conclusions. Thus, in addition to the advantages, the disadvantages
of this solution should be highlighted and ways to eliminate them proposed.

It should be noted that Stage 1 was fully completed in the previous author’s study (see
[17]), i.e., the MC Model was received. Stage 2 was also partly implemented in this study.
Thus, a set of template Signatures that are publicly available has already been obtained.
For this, in particular, the developed software tool (Research Prototype) was used, which
then formed the basis of the current Identification Utility.

Later in the article, Stage 2 will be described in Section 4, Stage 3 in Section 5, Stage 4
in Section 6, and Stage 5 in Section 7.

4. Identification Method

The idea of the Identification Method is to select the MC for a set of Architectures and
form their template Signatures. These signatures can be compared with the file signature
of a single program, which will determine the Architecture of its microcontroller. At the
same time, not only the identity of the signatures is important, but also some proximity
(i.e., identification with some high probability). The MC model that underlies the Method
(and the Utility) was obtained, formalized and studied by the authors in the previous study
[17]. The possibility of such an approach to Identification was justified there by verifying
the hypothesis of Identification (hereinafter—the Hypothesis).

4.1. Method Prerequisites

For a more understandable presentation of the Method, we briefly describe the MC
Model and the Hypothesis introduced in the previous author’s investigations [17].

The MC Model is designed to represent the MC as a sequence of bytes, suitable for the
subsequent calculation of its Signature. At the same time, the MC Model is applicable for
Identification (i.e., it is not “destroyed”) even with partial loss or modification of parts of
the partially changed program, i.e., has the property of “stability” to input disturbances.
This property means that, even if an incomplete or partially changed MC is provided to the
Model input, then the simulation result (i.e., the resulting sequence of bytes at the Model
output), if it changes, is insignificant. As a result, the signature calculated later will also
remain practically unchanged.

The set of bytes is obtained from the sections of code allocated in each program. In
case of “destruction” of information about sections, the entire contents of the file can be
taken as bytes (which, accordingly, will lead to a decrease in the adequacy of the Model).
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In a formal form, the Program signature can be written as a fixed array (or a buffer of
a given length, an analogue of a vector) of the frequencies of the values of its bytes from
28 = 256 elements (see Equation (1)):

Signature = Frequency[256](Bytes), (1)

where Bytes is a set of bytes in the file, [] is the definition of an array of values (in the form
“Name[Dimension]”, where Name is the semantic name of the dimension, Dimension is the
size of the array or the number of all arrays in the array), and Frequency[i] is the frequency
meetings of each byte (normalized by the maximum number of workers).

The frequency of occurrences of each byte is calculated as in Equation (2):

Frequency[i] =
Count[i]

max(Count[0], ..., Count[255])
. (2)

In statements, the definition of a Class has the notation as at the Equation (3):
Class = Identi f icationOne : Model → Signature(RawBytes)

RawBytes =
N⋃

i=1

Li⋃
j=1

Bytesi[j]
, (3)

where Identi f icationOne is the procedure for precise determination of the MC Class, which
provides obtaining (→) from its Signature Model using the set of all MC bytes (RawBytes);
N is the number of program sections with MC; Li is the number of bytes in the i-th section;
Bytesi[j] is j-th byte in the i-th section.

The hypothesis is that any microcontroller running on the same architecture has
similarities. This feature is just used for identification.

The text entry looks like this:

“A set of native code files used on a single processor architecture has its own unique
signature frequency, different from the others.”

The analytical notation of the Hypothesis has the form as at the Equation (4):SignatureClassi = BuildSignature(
F⋃

f=1
ModelClassi

f )

∀i, j(i 6= j), SignatureClassi 6≈ SignatureClassj

, (4)

where Signature(Classi) is the Signature of MC Models of one Class (Classi); BuildSignature()
is the procedure for constructing the MC Signature from the consideration of the Model f
models of the same Class; F is the number of Models of this Class; while the Signature of
one Class (Classi) is significantly different ( 6≈) from the Signature of another Class (Classj).
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4.2. Formalized Notation

Using the ontological terms and records introduced above, the Identification Method
can be represented in the analytical form as in Equation (5):

Model(FileClassk
f ) =

N⋃
i=1

Li⋃
j=1

Bytes f ,k
i [j]

SignaturesCollection =
C⋃

k=1
< Signaturek, Classk >

Signaturek = BuildSignature(
F⋃

f=1
Model(FileClassk

f ))

SignaturesTest = BuildSignature(Model(FileTest))
C⋃

k=1
< Classk, Probabilityk >=

Identi f icationMulti(SignatureTest, SignaturesCollection)
ClassFileTest = Classk, f or k : Probabilityk = (Probability1, ..., ProbabilityC)

, (5)

where FileClassk
f is the f-th file whose MC belongs to the k-th Class (Classk); Model(File)

is the MC file model, calculated as a set of bytes of all sections (number N) from the
MC file; Li is the number of bytes in the i-th section; Bytes f ,k

i [j] is j-th byte in the i-th
section for the f-file, the MC of which belongs to the k-th Class; SignatureCollection is
a collection of Signatures consisting of pairs of MC Signatures (Signaturek) and their
corresponding Classes (Classk); C is the number of all Classes (and, accordingly, Signatures);
BuildSignature() is the procedure for building a Signature for a MC of a certain Class from a
set of MC Models in the corresponding files; F is the number of files from the MC of the k-th
Class; Identi f icationMulti() is the procedure for determining the probability (Probabilityk)
of assigning the MC in the file being tested (FileTest), using its Model, to each of the C
Classes; ClassFileTest is the desired Class of the file being tested (i.e., its MC), determined by
the highest probability (obtained using the max() procedure) of being assigned to each of
the Classes. Thus, in the beginning, a set of template Signatures is built using a set of files
from the MC of each Class. Then, the Signature of the file under test is determined. After
that, the Class is determined, the MC Signature of which is closest to the Signature of the
person being tested.

4.3. Approaches to Creation

To synthesize the Identification Method, it is necessary to solve the methodological
problem of choosing the actual mechanism for such creation. There are various mechanisms,
the most obvious of which are as follows:

• Expansion/specialization, when a particular method is developed/contracted to solve
a larger/smaller problem;

• Merging, when methods close to the task are taken, the most necessary parts of which
are then combined;

• Heuristic, based on the intuition (“brilliant guess”) of the researcher;
• Empirical, based on observed data.

Based on the specifics of the problem being solved, the most appropriate mechanism
would be to combine the specialization mechanism (since both the task of processing
binary files and the problem of class definition have proven approaches to solving) and the
empirical mechanism (due to the presence of many files with MC, the Signature of which is
almost impossible to calculate manually).

Following this approach, the Method can be built on the basis of artificial intelligence
models and methods, in particular, machine learning models and methods, namely classifi-
cation. According to the latter, the Identification Method can be the training of its internal
model by precedents in the form of a pair: “average byte-frequency distribution of MC files”
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vs. “their belonging to a certain type of Architecture”, which is identical to the “Signature
→ Class” comparison. Having collected a sufficient “mass” of training data in this way, the
machine learning model will be used to map the MC of new files (or rather, their Signatures)
to one of the already trained MC Classes. Naturally, a separate task is to obtain a training
sample—a set of byte distributions of the MC and its Architecture in sufficient quantity
(which will give template Signatures) that should also be taken into account in the Method.

Using the analytical representation of the Identification Method proposed above and
the chosen creation mechanism, we will perform an algorithmic synthesis of the Method in
the form of a sequence of steps. This view will allow us to create an Identification Utility.
As data for training, we will take the Gentoo OS assembly for various Architectures, which
was previously used to obtain template MC Signatures when proving the Hypothesis.
Despite the fact that executable files of this OS can only be in the ELF format, in the interests
of greater generality of algorithms and applicability of the Utility, we will support the
second common program format—PE, which is used mainly in Microsoft Windows. It is
also necessary to take into account that, in addition to the section with MC, the file contains
other sections with data that do not contain processor instructions.

Since Identification should not only answer the question of whether the MC of the
tested file belongs to a known Architecture, but also indicate this Architecture, then from
the point of view of machine learning, it is necessary to solve the problem of multiclass
classification. Since the process is executed only once, it is advisable to execute it with
saving the results of the work as templates (i.e., Signatures, which is why they are called
templates). To take into account the above features of the Method, it is advisable to single
out three phases of this process with the possibility of their separate execution (which will
be especially justified when collecting MC Signatures for a large number of files). Thus, in
Phase 1, you need to unpack the files from the MC for various Architectures, taken from the
images of the Gentoo distribution kit, into temporary directories. At Phase 2, you need to
build template Signatures and save them in separate files (used below as some invariants).
At Phase 3, it is required to carry out the Identification itself by first training the internal
model for multiclass classification, and then testing the input files on it (i.e., finding the
probabilities of classifying the MC as Processor Architectures).

It is advisable to be able to identify both full-fledged executable files (in the form
of headers with a set of sections) and “raw” MC (that is, sequences of instructions to be
executed by the processor without additional meta-information). The division of training
and testing into two phases does not make practical sense, since the training time for a set
of Signatures takes an extremely short time—Signatures consist of 256 bytes (in terms of
machine learning—features), and the total number of processor Architectures is unlikely to
exceed 100 (in terms of machine learning—training samples or precedents).

4.4. General Scheme

The scheme of operation of this method consists of five consecutive steps-blocks
(grouped into three phases). The scheme is shown in Figure 3.
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Figure 3. MC Architecture Identification Method Diagram. Note. In the figure, a set of objects (OS
images, Signatures, etc.) is represented using figures arranged one after another, i.e., by introducing
a z-axis going into the depth of the circuit. In addition, the following colors of the background of
the forms were used: yellow—Method steps, blue—information independent of the tested program,
green—information about the tested program, red—the result of Identification.

4.5. Basic Steps

The scheme consists of the following successive steps.
Step 1 (“Unpacking image archives (recursively)”) takes as input a set of OS images

(in the form of an archive) for certain processor architectures and returns a set of unpacked
files at the output, which may include files with other data (scripts, images, information
storages, etc.); since the unpacked files themselves can be archives, the algorithm of this
step must be performed recursively.

Step 2 (“Removing redundant data files”) aims to optimize the Identification process
for speed of execution; at the step, in the sets of unpacked files, those files that are not
programs with MC of this Architecture are deleted; this allows you to increase the speed
of their future processing, both in the next steps and in the future with additional studies;
otherwise, the decrease in speed will occur due to the fact that, in order to determine both
the program itself and the Architecture of its MC, it is necessary to read the beginning of
the file, check the magic number at the beginning of the header structure (file signature; for
example, “0x7f 0x45 0x4c 0x46” for ELF and “ 0x4D 0x5A” for PE) and the field with the
Architecture.

Step 3 (“Obtaining a template frequency signature for a set of files”) takes as input
the sets of programs with MC from unpacked and “cleaned” OS images and calculates the
corresponding set of template Signatures for each Architecture; template in this case means
generalization or averaging for any MC of a given Architecture.

Step 4 (“Obtaining a frequency signature for one file”) takes as input a program under
test with an MC of an unknown (desired) Architecture and calculates the Signature for this
particular program.

Step 5 (“MC Architecture Identification”) accepts as input the previously received
template Signatures, as well as the Signature of the program under test; in the course of
work at the step, these Signatures are compared in order to determine whether the MC
Architecture of the tested program belongs to one of the given Architectures.
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4.6. Method Requirements

In the interests of the synthesis of the Method, it is necessary to note the structural
features of the Gentoo distribution. The Gentoo OS distribution builds have the extension
“.xz” or “.bx2” and are compressed containers from a single file. The latter is an uncom-
pressed “.tar” archive containing a complete directory and file structure. Some of these
files may also be compressed archives. Archives can be unpacked using the external utility
7-Zip, which supports all standard formats. Based on the above features, the following
efficiency requirements can be put forward for the implementation of the Method:

• In terms of performance, correct files with MC (i.e., without destruction and intended
for one processor Architecture) must be uniquely identified;

• In terms of efficiency, a high speed of work should be ensured, since otherwise the
Method will not be applicable to large information systems (which is a very real
situation);

• In terms of resource efficiency, the costs of both program resources and experts should
be minimal.

The method should have not only practical application, but also be used for research
purposes in the future. To do this, the following two modes of operation were identified
(and subsequently implemented):

• Operational (with the prefix “O”)—the main one for Identification;
• Research (with the prefix “R”)—additional for studying the limits of applicability of

the Identification.

Since the implementation of the Method (in the form of a Utility) in the operating mode
should be able to repeatedly launch different steps with the necessary set of settings, then,
after the prefix “O”, each such sub-mode (hereinafter simply—the mode) was designated
by the corresponding number: O1, O2 and O3—for Steps 1, 2 and 3; O4—to combine Steps 4
and 5.

Let us describe further each of the four modes.

4.7. O1 Mode. Unpacking Archives

This mode is preparatory and is intended for unpacking a tree of archives with files
into a separate directory for further processing. The Mode implements Step 1 in the Method.
The mode parameters are the path to the archive and the directory for unpacking. If nested
archives are found, they will also be unpacked, i.e., file extraction algorithms are executed
recursively. Archive formats (including compressed ones) such as 7z [49], Bzip [50] and
Tar [51] are supported, which allows the unpacker to be used for a large number of images
of various software products (not only for Gentoo, as in this study) .

The principle of operation of the this mode is presented using pseudocode in the form
of Algorithms 1–3.

Algorithm 1: Operating principle of the O1 mode—UnpackMode()
Input:

ArchFileName—path to the archive file to be unpacked
OutputDir—path to the directory to unpack the archive files

Output:
1 begin
2 Directory.Prepare(OutputDir);
3 UnpackFile(ArchFileName, OutputDir);
4 UnpackDirRec(OutputDir);
5 end

It can be seen from the pseudocode that the operation of the mode consists of executing
three procedures.



J. Sens. Actuator Netw. 2023, 12, 11 19 of 36

Algorithm 2: Operating principle of the O1 mode—UnpackFile()
Input:

ArchFileName—path to the archive file to be unpacked
OutputDir—path to the directory with files whose archives need to be
unpacked (recursively)

Output:
1 begin
2 Exec.UnpackArchiveProcess(ArchFileName, OutputDir);
3 end

Algorithm 3: Operating principle of the O1 mode—UnpackDirRec()
Input:

OutputDir—path to a directory with files whose archives need to be unpacked
(recursively)

Output:
1 begin
2 List<Path> NewDirList;
3

4 // Part 1: Recursive bypass of all files in directory
5 foreach dir in GetDirectories(OutputDir, Recursive: True) do
6 foreach file in GetFiles(dir) do
7 if IsArchive(file) == true then
8 String newDir = BuildNewDir(dir, file);
9 UnpackFile(file, newDir);

10 NewDirList.Add(newDir);
11 end
12 end
13 end
14

15 // Part 2: Bypass of all new created directories
16 foreach newDir in NewDirList do
17 UnpackDirRec(newDir);
18 end
19 end

The UnpackMode() procedure is the entry point to the mode. It contains the path to
the archive and the path to unpack its files. This procedure starts unpacking all nested
archives, starting from the top one. In addition, at the beginning, the directory is prepared
for storing the files to be unpacked by checking its existence and cleaning or creating a new
one—using the Prepare() procedure in the Directory program class.

The UnpackFile() procedure is an auxiliary procedure designed to unpack a single
archive using the full path to it and the output directory. As an unpacking utility, you
can use any external unpacker with suitable functionality, for example 7-zip, using the
UnpackArchiveProcess() procedure in the Exec program class.

The UnpackDirRec() procedure is the main one for the mode. The procedure takes
a directory path as a parameter and consists of two parts. First (Part 1), all files are
bypassed (including those located in nested directories) and, if an archive is found using
the IsArchive() function, it is unpacked into a new directory, the path to which is generated
uniquely using the BuildNewDir() function. In addition, secondly (Part 2), the procedure
repeats its work for each directory created in this way.
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4.8. O2 Mode. Removing Extra Files

This mode is an optimization (in terms of speed), deleting all unpacked files that are
unnecessary for work. The Mode implements Step 2 in the Method. Junk files include all
those that are not considered programs (i.e., do not have an ELF or PE format header). The
mode parameter is the path to the directory with the files in which you need to remove the
extra ones.

The principle of operation of this mode is presented using pseudocode in the form of
Algorithm 4.

Algorithm 4: Operating principle of the O2 mode—RemoveExtra()
Input:

SomeDir—path to a directory with files to remove unnecessary ones (except for
ELF and PE)

Output:
1 begin
2 foreach dir in GetDirectories(SomeDir, Recursive: True) do
3 foreach file in GetFiles(dir) do
4 if IsElf(file) != true and IsPE(file) != true then
5 File.Delete(file);
6 end
7 end
8 end
9 end

It can be seen from the pseudo-code that the RemoveExtra() mode procedure itera-
tively goes through all nested directories and files, checks whether the latter correspond to
programs in ELF and PE format using the IsEl f () and IsPe() functions, and if they do not
match, removes them using the procedure Delete() in the File program class. As a result,
after executing this mode, only programs should remain in the unpacked directory, i.e.,
files from MC of a certain Architecture.

4.9. O3 Mode: Calculation of Template Signatures

This mode is one of the main ones, since it processes the MC contained in programs
and builds template Signatures by their bytes. The Mode implements Step 3 in the Method.
The mode parameters are the path to the directory with programs and the path to the file
for saving the MC Architecture Signature, which is located in these programs. In addition,
to avoid getting into the MC Signature bytes of other Architectures, programs with which
can be located in this directory, it is necessary to pass the numeric identifier of the required
Architecture as parameters (separately for ELF and PE, since the values may differ). The
list of values of these identifiers will be given below.

The principle of operation of this mode is presented using pseudocode in the form of
Algorithm 5.

From the pseudocode, one can see that the main SignatureMode() procedure consists
of three parts.

First (Part 1), all programs in the given directory are iteratively traversed and, ac-
cording to their types (by checking the IsEl f () function for the ELF format and the IsPe()
function for the PE format), the bytes of the MC of their sections are read.

Secondly (Part 2), the MC Signature is calculated by the bytes read by counting the
occurrence of each and entering the counter into the Int[255] array (the size of the array is
identical to the maximum byte value—28).
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Algorithm 5: Operating principle of the O3 mode—SignatureMode()
Input:

SomeDir—path to the directory with programs whose MC Signature needs to
be built
SigFileName—path to the file where the template Signature should be saved
ElfArchValue—numeric identifier of the Architecture to check in the ELF
header
PeArchValue—numeric identifier of the Architecture to check in the PE header

Output:
1 begin
2 Int[255] signature;
3 List<Byte> allBytes;
4

5 // Part 1: Collect all bytes
6 foreach dir in GetDirectories(SomeDir, Recursive: True) do
7 foreach file in GetFiles(dir) do
8 if IsElf(file, Arch: ElfArchValue) == true then
9 ElfReader elf;

10 Byte[] bytes = elf.ReadAllBytesInCodeSection();
11 allBytes.AddRange(bytes);
12 end
13 if IsPe(file, Arch: PeArchValue) == true then
14 PeReader pe;
15 Byte[] bytes = pe.ReadAllBytesInCodeSection();
16 allBytes.AddRange(bytes);
17 end
18 end
19 end
20

21 // Part 2: Calculate signature by all bytes
22 foreach byte in allBytes do
23 signature[byte] += 1;
24 end
25

26 // Part 3: Normalize signature
27 signature = signature.Select(value => value / signature.Max());
28 File.Write(SigFileName, signature);
29 end

In addition, thirdly (Part 3), the Signature is normalized according to the maximum
value of the counters of all bytes. To do this, first, the maximum value is obtained—using
the Max() function of the Int[] array program class, and then each array value is divided
by the maximum—using the Select() function of the Int[] array program class. As a result,
all values in the array storing the Signature will not exceed 1, which will allow working
with the received Signatures for Architectures on the same scale.

4.10. O4 Mode. File Identification

This mode is the second of the two main ones (after the O1 Mode), since it actually
performs the Identification of the Architectures of the tested files using the template Signa-
tures obtained earlier. Mode implements Step 4 and 5 in Method. The mode parameters
are the path to the directory with the files being tested, as well as the enumeration of N
elements—Architectures for Identification and the corresponding paths to files with their
Signatures. As a result of the work, a list will be returned with the assignment of each
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of the tested files to one of the given Architectures. Based on the prerequisites described
earlier, Identification is based on machine learning in terms of classification.

The principle of operation of this mode is presented using the pseudocode in the form
of Algorithm 6.

Algorithm 6: Operating principle of the O4 mode—TestMode
Input:

SomeDir—path to the directory with files for which the MC needs to identify
the Architecture
Architectures—list of Architectures for which template Signatures are created
(of size N)
Signatures—list of template Signatures created for Architectures (of size N)

Output:
Predictions—the results of identifying files in the SomeDir directory as an
Architectures index

1 begin
2 Signature[] input;
3 String[] output = Architectures;
4

5 // Part 1: Read template Signatures
6 foreach filename in Signatures do
7 Signature sig = LoadSignature(filename);
8 input.Add(sig);
9 end

10

11 // Part 2: Building a Machine Learning model
12 MachineLearning.Classification ML;
13 ML.Learn(input, output); // Training by pairs: Signature -> Architecture
14

15 // Part 3: Building test file Signatures
16 List<Signature> testSignatures;
17 foreach file in GetFiles(SomeDir) do
18 Signature signature = BuildSignature(file);
19 testSignatures.Add(signature);
20 end
21

22 // Part 4: Machine code identification
23 Int[] Predictions = ML.Decide(testSignatures);
24

25 return Predictions;
26 end

From the pseudocode, you can see that the main TestMode() procedure consists of
four parts.

First (Part 1), there is a loading from files of template Signatures calculated earlier on
large sets of MCs of the same Architecture. For this, the LoadSignature() function is used,
which returns the Signature structure (for example, as an array of 255 elements).

Second (Part 2), a classification model for machine learning is built by using a training
set as a list of pairs of Architecture names and their Signatures. For this, the Classi f ication
program class in the namespace MachineLearning is used. In this class, there is a special
procedure for this—Learn().
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Thirdly (Part 3), the files under test are read from the given directory and their own
Signatures are built, obtaining a test sample. For building, the BuildSignature() function is
used, which is similar to the O3 mode, but only for one file.

In addition, fourthly (Part 4), the direct Identification of the tested files using machine
learning is carried out—based on the training and test samples. For this, the Decide()
function from the Classi f ication program class is used. The result of the Identification (in
the form of a list of predicted Architectures) is returned from the mode—for example, by
displaying it.

5. Identification Utility

To confirm the working capacity of the Method, the practical implementation of the
Identification is required. In the interests of this, the Utility was developed, the architecture
and implementation details of which are described below.

5.1. Development Toolkit

For the development of the Utility, Microsoft Visual Studio (version 2022) was chosen,
which is one of the undisputed leaders in the field of IT engineering. For this reason, the
development language was C# (which is obviously supported in the environment).

Despite the high and constantly growing popularity of the Python language, especially
when developing programs using machine learning, it has not been used for a number of
subjectively negative features: memorizing new (and not always logical) “simple” con-
structions; “kinship” between C# and Microsoft Visual Studio, which naturally affects the
use of the former in the latter (support for refactoring, ease of debugging, etc.); the author’s
negative experience of using scripting languages (Python, Ruby, etc.) versus those built on
“pure” bytecode (C#, Java), as well as the results of independent studies (unfortunately, not
published in leading journals), which show greater performance and lower consumption
of C# vs Python resources, which also influenced the final choice.

Even taking into account the libraries for machine learning ML.Net [52] from Microsoft,
third-party libraries Accord.Net [53] were used to develop this Utility because, as the
practice of developing previous projects showed, the API from Accord.Net (as well as
common templates) turned out to be more convenient.

The well-established SVM algorithm was chosen as a multiclass classifier.
In addition, although it is intended for binary classification (i.e., division into two

classes of objects), however, it can also be adapted to the problem of several Architec-
tures by applying the strategies “one-against-one” (based on the sum of the votes of each
paired classifier) and “one-against-all” (training the classifier to distinguish each class from
all others).

In the Accord.Net library, the program class MulticlassSupportVectorLearning, taken
as a basis, is intended for the first strategy.

Let us describe further the designed architecture of the Utility (the executable file
of which is called “MCArchIdent.exe”—short for MC Architecture Identifier), dividing it
into two qualitatively different layers: functional—responsible for its decomposition into
modules with specific functionality and their interconnections; and informational—linking
information flows circulating in the Utility and on its borders.

5.2. Function Layer

Based on the general scheme of the Identification Method operation, the following
composition of the Utility modules and their interconnection in the form of a functional
layer of the architecture was designed (see Figure 4).
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Figure 4. Functional layer of identification utility architecture.

The layer consists of the following 13 modules and utilities (modules perform the main
functionality of the Method, and external utilities—more general and auxiliary functionality
used by the first):

• “Operation mode selection module”—is responsible for the separate execution of the
Utility modes corresponding to the steps of the Method (as mentioned, Steps 4 and 5
were combined into O4 Mode for convenience). With its execution, the work of the
Utility and, consequently, the Method begins;

• “Operation mode module No. 1”—implements the main branch of the O1 Mode
functionality, and, consequently, Step 1 in the Method;

• “Operation mode module No. 2”—fulfills the main branch of the O2 Mode functional-
ity, and, consequently, Step 2 in the Method;

• “Working mode module No. 3”—realizes the main branch of the O3 Mode functional-
ity, and, consequently, Step 3 in the Method;

• “Working mode module No. 4”—implements the main branch of the O4 Mode
functionality, and, consequently, Steps 4 and 5 in the Method;

• “Archive unpacking module”—unpacks archives using an external utility (in this
study—Gentoo OS);

• “Module for working with the file system (creation, deletion)”—supports working
with directories, namely, ensures their creation and deletion;

• “Module for working with programs and sections with machine code”—supports
working with program headers, checking their type (in this study—ELF, PE) and the
Architecture Identifier, as well as receiving MC bytes from the corresponding sections
of the program;

• “Machine code Signature calculation Module”—calculates the Signature located in the
specified program (the algorithm for is given in the description of Mode O3);

• “Identification module based on machine learning”—performs direct Identification of
the MC using its Signature, as well as template Signatures of known Architectures;

• “External utility: 7-Zip”—unpacks (and, if necessary, unzips) files using an external
7-Zip archiver;

• “External utility: ELF parser”—checks for the presence of an ELF header in the file, as
well as reading its sections, including from the MC;

• “External utility: PE-parser”—checks for the presence of a PE header in the file, as
well as reading its sections, including those from the MC.
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5.3. Information Layer

The transformation of information flows during the operation of the Utility can be
shown in the following diagram of the information layer of the architecture (see Figure 5).

Figure 5. Information layer of identification utility architecture.

The scheme reflects both the work of the Method itself and the functional layer of the
Utility architecture; it also corresponds to the principles of machine learning methods in
terms of classification.

5.4. Launch Options

The utility is a console application with the following launch arguments format:

• for O1 mode:
> MCArchIdent.exe UnpackMode ArchiveFile UnpackDir
where UnpackMode is an indication of the current mode of operation, ArchiveFile is
the path to the archive file for unpacking, UnpackDir is the path to the directory for
unpacking the archive;

• for O2 mode:
> MCArchIdent.exe RemoveMode SomeDir
where RemoveMode is an indication of the current mode of operation, SomeDir is the
path to the directory for removing unnecessary files (except for ELF and PE programs);

• for O3 mode:
> MCArchIdent.exe SignatureMode SomeDir SignatureFile
ElfMachineValue PeMachineValue
where SignatureMode is an indication of the current mode of operation, SomeDir is the
path to the directory with programs for building template Signatures; SignatureFile is
the path to the file for saving the template Signature; El f MachineValue is the numeri-
cal identifier of the Architecture to check in the ELF program header; PEMachineValue
is the numeric identifier of the Architecture to check in the PE program header;

• for O4 mode:
> MCArchIdent.exe TestMode TestFilesDir ProcessorType=SignatureFile ...
where TestMode is an indication of the current mode of operation, TestFilesDir is
the path to the directory with the files being tested (i.e., intended for Identification),
ProcessorType = SignatureFile is a pair of the name of the Architecture for Identifica-
tion and the path to the file with its template Signature, “...” means the sequence from
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the previous argument (i.e., from the pairs of the name of the Architecture and its file
of its Signature).

5.5. Restrictions in Work

Let us indicate the main limitations in the operation of the Utility:

• Support for unpacking archives for OS Gentoo;
• Support for ELF and PE program formats;
• Lack of specialized optimizations;
• Lack of fine tuning of the classifier;
• Lack of graphic mode of operation.

Obviously, all restrictions are technical in nature and can be removed if necessary.

6. Experiments

To fully verify the Identification Method, it is necessary to conduct a series of experi-
ments. At the same time, such a check can be not only theoretical, but also practical, since
the Method has an implementation in the form of the corresponding Utility. Experiment-
ing with different operation modes the Utility on test files using template Signatures are
described below.

6.1. Initial Data

In the current experiments (as in the previous investigation by the authors [17]), the
Gentoo OS of the Stage 3 build was used for the Top-16 Architectures: Alpha, X32, Amd64,
Arm64, Hppa, I486, I686, Ia64, Mips, Mips64, Ppc, Ppc64, RiscV64, S390, S390x, Sparc64.
A brief breakdown of the Architectures (including their number with a “#” prefix, name,
description, and the numeric identifier of the Architecture to check in the ELF header for
Mode O3) is given in Table 2.

Table 2. Top-16 processor architectures from the Gentoo OS.

Number Name Description ELF ident.

#1 Alpha for Alpha (only 64-bit) 0x9026
#2 X32 for 64-bit AMD when working with 32-bit values 0x3e
#3 Amd64 for 64-bit AMD 0x3e
#4 Arm64 for 64-bit ARM 0xb7
#5 Hppa64 for 64-bit Hewlett Packard (with Precision Architecture) 0xf
#6 I486 for 32-bit Intel before Pentium Pro and II 0x3
#7 I686 for 32-bit Intel for Pentium Pro, II etc 0x3
#8 Ia64 for 64-bit Intel Itanium 0x32
#9 Mips for 32-bit MIPS 0x8

#10 Mips64 for 64-bit MIPS 0x8
#11 Ppc for 32-bit PowerPC 0x14
#12 Ppc64 for 64-bit PowerPC 0x15
#13 RiscV64 for 64-bit RISC-V 0xf3
#14 S390 for 32-bit IBM System 0x16
#15 S390x for 64-bit IBM System 0x16
#16 Sparc64 for 64-bit SPARC 0x2b

Each Architecture in Table 2 corresponds to a Class, which must be identified by MC.

6.2. O1 Mode. Unpacking Archives

Run the Utility in O1 Mode, passing as arguments the Gentoo image file for the Al-
pha Architecture—along the path D:\stage3-alpha-20200215T160133Z.tar.bz2 , also
specifying the unpacking directory - D:\Alpha\. To do this, run the following command:

> MCArchIdent.exe UnpackMode D:\stage3-alpha-20200215T160133Z.tar.bz2
D:\Alpha\



J. Sens. Actuator Netw. 2023, 12, 11 27 of 36

As a result of execution, the following log will be displayed:
(01.01.2022 01:01:01) [Unpack Archive]

stage3-alpha-20200215T160133Z.tar.bz2:\-> D:\Alpha\
(01.01.2022 01:01:01) Unpack Bzip:

’D:\stage3-alpha-20200215T160133Z.tar.bz2’ -> D:\Alpha\
(01.01.2022 01:01:01) Unpack Tar:

’D:\Alpha\stage3-alpha-20200215T160133Z.tar’ -> D:\Alpha\!__stage3-alpha-
20200215T160133Z.tar\

(01.01.2022 01:01:01) Unpack Tar:
’D:\Alpha\!__stage3-alpha-20200215T160133Z.tar\usr\lib\python2.7\test\
testtar.tar’ -> D:\Alpha\!__stage3-alpha-20200215T160133Z.tar\usr\lib\
python2.7\test\!__testtar.tar\

(01.01.2022 01:01:01) Unpack Tar:
’D:\Alpha\!__stage3-alpha-20200215T160133Z.tar\usr\lib\python2.7\test\
PaxHeaders.138508\testtar.tar’ -> D:\Alpha\!__stage3-alpha-20200215T160133Z.
tar\usr\lib\python2.7\test\PaxHeaders.138508\!__testtar.tar\

(01.01.2022 01:01:01) Unpack Tar:
’D:\Alpha\!__stage3-alpha-20200215T160133Z.tar\usr\lib\python3.6\test\
testtar.tar’ -> D:\Alpha\!__stage3-alpha-20200215T160133Z.tar\usr\lib\
python3.6\test\!__testtar.tar\...

6.3. O2 Mode. Removing Extra Files

Let us run the Utility in PO Mode, passing as arguments the directory with the un-
packed files of the Gentoo OS image for the Alpha Architecture—along the path D:\Alpha\.
To do this, run the following command:

> MCArchIdent.exe RemoveMode D:\Alpha\
As a result of execution, the following log will be displayed:
01.01.2021 01:01:01) [Remove extra files (not ELF, PE)] D:\Alpha\
Thus, all files that are not programs in ELF and PE format will be removed from the

unpacked Gentoo OS image for Alpha Architecture.

6.4. O3 Mode. Template Signature Calculation

Run the Utility in O3 Mode, passing as arguments the directory with the unpacked
files of the Gentoo OS image for the Alpha Architecture (after removing all of them, except
for ELF and PE programs)—along the path D:\Alpha\, passing the file for writing the
Signature—Alpha.sig, after which the numeric Identifier of the required Architecture for
the ELF and PE format from Table 2 is 0x9026 and 0x0 (the last number means the mode of
skipping MC programs of this format when building a template Signature). To do this, run
the following command:

> MCArchIdent.exe SignatureMode D:\Alpha\Alpha.sig 0x9026 0x0
As a result of execution, the following log will be displayed:
(01.01.2021 01:01:01) [Collect signature] D:\Alpha\-> Alpha.sig
Thus, for MC programs of ELF format with Architecture ID 0x9026 (i.e., for Alpha), a

template Signature will be built from the D:\Alpha\directory, which will then be saved in
the Alpha.sig file.

All received template Signatures (in the form of an Excel table and a histogram) can be
obtained from the author’s Internet resource http://demono.ru/projects/MCArchIdent/
SignaturesByGentoo/ (Access date: 8 December 2022).

6.5. O4 Mode. File Identification

Run the Utility in O4 Mode, passing as arguments the directory with the files being
tested—D:\Test\ and a sequence of pairs of Architecture names and files of their template
Signatures (separated by “=” symbol):

 http://demono.ru/projects/MCArchIdent/SignaturesByGentoo/ 
 http://demono.ru/projects/MCArchIdent/SignaturesByGentoo/ 
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> MCArchIdent.exe TestMode D:\Test\Alpha=Alpha.sig X32=X32.sig ...
S390x=S390x.sig Sparc64=Sparc64.sig

The bash program from the Gentoo OS for different Architectures was taken as the test
files. The size of the program is approximately 1 MB, which can be considered sufficient to
test the functionality of the Method and the Utility. The files to be tested have a name in
the format “Test_ARCH”, where ARCH are the names of the corresponding Architecture.

As a result of execution, the following log will be displayed, consisting of two parts
(for simplicity, only part of it is given, the rest of the lines are replaced by the symbols “...”):

(First part of the log)
(01.01.2021 01:01:01) [Test files] D:\Test\
(01.01.2021 01:01:01) D:\Test\test_Alpha -> Alpha (0.31)
(01.01.2021 01:01:01) D:\Test\test_X32 -> X32 (0.27)
...
(01.01.2021 01:01:01) D:\Test\test_S390x -> S390x (0.32)
(01.01.2021 01:01:01) D:\Test\test_Sparc64 -> Sparc64 (0.29)

(Second part of the log)
(01.01.2021 01:01:01) Alpha X32 Amd64 Arm64 Hppa2 I486 I686 Ia64

Mips32r2 Mips64r2_multilib Ppc Ppc64 RiscV64 S390 S390x Sparc64
(01.01.2021 01:01:01) D:\Test\test_Alpha -> 0.31 0.04 0.04 0.04 0.04

0.04 0.04 0.06 0.05 0.06 0.05 0.06 0.04 0.04 0.04 0.04
(01.01.2021 01:01:01) D:\Test\test_X32 -> 0.07 0.27 0.04 0.04 0.04 0.05

0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.07 0.06
...
(01.01.2021 01:01:01) D:\Test\test_S390x -> 0.04 0.04 0.04 0.04 0.04

0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.32 0.10
(01.01.2021 01:01:01) D:\Test\test_Sparc64 -> 0.05 0.04 0.04 0.04 0.04

0.04 0.04 0.06 0.05 0.06 0.05 0.06 0.04 0.04 0.04 0.29

It can be seen from the log that the MC Architecture of all files in the D:\Test\
directory will be identified, about which the corresponding information is displayed.

The first part of the log contains the name of the file and the most likely Architecture
for it (the probability is indicated in brackets, taking into account the fact that there is a
small probability of classifying MC as other Architectures, and the total probability for all
Architectures is 1.0). Thus, for example, part of the string

D:\Test\test_Alpha -> Alpha (0.31)
says that the MC file in the test_Alpha program corresponds to the Alpha Architecture with
a probability of 0.31, while the average probability for all Architectures is: 1.0/16 = 0.0625.

In the second part of the log, in string notation, there is a table of probabilities for
assigning each of the files in the directory to each of the Architectures (in which a space is
used to separate the columns).

The results obtained in an assembled and readable form are presented in Table 3. For
convenience, instead of Architectures, their numbers are indicated (see Table 2). Each
value in a cell of the table means the probability of classifying the tested programs, which
have an Architecture according to the first column, to one of the known Architectures (i.e.,
those whose Signatures have been calculated) according to the first row. Thus, in case of
inoperability (to be more precise, if it is unable to determine the correct MC Architectures),
the Utility will issue an equiprobable distribution of Identifications and all cells will take
the value 1/16 ≈ 0.06.
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Table 3. Probabilities of assigning tested files to Architectures.

Tested
Architecture

Valid Architectures

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16
#1 0.31 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.05 0.06 0.05 0.06 0.04 0.04 0.04 0.04
#2 0.07 0.27 0.04 0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.07 0.06
#3 0.07 0.05 0.27 0.04 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05
#4 0.08 0.05 0.05 0.26 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.06 0.08
#5 0.04 0.06 0.06 0.06 0.42 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03
#6 0.06 0.04 0.04 0.04 0.03 0.23 0.08 0.06 0.06 0.06 0.05 0.06 0.04 0.04 0.06 0.06
#7 0.08 0.05 0.04 0.04 0.04 0.06 0.25 0.04 0.05 0.05 0.04 0.04 0.04 0.05 0.08 0.05
#8 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.30 0.04 0.04 0.04 0.04 0.04 0.04 0.07 0.09
#9 0.07 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.25 0.05 0.05 0.04 0.04 0.04 0.07 0.09

#10 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.37 0.04 0.04 0.03 0.04 0.06 0.08
#11 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.29 0.04 0.05 0.04 0.06 0.09
#12 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.03 0.34 0.04 0.04 0.07 0.08
#13 0.08 0.07 0.06 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.04 0.26 0.05 0.07 0.09
#14 0.07 0.06 0.05 0.04 0.03 0.06 0.05 0.05 0.05 0.05 0.04 0.05 0.04 0.29 0.05 0.04
#15 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.32 0.10
#16 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.05 0.06 0.05 0.06 0.04 0.04 0.04 0.29

Note. In the table in each row, the cells with the highest probabilities are marked with a green background, and
the cells with the second highest value are marked with yellow.

6.6. Results Analysis

Let us analyze the obtained Identification probabilities (see Table 3).
As you can clearly see, the values with the maximum probability are located exactly

diagonally, which indicates the correct Identification of the Architectures of the tested
files. Let us find the minimum ratio of the maximum probability to the nearest one. This
situation corresponds to row #9, in which the diagonal value is 0.25, and the second highest
probability is located in column #16 and is equal to 0.09. Thus, the maximum value to the
nearest one is 0.25/0.9 ≈ 2.7, i.e., the minimum gain of a correctly defined Architecture
exceeds the nearest alternative by more than 2.5 times, which can be considered a fairly
large “gap”. In addition, one can note an interesting fact that half of the probabilities (after
the diagonal ones) tend to assign programs to Architecture #16 (Sparc64), since half of
the cells in column #16 have a yellow background. This effect can be attributed to the
peculiarities of the distribution of byte coding of MC instructions of this Architecture.

Note that the generation of data for Table 3 was not specified in the description of
mode O4. Thus, the second part of the log is used more for debugging purposes and
contains additional information for the first part. However, this is precisely what makes it
possible to more accurately judge the work of Identification.

The results of the basic testing of the sequential launch of the modes, as a result of
which the correct Identification of the MC of all tested programs for all declared Architec-
tures, were obtained. These results allow us to assert that all the steps of the Method and
the Utility are working.

7. Discussion

Consider the features of the proposed solutions and their place in the subject area.

7.1. Disadvantages of Solutions

Let us present the shortcomings of both the Identification itself and the limitations of
the Method and the Utility, indicating the ways to eliminate them. In addition, we compare
the proposed solutions with the closest analogues.

The Utility was developed for processing Gentoo OS archives. This is due to taking
into account the specifics of the OS when implementing the Archive Unpacking Module
(see Figure 4). However, the list of supported archives can be expanded with new variations,
since, as a rule, their structure is quite similar.
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The Utility only supports parsing programs in ELF and PE formats. This is due to
the implementation of the Module for working with programs and sections with MC (see
Figure 4). However, the list of supported formats can be extended since they all have a
known and specified structure.

Only one extremely popular program from the Gentoo OS—bash [54]—was used to
test the Utility. This is due to the need for basic testing of the Method and Utility in a
working “scenario”, the success of which will justify the success of the Identification itself.
Full-scale testing was also carried out and also showed the high effectiveness of the Method.
This testing included the following “research” scenarios: calculation of the error matrix,
lack of program headers, small size of the MC, destruction of the MC, and mixing of the
MC of two different Architectures. The results of the study will be presented in the next
publications.

In a number of theoretical and practical problems, a file may contain MCs for various
Architectures, which may lead to a violation of the correct Identification. Such “synthetic”
scenarios as the identification of “White Noise”, the mixing of various and all Architectures,
were carried out and evaluated by the authors, although they are not included in the current
work. Their results will also be presented in future publications.

The Utility was implemented with only one multiclass classifier, which has become a
classic—SVM. However, there are other solutions to multiclass classification, such as multi-
output neural networks, trees, combinations of binary classifiers, and so on [20]. However,
according to the results of the experiment (see Table 3), SVM showed good performance
anyway. However, other classification decisions will be considered in additional studies. In
this case, any significant modification of the Method and Utility is not required.

When determining the Architecture, the byte order (little-endian or bit-endian) [55] is
not taken into account in any way. Order considerations may be added in future Method
studies and Utility implementations. Such an improvement can improve the efficiency of
the Architecture definition. One way to account for the order can also be the use of machine
learning, but for two or more sequences of bytes.

An array signature with only 256 values is used to identify the Architecture. This
number is chosen based on the number of bits in a byte (28). The reason for this is that
almost all existing processor instructions are written as a sequence of bytes (1, 2, 4, etc.).
Extending the signature length to the number of bits in 2 bytes (that is, up to 216 = 65536)
will most likely lead to a deterioration in the quality of identification due to model retraining
(or other reasons). However, this issue is quite interesting and requires further researching.
Investigations of this kind (i.e., the use of signatures of a larger size, including those that
are not a multiple of 8) are planned by the authors in further works.

Each template Signature is built on the basis of the MC for a large number of programs
running on the same Architecture. Thus, the template Signature reflects the specifics of the
Architecture and the MC performed on it. In addition, by the proximity of the Signature for
the MC of a single program to the template Signatures, one can judge the Architecture of
the program execution. Therefore, all known (or assumed) template Signatures are selected
for identification, from which the closest one is selected using the ML. With a sufficient
number of programs taken for one Architecture, the Signatures will be quite unique (the
rationale for this was given in the previous author’s publication [17]). At the same time,
although Architectures that differ only in bitness (for example, Mips and Mips) will be
outwardly similar (see Figure 3 in [17]), the Identification will also be successful in this case
(see Table 3 for the rows #9 and #10).

7.2. Comparisons with Analogues

Let us compare the proposed solution—Identification Method and Utilities, with the
closest analogues. To do this, we will use the works considered during the review process
(see Section 2), choosing from them the Top-10 most suitable in the interests of solving
the current problem. Based on the practical absence of direct analogues, we will compare
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solutions that, in principle, can be used to identify the Architecture. To do this, we will use
the following criteria, divided into groups:

• Group of criteria—methodology:

– Cr_1—analytical form of the method entry: Yes/No;
– Cr_2—theoretical basis (use of hypotheses, models, etc.): Yes/No/Partly;

• Group of criteria—scope:

– Cr_3—applicability for direct identification of the Architecture: Yes/No/Partly;
– Cr_4—applicability for programs of various formats: ELF/PE/JBC/Any;

• Group of criteria—completeness and degree of readiness of the functionality:

– Cr_5—availability of the infobase formation stage (in the interests of identifica-
tion): Yes/No/Partly;

– Cr_6—availability of a ready-made solution for use in “working conditions”:
Yes/No/ Partly;

– Cr_7—functionality for additional research (for example, a detailed assessment
of performance, applicability limits, etc.): Yes/No/Partly;

– Cr_8—the number of Architectures with which the solution works: Number
(0—if the concept of Architecture does not participate in the solution);

• Group of criteria—opportunities to improve the solution (automatic or manual):

– Cr_9—application of machine learning: Yes/No;
– Cr_10—number of applied alternative mechanisms with the possibility of choice

or variation: Number.

The groups and the criteria themselves were chosen from considerations in order to
diversify and compare the solutions. Thus, it was assumed that decisions should be based
on some theory (and not just pure practice, i.e., “empiricism”), the solution should be
directly useful for the current research problem, a practical result should be achieved in the
solution, and it should use modern trends. The criterion related to decision automation
was omitted, since, in all of the Top-10 articles, the method worked without explicit human
intervention.

Criteria comparison is presented in Table 4.
Let us make a complex scoring of solutions in Table 4 by summing the values in the

cells of the rows as follows: “-”—0 points, “+/-”—0.5 points, “+”—1 point. In addition, for
Cr_4, one supported format gives 1 point, 2 formats—2 points, format independence—3
points (because the main formats are still only ELF and PE). Solutions according to criteria
Cr_8 and Cr_10 will be compared separately. The summation of points gives the following
values for each of the solutions: [20]—5.5, [31]—5, [32]—5, [34]—3.5, [35]—5, [36]—3,
[39]—4, [43]—5, [44]—3.5, [47]—3.5, and the current solution proposed in the paper is 8.5.

Thus, the closest analogue to the proposed Method is [20]. This work solves the
same problem—the identification of the MC Architecture. However, the Method proposed
by us has the following advantages: it operates with analytically correct records of the
principle of its work (Cr_1), relies on a strict methodological base, including the previous
author’s MC model (Cr_2), supports two main file formats for direct identification of
the Architecture (Cr_3)—ELF and PE (Cr_4), includes a separate stage of forming a base
for building signatures by unpacking and processing images of the Gentoo OS (Cr_5)
and has the form of a ready-made solution (Cr_6) with special modes for conducting
additional studies to assess the limits of applicability (Cr_7). In addition, the proposed
Method and Utility support the Top-16 MC Architectures (Cr_8) against the Top-7 used
in the closest competitor. Application in the Machine Learning Utility (Cr_9) obviously
also has a number of advantages associated with the replacement of subjective expert
rules for the classification of Architectures with objective machine ones. However, an
important advantage of the competing work [20] is the use and evaluation of the work of a
whole set of classifiers (eight pieces), since the current Utility uses only SVM (Cr_10). The
similarity of the work can be explained by the proximity of their conduct—mid-2020, since
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the current study was completed around the same period, followed by a series of force
majeure circumstances that pushed this publication back by 2 years.

Table 4. Criteria comparison of the proposed Method and Identification Utility with analogues.

Ref. Author and Title Cr_1 Cr_2 Cr_3 Cr_4 Cr_5 Cr_6 Cr_7 Cr_8 Cr_9 Cr_10

[20]
B. Beckman, J. Haile “Binary Analysis with
Architecture and Code Section Detection
using Supervised Machine Learning”

− +/− + ELF +/− + +/− 7 + 8

[31]
S. Torri, W. Britt, J.A. Hamilton “A compiler
classification framework for use in reverse
engineering”

− − +/− ELF
JBC +/− + − 0 + 1

[32]
J. Pewny, B. Garmany, R. Gawlik, C.
Rossow, T. Holz “Cross−Architecture Bug
Search in Binary Executables”

+ +/− − Any − +/− − 3 − 1

[34]

Y. Hu, Y. Zhang, J. Li, D. Gu
“Cross−Architecture Binary Semantics
Understanding via Similar Code
Comparison”

+ +/− − ELF − + − 3 − 1

[35]

I. Zikratov, I. Pantiukhin, I. Krivtsova, N.
Druzhinin “The method of elf−files
identification based on the metric
classification algorithms”

+ + +/− ELF +/− − +/− 1 +/− 3

[36]

T.−L. Wan, T. Ban, Y.n−T. Lee, S.−M.
Cheng, R. Isawa, T. Takahashi, D. Inoue
“IoT−Malware Detection Based on Byte
Sequences of Executable Files”

− − +/− ELF +/− − − 7 + 2

[39]

H. Shukla, S. Patil, D. Solanki, L. Singh, M.
Swarnkar, H.K. Thakkar “On the Design of
Supervised Binary Classifiers for Malware
Detection Using Portable Executable Files”

− +/− +/− PE +/− − +/− 0 + 6

[43]
T.−Y. Wang, C.−H. Wu “Detection of
packed executables using support vector
machines”

+/− − +/− PE +/− + +/− 0 + 1

[44]
B.B. Rad, M. Masrom, S. Ibrahim “Opcodes
histogram for classifying metamorphic
portable executables malware”

+/− − +/− PE + − +/− 0 − 1

[47]
F. Manavi, A. Hamzeh “Static Detection of
Ransomware Using LSTM Network and PE
Header”

− +/− +/− PE +/− − − 0 + 2

Current decision +/− + + ELF
PE + + + 16 + 1

Note. The following designations are used: “+”—Yes, “−”—No, “+/−”—Partially.

Therefore, based on the review of the works and their comprehensive criteria com-
parison, we can conclude that the proposed Method and Utility are preferable from the
standpoint of solving the problem.

We also note that, from the standpoint of the features of ELF/PE programs, the
proposed solution according to the taxonomy from [28] (see Figure 1) refers to the element
“Static analysis -> Sequence-based -> One-dimensional -> Bytes” with partial use of element
features “Static Analysis -> Metrics Based -> High Level -> ELF Header”. In addition,
the Method can use the attribute “Static analysis -> Based on metrics -> High-level -> PE
header”, which is missing in the taxonomy, when working with files typical for Windows
OS.

8. Conclusions

The study is a continuation of the previous scientific work of the authors, dedicated
to confirming the hypothesis of identifying the MC Architecture by its unique digital
“portrait”—a template Signature.
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The work synthesizes the Identification Method and specifies the requirements for
it. To check and evaluate the performance of the Method, a Utility has been developed
that allows for both obtaining template Signatures and identifying the MC of input files.
Then, an experiment was carried out with the File Identification Utility for the Top-16
Architectures. The success of the experiment confirms the efficiency of the Method and the
Utility.

The advantage of the study is the methodological correctness and completeness of
this stage. Thus, the stage of synthesis of the Method (as well as the implementation of the
Utility) of identification and its basic testing comes after the stage of analyzing the features
of the MC and creating the MC model. After this stage, there will be a stage of a full-fledged
experiment to assess the boundaries of the applicability of the solutions obtained.

The advantages of the proposed solution lie in the complete automation of the entire
identification process—from collecting data for building identification models, to the
identification process itself and evaluating its effectiveness.

The differences between the Method and the Utility from the closest analogues are
based on a strict theoretical base—the MC model and the analytical record of the identifi-
cation process. In addition, the Method contains a number of modes that can be used for
additional research. The solution supports the analysis of both popular formats—ELF and
PE—and also works with a large set of Top-16 Architectures.

All phases of the study have a high degree of detail, which allows them to be directly
applied in practice and modified for other tasks of this kind.

Further development of the work, as mentioned earlier, should be a comprehensive
assessment of the limits of applicability of the Method and Utility for various conditions—
the absence of program headers, the small size of the MC, the destruction of the MC, and
the presence of the MC from two different Architectures. These results have already been
obtained and will be described in the next article.

In addition, despite the fact that the applied SVM machine learning classifier showed
good results in identification, it will be useful to compare it with other classifiers (artificial
neural networks, decision trees, etc.).
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