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Abstract: As an extension of the wired network, the use of the wireless communication network has
considerably boosted users’ productivity at work and in their daily lives. The most notable aspect
of the wireless communication network is that it overcomes the constraints of the wired network,
reduces the amount of cost spent on wire maintenance, and distributes itself in a manner that is both
more extensive and flexible. Combining wireless communication with the Internet of Things (IoT)
can be used in several applications, including smart cities, smart traffic, smart farming, smart drones,
etc. However, when exchanging data, wireless communication networks use an open network,
allowing unauthorized users to engage in communication that is seriously destructive. Therefore,
authentication through a digital signature will be the best solution to tackle such problems. Several
digital signatures are contributing to the authentication process in a wireless communication network;
however, they are suffering from several problems, including forward security, key escrow, certificate
management, revocations, and high computational and communication costs, respectively. Keeping
in view the above problems, in this paper we proposed an efficient certificateless forward-secure
signature scheme for secure deployments in wireless communication networks. The security analysis
of the proposed scheme is carried out using the random oracle model (ROM), which shows that it is
unforgeable against type 1 and type 2 adversaries. Moreover, the computational and communication
cost analyses are carried out by using major operations, major operations cost in milliseconds,
and extra communication bits. The comparative analysis with the existing scheme shows that the
proposed scheme reduces the computational cost from 19.23% to 97.54% and the communication
overhead from 11.90% to 83.48%, which means that the proposed scheme is efficient, faster, and more
secure for communication in the wireless communication network.

Keywords: IoT; certificateless forward-secure signature; hyperelliptic curve cryptography; ROM

1. Introduction

The Internet of Things (IoT) is a rapidly expanding field that involves connecting
millions of physical objects (called “things”) to networked sensors and smart devices that
allow them to create, collect, and share different kinds of information [1,2]. As demonstrated
in Figure 1, IoT has various applications in several industries, including smart cities, smart
traffic, smart farming, and smart drones. In smart cities, IoT enhances people’s lives by
increasing traffic control, tracking the availability of parking places, evaluating the quality
of the air, and even warning inhabitants when trash cans are full. In addition, it makes
the traffic intelligent and employs sensors to collect raw traffic data, informing the driver
of traffic updates to help him choose a better route while keeping his private information
secure [3]. Farming is the second useful use of IoT devices, wherein data are gathered
and analyzed to advise the owner of the need for water, pesticides, manure, fertilizer, or
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treatment for ill plants based on factors such as temperature, soil moisture, leaf wetness,
and sun radiation [4]. The third application is the Internet of drones, in which smart drones
could play an important role in multiple contexts, such as in smart cities, where they can be
used for customer order delivery, accident surveillance and road traffic monitoring, private
and police investigations, prison surveillance, drone taxis, ambulances drone, pollution
control drone, surveillance and monitoring of large crowds at gatherings and protests,
etc. [5].

J. Sens. Actuator Netw. 2023, 12, x FOR PEER REVIEW 2 of 16 
 

information secure [3]. Farming is the second useful use of IoT devices, wherein data are 
gathered and analyzed to advise the owner of the need for water, pesticides, manure, fer-
tilizer, or treatment for ill plants based on factors such as temperature, soil moisture, leaf 
wetness, and sun radiation [4]. The third application is the Internet of drones, in which 
smart drones could play an important role in multiple contexts, such as in smart cities, 
where they can be used for customer order delivery, accident surveillance and road traffic 
monitoring, private and police investigations, prison surveillance, drone taxis, ambu-
lances drone, pollution control drone, surveillance and monitoring of large crowds at 
gatherings and protests, etc. [5]. 

 
Figure 1. Applications of Internet of Things. 

Moreover, drones are also used by most border patrol officers that monitor criminal 
activity on the border, mainly smuggling of drugs. This huge variation, the increasing 
management and interaction of devices, and the usage of public networks for the transfer 
of massive volumes of data make IoT systems an ideal target for hacker attacks [6]. IoT 
privacy and the safety of devices are linked, e.g., producing accidents by interrupting au-
tomotive networks, placing farms in danger by tampering with a farming network, inva-
sion of privacy, power consumption, and poor data security in smart cities, the brick-sized 
batteries consumed by drones being heavy and losing energy quickly, memory limita-
tions, and chances of malware and virus threats in the information shared by drones, etc. 
[7]. To counter such attacks, authentication is the most effective strategy, and it allows two 
or more network participants to verify each other’s identity before exchanging data. In 
cryptography, the attractive technique for authentication is a digital signature, which is a 
mathematical method that is used to authenticate the identity of the sender through its 
private key, which it sends to the receiver, and then the receiver uses the public key of the 
sender and verifies the signature [8]. In a conventional digital signature technique, the 
signature key cannot be changed for every session, so there is a risk of exposure to the 
private key. The forward-secure digital signature was introduced to tackle the exposure 
problem of private keys where private keys are updated for every session [9]. The forward 
signature may be public key infrastructure-based (PKI-based) or identity-based (ID-
based); however, in a PKI-based digital forward signature, there are certificate revocation 

Figure 1. Applications of Internet of Things.

Moreover, drones are also used by most border patrol officers that monitor criminal
activity on the border, mainly smuggling of drugs. This huge variation, the increasing
management and interaction of devices, and the usage of public networks for the transfer
of massive volumes of data make IoT systems an ideal target for hacker attacks [6]. IoT
privacy and the safety of devices are linked, e.g., producing accidents by interrupting
automotive networks, placing farms in danger by tampering with a farming network,
invasion of privacy, power consumption, and poor data security in smart cities, the brick-
sized batteries consumed by drones being heavy and losing energy quickly, memory
limitations, and chances of malware and virus threats in the information shared by drones,
etc. [7]. To counter such attacks, authentication is the most effective strategy, and it allows
two or more network participants to verify each other’s identity before exchanging data.
In cryptography, the attractive technique for authentication is a digital signature, which
is a mathematical method that is used to authenticate the identity of the sender through
its private key, which it sends to the receiver, and then the receiver uses the public key
of the sender and verifies the signature [8]. In a conventional digital signature technique,
the signature key cannot be changed for every session, so there is a risk of exposure to the
private key. The forward-secure digital signature was introduced to tackle the exposure
problem of private keys where private keys are updated for every session [9]. The forward
signature may be public key infrastructure-based (PKI-based) or identity-based (ID-based);
however, in a PKI-based digital forward signature, there are certificate revocation and
certificate management issues, and in ID-based digital forward signature schemes, there is
a key escrow problem [10]. The abovementioned problems may be avoided using a forward
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secure certificateless digital signature, which combines the working structure of forward
security with a certificateless signature. Though several forward-secure signatures are
contributed, they are based on an elliptic curve, RSA, and bilinear pairing that are suffering
from extra computational burdens on small IoT devices during the execution process and
require more bandwidth because they need more bits to be transferred. Hyper elliptic
curve cryptography (HECC) is the replacement for elliptic curve cryptography (ECC), and
it uses only 80-bit keys. HECC is a subclass of algebraic curves that comprises genus g ≥ 1,
and the field of the HECC is a quadratic extension of the field of rational functions, so
in this sense, it is the simplest field of algebraic functions except for the field of rational
functions [11]. HECC consists of the divisor D, which refers to the finite formal sum of
points on a hyperelliptic curve, and the divisor D forms an Abelian group referred to as the
Jacobian group Jc

(
Fq
)

[12].
As a result of the above discussion, the following contributions have been made to

this work:

1. We propose a certificateless, forward-secure HECC-based digital signature scheme
that provides privacy, gets rid of the key escrow problem, and ensures its
forward security.

2. A comprehensive security analysis is conducted to demonstrate that the proposed
scheme is secure against various types of cyber-attacks.

3. Finally, the efficiency of the proposed scheme is evaluated by comparing it to other
existing schemes in terms of its computation and communication costs. The results
reveal that the proposed scheme is more efficient.

2. Literature Review

In recent years, the issues of privacy protection and forward security for the IoT have
drawn more and more attention, and that is why security and privacy concerns may occur
at multiple levels of smart IoT systems, so it needs to settle the problems mentioned above.
Therefore, many signatures and authentication schemes have been proposed; for example,
Malkin et al. [13] constructed a new forward-secure digital signature for the first time in
which the existing schemes were combined to form a new forward secure digital signature
scheme without being aware of the total number of periods. This scheme not only can
take any digital signature scheme as the underlying module, but it also does not rely on
any assumptions. They proved that this scheme achieves excellent performance overall, is
very competitive with previous schemes with respect to all parameters and outperforms
each of the previous schemes in at least one parameter. Itkis and Reyzin [14] developed
a digital signature technique with forward secrecy using four modular exponentials and
proved the security of their scheme based on the random oracle model (ROM). Kozlov and
Reyzin [15] constructed a system for digital signatures that requires only a single modular
exponential in the key update. The Fiat–Shamir transformation and the strong Rivest–
Shamir–Adleman (RSA) assumption were used to demonstrate that this technique is secure
against different types of attacks. McCullagh and Barreto [16] suggested a new forward-
secured, efficient digital signature technique, which is based on pairing cryptography, that
is both transferable and non-transferable. They pointed out semantic security problems in
previous schemes and showed that this scheme is more secure than the previously proposed
schemes. Boyen et al. [17] were the first to introduce the forward security digital signature
with malicious updates in 2006. They introduced the concept of forward-secure signatures
with an untrusted update, where the key update can be performed on an encrypted version
of the key, and they demonstrated that forward-secure signatures with an untrusted update
allow us to add forward security to signatures, while keeping passwords as a second
factor of security. The security analysis of their scheme proved that the scheme has better
performance as compared to the existing forward-secure signature schemes. The forward-
secure ring signatures scheme was proposed by Liu and Wong [18] to resolve the key
exposure problem. In their scheme, they reduced the damage of exposure of any secret key
of users in a ring signature; even if a secret key is compromised, previously generated ring
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signatures remain valid and do not need to be regenerated. They demonstrated the security
of their system using the ROM. Next, Das et al. [19] presented a new user authentication
scheme that supports dynamic node addition. In this scheme, the user authenticates itself
at both the base station and the cluster heads inside wireless sensor networks (WSN),
so after successful authentication, both the user and the cluster head from which the
user wants to access real-time data in the target field will be able to establish a secret
session key between them. They showed that this scheme has better security performance.
Taking into consideration the restricted sensor resources and time restrictions, a forward-
secure Certificateless digital signature scheme was first introduced by Xu et al. [20] based
on random lattice in the standard model, and they claimed that the scheme’s strong
unforgeability was based on the small integer solution problem. Kim et al. [21] constructed
the Fast-Bellare–Miner (Fast-BM) and Fast-Abdalla–Reyzin (Fast-AR) fast forward-secure
digital signature schemes, which allow fast signing and key updating with constant size
public and secret keys and a short constant size signature. They proved that their approach
is suitable for both real-time surveillance streaming applications and standard forward-
secure signature systems. However, the computation cost was high because it was based
on the elliptic curve. Oh et al. [22] designed an ID-based digital signature technique with
a forward-secure private key generator. Based on the bilinear Diffie–Hellman inversion
assumption (BDHI), they developed its concept and demonstrated its implementation by
giving construction and security proof in the standard model (without random oracles).
However, this scheme was based on bilinear pairing and required more computing power
due to heavy pairing operations. Based on the RSA assumption, Ko et al. [23] developed
a forward-secure ID-based digital signature technique with a forward-secure private key
generator. They described its concept and presented practical constructions as well as
its security proof in the random oracle model under the factoring assumption. Their
scheme was based on RSA, which has high computation costs and communication costs.
Du et al. [24] proposed a new provably secure certificateless signature scheme for IoT
with perfect forward secrecy, which concentrated on designing a certificateless signature
scheme (CLS) for IoT applications without pairings, which proved to be secure against
different kinds of adversaries. Saqib et al. [25] proposed a three-factor authentication
(password, identity, and low-cost digital signature) framework suitable for IoT-driven
critical applications using ECC that provides mutual entity authentication of the gateway
with both remote users (subscriber) and IoT node (publisher). The session key generation
is dynamic, which could be changed in every session, which makes the scheme resistant
to known session key attacks and guarantees pure forward secrecy. In 2022, based on an
elliptic curve, a forward-secure digital signature scheme was proposed by Ping et al. [26]
for privacy protection in wireless communication networks and proved its forward security
and unforgeability in the random oracle model. However, this scheme suffers from three
major flaws: (1) high computational cost, (2) more communication overhead, and (3) a key
escrow problem. So, we have concluded three main limitations from the above literature
survey, i.e., they are suffering from high computational cost, more communication overhead,
and a key escrow problem, respectively.

To remove the above limitations, we are going to introduce a new method called
the certificateless forward signature based on the hyperelliptic curve, which removes the
key escrow problem, provides communication with very low bandwidth, and processes
algorithms with very little time.

3. Preliminaries

This section discusses the proposed network model used in this scheme, the syntax of
the proposed certificateless forward signature scheme, and the hyper elliptic curve discrete
logarithm problem (HECDLP), respectively.
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3.1. Network Model

This section describes the proposed network model for the proposed certificateless
forward signature scheme used in the IoT environment. Figure 2 shows that our network
model contains five entities: trusted authority, IoT devices, key update devices, controller,
Internet, and receiver, which perform different functions during the communication process,
respectively. Here, the role of a trusted third party is that when it receives the identity and
request for a partial private key from IoT devices and receivers, it makes the partial key. By
using their identities and delivering them on a secure network, the IoT devices receive a
partial private key from a trusted third party and make their own private and public keys.
After that, the key update device receives the request for signature key updating from IoT
devices and sends back the updated key to the IoT devices after performing the updating
process. Then, IoT devices give the updated key and generated data to the controller
by using Bluetooth technology. Bluetooth technology enables wireless communication
between devices without the use of wires or cables [6]. It is based on short-range radio
frequency, and any device equipped with the technology can communicate if it is within a
specified distance. This technology is essentially a wireless networking protocol for a broad
range of devices, such as notebook computers, as well as cooking ovens, PDAs, mobile
phones, and refrigerators, in the residential, workplace, and other similar aspects. After
the above process, the controller generates a forward signature and sends it to the receiver
using 5G communication with the open network. When the signature tuple is received by
the receiver, it performs the verification process; if the verification is successful, it accepts
the signature and data; otherwise, it rejects it.
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3.2. Syntax of Certificateless Forward Signature

The syntax contains the subsections that are Initialization, Generate Private Number,
Generate Partial Private Key, Generate Private Key, Generate Public Key, Key Update,
Generate Forward Signature, and Forward Signature Verification. So, the explanations of
each subsection are as follows:

1. Initialization: The trusted authority (TA) generates public parameter param, his
private key (∂), and public key (Γ) by taking as input the security parameter of
hyperelliptic curve.

2. Generate Private Number: Given the security parameter and param, the user (Ui)
selects φi as his private number.
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3. Generate Partial Private Key: Given user identity (IDi), public key of TA (Γ), and
public parameter param, TA generates the tuple (Ii, ωi) as a partial private key for
user with identity (IDi).

4. Generate Private Key: Given a private number (φi) and the tuple (Ii, ωi), a ser (Ui)
sets (ωi, φi) as his private key.

5. Key Update: In this phase, it renews the signature key pair by replacing (ωi, φi) on
(ωi

new, φi
new) before signature generations and also renews the verification public key

as (Qi
new, Ii

new).
6. Generate Public Key: Given a private number (φi) and the tuple (Ii, ωi), the user (Ui)

sets (Ii,Qi) as his public key, where Qi = φi.D.
7. Generate Forward Signature: Given a message m, the updated signature key pair

(ωi
new, φi

new), param, signer identity (IDi), and Ii, generate and send the signature
tuple (K, β) to the verifier.

8. Forward Signature Verification: Given a message m, the public key pair (Ii,Qi), param,
signer identity (IDi), and (K, β), the verifier verifies the received signature tuple.

3.3. Hyperelliptic Curve Discrete Logarithm Problem (HECDLP)

In place of elliptic curve cryptography (ECC), hyper elliptic curve cryptography
(HECC) uses keys that are just 80 bits long. The field of the HECC is a quadratic extension
of the field of rational functions, making it the simplest field of algebraic functions, except
for the field of rational functions. The HECC is a subclass of algebraic curves that includes
genus g 1. The Jacobian group is an Abelian group that contains the divisor D, which is the
finite formal sum of points on a hyperelliptic curve.

Supposing Υ = ∂.D, finding the value of ∂ from Υ is called the hyper elliptic curve
discrete logarithm problem.

4. Certificateless Forward-Secure Signature Scheme

The following seven sub algorithmic steps can make our proposed certificateless
forward-secure signature scheme, and Table 1 contains the symbols that are used to make
up the whole algorithm’s mathematical steps.

Table 1. Symbols used in the proposed algorithm.

No Symbol Description

1 HG=2 Represents a hyper elliptic curve with genus 2

2 Fp Represents a finite field of order p, where its range is not more than 80 bits

3 D Represents a devisor, where its range is not more then 80 bits

4 Hj, Hk, Hl
Represent three irreversible, one-way, and collision-resistant hash functions from the

SHA family

5 Γ The public key of TA, and it is made from the combination of secret key and devisor

6 ∂ The secret key of TA, and it is randomly selected from Fp

7 Ui This symbol is used to indicate user

8 ωi, φi These two symbols are used to indicate the private key of Ui

9 φi This is used to represent the private number of Ui

10 IDi This is used to represent the identity of Ui

11 ωi
new, φi

new This is used to represent the update private key pair of Ui

12 Ii,Qi This is used to represent the public key pair of Ui

13 Qi
new, Ii

new This is used to represent the update public key pair of Ui

14 K, β This is used to represent the signature pair generated by signer
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Table 1. Cont.

No Symbol Description

15 BM This is used to represent bilinear pairing-based multiplication

16 Xe This is used to represent the exponential

17 ECM This is used to represent elliptic curve multiplication

18 HECM This is used to represent hyperelliptic curve multiplication

19 B
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7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

This is used to represent the bilinear pairing operation

20 Cn
This is used to represent the challenger, which will support the adversary during

security analysis

21 An This is used to represent the type 1 adversary

22 Am This is used to represent the type 2 adversary

23 E This is used to represent the non-negligible probability type 1 and type 2 adversaries

24 QHl This is used to represent the query for Hl

25 Qppt This is used to represent partial private key query

26 QU This is used to represent user creation query

27 QHk This is used to denote the query for Hk

28 QHj This is used to denote the query for Hj

1. Initialization: Here, the trusted authority performs the following mathematical computations:

• Select hyper elliptic curve (HG=2) with genus 2.
• Suggest the finite field (Fp) of order p, where its range is not more than 80 bits.
• Suggest the devisor (D) of HG=2, where its range is not more than 80 bits.
• Suggest three irreversible, one-way, and collision-resistant hash functions

(Hj, Hk, Hl) from the SHA family.
• TA computes the public key Γ = ∂.D, where ∂ is the randomly selected private

key from Fp.
• TA publishes the public parameter set {Γ, D, Fp, HG=2, Hj, Hk, Hl}.

2. Generate Private Number: User (Ui) selects φi from Fp as a private number.
3. Generate Partial Private Key: Upon the request of Ui with identity IDi, TA selects γi

from Fp and computes Ii = γi.D, ∆i = Hj(IDi, Γ, Ii), and ωi = ∂ + γi.Ii.
4. Generate Private Key: The User (Ui) sets (ωi, φi) as his private key.
5. Key Update: In this phase, it renews the signature key pair by replacing (ωi, φi) on

(ωi
new, φi

new) before signature generations and also renews the verification public key
as (Qi

new, Ii
new).

6. Generate Public Key: The user (Ui) sets (Ii,Qi) as his public key, where Qi = φi.D.
7. Generate Forward Signature: Given a message m, the updated signature key pair

(ωi
new, φi

new), {Γ, D, Fp, HG=2, Hj, Hk, Hl}, signer identity (IDi), and Ii, the signer
performs the following computations:

• Signer selects
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

from Fp and computes K =
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

.D.
• Compute r1 = Hk(m, K) and r2 = Hl(m, K, Γ,Qi).
• Compute β = φi

new + r1
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

+ r2ωi
new and send (K, β, r1) to verifier.

8. Forward Signature Verification: Given a message m, the public key pair (Ii,Qi),
{Γ, D, Fp, HG=2, Hj, Hk, Hl}, signer identity (IDi), and (K, β, r1), the verifier performs
the following computations:

Verifier computes ∆i = Hj(IDi, Γ, Ii), r1 = Hk(m, K), and r2 = Hl(m, K, Γ,Qi).
Verifier checks the validity of the signature by computing β.D = Qi + r1K +

r2(Γ + ∆iIi
new); if it is satisfied, accept.
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5. Correctness

Given a message m, the public key pair (Ii,Qi) , {Γ, D, Fp, HG=2, Hj, Hk, Hl}, signer
identity (IDi), and (K, β, r1), the verifier computes ∆i = Hj(IDi, Γ, Ii), r1 = Hk(m, K), and
r2 = Hl(m, K, Γ,Qi). Verifier checks the validity of the signature by computing β.D =
Qi + r1K + r2(Γ + ∆iIi

new); if it is satisfied, accept.

β.D = Qi + r1K + r2(Γ + ∆iIi
new)

β.D = (φi
new + r1
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

+ r2ωi
new).D

= (φi
new.D + r1
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
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following computations: 
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identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

.D + r2ωi
new.D)

= (Qi
new + r1K + r2(∂ + γi.Ii

new).D)
= (Qi

new + r1K + r2(∂.D + γi.D.Ii
new)

= Qi + r1K + r2(Γ + ∆iIi
new)

is hence proved.

6. Security Analysis

Our proposed certificateless forward-secure signature scheme is analyzed for unforge-
ability under the process of the random oracle model against type 1 and type 2 adversaries
based on the crack hyperelliptic curve discrete logarithm problem. The following two theo-
rems (e.g., Theorems 1 and 2) are used for the provable security of the proposed scheme.
Both of the theorems, i.e., Theorems 1 and 2, are based on the robustness of hard problem
called the hyperelliptic curve discrete logarithm, which is not feasible for type 1 and type
2 adversaries to break its security. Therefore, the following two theorems show that our
proposed scheme is unforgeable due to the hardiness of the hyperelliptic curve discrete
logarithm problem.

Theorem 1. In this theorem, we first introduce some players and symbols, An, Cn, and E , denoting
the type 1 adversary, challenger, and non-negligible advantages of An in a polynomial time. Then,
we explain the probability of solving the hyperelliptic curve discrete logarithm problem of Cn in the
following equations.

E/ =

(
1−

QHj

Q

)QU

+

(
1− 1

QU

)Qppt
(

1
QU

)(
1− QHk

Q

)(
1− QHl

Q

)
E

Here, QHj, QHk, QU , Qppt, and QHl denote the query for Hj, Hk, user creation query,
partial private key query, and the query for Hl , respectively.

Proof. An can win in Theorem 1 with E , and the challenger (Cn) is needed to crack the
hyperelliptic curve discrete logarithm problem in which Υ = ∂.D. The challenger (Cn) sets
Υ = Γ and is required to extract ∂. The challenger (Cn) suggests some empty lists at the
beginning of this process, which are Lj, Lk, Ll,, LCUQ, LPNQ, and LPPKQ, that can store the
information about Hj query, Hk query, Hl query, and user creation query, private number
query, and partial private key query, respectively. �

Phase 1: here, first of all, the challenger (Cn) could suggest the target identity ID∗,
generate public parameter set {Γ = Υ, D, Fp, HG=2, Hj, Hk, Hl}, and send it to An.

Phase 2: keeping in view the polynomials’ bounded nature, it performs the following
queries:

1. Hj Query: When An submits the Hj query with (IDi, Γ, Ii), the challenger (Cn) combs
in Lj and returns (IDi, Γ, Ii, ∆i), if it was available previously. Otherwise, it chooses
∆i from Fp and sends it to An.

2. Hk Query: When An submits the Hk query with (m, K) , the challenger (Cn) combs in
Lk and returns (m, K, r1i), if it was available previously. Otherwise, it chooses r1i from
Fp and sends it to An.



J. Sens. Actuator Netw. 2023, 12, 10 9 of 16

3. Hl Query: When An submits the Hl query with (m, K, Γ,Qi), the challenger (Cn) combs
in Ll and returns (m, K, Γ,Qi, r2i), if it was available previously. Otherwise, it chooses
r2i from Fp and sends it to An.

4. User Creation Query: When An submits query with IDi, the challenger (Cn) combs in
LUCQ and returns (Qi

new, Ii
new) and (Ii,Qi), if they exist. Otherwise, it goes for the

following conditions:

• If IDi 6= ID∗, three variables ωi, φi, ∆i are chosen by Cn, which computes
Ii =

ωi . D−Γ
∆i

, and Qi = φi.D.
• If ID = ID∗, three variables ωi, φi, ∆i are chosen by Cn, which computes

Ii = γi.D, Qi = φi. D, and sets ωi = null. Then, it returns (Ii,Qi) and re-
news (Qi

new, Ii
new) to An and updates LUCQ.

1. Replace Public Key Query: When An submits a query with IDi, the challenger (Cn)
replaces (Qi

new/, Ii
new/) and (Qi

/, Ii
/) and returns them to An.

2. Private Number Query: When An submits a query with IDi, the challenger (Cn) combs
in LPNQ and returns φi, if it exists. Otherwise, it goes for the following conditions:

• If IDi 6= ID∗, three variables ωi, φi, ∆i are chosen by Cn, which computes
Ii =

ωi . D−Γ
∆i

and Qi = φi.D.
• If ID = ID∗, three variables ωi, φi, ∆i are chosen by Cn, which computes

Ii = γi.D, Qi = φi. D, and sets ωi = null. Then, it renews (ωi
new, φi

new)
and returns to An and updates LPNQ.

1. Partial Private Key Query: When An submits a query with IDi, the challenger (Cn)
checks if IDi 6= ID∗, and then it combs in LPPKQ and returns ωi

new, if it exists.
Otherwise, it stops the further executions.

2. Generate Forward Signature Query: When An submits a query with IDi, the chal-
lenger (Cn) combs in Lj, Lk, Ll,, LCUQ, LPNQ, and LPPKQ for the record of (IDi, ωi

new,
φi

new, Qi
new, Ii

new), (IDi,Γ, Ii
new), (m, K), and (m, K, Γ,Qi

new). If ID = ID∗ or
ωi = null, Cn randomly chooses K and β and sends them to An. Otherwise, three vari-
ables
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1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
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3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 
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identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

, r1, r2 are chosen by Cn, which computes K =
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

.D, β = φi
new + r1

J. Sens. Actuator Netw. 2023, 12, x FOR PEER REVIEW 7 of 16 
 

14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

+ r2ωi
new

and returns K, β to An.

Phase 3: An generates a forge signature (K f orge, β f orge), Cn checks if it belongs to
ID∗, and if it does not, it stops further processing. Otherwise, the challenger (Cn) combs
in Lj, Lk, Ll,, LCUQ, LPNQ, and LPPKQ for the record of (IDi, ωi

new, φi
new, Qi

new, Ii
new),

(IDi,Γ, Ii
new), (m, K), and (m, K, Γ,Qi

new). If the above records are not found in Lj, Lk, Ll,,
LCUQ, LPNQ, and LPPKQ, it stops further processing. For the forge signature generation, a
genuine value of
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
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Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 
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Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

, φi
new, and ωi

new needs to be chosen, which will solve the hyperelliptic
curve discrete logarithm problem. Suppose the probability of solving the hyperelliptic curve
discrete logarithm problem is Prob(Wins) and rob(Wins) = Prob(Event1∧ Event2), where
Event1 represents all the queries, and executions of this theorem are successful, and Event2
denotes that An generates a forge signature on ID∗. Letting An forge a forward signature
with probability advantages E , we can calculate Prob(Wins) = Prob(Event1∧ Event2) =
Prob(Event1)Prob(Event1.Event2) = Prob(Event1)E . We can define some of the probabili-
ties that follow:

1. If there exists no collision during the user creation query, its probability is
(

1− QHj
Q

)QU
.

2. When An is not called for the partial private key query on ID∗, its probability is(
1− 1

QU

)Qppt
.

3. An can send forward a signature if ID = ID∗, and its probability is 1
QU

.

4. An can find the valid value from Lk, and its probability is
(

1− QHk
Q

)
.

5. An can find the valid value from Ll , and its probability is ( 1− QHl
Q ).
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6. The combined probability will be what follows: E/ =
(

1− QHj
Q

)QU
+

(
1− 1

QU

)Qppt(
1

QU

)(
1− QHk

Q

)
( 1− QHl

Q )E .

Using the above probability analysis, we have proved that the proposed scheme resists
against the type 1 adversary for forgeability attack, because the adversary is not able to
find the solution for the hyperelliptic curve discrete problem.

Theorem 2. In this theorem, we first introduce some players and symbols, Am, Cn, and E , denoting
the type 2 adversary, challenger, and non-negligible probability of Am in a polynomial time. Then,
we explain the probability of solving the hyperelliptic curve discrete logarithm problem of Cn in the
following equations.

E/ =

(
1−

QHj

Q

)QU

+

(
1− 1

QU

)Qppt
(

1
QU

)(
1− QHk

Q

)
Here, QHj, QHk, QU , Qppt, and QHl denote the query for Hj, Hk, user creation query,

partial private key query, and the query for Hl , respectively.

Proof. Am can win in Theorem 2 with E , and the challenger (Cn) is needed to crack the
hyperelliptic curve discrete logarithm problem in which Υ = ∂.D. The challenger (Cn) sets
Υ = Γ and is required to extract ∂. The challenger (Cn suggests some empty lists at the
beginning of this process, which are Lj, Lk, Ll,, LCUQ, LPNQ, and LPPKQ, that can store the
information about Hj query, Hk query, Hl query, and user creation query, private number
query, and partial private key query, respectively. �

Phase 1: Here, first of all, the challenger (Cn) could suggest the target identity ID∗,
generate public parameter set {Γ = Υ, D, Fp, HG=2, Hj, Hk, Hl}, and send Γ and ∂ to Am.

Phase 2: keeping in view the polynomials’ bounded nature, it performs the
following queries:

1. Hj Query: This query is performed as in Theorem 1.
2. Hk Query: This query is performed as in Theorem 1.
3. Hl Query: This query is performed as in Theorem 1.
4. User Creation Query: When An submits a query with IDi, the challenger (Cn) combs in

LUCQ and returns (Qi
new, Ii

new) and (Ii,Qi), if they exist. Otherwise, it goes for the
followed conditions:

• If IDi 6= ID∗, three variables ωi, φi, ∆i are chosen by Cn, which computes
Ii =

ωi . D−Γ
∆i

and Qi = φi.D.
• If ID = ID∗, three variables ωi, φi, ∆i are chosen by Cn, which computes

Ii = γi. D, Qi = φi.D, and sets ωi = null. Then, it returns (Ii,Qi) and re-
news (Qi

new, Ii
new) to Am and updates LUCQ.

5. Private Number Query: Here, Am is not allowed to access φi on ID∗, and Cn will not
stop further executions if IDi 6= ID∗. Otherwise, the challenger (Cn) combs in LPNQ
and returns φi if it exists.

6. Partial Private Key Query: When Am submits a query with IDi, the challenger (Cn)
combs in LPPKQ and returns ωi

new if it exists.
7. Generate Forward Signature Query: When Am submits a query with IDi, the challenger

(Cn) combs in Lj, Lk, Ll,, LCUQ, LPNQ, and LPPKQ for the record of (IDi, ωi
new, φi

new,
Qi

new, Ii
new), (IDi,Γ, Ii

new), (m, K), and (m, K, Γ,Qi
new). If ID = ID∗ or ωi = null,

Cn randomly chooses K and β, and sends them to Am. Otherwise, three variables
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putations: 
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• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
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2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 
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𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
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𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
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𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 
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, r1, r2 are chosen by Cn, which computes K =
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• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

.D, β = φi
new + r1
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

+ r2ωi
new, and

returns K, β to Am.

Phase 3: Am generates a forge signature (K f orge, β f orge), Cn checks if it belongs to
ID∗, and if it does not, it stops further processing. Otherwise, the challenger (Cn) combs
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in Lj, Lk, Ll,, LCUQ, LPNQ, and LPPKQ for the record of (IDi, ωi
new, φi

new, Qi
new, Ii

new),
(IDi,Γ, Ii

new), (m, K), and (m, K, Γ,Qi
new). If the above records are not found in Lj, Lk, Ll,,

LCUQ, LPNQ, and LPPKQ, it stops further processing. For the forge signature generation, a
genuine value of
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

, φi
new, and ωi

new needs to be chosen, which will the solve hyperelliptic
curve discrete logarithm problem. Suppose the probability of solving the hyperelliptic curve
discrete logarithm problem is Prob(Wins) and rob(Wins) = Prob(Event1∧ Event2), where
Event1 represents all the queries, and executions of this theorem are successful, and Event2
denotes that An generates a forge signature on ID∗. Letting Am forge a forward signature
with probability advantages E , we can calculate Prob(Wins) = Prob(Event1∧ Event2) =
Prob(Event1)Prob(Event1.Event2) = Prob(Event1)E . We can define some of the probabili-
ties that follow:

1. If there exists no collision during the user creation query, its probability is
(

1− QHj
Q

)QU
.

2. When Am is not called for the partial private key query on ID∗, its probability is(
1− 1

QU

)Qppt
.

3. Am can send forward a signature if ID = ID∗, and its probability is 1
QU

.

4. Am can find the valid value from Lk, and its probability is
(

1− QHk
Q

)
.

5. Am can find the valid value from Ll , and its probability is ( 1− QHl
Q ).

6. The combined probability will be what follows: E/ =
(

1− QHj
Q

)QU
+

(
1− 1

QU

)Qppt(
1

QU

)(
1− QHk

Q

)
( 1− QHl

Q )E .

Using the above probability analysis, we have proved that the proposed scheme resists
against the type 2 adversary for forgeability attack, because the adversary is not able to
find the solution for the hyperelliptic curve discrete problem.

Theorem 3. In this theorem, we will first prove how our proposed scheme provides the integrity of
the message [27].

Proof. In the proposed scheme, the sender computes r1 = Hk(m, K) and sends (r1) to
the verifier. At the receiving side, the verifier computes r11 = Hk(m, K) and compares if
the following equation is satisfied, r11 = r1, and then it means that our scheme provides
integrity of message. �

Theorem 4. In this theorem, we will first prove how our proposed scheme provides authentication
between the sender and verifier.

Proof. In the proposed scheme, the signer selects
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

from Fp, computes K =
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

.D, r1 =
Hk(m, K), r2 = Hl(m, K, Γ,Qi), β = φi

new + r1
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

+ r2ωi
new, and sends (K, β, r1) to the

verifier. The verifier computes ∆i = Hj(IDi, Γ, Ii), r1 = Hk(m, K), r2 = Hl(m, K, Γ,Qi),
and checks the validity of the signature by computing β.D = Qi + r1K + r2(Γ + ∆iIi

new);
if it is satisfied, the signature is accepted. In Section 5, Correctness, we have shown equality
of the followed equation: β.D = Qi + r1K + r2(Γ + ∆iIi

new); if it is proved, that means that
the proposed schemes provide authentication or authenticity security requirements. �

7. Computational Cost

In this section, we are going to evaluate the efficiency of the proposed scheme with
respect to the computational cost based on major operations. Normally, the major opera-
tions in cryptographic scheme are considered the operation, such as elliptic curve point
multiplication, bilinear pairing operation, exponentiations, and hyperelliptic curve devisor
multiplications, respectively. For the evaluation of the proposed scheme with respect to
the computational cost, we consider major operations such as exponential (Xe), bilinear
pairing-based multiplication (BM), hyperelliptic curve multiplication (HECM), bilinear



J. Sens. Actuator Netw. 2023, 12, 10 12 of 16

pairing operation (B

J. Sens. Actuator Netw. 2023, 12, x FOR PEER REVIEW 7 of 16 
 

14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

), and elliptic curve multiplication (ECM) in the proposed scheme
and those of Kim et al. [21], Oh et al. [22], Ko et al. [23], and Zhang et al. [26], respectively.
The comparative outcomes are presented in Table 2, based on major operations in the
proposed scheme and those of Kim et al. [21], Oh et al. [22], Ko et al. [23], and Zhang
et al. [26]. The analysis based on time in milliseconds (ms) is included in Table 3, between
Kim et al. [21], Oh et al. [22], Ko et al. [23], and Zhang et al. [26], and the proposed scheme.
Note that we have calculated the values used in Table 3 based on the experimental setup
of [28], which includes hardware and software specifications such as a PC Intel Corei7, ran-
dom access memory (RAM) of 8 GB, and a multi-precision integer and rational arithmetic
C library, in which Xe needs 1.25 ms, BM consumes 4.31 ms,HECM requires 0.48 ms, and
B
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18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

needs 14.90 ms, respectively. By using the values contained in Table 3, we generated
Figure 3, which clearly indicates that the proposed scheme is efficient as compared to
Kim et al. [21], Oh et al. [22], Ko et al. [23], and Zhang et al. [26]. In comparison with the
schemes of Kim et al. [21], Oh et al. [22], Ko et al. [23], and Zhang et al. [26], Tables 2 and 3
and Figure 3 demonstrate that the new approach consumed fewer computing resources
by using the hyperelliptic curve cryptography, which uses only 80 bits of key size and
provides the same security level as the RSA, as well as elliptic curve cryptography.

Table 2. Comparison of computation cost in terms of major operations between Our Scheme and
those Kim et al. [21], Oh et al. [22], Ko et al. [23], and Zhang et al. [26].

Schemes Key Update Sender Receiver Total

Kim et al. [21] 8Xe + 5BM 5BM+ 6Xe 3BM+ 3Xe + 4B
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

Oh et al. [22] 1Xe 3Xe 2Xe 6Xe

Ko et al. [23] 1Xe 2Xe 3Xe 6Xe

Zhang et al. [26] 1 Xe 2ECM 1ECM 1Xe + 3ECM
Our Scheme - 3HECM 4HECM 7HECM

Table 3. Computation cost comparison in milliseconds between Our Scheme and those Kim et al. [21],
Oh et al. [22], Ko et al. [23], and Zhang et al. [26].

Schemes Key Update Sender Receiver Total

Kim et al. [21] 8 × 1.25 + 5 × 4.31
= 31.55

5 × 4.31 + 6 × 1.25
= 29.05

3 × 4.31 + 3 × 1.25 + 4
× 14.90 = 76.28

17 × 1.25 + 13 × 4.31 +
4 × 14.90 = 136.88

Oh et al. [22] 1 × 1.25 = 1.25 3 × 1.25 = 3.75 2 × 1.25 = 2.5 6 × 1.25 = 7.5

Ko et al. [23] 1 × 1.25 = 1.25 2 × 1.25 = 2.5 3 × 1.25 = 3.75 6 × 1.25 = 7.5

Zhang et al. [26] 1 × 1.25 = 1.25 2 × 0.97 = 1.94 1 × 0.97 = 0.97 1 × 1.25 + 3 × 0.97
= 4.16

Our Scheme - 3 × 0.48 = 1.44 4 × 0.48 = 1.92 7 × 0.48 = 3.36

For more details, we used the following cost reduction formula:
Existing Scheme−Newly Proposed Scheme

Existing Scheme ∗ 100 [29]. The following computation shows how the
proposed scheme provides secure communication with a reduced amount of computation
compared to the schemes that are proposed in Kim et al. [21], Oh et al. [22], Ko et al. [23],
and Zhang et al. [26], respectively.

1. Computational cost reduction process between the newly proposed scheme and Kim

et al. [21], which is represented and processed as Kim et al.−Newly Proposed Scheme
Kim et al. ∗ 100 =

136.88−3.36
136.88 ∗ 100 = 97.54%.
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2. Computational cost reduction process between the newly proposed scheme and Oh

et al. [22], which is represented and processed as Oh et al.−Newly Proposed Scheme
Oh et al. ∗ 100 =

7.5−3.36
7.5 ∗ 100 = 55.2 %.

3. Computational cost reduction process between the newly proposed scheme and Ko

et al. [23], which is represented and processed as Ko et al.−Newly Proposed Scheme
Ko et al. ∗ 100 =

7.5−3.36
7.5 ∗ 100 = 55.2 %.

4. Computational cost reduction process between the newly proposed scheme and Ping

et al. [26], which is represented and processed as Zhang et al. −Newly Proposed Scheme
Zhang et al. ∗

100 = 4.16−3.36
4.16 ∗ 100 = 19.23 %.

So, we can conclude that the proposed scheme is significantly more efficient by 97.54%
compared to [21], 55.2% compared to [22], 55.2% compared to [23], and 19.23% compared
to [26] regarding computational cost.
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8. Communication Overhead

This section compares the efficiency of the proposed scheme with the other relevant
schemes of Kim et al. [21], Oh et al. [22], Ko et al. [23], and Zhang et al. [26] in term of
communication overhead. This comparison is based on extra parameters being sent with
the message, which include the current timestamp size, bilinear pairing (|
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
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For more details, we used the following cost reduction formula: 
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∗ 100 [29]. The following computation shows how the 

proposed scheme provides secure communication with a reduced amount of computation 
compared to the schemes that are proposed in Kim et al. [21], Oh et al. [22], Ko et al. [23], 
and Zhang et al. [26], respectively. 
1. Computational cost reduction process between the newly proposed scheme and Kim 

et al. [21], which is represented and processed as Kim et al.  [21]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Kim et al.[21] 

∗

100 = 136.88−3.36
136.88

∗ 100 = 97.54%. 
2. Computational cost reduction process between the newly proposed scheme and Oh 

et al. [22], which is represented and processed as Oh et al.  [22]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Oh et al.[22]

∗

100 = 7.5−3.36
7.5

∗ 100 = 55.2 %. 
3. Computational cost reduction process between the newly proposed scheme and Ko 

et al. [23], which is represented and processed as Ko et al.  [23]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Ko et al.[23] 

∗

100 = 7.5−3.36
7.5

∗ 100 = 55.2 %. 
4. Computational cost reduction process between the newly proposed scheme and Ping 

et al. [26], which is represented and processed as Zhang et al.[26]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Zhang et al.[26] 

∗

100 = 4.16−3.36
4.16

∗ 100 = 19.23 %. 

So, we can conclude that the proposed scheme is significantly more efficient by 
97.54% compared to [21], 55.2% compared to [22], 55.2% compared to [23], and 19.23% 
compared to [26] regarding computational cost. 

8. Communication Overhead 
This section compares the efficiency of the proposed scheme with the other relevant 

schemes of Kim et al. [21], Oh et al. [22], Ko et al. [23], and Zhang et al. [26] in term of 
communication overhead. This comparison is based on extra parameters being sent with 
the message, which include the current timestamp size, bilinear pairing (|Ꝕ|), parameter 
size (|𝑮𝑮|), hash value (|𝓗𝓗|), elliptic-curve point size (|𝓠𝓠|), and hyperelliptic-curve (|𝓷𝓷|) 
divisor size, respectively. We assume |ℳ| = 1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |Ꝕ| = 1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |𝐺𝐺| =
1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |𝓗𝓗| = 256 |𝓠𝓠| = 160 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑎𝑎𝑎𝑎𝑎𝑎 |𝓃𝓃| = 80 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. The comparative analysis is per-
formed in Table 4 using the above values between the proposed scheme, Kim et al. [21], 
Oh et al. [22], Ko et al. [23], and Zhang et al. [26]. We can conclude from Table 4 and Figure 
4 that our proposed strategy clearly outperforms the [21–23,26] schemes in both charac-
teristics. 

Table 4. Communication overhead analysis between Our Scheme and those Kim et al. [21], Oh et 
al. [22], Ko et al. [23], and Zhang et al. [26]. 

Schemes Communication Overheads Communication Overheads in Bits 
Kim et al. [21] |ℳ| + 6|𝐺𝐺| 6 ∗ 1024 + 1024 = 7168 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Oh et al. [22] |ℳ| + 2|Ꝕ| + |ℋ| 1024 + 2 ∗ 1024 + 256 = 3328 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Ko et al. [23] |ℳ| + 3|Ꝕ| 1024 + 3 ∗ 1024 = 4096 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

Zhang et al. [26] |ℳ| + 2|𝒬𝒬| 1024 + 2 ∗ 160 = 1344 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Our Scheme |ℳ| + 2|𝓃𝓃| 1024 + 2 ∗ 80 = 1184 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

|), hash value (|
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For more details, we used the following cost reduction formula: 
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∗ 100 [29]. The following computation shows how the 

proposed scheme provides secure communication with a reduced amount of computation 
compared to the schemes that are proposed in Kim et al. [21], Oh et al. [22], Ko et al. [23], 
and Zhang et al. [26], respectively. 
1. Computational cost reduction process between the newly proposed scheme and Kim 

et al. [21], which is represented and processed as Kim et al.  [21]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Kim et al.[21] 

∗

100 = 136.88−3.36
136.88

∗ 100 = 97.54%. 
2. Computational cost reduction process between the newly proposed scheme and Oh 

et al. [22], which is represented and processed as Oh et al.  [22]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Oh et al.[22]

∗

100 = 7.5−3.36
7.5

∗ 100 = 55.2 %. 
3. Computational cost reduction process between the newly proposed scheme and Ko 

et al. [23], which is represented and processed as Ko et al.  [23]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Ko et al.[23] 

∗

100 = 7.5−3.36
7.5

∗ 100 = 55.2 %. 
4. Computational cost reduction process between the newly proposed scheme and Ping 

et al. [26], which is represented and processed as Zhang et al.[26]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Zhang et al.[26] 

∗

100 = 4.16−3.36
4.16

∗ 100 = 19.23 %. 

So, we can conclude that the proposed scheme is significantly more efficient by 
97.54% compared to [21], 55.2% compared to [22], 55.2% compared to [23], and 19.23% 
compared to [26] regarding computational cost. 

8. Communication Overhead 
This section compares the efficiency of the proposed scheme with the other relevant 

schemes of Kim et al. [21], Oh et al. [22], Ko et al. [23], and Zhang et al. [26] in term of 
communication overhead. This comparison is based on extra parameters being sent with 
the message, which include the current timestamp size, bilinear pairing (|Ꝕ|), parameter 
size (|𝑮𝑮|), hash value (|𝓗𝓗|), elliptic-curve point size (|𝓠𝓠|), and hyperelliptic-curve (|𝓷𝓷|) 
divisor size, respectively. We assume |ℳ| = 1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |Ꝕ| = 1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |𝐺𝐺| =
1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |𝓗𝓗| = 256 |𝓠𝓠| = 160 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑎𝑎𝑎𝑎𝑎𝑎 |𝓃𝓃| = 80 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. The comparative analysis is per-
formed in Table 4 using the above values between the proposed scheme, Kim et al. [21], 
Oh et al. [22], Ko et al. [23], and Zhang et al. [26]. We can conclude from Table 4 and Figure 
4 that our proposed strategy clearly outperforms the [21–23,26] schemes in both charac-
teristics. 

Table 4. Communication overhead analysis between Our Scheme and those Kim et al. [21], Oh et 
al. [22], Ko et al. [23], and Zhang et al. [26]. 

Schemes Communication Overheads Communication Overheads in Bits 
Kim et al. [21] |ℳ| + 6|𝐺𝐺| 6 ∗ 1024 + 1024 = 7168 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Oh et al. [22] |ℳ| + 2|Ꝕ| + |ℋ| 1024 + 2 ∗ 1024 + 256 = 3328 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Ko et al. [23] |ℳ| + 3|Ꝕ| 1024 + 3 ∗ 1024 = 4096 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

Zhang et al. [26] |ℳ| + 2|𝒬𝒬| 1024 + 2 ∗ 160 = 1344 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Our Scheme |ℳ| + 2|𝓃𝓃| 1024 + 2 ∗ 80 = 1184 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

|), elliptic-curve point size (|
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∗ 100 [29]. The following computation shows how the 

proposed scheme provides secure communication with a reduced amount of computation 
compared to the schemes that are proposed in Kim et al. [21], Oh et al. [22], Ko et al. [23], 
and Zhang et al. [26], respectively. 
1. Computational cost reduction process between the newly proposed scheme and Kim 

et al. [21], which is represented and processed as Kim et al.  [21]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Kim et al.[21] 

∗

100 = 136.88−3.36
136.88

∗ 100 = 97.54%. 
2. Computational cost reduction process between the newly proposed scheme and Oh 

et al. [22], which is represented and processed as Oh et al.  [22]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Oh et al.[22]

∗

100 = 7.5−3.36
7.5

∗ 100 = 55.2 %. 
3. Computational cost reduction process between the newly proposed scheme and Ko 

et al. [23], which is represented and processed as Ko et al.  [23]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Ko et al.[23] 

∗

100 = 7.5−3.36
7.5

∗ 100 = 55.2 %. 
4. Computational cost reduction process between the newly proposed scheme and Ping 

et al. [26], which is represented and processed as Zhang et al.[26]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Zhang et al.[26] 

∗
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∗ 100 = 19.23 %. 

So, we can conclude that the proposed scheme is significantly more efficient by 
97.54% compared to [21], 55.2% compared to [22], 55.2% compared to [23], and 19.23% 
compared to [26] regarding computational cost. 

8. Communication Overhead 
This section compares the efficiency of the proposed scheme with the other relevant 

schemes of Kim et al. [21], Oh et al. [22], Ko et al. [23], and Zhang et al. [26] in term of 
communication overhead. This comparison is based on extra parameters being sent with 
the message, which include the current timestamp size, bilinear pairing (|Ꝕ|), parameter 
size (|𝑮𝑮|), hash value (|𝓗𝓗|), elliptic-curve point size (|𝓠𝓠|), and hyperelliptic-curve (|𝓷𝓷|) 
divisor size, respectively. We assume |ℳ| = 1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |Ꝕ| = 1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |𝐺𝐺| =
1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |𝓗𝓗| = 256 |𝓠𝓠| = 160 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑎𝑎𝑎𝑎𝑎𝑎 |𝓃𝓃| = 80 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. The comparative analysis is per-
formed in Table 4 using the above values between the proposed scheme, Kim et al. [21], 
Oh et al. [22], Ko et al. [23], and Zhang et al. [26]. We can conclude from Table 4 and Figure 
4 that our proposed strategy clearly outperforms the [21–23,26] schemes in both charac-
teristics. 

Table 4. Communication overhead analysis between Our Scheme and those Kim et al. [21], Oh et 
al. [22], Ko et al. [23], and Zhang et al. [26]. 

Schemes Communication Overheads Communication Overheads in Bits 
Kim et al. [21] |ℳ| + 6|𝐺𝐺| 6 ∗ 1024 + 1024 = 7168 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Oh et al. [22] |ℳ| + 2|Ꝕ| + |ℋ| 1024 + 2 ∗ 1024 + 256 = 3328 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Ko et al. [23] |ℳ| + 3|Ꝕ| 1024 + 3 ∗ 1024 = 4096 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

Zhang et al. [26] |ℳ| + 2|𝒬𝒬| 1024 + 2 ∗ 160 = 1344 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Our Scheme |ℳ| + 2|𝓃𝓃| 1024 + 2 ∗ 80 = 1184 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
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∗ 100 [29]. The following computation shows how the 
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7.5

∗ 100 = 55.2 %. 
3. Computational cost reduction process between the newly proposed scheme and Ko 

et al. [23], which is represented and processed as Ko et al.  [23]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
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∗
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4. Computational cost reduction process between the newly proposed scheme and Ping 

et al. [26], which is represented and processed as Zhang et al.[26]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
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∗

100 = 4.16−3.36
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∗ 100 = 19.23 %. 

So, we can conclude that the proposed scheme is significantly more efficient by 
97.54% compared to [21], 55.2% compared to [22], 55.2% compared to [23], and 19.23% 
compared to [26] regarding computational cost. 

8. Communication Overhead 
This section compares the efficiency of the proposed scheme with the other relevant 

schemes of Kim et al. [21], Oh et al. [22], Ko et al. [23], and Zhang et al. [26] in term of 
communication overhead. This comparison is based on extra parameters being sent with 
the message, which include the current timestamp size, bilinear pairing (|Ꝕ|), parameter 
size (|𝑮𝑮|), hash value (|𝓗𝓗|), elliptic-curve point size (|𝓠𝓠|), and hyperelliptic-curve (|𝓷𝓷|) 
divisor size, respectively. We assume |ℳ| = 1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |Ꝕ| = 1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |𝐺𝐺| =
1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |𝓗𝓗| = 256 |𝓠𝓠| = 160 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑎𝑎𝑎𝑎𝑎𝑎 |𝓃𝓃| = 80 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. The comparative analysis is per-
formed in Table 4 using the above values between the proposed scheme, Kim et al. [21], 
Oh et al. [22], Ko et al. [23], and Zhang et al. [26]. We can conclude from Table 4 and Figure 
4 that our proposed strategy clearly outperforms the [21–23,26] schemes in both charac-
teristics. 

Table 4. Communication overhead analysis between Our Scheme and those Kim et al. [21], Oh et 
al. [22], Ko et al. [23], and Zhang et al. [26]. 

Schemes Communication Overheads Communication Overheads in Bits 
Kim et al. [21] |ℳ| + 6|𝐺𝐺| 6 ∗ 1024 + 1024 = 7168 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Oh et al. [22] |ℳ| + 2|Ꝕ| + |ℋ| 1024 + 2 ∗ 1024 + 256 = 3328 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Ko et al. [23] |ℳ| + 3|Ꝕ| 1024 + 3 ∗ 1024 = 4096 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

Zhang et al. [26] |ℳ| + 2|𝒬𝒬| 1024 + 2 ∗ 160 = 1344 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Our Scheme |ℳ| + 2|𝓃𝓃| 1024 + 2 ∗ 80 = 1184 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

|) divisor size, respectively. We assume |M| = 1024 bits, |
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

| = 1024 bits, |G| =
1024 bits, |H| = 256 |Q| = 160 bits, and |
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For more details, we used the following cost reduction formula: 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
∗ 100 [29]. The following computation shows how the 

proposed scheme provides secure communication with a reduced amount of computation 
compared to the schemes that are proposed in Kim et al. [21], Oh et al. [22], Ko et al. [23], 
and Zhang et al. [26], respectively. 
1. Computational cost reduction process between the newly proposed scheme and Kim 

et al. [21], which is represented and processed as Kim et al.  [21]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Kim et al.[21] 

∗

100 = 136.88−3.36
136.88

∗ 100 = 97.54%. 
2. Computational cost reduction process between the newly proposed scheme and Oh 

et al. [22], which is represented and processed as Oh et al.  [22]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Oh et al.[22]

∗

100 = 7.5−3.36
7.5

∗ 100 = 55.2 %. 
3. Computational cost reduction process between the newly proposed scheme and Ko 

et al. [23], which is represented and processed as Ko et al.  [23]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Ko et al.[23] 

∗

100 = 7.5−3.36
7.5

∗ 100 = 55.2 %. 
4. Computational cost reduction process between the newly proposed scheme and Ping 

et al. [26], which is represented and processed as Zhang et al.[26]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Zhang et al.[26] 

∗

100 = 4.16−3.36
4.16

∗ 100 = 19.23 %. 

So, we can conclude that the proposed scheme is significantly more efficient by 
97.54% compared to [21], 55.2% compared to [22], 55.2% compared to [23], and 19.23% 
compared to [26] regarding computational cost. 

8. Communication Overhead 
This section compares the efficiency of the proposed scheme with the other relevant 

schemes of Kim et al. [21], Oh et al. [22], Ko et al. [23], and Zhang et al. [26] in term of 
communication overhead. This comparison is based on extra parameters being sent with 
the message, which include the current timestamp size, bilinear pairing (|Ꝕ|), parameter 
size (|𝑮𝑮|), hash value (|𝓗𝓗|), elliptic-curve point size (|𝓠𝓠|), and hyperelliptic-curve (|𝓷𝓷|) 
divisor size, respectively. We assume |ℳ| = 1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |Ꝕ| = 1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |𝐺𝐺| =
1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |𝓗𝓗| = 256 |𝓠𝓠| = 160 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑎𝑎𝑎𝑎𝑎𝑎 |𝓃𝓃| = 80 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. The comparative analysis is per-
formed in Table 4 using the above values between the proposed scheme, Kim et al. [21], 
Oh et al. [22], Ko et al. [23], and Zhang et al. [26]. We can conclude from Table 4 and Figure 
4 that our proposed strategy clearly outperforms the [21–23,26] schemes in both charac-
teristics. 

Table 4. Communication overhead analysis between Our Scheme and those Kim et al. [21], Oh et 
al. [22], Ko et al. [23], and Zhang et al. [26]. 

Schemes Communication Overheads Communication Overheads in Bits 
Kim et al. [21] |ℳ| + 6|𝐺𝐺| 6 ∗ 1024 + 1024 = 7168 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Oh et al. [22] |ℳ| + 2|Ꝕ| + |ℋ| 1024 + 2 ∗ 1024 + 256 = 3328 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Ko et al. [23] |ℳ| + 3|Ꝕ| 1024 + 3 ∗ 1024 = 4096 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

Zhang et al. [26] |ℳ| + 2|𝒬𝒬| 1024 + 2 ∗ 160 = 1344 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Our Scheme |ℳ| + 2|𝓃𝓃| 1024 + 2 ∗ 80 = 1184 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

| = 80 bits. The comparative analysis is
performed in Table 4 using the above values between the proposed scheme, Kim et al. [21],
Oh et al. [22], Ko et al. [23], and Zhang et al. [26]. We can conclude from Table 4 and
Figure 4 that our proposed strategy clearly outperforms the [21–23,26] schemes in both
characteristics.
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Table 4. Communication overhead analysis between Our Scheme and those Kim et al. [21],
Oh et al. [22], Ko et al. [23], and Zhang et al. [26].

Schemes Communication Overheads Communication Overheads in Bits

Kim et al. [21] |M|+ 6|G| 6 ∗ 1024 + 1024 = 7168 bits

Oh et al. [22] |M|+ 2|
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1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

|+ |H| 1024 + 2 ∗ 1024 + 256 = 3328 bits
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14 𝐾𝐾,𝛽𝛽 This is used to represent the signature pair generated by signer 
15 ℬℳ This is used to represent bilinear pairing-based multiplication 
16 Xⅇ This is used to represent the exponential 
17 ℰ𝒞𝒞ℳ This is used to represent elliptic curve multiplication 
18 ℋℰ𝒞𝒞ℳ This is used to represent hyperelliptic curve multiplication 
19 ℬꝔ This is used to represent the bilinear pairing operation 

20 𝐶𝐶𝑛𝑛 This is used to represent the challenger, which will support the adversary during  
security analysis 

21  𝐴𝐴𝑛𝑛 This is used to represent the type 1 adversary 
22  𝐴𝐴𝑚𝑚 This is used to represent the type 2 adversary 
23 ℰ This is used to represent the non-negligible probability type 1 and type 2 adversaries 
24 𝑄𝑄𝐻𝐻𝑙𝑙  This is used to represent the query for 𝐻𝐻𝑙𝑙  
25 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 This is used to represent partial private key query 
26 𝑄𝑄𝑈𝑈 This is used to represent user creation query 
27 𝑄𝑄𝐻𝐻𝑘𝑘 This is used to denote the query for 𝐻𝐻𝑘𝑘 
28 𝑄𝑄𝐻𝐻𝑗𝑗 This is used to denote the query for 𝐻𝐻𝑗𝑗 

1. Initialization: Here, the trusted authority performs the following mathematical com-
putations: 
• Select hyper elliptic curve (𝐻𝐻𝐺𝐺=2) with genus 2. 
• Suggest the finite field (𝐹𝐹𝑝𝑝) of order 𝑝𝑝, where its range is not more than 80 bits. 
• Suggest the devisor (𝒟𝒟) of 𝐻𝐻𝐺𝐺=2, where its range is not more than 80 bits. 
• Suggest three irreversible, one-way, and collision-resistant hash functions 

(𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙) from the SHA family. 
• TA computes the public key 𝛤𝛤 = 𝜕𝜕.𝒟𝒟, where 𝜕𝜕 is the randomly selected private 

key from 𝐹𝐹𝑝𝑝. 
• TA publishes the public parameter set { 𝛤𝛤,  𝒟𝒟,  𝐹𝐹𝑝𝑝, 𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}. 

2. Generate Private Number: User (𝑈𝑈𝑖𝑖) selects 𝜙𝜙𝑖𝑖 from  𝐹𝐹𝑝𝑝 as a private number. 
3. Generate Partial Private Key: Upon the request of 𝑈𝑈𝑖𝑖 with identity 𝐼𝐼𝐼𝐼𝑖𝑖 , TA selects 𝛾𝛾𝑖𝑖 

from 𝐹𝐹𝑝𝑝 and computes ℐ𝑖𝑖 = 𝛾𝛾𝑖𝑖 .𝒟𝒟, 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), and 𝜔𝜔𝑖𝑖 = 𝜕𝜕 + 𝛾𝛾𝑖𝑖 . ℐ𝑖𝑖. 
4. Generate Private Key: The User (𝑈𝑈𝑖𝑖) sets (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) as his private key. 
5. Key Update: In this phase, it renews the signature key pair by replacing (𝜔𝜔𝑖𝑖 ,𝜙𝜙𝑖𝑖) on 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑒𝑒𝑤𝑤, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) before signature generations and also renews the verification public 

key as (𝒬𝒬𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛). 

6. Generate Public Key: The user (𝑈𝑈𝑖𝑖) sets (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) as his public key, where 𝒬𝒬𝑖𝑖 = 𝜙𝜙𝑖𝑖 .𝒟𝒟. 
7. Generate Forward Signature: Given a message 𝑚𝑚 , the updated signature key pair 

(𝜔𝜔𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛, 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛), {𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and ℐ𝑖𝑖, the signer per-

forms the following computations: 
• Signer selects 𝓀𝓀 from  𝐹𝐹𝑝𝑝 and computes 𝐾𝐾 = 𝓀𝓀.𝒟𝒟. 
• Compute 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾) and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
• Compute 𝛽𝛽 = 𝜙𝜙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑟𝑟1𝓀𝓀 + 𝑟𝑟2𝜔𝜔𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛 and send (𝐾𝐾,𝛽𝛽, 𝑟𝑟1) to verifier. 
8. Forward Signature Verification: Given a message 𝑚𝑚 , the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , 

{𝛤𝛤, 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙}, signer identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier performs the 
following computations: 
Verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 𝑟𝑟2 = 𝐻𝐻𝑙𝑙(𝑚𝑚,𝐾𝐾,𝛤𝛤,𝒬𝒬𝑖𝑖). 
Verifier checks the validity of the signature by computing 𝛽𝛽.𝒟𝒟 = 𝒬𝒬𝑖𝑖 + 𝑟𝑟1𝐾𝐾 + 𝑟𝑟2(𝛤𝛤 +

𝛥𝛥𝑖𝑖ℐ𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛); if it is satisfied, accept. 

5. Correctness 
Given a message 𝑚𝑚, the public key pair (ℐ𝑖𝑖 ,𝒬𝒬𝑖𝑖) , {𝛤𝛤 , 𝒟𝒟, 𝐹𝐹𝑝𝑝,𝐻𝐻𝐺𝐺=2,𝐻𝐻𝑗𝑗 ,𝐻𝐻𝑘𝑘 ,𝐻𝐻𝑙𝑙 }, signer 

identity (𝐼𝐼𝐼𝐼𝑖𝑖), and (𝐾𝐾,𝛽𝛽, 𝑟𝑟1), the verifier computes 𝛥𝛥𝑖𝑖 = 𝐻𝐻𝑗𝑗(𝐼𝐼𝐼𝐼𝑖𝑖 ,𝛤𝛤, ℐ𝑖𝑖), 𝑟𝑟1 = 𝐻𝐻𝑘𝑘(𝑚𝑚,𝐾𝐾), and 

| 1024 + 3 ∗ 1024 = 4096 bits

Zhang et al. [26] |M|+ 2|Q| 1024 + 2 ∗ 160 = 1344 bits
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For more details, we used the following cost reduction formula: 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
∗ 100 [29]. The following computation shows how the 

proposed scheme provides secure communication with a reduced amount of computation 
compared to the schemes that are proposed in Kim et al. [21], Oh et al. [22], Ko et al. [23], 
and Zhang et al. [26], respectively. 
1. Computational cost reduction process between the newly proposed scheme and Kim 

et al. [21], which is represented and processed as Kim et al.  [21]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Kim et al.[21] 

∗

100 = 136.88−3.36
136.88

∗ 100 = 97.54%. 
2. Computational cost reduction process between the newly proposed scheme and Oh 

et al. [22], which is represented and processed as Oh et al.  [22]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Oh et al.[22]

∗

100 = 7.5−3.36
7.5

∗ 100 = 55.2 %. 
3. Computational cost reduction process between the newly proposed scheme and Ko 

et al. [23], which is represented and processed as Ko et al.  [23]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Ko et al.[23] 

∗

100 = 7.5−3.36
7.5

∗ 100 = 55.2 %. 
4. Computational cost reduction process between the newly proposed scheme and Ping 

et al. [26], which is represented and processed as Zhang et al.[26]−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
Zhang et al.[26] 

∗

100 = 4.16−3.36
4.16

∗ 100 = 19.23 %. 

So, we can conclude that the proposed scheme is significantly more efficient by 
97.54% compared to [21], 55.2% compared to [22], 55.2% compared to [23], and 19.23% 
compared to [26] regarding computational cost. 

8. Communication Overhead 
This section compares the efficiency of the proposed scheme with the other relevant 

schemes of Kim et al. [21], Oh et al. [22], Ko et al. [23], and Zhang et al. [26] in term of 
communication overhead. This comparison is based on extra parameters being sent with 
the message, which include the current timestamp size, bilinear pairing (|Ꝕ|), parameter 
size (|𝑮𝑮|), hash value (|𝓗𝓗|), elliptic-curve point size (|𝓠𝓠|), and hyperelliptic-curve (|𝓷𝓷|) 
divisor size, respectively. We assume |ℳ| = 1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |Ꝕ| = 1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |𝐺𝐺| =
1024 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, |𝓗𝓗| = 256 |𝓠𝓠| = 160 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑎𝑎𝑎𝑎𝑎𝑎 |𝓃𝓃| = 80 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. The comparative analysis is per-
formed in Table 4 using the above values between the proposed scheme, Kim et al. [21], 
Oh et al. [22], Ko et al. [23], and Zhang et al. [26]. We can conclude from Table 4 and Figure 
4 that our proposed strategy clearly outperforms the [21–23,26] schemes in both charac-
teristics. 

Table 4. Communication overhead analysis between Our Scheme and those Kim et al. [21], Oh et 
al. [22], Ko et al. [23], and Zhang et al. [26]. 

Schemes Communication Overheads Communication Overheads in Bits 
Kim et al. [21] |ℳ| + 6|𝐺𝐺| 6 ∗ 1024 + 1024 = 7168 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Oh et al. [22] |ℳ| + 2|Ꝕ| + |ℋ| 1024 + 2 ∗ 1024 + 256 = 3328 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Ko et al. [23] |ℳ| + 3|Ꝕ| 1024 + 3 ∗ 1024 = 4096 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

Zhang et al. [26] |ℳ| + 2|𝒬𝒬| 1024 + 2 ∗ 160 = 1344 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Our Scheme |ℳ| + 2|𝓃𝓃| 1024 + 2 ∗ 80 = 1184 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

| 1024 + 2 ∗ 80 = 1184 bits
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Figure 4. Communication cost comparison in bits between Our Scheme and those Kim et al. [21], 
Oh et al. [22], Ko et al. [23], and Zhang et al. [26]. 

For more details, we used the following overhead reduction formula: 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒
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For more details, we used the following overhead reduction formula:
Existing Scheme−Newly Proposed Scheme

Existing Scheme ∗ 100 [29]. The following computation shows how the
proposed scheme provides secure communication with a reduced amount of computation
compared to the schemes that are proposed in Kim et al. [21], Oh et al. [22], Ko et al. [23],
and Zhang et al. [26], respectively.

1. Communication overheads reduction process between the newly proposed scheme and

Kim et al. [21], which is represented and processed as Kim et al.−Newly Proposed Scheme
Kim et al. ∗

100 = 7168−1184
7168 ∗ 100 = 83.48% .

2. Communication overheads reduction process between the newly proposed scheme

and Oh et al. [22], which is represented and processed as Oh et al −Newly Proposed Scheme
Kim et al. ∗

100 = 3328−1184
3328 ∗ 100 = 64.42% .

3. Communication overheads reduction process between the newly proposed scheme

and Ko et al. [23], which is represented and processed as Ko et al.−Newly Proposed Scheme
Ko et al. ∗

100 = 4096−1184
4096 ∗ 100 = 71.09%.

4. Communication overheads reduction process between the newly proposed scheme and

Zhang et al. [26], which is represented and processed as Zhang et al. −Newly Proposed Scheme
Zhang et al. ∗

100 = 1344−1184
1344 ∗ 100 = 11.90%.

So, we can conclude that the proposed scheme is significantly more efficient by 83.48%
compared to [21], 64.42% compared to [22], 71.09% compared to [23], and 11.90% compared
to [26] regarding communication overheads.
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9. Conclusions

To remove the problem of key escrow in existing forward-secure signature schemes,
in this paper we have proposed a certificateless forward-secure signature scheme based on
the hyperelliptic curve for the Internet-of-Things environment. The security analysis of this
newly designed scheme is performed under the random oracle model (ROM), in which
we have shown the proposed scheme safeguarded from type 1 and type 2 adversaries
regarding forgeability and forward security requirements. The computational cost and
communication overheads comparisons show that the proposed scheme is significantly
efficient compared to existing similar schemes. From the above discussion, we have
concluded that the proposed scheme has good quality such as being key-escrow-free,
unforgeable, forward-secure, and having low computational cost and low communication
overheads. With these qualities, it would be a suitable approach for resource-hungry IoT
devices which can communicate with each other using the open Internet.
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