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Abstract: Location prediction in an indoor environment is a challenge, and this has been a research
trend for recent years, with many potential applications. In this paper, machine-learning-based
regression algorithms and Received Signal Strength Indicator (RSSI) fingerprint data from Wireless
Access Points (WAPs) with dual Service set IDentifiers (SSIDs) are used, and positioning prediction
and location accuracy are compared with single SSIDs. It is found that using Wi-Fi RSSI data from
dual-frequency SSIDs improves the location prediction accuracy by up to 19%. It is also found
that Support Vector Regression (SVR) gives the best prediction among classical machine-learning
algorithms, followed by K-Nearest Neighbour (KNN) and Linear Regression (LR). Moreover, we
analyse the effect of fingerprint grid size, coverage of the Reference Points (RPs) and location of
the Test Points (TPs) on the positioning prediction and location accuracy using these three best
algorithms. It is found that the prediction accuracy depends upon the fingerprint grid size and the
boundary of the RPs. Experimental results demonstrates that reducing fingerprint grid size improves
the positioning prediction and location accuracy. Further, the result also shows that when all the TPs
are inside the boundary of RPs, the prediction accuracy increases.

Keywords: fingerprinting; machine learning; positioning technology; indoor localization; Received
Signal Strength Indicator (RSSI); Service Set IDentifier (SSID); Wireless Access Point (WAP); Wi-Fi

1. Introduction

Positioning technology is considered essential technology to monitor resources and
manpower in today’s world. The automation of positioning technology in a real-time
environment is a growing need in current industries. Positioning technology such as the
Global Navigation Satellite System is available for outdoor or open environments. It is
very accurate and has been used extensively. However, there is a lack of common and
reliable positioning technology for an indoor environment [1–3]. Location intelligence
using positioning technology can create live maps and Apps for monitoring and tracking.
The decision makers can identify opportunities of business growth, employee safety and
efficiency by analysis of data from location intelligence tools. Therefore, there is a high
demand for accurate location tracking tools for an indoor environment [4–6].

There are a number of indoor positioning technologies available today. They deliver in-
door localization and they are broadly classified into three categories: wireless-signal-based
techniques, vision-based techniques and other techniques [4]. In the wireless-signal-based
techniques, the system uses various parameters, such as Received Signal Strength Indicator
(RSSI), time of flight, time of arrival, time difference of flight, time difference of arrival
and channel state information, to predict the position of mobile devices connected to the
wireless system. In vision-based techniques, the system utilises computer vision techniques
with the support of various types of cameras to predict the position of mobile devices
connected to the system. Among wireless-based techniques, RSSI-based fingerprinting is
popular in the literature as it is less complex and requires no additional hardware [7–11].
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In recent times, there has been a significant growth in the use of Wi-Fi technology in res-
idential, industrial and commercial settings, which has also contributed to adoption of
RSSI-based fingerprinting techniques in indoor localization. Therefore, several attempts
have been made to implement indoor localization using Wi-Fi, fingerprinting, machine
learning and Received Signal Strength (RSS) values [4,5]. There are three categories of
fingerprint methods, namely, deterministic, probabilistic and machine-learning methods,
where the first two methods incur significant computational cost. A machine-learning
approach can be more computationally efficient and popular [12], and therefore we use a
machine learning approach in this paper.

1.1. Motivation

Initially, Wireless Access Point (WAP) is implemented with a single frequency band.
The recent trend is to use multiple frequency bands in WAP, as the 802.11 standard comes
with several distinct radio frequency bands. Hence, the industry utilises multiple frequency
bands to improve bandwidth, speed and stability in Wi-Fi. Therefore, the future trend is
to utilise multiple frequency bands in a single WAP device [13]. To go with the natural
progression of Wi-Fi technology trend, it is imperative to utilise multiple frequency bands
on location tracking using Wi-Fi. Therefore, more research is needed to see the effects of
dual or multiple frequency bands on Wi-Fi based location prediction.

1.2. Contributions

The significant contributions of this paper are listed below:

• Analysis of the use of dual frequency bands (2G and 5G) to improve accuracy of
positioning prediction in comparison with single frequency band.

• Analysis of the effects on accuracy of positioning prediction by varying the location of
Test Point (TP), fingerprint coverage and grid size.

• Results comparable with the existing literature are obtained by using significantly less
Reference Points (RPs) per area.

The remaining part of this paper is organised as follows: Section 2 provides a brief
review on Wi-Fi-based fingerprinting methods using machine learning, followed by a
research gap and research questions. Section 3 presents the experimental details, including
experimental location, RSS measurement process, performance metrics, system modeling,
machine learning algorithms and tools used in this study. Results of the experimental study
are presented in Section 4, followed by the concluding remarks and future directions in
Section 5. All of the acronyms used in this paper are presented in abbreviations.

2. Related Works

This section provides a brief literature review on Wi-Fi-based positioning techniques
using fingerprinting and machine learning. The mapping of RSSI values displays the
random fluctuations in radio frequency signal in the wireless environment due to its time-
varying nature [14]. The quality of the received signal in time-varying wireless channels
can be measured by RSSI or RSS using a mobile device. One of the main challenges of
using Wi-Fi for indoor location prediction is that there is a huge amount of variability and
impairment in the channels due to partitions, indoor objects and walls [4,5,15–17].

Fingerprint-based localization is also known as a radio-map-based method or scene
analysis [18], where we create a map of RSSI or RSS values in the offline phase. This map
is used to predict the location of mobile devices with measured RSSI or RSS in an online
phase. RSSI or RSS values of received signal from Wi-Fi stations can be measured using an
application on a mobile device. The localization prediction depends on the measurement
methods used while developing the radio map [4]. One of the issues with the fingerprint is
the time and cost required for collecting large amounts of data, but there are alternative
methods [19] available for efficient data collection.

A review on indoor localization techniques and technologies can be found in [5], in
which they perform an extensive review of different techniques, technologies used and
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indoor localization systems. In [4], they comprehensively review an indoor localization
system using Wi-Fi and fingerprint with machine learning techniques. This paper also
provides a comprehensive discussion on the applications of indoor localization, operation of
Wi-Fi-based indoor localization, machine learning techniques applied in indoor localization
and fingerprinting techniques.

The experimental results and performance analysis of a Wi-Fi based localization
system using machine-learning algorithms such as K-Nearest Neighbour (KNN), Support
Vector Machine (SVM), Decision Tree (DT) and Random Forest (RF), are presented in [12].
The experiment is conducted in a hall of size of 14.15 m × 3.77 m, with six WAPs inside the
hall. RSSI measurement is conducted using a custom-built Android based application on a
Galaxy Note 10.1. It is unclear which frequency band is used in Wi-Fi in this experiment.
In addition, there are six WAPs in a small hall, which is an unrealistic scenario. The Principal
Component Analysis (PCA) technique is utilised to reduce the correlation between the grid
points and the performance of the proposed methods is presented in terms of cumulative
error distribution function, mean, variance and root mean square error of distance error.

In [20], the authors propose a grid search, based on PCA and SVM, for indoor local-
ization on a single floor of 340 m2. The experiment is conducted in a single floor, with
sixteen WAPs uniformly distributed, and WAP is operated at 2.4 GHz. RSS measurement is
conducted using a TL-WN823N USB wireless network adapter. It is unclear what type of
mobile devices are used to collect the RSS, and also there are sixteen WAPs in a small area,
which is an unrealistic scenario. The PCA technique is utilised to extract the radio map,
and the performance of the proposed method is presented in terms of mean square error
in localization.

The authors of [21] propose a bisecting k-mean-based fingerprint indoor localization
technique, and present their results in terms of Accuracy (LA)and Average Distance Error
(ADE). The experiment is conducted in a corridor of a floor using WirelessMon application.
The application is used to detect WAP and measure RSSI values from a maximum of seven-
teen WAPs. It is unclear which frequency band is used in this experiment. According to
the authors, the bisecting k-mean-based fingerprint indoor localization technique performs
better than the k-mean-based technique.

The High Adaptability Indoor Localization (HAIL) technique which uses machine
learning is presented in [22]. The proposed technique uses absolute RSS and relative RSS
values and a back-propagated neural network. The authors propose a separate fingerprint
for each class of device (device dependence) for better accuracy. This is a compelling
consideration, but it may be costly and impractical. In [23], the authors introduce a
simulation-based location tracking system using Wi-Fi, fingerprinting, a weighted fuzzy
matching algorithm and a particle swarm optimization algorithm.

In [24], the authors formulate a positioning problem as a pattern recognition problem,
in which they use a simplified Bag-of-Features-based technique to transform raw RSS
values into a robust feature vector. The model is validated with both simulated and real-
time experiments. Using the grid size of 2× 2 m2, they achieve a mean localization error of
1.5 m, but the authors do not mention the frequency band used in the experiment.

The authors of [25] propose a localization solution based on the particle swam opti-
mization technique, which is a random optimization technique that originated from the
foraging behaviours of birds. The authors use a grid size of 1× 1 m2 for RPs in the offline
phase to prepare the fingerprint data and grid size of 2× 2 m2 for TPs to use as test data.
The frequency band used was 2.4 GHz. The performance of the proposed technique is
compared with four classical machine-learning algorithms (KNN, SVM, LR, RF) and the
average localization error achieved with the proposed techniques is 2.0817 m, which is
better than the performance of the classical methods.

In [14], the authors develop dual frequency (2.4 and 5 GHz) RSSI fingerprint and
propose a hybrid RSSI fingerprint classification model, which follows the Canadian Insti-
tute For Advanced Research (CIFAR)-10 model framework based on image classification.
The dual RSSI data samples on RPs are converted to image data, and the image is used as
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an input for the training model. The classification output from CIFAR-10 model is used
to predict the position of the mobile device. The experiment is performed at an office of
2600 m2 with seven dual-frequency WAPs. Their study presents the results in terms of
mean, standard deviation, root mean square value and maximum error.

The authors of [26] analyse the effect of the location of the beacon; however, they do
not discuss the affect of grid size and location of RPs. They use the 2× 2 m2 grid and Deep
Learning (DL) methods and achieve accuracy of less than 3.3 m at the 90th percentile and a
mean distance error of 1.67 m. In [27], the authors study the effect of different grid sizes of
1 × 1, 1.5 × 1.5, 2 × 2, 2.5 × 2.5 and 3 × 3 m2, and find that smaller grid size (1 × 1) m2 is
better for accuracy, but considering other parameters, they recommend (2.5 × 2.5) m2 for
indoor localization. A recent paper [28] discusses the effects of grid size on the accuracy of
prediction errors in localization. Though they get better accuracy with a smaller grid size,
they recommend choosing a grid size of 1.5 × 1.5 m2 for practical purposes. They have
proposed a Generative-Adversarial-Network-based DL scheme for multi floor localization
architecture. Similarly, ref. [29] discusses grid size, but argues that if there are large number
of WAPs available, then grid size is less influential. Having large number of WAPs is good
for an experimental or simulation setting, but not in a practical setting, which indicates
that grid size is an important consideration for the performance. However, there is no clear
agreement on the optimum grid size for Wi-Fi fingerprinting.

2.1. Research Gap

According to the IEEE 802.11 standard, Wi-Fi can broadcast on several license-exempt
frequency bands, including 2.4 GHz, 5 GHz and 6 GHz, and these frequency ranges
have specific properties. These frequency bands offer different data rates, bandwidth
and coverage according to propagation characteristics of frequency band. The higher-
frequency bands (5 GHz and 6 GHz) provide a higher bandwidth, but have a smaller
coverage area, whereas the 2.4 GHz band provides a larger coverage area but has a smaller
bandwidth. Therefore, modern Wi-Fi stations use multiple frequency bands to exploit
these characteristics.

Our literature review indicates that there is limited research work conducted on indoor
localization using dual frequency (2.4 GHz and 5 GHz) and classical machine-learning
algorithms. Table 1 summarises the technique and frequency band(s) used in indoor
positioning literature. Most of the proposed systems for indoor localization in the current
literature either use a 2.4 GHz frequency band [20,25] or do not discuss the use of specific
frequency band [12,15,21–23]. We found only one paper that uses dual frequencies for
indoor localization [14], and their study was based on image classification using the CIFAR-
10 model. In this study, the indoor localization is conducted using images as inputs. These
review findings clearly indicate that there is a need for further research on how the use of
dual-frequency bands can impact indoor location prediction. Thus, we plan to analyse the
effect of dual frequency on location prediction using fingerprinting and regression-based
machine learning algorithms to address the existing research gap.
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Table 1. Comparison of similar studies.

Ref Technique Used Limitations/Comments

[12] Classical machine learning algorithms Unclear which frequency band is used
and six WAPs in a small hall

[22]
HAIL technique uses both absolute
RSS and relative RSS values and
back-propagation neural network

Unclear which frequency band is used
and it may be costly and impractical

[21] Bisecting k-mean-based fingerprint
indoor localization technique Unclear which frequency band is used

[23]
Weighted fuzzy matching algorithm
and particle swarm optimisation
algorithm

Unclear which frequency band is used
and based on simulation

[24] Bag-of-Features approach followed by
KNN Unclear which frequency band is used

[20] A grid search technique based on PCA
and SVM Uses single-band 2.4 GHz

[25] Application of standard particle swarm
optimization to Wi-Fi fingerprint Uses single band 2.4 GHz

[14] CIFAR-10 model framework based on
image classification

Uses dual frequency bands
(2.4 and 5 GHz)

Our review indicates that there is no clear agreement on grid size for the Wi-Fi
fingerprint, despite it being an important parameter in localization. Therefore, we also plan
to study the effect of grid size on the position prediction and location accuracy. Additionally,
we also analyse how the RP coverage affects the performance of location prediction.

2.2. Research Questions

This research paper focuses on answering the following three research questions:

• Does the accuracy of the location prediction of a mobile device increase by using dual
frequencies available at Wi-Fi stations?

• Which machine-learning algorithm performs better in terms of location prediction in
this new experimental scenario?

• How do fingerprint training grid size, training points and test points location affect
the prediction accuracy?

3. Experimental Procedure

This section outlines the experimental setting, RSSI measurement process, metrics used
for performance measurement and machine learning algorithms applied. Experimental
setting with measurement location, measurement points and environment is described
in Section 3.1. RSSI measurement process including devices, software applications and
data management is discussed in Section 3.2. Moreover, the performance metrics including
ADE and LA used in this study is described in Section 3.3 and a brief discussion on system
modelling, machine learning algorithms and tools used during this study is discussed in
Section 3.4.

3.1. Experimental Setting

Figure 1 shows the overall settings of the experimental location. The experimental
location covers two tutorial rooms at level four of an academic institute, and these two
rooms are adjacent to each other. The intersection points of horizontal and vertical lines in
Figure 1 indicate the measurement location; triangle points indicate the location of WAPs.
The first five rows are in the first room with one WAP, and the second room has six rows
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with two WAPs. The door was open during the RSSI measurement and there are 99 points
of measurement. The distance between two consecutive points along the horizontal and
vertical line is one metre. All three WAPs are placed on top of chairs at triangle points,
as shown in Figure 1 to simulate the practical situation. The total area of the two rooms
is roughly 100 m2, with 25 chairs in each room, and two to three people are in the room
during the RSSI measurement. An imaginary coordinate system is used, and the first point
(1, 1) is at the bottom left corner and the top right corner is (9, 11), as shown in Figure 1.
Measurement points that fall on rows 1 and 11 and columns 1 and 9 are referred to as
points on edge or boundary, and the remaining points are referred to as points on the mid
area. The number of WAPs and RPs used in this experiment is within the optimum range
suggested by [30], and therefore, we expect to get good results in the given setting.

Figure 1. Experimental setting for the study.

3.2. Received Signal Strength (RSS) Measurements Process

In this RSS measurement process, we use three Raspberry Pis (RPis) with model 4B
and an iPad (7th generation). Each RPi is converted into a WAP with two Service Set
IDentifiers (SSIDs) using an additional USB Wireless Wi-Fi Adapter Dongle, where One
SSID is operating in 2.4 GHz band and other SSID is operating at 5 GHz band. Therefore,
each RPi acts as a dual-frequency WAP during this experiment. An iPad with the AirPort
Utility App [31] is used to measure the RSSI values at each measurement point from all
three WAPs at dual frequency.

During this measurement process, we put the iPad with the AirPort Utility App on the
floor at each measurement point, and it scans for roughly one minute. During this time, we
measure RSSI values from all dual WAPs. The RSSI values from all three WAPs are retrieved
manually, and these RSSI values are stored using Microsoft Excel. We get a minimum of
14 RSSI values and a maximum of 17 RSSI values at each measurement location from each
SSID. Nonetheless, only the first 14 data are used for analysis, for consistency. A snapshot
of RSSI values collected during the RSS measurement with measurement location is given
in Table 2. The columns from two to six in Table 2 show RSSI values in dBm from three
WAPs at both frequencies, and the last two columns in the table show the location of the
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measurement point. A total of 99 locations are used to collect the data in 11 rows (y-axis)
and 9 columns (x-axis); nevertheless, the RSSI values from one WAP operating at 2 GHz
are missing from one point (1, 8) and all other data for that point are removed during
the data clean-up process. Therefore, only 98 recording points and a total of 1372 RSSI
measurements records are used in this study.

Table 2. A sample of Received Signal Strength Indicator (RSSI) values with measurement location.

WAP1 WAP2 WAP3 Location

SN 2G 5G 2G 5G 2G 5G xi yi

1 −54 −51 −61 −66 −59 −60 1 1

...
...

...
...

...
...

...
...

...

15 −54 −51 −53 −64 −60 −52 2 1

...
...

...
...

...
...

...
...

...

1358 −59 −53 −47 −69 −56 −46 8 11

...
...

...
...

...
...

...
...

...

1372 −67 −63 −55 −63 −58 −48 9 11

3.3. Performance Metrics

The performance of the positioning system is measured by various performance
metrics such as ADE , LA, robustness, scalability and complexity [4]. However, our paper
shows the performance of prediction accuracy of different machine-learning algorithms
measured using ADE and LA. Let us assume that ri = (xi, yi) is the actual location of the
ith point and pi = (x̄i, ȳi) is the predicted location of the ith point. Then, ADE is an average
of localization or positioning error and is defined as Equation (1) [32].

ADE =
∑n

i=1 dist(ri, pi)

n
(1)

where dist(ri, pi) is the Euclidean distance between ri and pi and n is the number of TPs (if
there is only one record per point) or n is the number points times the number of records
per point (if there are multiple records at each point). Therefore, Equation (1) can be used
to calculate ADE at single TP when n is one.

LA is defined as a percentage at which the prediction is within a certain precision
(dmax) and is mathematically defined as Equation (2) [21].

LA(dmax) =
∑n

i=1 IA(dist(ri, pi) ≤ dmax)

n
∗ 100% (2)

where dmax is the maximum allowed distance between actual position and predicted
position and IA is an indicator function. These two performance metrics, and the other
two derived metrics, are used to evaluate the performance of the proposed positioning
system using various machine learning algorithms. We run the algorithm for r times (refer
to random scenario discussed in Section 3.5.1) and the Average LA (ALA) is defined as
Equation (3).

ALA(dmax) =
∑r

j=1 LA

r
(3)

Similarly, Average ADE (AADE) for r runs is defined as Equation (4)

AADE =
∑r

j=1 ADE

r
. (4)
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3.4. System Modelling, Machine Learning Algorithms and Tools

The problem of location determination is formulated as a multioutput regression
problem with two outputs, xi and yi, where xi is taken as x-coordinate and yi as y-coordinate
(refer to Table 2). The method can be extended to three-output regression to include
height as a third parameter to consider three-dimensional position; nonetheless, we have
implemented only two forms of output regression (two-dimensional position) in this paper.
For prediction of the (x, y) co-ordinates of the TP, Linear Regression (LR), Polynomial
Regression (PR), Support Vector Regression (SVR), DT regressor, RF regressor and KNN
regressor from scikit-learn [33] library are implemented, using mostly default parameters.
Scikit-learn, which is also known as sklearn, is the most useful, robust and open source
machine learning library in python, and provides efficient tools for regression, classification,
clustering and dimensionality reduction. In the experiment, the epsilon (ε) of 0.05 in SVR,
max depth of five in RF and polynomial degree of two in PR as the non-default parameter
are used. In case of KNN, the optimum number of nearest neighbors (K) value in the range
of 4 to 7 is selected in different runs and scenarios.

This study uses all RSSI data (i.e., 14 rows) at each RP from each WAP during the
training. Similarly, we use all RSSI data at each TP from each WAP during the testing.
We believe this is a better representation of the real-world scenario, rather than using the
average RSSI values, as in [34], or filtering, as in [22,32,35,36]. We can carry out filtering
and post-processing analysis out of the 14 predictions for each TPs if required.

3.5. Experimental Setup

The measurement points are divided into two sets: a training set (contains RPs) and a
test set (contains TPs), and the division process varies according to different scenarios as
discussed in the following Sections.

3.5.1. Random Scenario

In random scenario, the whole measurement points are divided into two sets: a
training set (80 points out of 98, approx 80% of total points) and a test set (18 points
approx 20% of total points) are selected randomly. If a measurement point is selected in the
training set, then all 14 rows of data for that point are included in the training set, and the
same applies to TP. This ensures that the data from the same measuring points do not fall
into both training and testing sets, and this rule applies to all scenarios. In this scenario,
the nearest possible RP for any TP is at the distance of 1 m in the vertical and horizontal
direction and 1.41 m in the diagonal direction. However, the nearest RP may be further
away if two or more consecutive points are selected as TPs during random selection of
training and testing points.

3.5.2. Symmetric Scenario

In symmetric scenario, the measurement points are divided into training and test sets,
ensuring that RPs are at 2 m apart in horizontal and vertical line (i.e., out of 98 measurement
points only 30 points are selected as RPs) and TPs are selected in such a way that all TPs
are equidistant i.e., 1.41 m away from four nearby RPs (refer to Figure 2); there are 20 TPs
of this type. In this scenario, there are RPs at four corners and also on four edges of the
experimental location. All TPs are in the mid area, and no TPs lie on the edge of the
experimental location.
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Figure 2. Reference Points (RPs) and Test Points (TPs) for symmetric and asymmetric scenarios.

3.5.3. Asymmetric Scenario

In asymmetric scenario, the training set is selected exactly the same as the symmetric
scenario; nevertheless, the TPs are selected in such a way that TPs are not equidistant from
the nearest RPs. The TPs which are at the edge have two RPs 1m away, and other two
RPs are 2.24 m away out of the four nearest RPs. The TPs which are at the mid area have
four nearby RPs 2.24 m away and other two RPs 1 m away out of six nearest RPs (refer to
Figure 2). There are 48 TPs of this type in total.

Additionally, all symmetric (20) and asymmetric (48) TPs are combined to form a test
set of 68 TPs (which covers all areas and also both types of TPs—covering points that are
equidistant and not equidistant) to understand the performance of a practical scenario are
called combined scenario. Figure 2 illustrates RPs and TPs for symmetric, asymmetric and
combined scenarios, where circles represent RPs for all three scenarios and crosses and
check marks represent TPs for symmetric and asymmetric scenarios, respectively. When
crosses and check marks are combined, they represent TPs for a combined scenario.

3.5.4. Row Selection Scenarios

In the row selection scenario, all measurement points in one row are considered RPs,
while all measurement points in the next row are considered TPs (refer to Figure 1). This
is equivalent to RPs at 2 m apart in a vertical line and 1m apart in a horizontal line. We
consider two scenarios: Odd Rows as Training and Even Rows as Testing (ORTERT) and
Even Rows as Training and Odd Rows as Testing (ERTORT). In the ORTERT scenario, data
at all points of odd rows (1, 3, 5, 7, 9 and 11) are used for training, while data at all
points of even rows (2, 4, 6, 8 and 10) are used for testing (refer to Figure 1). In ERTORT
scenario, the training set and test set are swapped. The key differences between these two
scenarios are:

• In the ORTERT scenario, the training points cover all edges and four corners of the
experimental setting. This scenario is similar to the combined scenario, except there is
an additional RP between two RPs in the horizontal line.
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• In the ERTORT scenario, the training set does not contain training points from top and
bottom rows (refer to Figure 1).

• The TPs at top and bottom rows in ERTORT scenario have significantly less nearby
RPs compared with the ORTERT scenario.

Table 3 illustrates comparison of different scenarios in terms of grid size (m ×m), num-
ber of RPs and TPs, coverage of prediction area by RPs, TP location and TP characteristics.

Table 3. Comparison of different scenarios.

Scenario Grid # RPs # TPs Coverage ‡ TP Location TP Characteristics

Random 1× 1 * 80 18 Yes All areas Not equidistant from RPs

Symm 2× 2 30 20 Yes Mid-area Equidistant from RPs

Asymm 2× 2 30 48 Yes All areas Not equidistant from RPs.

Comb 2× 2 30 68 Yes All areas Both types

ORTERT 1× 2 54 44 Yes All areas Not equidistant from RPs

ERTORT 1× 2 44 54 No All areas Not equidistant from RPs
* except at TP locations, ‡ RPs cover whole area?

4. Experimental Results And Discussion

This section introduces experimental results and performance analysis. Initially, we
perform error analysis of positioning by using six machine-learning algorithms with 2G,
5G and combined data (2G and 5G). Next, we select the best three algorithms in terms
of AADE for combined data. These results are further analysed in terms of ADE fluc-
tuation and location accuracy. Finally, we conduct performance analysis of these three
algorithms by altering the fingerprint coverage, grid size and varying TPs locations using
different scenarios.

4.1. Positioning Prediction and Location Accuracy Analysis

Random scenario is used for initial positioning and location accuracy analysis, where
the TPs are picked up randomly in each run, as discussed in Section 3.5.1. Since the RSS
values received by the mobile device from WAPs vary due to surrounding environment
and interference [37], the location prediction depends upon sets of selected RPs and TPs.
In order to generalize the result, the experiment is repeated 21 times so that it includes
most of the possible combinations of RPs and TPs.

4.1.1. Positioning Prediction Analysis

In this analysis, six different algorithms (LR, PR, KNN, SVR, DT and RF) are used to
predict the location of TPs by considering three cases: using combined (2G and 5G) data,
only 2G data and only 5G data. The ADE for each run and AADE for 21 runs are calculated
using Equations (1) and (4), respectively, as presented in Figure 3. In Figure 3, the first
column indicates algorithm and case (algorithm name only is used to present combine 2G
and 5G data; algorithm name followed by _2G indicates using only 2G data, and algorithm
name followed by _5G indicates using only 5G data), the second column to column 22 show
the ADE for each run, and the last column shows the AADE for 21 runs. The highlighted
rows show the best three algorithm in terms of AADE. For clarity, the AADE obtained from
21 runs for six algorithms for three different cases are presented in Figure 4 in the form of a
bar chart.
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Figure 3. Average Distance Error (ADE) results for six algorithms for 21 runs.

Figure 4. Average ADE (AADE) in meters for different algorithms for three cases.

AADE performance of all cases and performance improvement (in %) on AADE when
2G and 5G data are combined is presented in Table 4. The improvement varies from 5.04%
to 14.61% when compared with 2G only, whereas the improvement on accuracy of location
prediction varies from −3.2% to 19.05% when compared with 5G only. The result clearly
shows that the accuracy of location prediction is increased when both frequencies are
used in all cases except PR. Even in the case of PR, there is a resultant 1.0% improvement.
The average performance improvement considering all six algorithms is 9.3%.

Table 4. AADE performance and performance enhancement in percentage.

Algo AADE Performance (m) Enhancement (%)

5G Only 2G Only Combined 2G 5G

SVR 2.32 2.19 1.87 14.61 19.05

LR 2.17 2.34 2.03 13.2 6.45

KNN 2.31 2.25 2.03 9.78 12.12

RF 2.43 2.36 2.17 8.05 10.7

PR 2.19 2.38 2.26 5.04 -3.2

DT 2.98 2.89 2.73 5.54 8.39
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Next, further analysis is carried out by selecting the best three algorithms (SVR, KNN
and LR) that have lower AADE (refer to bold column of Table 4) for the combined case.
In the rest of all the analyses in this paper, we use these three algorithms only. Figure 5
shows the fluctuation of ADE during 21 runs and AADE for these three algorithms. The best
algorithm in terms of AADE is SVR, which gives AADE of 1.87 m, followed by LR and KNN
with AADE of 2.03 m each. From Figure 5, we also observe that SVR has minimum ADE
of 1.41 m and maximum ADE of 2.27 m during 21 runs and these ADE performances are
better than both KNN and LR algorithms. Further, Table 5 summarises various parameters
of ADE for those three algorithms during 21 runs. Though LR and KNN have equal means,
KNN is better than LR, as KNN has lower minimum and lower maximum ADE.

Figure 5. ADE and AADE results for 21 runs.

Table 5. Mean, minimum and maximum of ADE for three algorithms.

Algorithms SVR LR KNN

Mean (m) 1.87 2.03 2.03

Max (m) 2.27 2.49 2.37

Min (m) 1.41 1.63 1.56

4.1.2. Location Accuracy (LA) Analysis

In this section, we are using experimental setting of a random scenario for LA analysis.
Next, we present Cumulative Distribution Function (CDF) plot for the three best algorithms
during 21 runs. Table 6 shows the ALA with dmax values of 2, 2.2 and 2.3 m for three
selected algorithms according to Equations (2) and (3). For all values of dmax, ALA of SVR
is significantly higher than LR and KNN. Therefore, we can claim that the ALA of SVR is
significantly better than KNN and LR when dmax is 2.3 m. Figure 6 shows CDF of ADE for
the best three algorithms in 21 test runs. Analysing the CDF plot according to two criteria
(faster growth and reaching the peak) [18], SVR is found to be better than KNN and LR in
terms of ADE performance.

Table 6. Average LA (ALA) with different dmax values for 21 runs.

Algo ALA (2 m) (%) ALA (2.2 m) (%) ALA (2.3 m) (%)

LR 52.38 80.95 85.71

KNN 52.38 85.71 95.24

SVR 71.43 95.24 100
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Figure 6. Cumulative Distribution Function (CDF) of ADE.

Therefore, this positioning and location accuracy analysis concludes that the perfor-
mances of SVR, KNN and LR are superior compared to PR, DT and RF algorithms, and
SVR is the best among them.

4.2. Performance Analysis—Test Point (TP) Location, Fingerprint Coverage and Grid Size

In this section, we perform further analysis on the effect of changes in fingerprint
grid size, coverage and TP location on location prediction and accuracy for the three
selected algorithms (SVR, LR and KNN). We consider symmetric (refer to Section 3.5.2),
asymmetric (refer to Section 3.5.3), combined (refer to Section 3.5.3) and row selection
(refer to Section 3.5.4) scenarios in this section. Firstly, we conduct performance analysis
by varying the TP location, considering symmetric, asymmetric and combined scenarios.
Secondly, we conduct performance analysis by varying fingerprint coverage considering
ORTERT and ERTORT scenarios. Finally, we conduct performance analysis by changing
fingerprint grid size by considering ORTERT and combined scenarios and also compare
our result with the current literature.

4.2.1. Analysing Performance by Changing TP Location

We run three selected algorithms to predict location, as discussed in Section 3.4
for symmetric, asymmetric and combined scenarios. In these scenarios, the grid size is
2× 2; the number of RPs is 30 with the same coverage, but the locations of TP and TP
characteristics are different (refer to Table 3). Then, ADE at each TP and ADE for all TPs are
calculated according to Equation (1) for three algorithms for these scenarios. ADE at each
TP and ADE for all TPs are illustrated in Figures 7 and 8 for symmetric and asymmetric
scenarios, respectively. Table 7 summarises ADE and maximum ADE for these scenarios
for three algorithms. In all scenarios, the performance in terms of ADE and maximum
ADE is better for SVR when compared with LR and KNN. The results show that there
is an improvement in ADE in the symmetric scenario compared with the asymmetric
scenario while using SVR and KNN algorithms, but the reverse result was obtained for
the LR algorithm. For a combined scenario, ADE lies between symmetric and asymmetric
scenarios, but the maximum ADE is the same as the asymmetric scenario.
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Figure 7. ADE at 20 TPs and ADE for symmetric scenario.

Figure 8. ADE at 48 TPs and ADE for asymmetric scenario.

Table 7. ADE and maximum localization error at any TP for three scenarios

Algo → SVR LR KNN

Scenario ↓ ADE Max ADE Max ADE Max

Symmetric 1.72 3.18 2.15 4.68 1.84 3.99

Asymmetric 1.95 4.95 1.99 5.05 1.99 5.77

Combined 1.87 4.95 2.04 5.05 1.96 5.77

Further, we perform LA analysis for the three algorithms and three scenarios. LA
results with dmax values of 2, 2.5 and 3 m (using Equation (2)) for three selected scenarios
using three algorithms are shown in Table 8. The LA provided by SVR is superior than
other two algorithms for all scenarios except the asymmetric scenario with dmax equal to
2 and 2.5 m.
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Table 8. LA analysis with different dmax values for three scenarios.

Algo ↓ LA (2 m) (%) LA (2.5 m) (%) LA (3 m) (%)

Scenario → Sym Asy Com Sym Asy Com Sym Asy Com

LR 44.29 58.78 53.89 67.14 73.81 71.85 85.71 79.32 81.2

KNN 57.5 58.04 56.72 77.86 71.73 71.74 87.86 79.91 81.62

SVR 68.57 56.7 60.29 81.43 73.66 75.95 90.36 83.33 85.4

4.2.2. Analysing Performance by Changing Fingerprint Coverage

We also run three selected algorithms to predict the location, as discussed in Section 3.4,
for ORTERT and ERTORT scenarios where the grid size is 1× 2 for both scenarios; however
the location of RPs and its coverage is different. Then, ADE at each TP and ADE for all TPs
are calculated according to Equation (1) for three algorithms for both scenarios. ADE at
each TP and ADE for all TPs are illustrated in Figures 9 and 10 for ORTERT and ERTORT
scenarios, respectively.

Figure 9. ADE at 44 TPs and ADE for ORTERT scenario.

Figure 10. ADE at 54 TPs and ADE for ERTORT scenario.
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Table 9 shows ADE and maximum localization error for these scenarios for three
algorithms. From Table 9, it shows that ORTERT scenario gives better performance in terms
of ADE and maximum ADE for all algorithms. SVR outperforms in both performance
metrics when compared with other two algorithms.

Table 9. ADE and maximum localization error at any TP for different scenarios

Algo → SVR LR KNN

Scenario ↓ ADE Max ADE Max ADE Max

ORTERT 1.73 4.33 2.06 4.86 1.9 5.2

ERTORT 1.99 5.84 2.15 6.06 2.08 7.0

Further, we perform LA analysis for the three algorithms and two scenarios. Table 10
shows LA analysis for ORTERT and ERTORT scenarios for three algorithms for different
dmax values. It is observed that ORTERT gives the better performance for all given dmax
values for all three algorithms. Therefore, the results conclude that if the TPs are bounded
by RPs, we can get a better performance in both LA and ADE for all three algorithms.

Table 10. LA analysis with different dmax values for two scenarios.

Algo ↓ LA (2 m) (%) LA (2.5 m) (%) LA (3 m) (%)

Scenario → ORTERT ERTORT ORTERT ERTORT ORTERT ERTORT

LR 55.03 49.87 71.43 65.48 82.63 78.17

KNN 59.09 53.57 77.6 68.25 85.06 84.13

SVR 66.88 56.35 81.66 68.65 87.82 82.8

4.2.3. Analysing Performance by Changing Fingerprint Grid Size

We consider combined and ORTERT scenarios to analyse performance by altering the
fingerprint grid size. In these scenarios, we have both types of TPs (some are equidistant
and some are not equidistant from RPs) and RPs covering the whole experimental area, but
they have different grid size. ADE and maximum ADE at any TP for these two practical
scenarios using three algorithms are summarised in Table 11. Both ADE and maximum
ADE performance of SVR are better than both LR and KNN in both scenarios. From analysis
of Table 11, we observe that by decreasing the grid size, both ADE and maximum ADE
performance are improved for all algorithms except ADE in LR.

Table 11. ADE and maximum localization error at any TP for two practical scenarios.

Algo → SVR LR KNN

Scenario ↓ ADE Max ADE Max ADE Max

Combined (2× 2) 1.87 4.95 2.04 5.05 1.96 5.77

ORTERT (1× 2) 1.73 4.33 2.06 4.86 1.9 5.2

Further, we perform LA analysis for the three algorithms and two scenarios. Table 12
shows LA analysis for ORTERT and combined scenarios for three algorithms for different
dmax values. From the Table 12, it is observed that ORTERT with reduced grid size gives a
better performance for all given dmax values for all three algorithms, except LR with dmax
of 2.5 m. Therefore, the results conclude that if the fingerprint grid size is reduced, we can
get better performance in most of the cases.
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Table 12. LA analysis with different dmax values for two practical scenarios.

Algo ↓ LA (2 m) (%) LA (2.5 m) (%) LA (3 m) (%)

Scenario → ORTERT Combined ORTERT Combined ORTERT Combined

LR 55.03 53.89 71.43 71.85 82.63 81.2

KNN 59.09 56.72 77.6 71.74 85.06 81.62

SVR 66.88 60.29 81.66 75.95 87.82 85.4

Table 13 illustrates the comparison of our result with existing literature [14]. In [14],
the authors claims that mean distance error and maximum distance error of the proposed
system using CIFAR-10 model are 1.7 m and 3.5 m, respectively, using a grid size of 1× 1 m2

and up to seven dual-radio-frequency WAPs. In this experiment, we achieved a mean
distance error of 1.73 m and maximum error of 4.33 m using the SVR algorithm while
using a grid size of 1× 2 m2 and three dual-radio-frequency WAPs. Similarly, we achieved
a mean distance error of 1.87 m and maximum error of 4.95 m using the SVR algorithm
while using grid size of 2× 2 m2 and three dual-radio-frequency WAPs. These results are
comparable to the previous study, but we achieve this by using a bigger training grid size.
The bigger training grid-size requires significantly fewer RPs during Wi-Fi fingerprinting.

Table 13. Comparing with existing literature.

System Mean Distance Error Maximum Distance Error Grid Size

Proposed 1.73 4.33 1× 2

Proposed 1.87 4.95 2× 2

Existing [14] 1.7 3.5 1× 1

5. Conclusions and Future Directions

In this paper, a Wi-Fi-fingerprint-based localization system with dual SSIDs is used
to evaluate the performance of location prediction by using machine learning regression
algorithms. It is found that using dual-frequency SSIDs improves the performance in
location prediction accuracy compared with single-frequency SSID in an indoor setting.
SVR gives the best prediction among six classical machine-learning algorithms; SVR, LR,
KNN, RF, PR and DT. Moreover, this experiment shows that the location prediction accuracy
depends upon the grid size and coverage of the fingerprint. Experimental results show that
having a smaller grid size and covering all the TPs by RPs improves the location prediction
accuracy. The experimental results also show that ADE predicted using SVR is within 2 m
when grid sizes of 2× 2 m2 and 1× 2 m2 are used.

In future work, we plan to extend our work from a single floor to a multi-floor
scenario, and also investigate the effect of pre- and post-processing of test and training data
on the prediction accuracy. Furthermore, Wi-Fi 6 measured data can also be added to the
experiment in future to analyse the effects on the prediction accuracy.
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Abbreviations
The following abbreviations are used in this manuscript:

AADE Average ADE.
ADE Average Distance Error.
ALA Average LA.
CDF Cumulative Distribution Function.
CIFAR Canadian Institute For Advanced Research.
DL Deep Learning.
DT Decision Tree.
ERTORT Even Rows as Training and Odd Rows as Testing.
HAIL High Adaptability Indoor Localization.
KNN K- Nearest Neighbour.
LA Localization Accuracy.
LR Linear Regression.
ORTERT Odd Rows as Training and Even Rows as Testing.
PCA Principal Component Analysis.
PR Polynomial Regression.
RF Random Forest.
RP Reference Point (Training Point).
RPi Raspberry Pi.
RSS Received Signal Strength.
RSSI Received Signal Strength Indicator.
SSID Service Set IDentifier.
SVM Support Vector Machine.
SVR Support Vector Regression.
TP Test Point.
WAP Wireless Access Point.
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