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Abstract: This paper presents the implementation of the mono-objective Switch Allocation Problem
(SAP) optimization model for electric power distribution networks, considering the equivalent
interruption duration per consumer unit EIDCU and non-distributed energy END reliability indexes.
We use the current summation algorithm to solve the power flow, and we employ an intelligent bee
colony algorithm to solve the model. Two network topologies, one with 43 and another with 136 bars,
adapted from the literature, are used to illustrate the solution. Results show a significant reduction in
the financial cost of planning a power distribution network.

Keywords: combinatorial optmization; monobjective optimization; electric power distribution; power
flow simulation

1. Introduction

The current lifestyle of society demonstrates an increasing dependence on energy and,
in the current model of power generation systems, a substantial amount of electricity still
depends on non-renewable high-carbon sources [1]. In recent years, however, Renewable
Energy Sources (RESs) have been integrated into the generation, and distribution matrices,
where Photovoltaic (PV), wind, and small hydroelectric plants, for example, have shown to be
sustainable alternatives [2]. Furthermore, in the last few years, studies have been adding
innovations for different segments of energy systems, such as generation, transmission,
and distribution of energy [3–6]. The need to make these systems more reliable, secure,
and efficient has led different areas such as computing, telecommunications, automation,
and electrical engineering to develop new solutions [7–11]. The new applications with
these areas in electrical infrastructure gave rise to intelligent energy systems, called smart
grids [12].

Over several decades, several pioneering research studies on energy optimization
problems using intelligent-based methodology were proposed. For instance, Ref. [13]
proposes an ant colony optimization algorithm for a minimization problem of energy not
supplied during the restoration process. The proposed algorithm is based on a hypercube
framework searching for an optimal switching sequence, and the solution provides an
effective service restoration strategy that improves system reliability.

A similar approach can also be found in [14], who used an ACO algorithm to minimize
the number of switching operations on a network. Ref. [15] used reinforcement learning
for optimal reconfiguration that involves selection of the best set of branches to be opened,
such that the resulting radial distribution system has the desired performance.

In Ref. [16]), a swarm-based methodology is designed to locate and isolate faults and
then decide and implement the switching operations to restore the out-of-service loads.

In Ref. [17], an expert system is developed by utilizing its fast reasoning mechanism
and object-oriented features. The feeder component and configuration data are organized
in a hierarchy way using the object-oriented programming paradigm. These are just some
of the dedicated works in building techniques for energy problems in smart grids.

In the power distribution segment, smart grids include the use of distributed systems,
artificial intelligence, and power systems as a way of automating the process of recovering a
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distribution network in the event of abnormalities (e.g., failures in network devices, excess
flow, damages caused by nature or vandalism). These events can cause system failures that
lead to blackouts or power supply with lower quality than expected [12,18]. One of the
fundamental aspects of a smart grid power distribution network is the system’s ability to
identify and recover the network in case of failure. This ability characterizes a self-healing
system [19].

Several works have proposed self-healing mechanisms for recovering electrical net-
works such as [20–23], just to name a few. Due to the multidisciplinary domain of the
problem, some approaches require human specialists from the subareas of computing
(distributed systems, programming, and artificial intelligence), telecommunications (trans-
mission and reception of signals), and electrical engineering (energy and electrical systems).
This multidisciplinarity makes the proposed solutions highly complex for smart grids due
to the diversity of possible approaches to be applied and the sort of problems to handle. For
instance, the Switch Allocation Problem (SAP) determines which location, type, and quan-
tity of switches should be installed in a distribution network to increase energy efficiency.
For the feasibility of implementing smart electrical grids, the location of the switches is
essential, as it increases the possibility of switching on the grid in a future restoration
strategy or load reconfiguration. When a grid is optimized for switching plans, it can
quickly feed zones without supply or isolate zones with voltage and current disturbances.

Technically, the SAP can be seen as a combinatorial optimization problem [24–26].
The approach proposed in [25] deals with a multi-objective SAP model, considering the
Average Duration of Interruption (SAIDI) and Average Duration of Failure (SAIFI) indexes
of the system in two sectorized networks, addressing not only restoration reliability con-
straints but also system initial operating point optimization. Other studies address specific
problems that help to add more quality to smart grids. For example, Ref. [27] proposes
the study of the failure of switches in a sectorized network, usually disregarded by other
authors. The optimization in this work is mono-objective, considering the costs of switches
and quality indexes SAIDI and SAIFI per consumer.

The approach proposed in this paper is based on the single-objective SAP modeled
by [24]. The objective function of our approach are optimizing the network costs by
reliability indexes per sector, equivalent interruption duration per consumer unit (EIDCU),
and non-distributed energy (END). We use the Backward\Forward Sweep method, proposed
by [28], to calculate the power flow. Then, we propose a metaheuristic solution Gbest
guided Artificial Bee Colony (GABC), raised by [29], and simulate the problem using two
networks adapted from the literature [25].

In the following, Section 2 presents the related concepts; Section 3 exposes the proposed
resolution, followed by applications in Section 4; and conclusions are presented in Section 5.

2. Problem Formulation

Our proposal is based on two main concepts:

(i) The network must be conceived as a radial distribution network, i.e., a customer,
named load demand, must be redundantly fed by more than one substation (ST) of load.
The radial topology provides a way to reconfigure the network by opening/closing
some switches and reestablishing the power flow.

(ii) The network is sectorized in such a way that the normally closed (NC) and normally
open (NO) switches segment the clients into separated groups.

2.1. Network Reliability

For the network reliability evaluation, we need to establish some reliability indexes that
allow for measuring the efficiency of the network reconfiguration when our methodology
is applied.

In this work, we adopted the formulation proposed in [24,30]. Such a formulation
establishes two indexes for network evaluation:

(i) Equivalent interruption duration per consumer unit (EIDCU);
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(ii) The energy not supplied (END).

To calculate EIDCU and END, we first need to calculate the energy load L, Equation (1),
the failure rate λ, Equation (2), and the supply time per section U, Equation (3).

Let us consider a network as graph G, i.e., an ordered pair (V, A). Let V(G) be the
set of vertices modeling the load demands L, and let A(G) be the set of edges modeling
the switches. Each part of G, delimited by switches, constitutes a sector of S {(k, l) ∈ S},
where l is normally represented as a failure section, and k is the target sector for calculations.
Each section has its energy load L, failure rate λ, and supply time U, defined as follows:

◦ Energy Load: for the k part
Lk = fc ∑

i∈k
Li (1)

◦ Failure Rate:
λl = ∑

i∈Vl

λi (2)

In Equation (2), Vl is the subset of branches present in the section l ∈ S, and λi is the
failure rate of each of the branches i ∈ Vl. Therefore, the failure rate λl of a given
section l derives from the sum of the failure rates of all its branches, i.e., the average
number of failures per year.

◦ Supply Time Fault:
Uk = ∑

l∈S
λl.tkl (3)

In Equation (3), λl models the failure rate in the section l ∈ S; tkl is the expected
duration of outage in section k, caused by faults in section l. Determining the restore
time tkl depends on the section classification for each fault restoration.

◦ System Average Interruption Duration Index (EIDCU)

EIDCU =
∑l∈S Ul.Nl

∑k∈S Nk
(4)

In Equation (4), Ul represents the total duration of interruptions for each interrupted
section l ∈ S, considering faults in the section l and all other sectors causing power
outages in the sector l; Nl is the number of affected consumers; and Nk is the number
of consumers on the network. EIDCU expresses the average power outage duration
on the grid during one year.

◦ Energy Not Distributed (END)

END = ∑
k∈S

Uk.Lk (5)

In Equation (5), tk is the total duration of outages for each sector k ∈ S and Lk is the
annual average load of the section k ∈ S.

2.2. Restoration Time

To solve the Switch Allocation Problem (SAP), we first have to address the Load Restora-
tion in Distribution Systems Problem (PRES). When this problem is solved, the expected
interruption duration per sector tkl is obtained.

The network is segmented into sections, the fault l occurs in one section, affecting the
sector k in an outage time tkl. Basically, four situations occur:

tkl =


0 case 1

λltl case 2
λl(tl + t2) case 3

λl(tl + t2 + t3) case 4

(6)
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◦ Case 1: when the section k is located downstream from the fault section l, and there is
a protection device between them. The sector k is considered not affected.

◦ Case 2: when the section k is located downstream from the fault sector l and there is a
sectionalizing switch between them. Opening the switch implies tl. The k section is
considered Resettable.

◦ Case 3: when section k is located upstream from the fault section l, and there is
sectionalizing switch between them, as well as a tie switch somewhere upstream from
k. Opening the NC key implies tl and closing the NO implies t2. The k sector is
considered Transferable.

◦ Case 4: when the sector k is located in sector l (l ⊂ k) or upstream from the fault
section l, and there are no switches that can provide load transfer. In such a case,
the energy restoration is only possible after the sector l has been repaired, implying t3.
The sector k and section l are considered Permanently Interrupted.

2.3. Power Flow in Distribution Systems

To establish one of the restrictions in PRES, it is necessary to determine the permanent
conditions of the system, i.e., if the grid power is within what is supported by the substation
and if the load demands are not overloading the grid at some point. All load variables are
calculated for an operating point every time a new solution is considered to ensure these
conditions. The method Backward\Forward Sweep, proposed by [28], is used, an iterative
algorithm belonging to the numerical algorithms, which aims to approximate an exact
solution by repeated calculations accepting a margin of error, recommended for weakly
meshed and radial networks, which present good general performance. The power flow
employs a series of calculations to determine the current, voltage, and losses using the data
of resistance, reactance, reactive power, and active power. Details of the implementation of
this method can be found in [28].

2.4. Mathematical Formulation of the Switch Allocation Problem

The SAP aims to determine the number and the location of the switches to benefit the
electrical system by qualifying the system reliability indexes and establishing which ones
reduce power losses in the network.

The switch allocation considers the whole network in an operational state with no
failures, which benefits the entire network. The SAP is NP-Hard [31] and a multi-criteria
problem [24,25].

This work is based in the mathematical formulation of SAP, presented in [24], whose
particularity is its time estimate in PRES by considering actual prices applied in the market
of electricity distribution. The model also provides conditions to be applied in large-
scale networks.

Let us consider a graph G, as an ordered pair (V(G), A(G)), where V(G) represents
a set of vertices, and A(G) is a disjoint set of edges. Each edge of G is an unordered
pair of vertices, such that the root of the graph is in a ST; i ∈ V represents the selection
of a vertex modeling a location of a customer i.e., a location of energy demand. Each
{(i, j) ∈ A | i ∈ V, j ∈ V} corresponds to the selection of a feasible location for switch
allocation. Table 1 shows the notation used in the following mathematical formulation.

The decision variables, Xs
ij and Ys

ij, represent the types and locations for sectionalizing
switches (NC) and tie switches (NO). These variables are defined as:

Xs
ij =

{
1, if a switch NC of type s ∈ SW is allocated to the segment (i, j) ∈ A

0, otherwise
(7)

Ys
ij =

{
1, if a switch of NO type s ∈ SW is allocated to the segment (i, j) ∈ A

0, otherwise
(8)
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Table 1. Mathematical model notation.

ce Energy Cost (BRL)
cs Cost of the Switch type s ∈ SW (BRL)
fij Current Power flow on branch (i, j) ∈ A (A)
Fs Maximum Power flow of switch type s (A)

SW Set of switch types
X Set of decision variables in sectionalizing switches NC
Y Set of decision variables in tie switches NO

DEClim Maximum value allowed for the EIDCU (hrs/cons./year)
END(X, Y) END expected in allocation (KWh)

EIDCU(X, Y) EIDCU expected in allocation (hrs/cons./year)

The SW set represents the available switches. Next, using the definitions presented in
Table 1, the mathematical model for solving the adopted SAP is presented:

(SAP)

minimize ce · END(X, Y) + ∑
(i,j)∈A

∑
s∈SW

cs · (Xs
ij + Ys

ij) (9)

s.t.

EIDCU(X, Y)z ≤ DEClim
z ∀ z ∈ Z (10)

Xs
ij + Ys

ij ≤ 1 ∀ (i, j) ∈ A, ∀ s ∈ SW (11)

fijXs
ij + fijYs

ij ≤ Fs ∀ (i, j) ∈ A, ∀ s ∈ SW (12)

Xs
ij, Ys

ij ∈ {0, 1} ∀ (i, j) ∈ A, ∀ s ∈ SW (13)

fij ≥ 0 (14)

Equation (9) represents the objective function to be optimized, with one index being
quality and the other cost. Equation (10) is a constraint of the maximum (10) limit for each
feeder z. Equation (11) is a binary constraint of the allocation of switches to each edge
of the network. Equation (12) is an electrical limitation of the switches where Fs is the
maximum electrical flow. Equation (13) is a binary constraint on the keys, and Equation (14)
is a positive electric flow constraint on the network.

We use the metaheuristic approximate solving algorithm called Artificial Bee Colony
(ABC), discussed as follows, to solve this mathematical model.

2.5. Artificial Bee Colony Metaheuristic

The Artificial Bees Colony (ABC) [32] is a metaheuristic that mimics the foraging behav-
ior of a colony of bees. The method consists of conceptually splitting a colony of bees into
three groups, named scout, maids, and spectators.

Compared with other swarm algorithms, such as PSO, Ant Colony Optimization,
Genetic Algorithm, Simulated Annealing, Tabu Search, etc. [33,34], the ABC pre-divides the
number of intelligent agents, respects a sequence of tasks generated by the bees, and limits
the location performed by the maids in a relatively low value, explained in [29], as well as
being appropriate in problems with continuous search spaces, clustered and constrained
search [32,35], the SAP characteristics.

3. Proposed Approach

Algorithm 1 shows the implementation of the proposed approach named GABC
(Global Artificial Bee Colony Search). The best solution is initiated by a greedy method,
passing through the drawing of neighborhood structures followed by the movement of the
sectioning switches and elevation of the type of switches. It also has some mechanisms to
avoid stagnation. In spectator bees, a draw between the five most elaborate neighborhood
structures is made and passed on to each spectator. In addition, a neighborhood structure
is incremented by iterating the best solution.
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Algorithm 1: GABC Pseudocode
Input: G = (V, A)
Output: Sbest
Data: COL // colony size,
EB← COL/2 // employed bees,
OB← COL/2 // onlooker bess,
SB // scout bees,
lim // movement limit in local searches,
limtime // time limit in local searches,
NC // number of cycles,
update // iteration since the last update on the best solution
update← 0,
Sbest ← GenerateRandomSolution() // Greedy initialization
Sbest ← RandomLocalSearch(lim = 10)
Sbest ← LocalSearchMovec.seccionamento()
Sbest ← LocalSearchElevateType()
while Sbest > Slocal(NC− 4) do

for eachi ∈ SB do
if (SB == 1)or(Si(lim) >= lim) then

Si ← GenerateRandomSolution()
if fitness(Si) < fitness(Sbest) then

Sbest ← Si
update← 0

for eachi ∈ EB do
Si ← RandomLocalSearch(lim)
if fitness(Si) < fitness(Sbest) then

Sbest ← Si
update← 0

// Calculate the EB probability solutions;
for eachi ∈ OB

k← roulette(EB)
if Si(lim) > lim then

Si ← Sk

Si ← RandomLocalSearch(lim);
If update ≥ 3

k = rand( between 0 and 5 // Draws Local Searches
Si ← LocalSearchk(Si , limtime)

end
If fitness(Si) < fitness(Sbest)

Sbest ← Si
update← 0

end
end
// Extra Local Search
if Slocal(NC) == Slocal(NC− 1) then

k = rand( between 0 and 5) // Draws Local Searches
Sbest ← LocalSearch(k, Sbest, limtime)

if update is multiple of 3 then
for eachi ∈ COL

Si ← RandomLocalSearch(2 ∗ lim)
end

else
Sbest ← RandomLocalSearch(lim)

end
Sbest ← bestsolutioninCOL
NC← NC + 1
update← update + 1

end

GABC uses both a movement limit lim and a time limit limtime. The S 6= {} symbolizes
an unfeasible solution, which does not pass when checking its radiality, power flow, or the
DEClim constraints of the feeders.

Random searches are called a total of COL + 1 times, or 2 ∗COL in multiple iterations
of three by GABC, Algorithm 1.
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4. Experimental Results

Before applying the proposed approach SAP directly to the problem, the power flow
was compared with four simulated networks known in the literature: (i) the 10-bar network
presented in [36]; (ii) the 33 bars presented [28]; (iii) the 34 bars presented in [37]; and
(iv) the 70 bar presented in [38]. The tolerance error of 1 × 10−5 was allowed in these
networks. Table 2 shows the comparison between the results obtained by the proposed
implementation with the results obtained by MATPOWER.

Table 2. Results of the 33-bar network.

Property Implemented Matpower

Active power loss (kW) 202,676 202,677
Reactive power lost (kvar) 135,140 135,141
Active p. generated (kW) 3,918,000 3,917,680

Reactive p. generated (kvar) 2,435,000 2,435,140
Total active load (MW) 3715 3715

Total reactive load (Mvar) 2300 2300

Time (s) 0.050 0.051
Iterations 5 8

Results presented in Tables 3–6 were obtained using an Intel i3 2.40 GHz personal
computer with 4 GB of RAM and Windows 7 as the operating system. The algorithms were
implemented in MATLAB and supported by the toolbox MATPOWER 7.0. To demonstrate
the efficiency of the proposed approach, we use two networks available in [25].

The parameters of the algorithm GABC, Algorithm 1, were set as a colony of 10 bees,
5 employers, and 5 onlookers, with a limit of 6 moves in local searches per iteration and a
time limit of 60 s. The scout bees have a constant rate of 86.47%. The algorithm runs until a
convergence rate of 10 iterations is achieved.

The electrical parameters used are: Vnom = 7.967 kV, Imax = 1000 A, Sbase = 10 MVA.
For the resistances, Rij, and reactance Xij of the open switches, minimum values of the
reference network 157.54 × 10−6 pu and 0 pu were considered. For the closed switches,
the values of 9658.97 × 10−6 pu and 14,179.23 × 10−6 pu were taken. The demand powers
Pi and Qi were multiplied ten times to increase the currents and adapt to the model used,
allowing the optimizer to choose more types of keys.

The ratio between the cost of undistributed power and the cost of switches is 1000:1.
Table 3 shows the relationship between the EIDCU for the two feeders after DECmax and
DECmn stipulated by the average EIDCU.

Table 3. EIDCU of the 43-bar network.

Feeder Minimum Limit Maximum

1 2878 19,488 36,099
43 2670 13,891 25,112

In Figure 1, we can see the performance by iteration and by time. It shows the sudden
drop in the cost of the network right after the initial heuristic.
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Figure 1. Performance of the GABC for 43 nodes.

Table 4 shows the END separated by the feeder, as well as the total cost of END and
the cost of the keys before and after the optimization. The presence of the largest portion
of END in feeder 1 is transferred to the second after optimization. In Table 4, we can see
the importance of automatic keys in reducing the cost of the objective function. A total of
6 automatic switches are allocated, and 30 manual switches are included for sectioning and
switching. The final undistributed energy of the network is 99.09% lower than the initial,
showing a decrease of BRL 473,443,261.00. Even reducing the total cost, the greatest weight
remains the energy not distributed in the grid. The total cost reduction of the network
drops 99.04%, equivalent to BRL 473,219,742.00.

Table 4. Key information and costs for the 43-bar network.

Switch END (BRL/year) Cost (BRL)

Initial End Feeder Initial End Initial End

Manual 9 30 1 428,341,662 254,027 END 477,773,791 4,330,530
Automatic 0 6 2 49,432,129 4,076,503 Switch 40,857 264,376

Total 9 36 Total 477,773,791 4,330,530 Total 477,814,648 4,594,906

Figure 2 illustrates the optimal setup for 43-bar network. The electrical parame-
ters used are: Vnom = 13,800 kV, Imax = 1000 A, Sbase = 20 MVA. For the resistors, Rij,
and reactance Xij of the open switches, minimum values of 105.02 × 10−6 pu and 0 pu
were considered, while the closed switches considered values of 9321.71 × 10−6 pu and
11,518.86 × 10−6 pu. The demand powers Pi and Qi were multiplied three times to increase
the currents and adapt to the model used, allowing the optimizer to choose more types
of keys.

Table 5 shows the relationship between EIDCU for the two feeders after DECmax and
DECmn stipulated by the average EIDCU.

Table 5. EIDCU of the 136-bar network.

Feeder Minimum Limit Maximum

1 517 8442 16,368
137 416 6733 13,050
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Figure 2. Optimal of the 43-bar network.

In Figure 3, we can see the performance by iteration and by time. It shows the sudden
drop in the cost of the network right after the initial heuristic, represented until the 4th
iteration in 57 min, a drop of 79.09% compared to the initial configuration, and in the
10th iteration with 4 h and 44 min, a drop of 90.01% compared to the initial configuration.
Between the 61st, in 25 h and 1 min, and the last iteration, there is a drop of less than 1% in
the cost of the network. GABC converges on the 99th iteration in 38 h and 47 min showing
a total improvement of 96.13% over the initial configuration.
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Figure 3. Performance of the GABC for the 136 nodes.

Table 6 shows the portion of END of the feeders, as well as the cost of END and the
cost of the keys before and after the optimization. The allocation of automatic keys is
predominant in this case, rising from 0 to 71, while manual keys decrease from 28 to 26.
The final undistributed energy of the network is 97.35% lower than the initial one, showing
a drop of BRL 85,357,177.00. Even reducing the total cost, the greatest weight remains the
energy not distributed in the grid. The total cost reduction of the network reduces by 3.87%,
equivalent to BRL 84,391,494.00. The optimal setup for 136-bar network which reached
such metrics is presented in Figure 4.
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Table 6. Key information and costs for the 136 bars.

Switch END (BRL/year) Cost (BRL)

Initial End Feeder Initial End Type Initial End

Manuals 28 26 1 68,989,562 574,971 END 87,677,656 2,320,479
Automatics 0 71 137 18,688,094 1,745,508 Switch 115,348 1,081,031

Total 28 97 Total 87,677,656 2,320,479 Total 87,793,004 3,401,510
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Figure 4. Optimal of the 136-bar network.

5. Conclusions

This paper presented an approach to treat the single objective version of the Switch
Allocation Problem (SAP). When our results are compared to alternative solutions in the
literature, our model presented more uniform responses for different feeders with a medium
EIDCU. Our model produces a uniform duration equivalent to interruption among the
feeders, avoiding overloading some of them.

When applying our approach to the two test networks, a considerable reduction in
the final cost of the networks was observed. In the 43-bar network, the cost reduction was
99.04%, from BRL 477,814,648.00 to BRL 4,594,906.00. In the network of 136 bars, there was
a 96.13% pf reduction in costs, from BRL 87,793,004.00 to BRL 3,401,510.00.

The proposed approach used the bee colony metaheuristic GABC. It is important
to emphasize that the algorithm reached promising results. Future works include the
execution time of our approach.
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