
Citation: Carvalho, D.; Sullivan, D.;

Almeida, R.; Caminha, C. A Machine

Learning Approach to Solve the

Network Overload Problem Caused

by IoT Devices Spatially Tracked

Indoors. J. Sens. Actuator Netw. 2022,

11, 29. https://doi.org/

10.3390/jsan11020029

Academic Editor: Mona Jaber

Received: 31 March 2022

Accepted: 7 June 2022

Published: 16 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of 

Actuator Networks
Sensor and

Article

A Machine Learning Approach to Solve the Network Overload
Problem Caused by IoT Devices Spatially Tracked Indoors
Daniel Carvalho 1,*, Daniel Sullivan 1, Rafael Almeida 2 and Carlos Caminha 1,*

1 Programa de Pós Graduação em Informática Aplicada, Unifor, Fortaleza 60811-905, Brazil;
daniel.sullivan@edu.unifor.br

2 Centro de Ciências Tecnológicas, Unifor, Fortaleza 60811-905, Brazil; rafael.alm@edu.unifor.br
* Correspondence: danielrotheia@edu.unifor.br (D.C.); caminha@unifor.br (C.C.)

Abstract: Currently, there are billions of connected devices, and the Internet of Things (IoT) has
boosted these numbers. In the case of private networks, a few hundred devices connected can cause
instability and even data loss in communication. In this article, we propose a machine learning-based
modeling to solve network overload caused by continuous monitoring of the trajectories of several
devices tracked indoors. The proposed modeling was evaluated with over a hundred thousand of
coordinate locations of objects tracked in three synthetic environments and one real environment. It
has been shown that it is possible to solve the network overload problem by increasing the latency
in sending data and predicting intermediate coordinates of the trajectories on the server-side with
ensemble models, such as Random Forest, and using Artificial Neural Networks without relevant
data loss. It has also been shown that it is possible to predict at least thirty intermediate coordinates
of the trajectories of objects tracked with R2 greater than 0.8.

Keywords: network overload; Internet of Things; machine learning

1. Introduction

Technology has been increasingly present in people’s daily lives, and the growth of
the Internet of Things (IoT) applications is one of the accelerators of this process. Cur-
rently, many objects are able to interconnect by transmitting and receiving data from the
cloud, enabling communication between people, processes, and environments [1–4]. This
popularization of the IoT is especially due to great technological advances in the area of
embedded systems, where countless opportunities arise to be commercially exploited, such
as in the context of smart homes, with the innovation of domestic appliances [5], and in
the context of personal assistance, with “smart” personal items emerging, contributing to
the comfort or assistance of the hearing impaired, for example [2,6]. In 2019 there were
around 36 billion IoT devices, however, with this number growing by 12% annually, a total
of 125 billion is expected by 2030 [7].

In the context of monitored objects indoors, companies have offered tracking ser-
vices that can use numerous technologies such as Bluetooth Low Energy (BLE) [8], Ultra-
Wideband [9], gyroscope, and accelerometer [10]. In this way, there can be hundreds or
even thousands of objects tracked simultaneously in a single environment, which can lead
to an overload of the network where this data transmission is happening [11,12].

A possible solution to reduce the traffic load on the network is to increase the sending
data latency. For example, if objects send their coordinates across the network every two
seconds, the latency could be increased to five-second intervals to provide traffic relief.
However, increasing latency has the direct consequence of reducing the accuracy of paths
stored on the server-side, which can make future analyses that characterize movement
patterns that occur within these environments difficult.

J. Sens. Actuator Netw. 2022, 11, 29. https://doi.org/10.3390/jsan11020029 https://www.mdpi.com/journal/jsan

https://doi.org/10.3390/jsan11020029
https://doi.org/10.3390/jsan11020029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://doi.org/10.3390/jsan11020029
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/article/10.3390/jsan11020029?type=check_update&version=1


J. Sens. Actuator Netw. 2022, 11, 29 2 of 12

In the literature, it is possible to find numerous articles that aim to interpolate/predict
coordinates to discover points on a path [13–16]. These articles focus on predicting trajecto-
ries in open environments, with typically tracked objects being vehicles, which can lose a
global positioning system (GPS) signal in tunnels or other areas that restrict satellite com-
munication. Among the most used techniques, we can mention the use of interpolation [17],
assuming midpoints or also applications of the Kalman Filter (KF) in conjunction with
Constant Turn Rate and Acceleration models [18] as trajectory estimators. The effectiveness
of these techniques is especially worth considering because, in the context of predicting
trajectories in open environments, there is only the need to predict trajectories at a macro
level. For example, it is not a problem if the interpolated path passes over a corner; it is
more important to know which streets the vehicle passed through.

Despite the effectiveness of these techniques, in closed environments the demand for
understanding micro movement patterns is greater. In the specific context of a supermarket,
for example, using linear interpolation (LI) would imply predicted paths crossing aisles,
which could confuse the analysis of subsequent trajectories of the tracked objects/people.
In this context, the answer to the following questions would not be accurate: Which sections
or products did a particular employee, who wears a traceable wristband, pass through?
How many square meters were cleaned with a tracked vacuum cleaner?

In this article, we propose a machine learning (ML) model for the problem of interpo-
lating coordinates of tracked objects indoors. We use real data collected by researchers at
the University of Guelph [19]. To allow for a more complete evaluation of the proposed
modeling, synthetic data were generated for three different environments. We aim to
answer the following research questions:

• RQ1—Would the modeling used be able to predict routes that avoid obstacles in closed
environments?

• RQ2—How much can latency be increased without loss of performance from ML
algorithms?

• RQ3—What is the impact of the amount of data on the performance of ML algorithms?

This article is organized as follows: Section 2 will present some related works and
how this article intends to contribute to the theme. Section 3 will show how the synthetic
environments were built and how the data generation process took place. In Section 4 the
modeling used for the ML models will be presented in detail. In Section 5, the results of
this research will be presented and the research questions will be answered. In Section 6,
final considerations will be made, considering the results achieved.

2. Related Work

One of the most used solutions to predict intermediate points is the LI method [20].
This method builds a continuous function from data discs connecting two interpolated
points [21]. Wu et al. (2020) [22] states that LI is a method that has several variations and is
used to solve problems in many areas such as computer vision [23], digital photography [24],
computer graphics [25], and image calibration [26]. In this article, a method is presented
that improves the performance of LI; in addition, a method to evaluate the quality of the
interpolator is described [22].

In 1960, Kalman developed a recursive solution to the linear filtering problem of
discrete data [27]. His method became quite famous and was used in several applica-
tions [28–30]. With this popularization, the algorithm came to be known as the KF in honor
of its creator. Lam et al. (2018) [31] uses the KF combined with an ML model, Optimized
Support Vector Machine (O-SVM), in order to correct coordinates in a sample of collected
data. As the acquired data was noisy, before being sent to a server, the KF was applied for
pre-processing to smooth it out. In a second step, on the server, the O-SVM model trained
on this clean data was used to correct it. Finally, this method was compared with others
that were already known: CoreLocation Framework, Open ALTBeacon Standard, Linear
Regression, and Non-Linear Regression. What was obtained was an average error lower
than these other methods. Li et al. (2018) [32] performs the same initial procedure, uses the



J. Sens. Actuator Netw. 2022, 11, 29 3 of 12

KF to smooth the data coming from BLE trackers and then the Back Propagation Neural
Network optimized by Particle Swarm Optimization is applied, thus repositioning the
coordinate that will be sent to the server.

Hirakawa et al. (2018) [33] developed a method based on reinforcement learning to fill
in missing coordinates in animal paths in nature. In theory, the GPS should register them
every minute, but for various reasons, this did not happen. So a reward space was built
based on the environmental preferences of the studied species, a seabird. In this method,
in order to make the prediction smoother, the paths made between preference points are
straight, because these birds can take indirect paths.

Chai et al. (2020) [34] developed a method by using Convolutional Neural Network
in seismic data to reconstruct missing parts, whether regular or irregular. The presented
result surpassed the method based on rank reduction [35]. Similarly, Kang et al. (2019) [36]
also did work related to data reconstruction, but in time series. River water flow data from
1970 to 2016 were used and 1586 data reconstructions were performed by using MissForest,
an ML algorithm. As a result, the algorithm presented satisfactory results (R2 > 0.6), being
much better than the linear regression model in all analyses performed.

AlHajri et al. (2018) [37] developed a model to classify types of indoor environments
by using IoT devices, such as a laboratory, narrow corridor, lobby and a more open area.
In this work, Decision Trees, Support Vector Machine and k-NN algorithms were used,
together with Channel Transfer Function (CTF) and Frequency Coherence Function (FCF).
They concluded that the combination that presented the best result was with k-NN, using
CTF and FCF, resulting in an accuracy of 99.3% and prediction time below 10 µs.

Table 1 presents the contributions of the main articles cited in this section. The main
contribution of our article is to solve the problem of network overload caused by numerous
IoT devices trying to access it simultaneously. By predicting server-side paths using
machine learning, it could be possible to increase the latency of sending data on the client
side, reducing the load of data traveling over the network. We also compare the accuracies
of a LI, some ensemble models and an Artificial Neural Network (ANN) model [38,39].
This article represents an evolution of a recent research published in Portuguese [40].
The research evolved by working with three dimensions (environments with more than one
floor), by using a significantly larger database, by using more ML algorithms to validate
the results, improving discussion, and, finally, by expanding the related works.

Table 1. Contributions of related works.

Related Work Contribution

Lam et al. (2018) [31] and Li et al. (2018) [32]
Proposed a combination of KF and a ML model
is used in order to denoisify and correct
trajectory data

Hirakawa et al. (2018) [33]
Proposed a model that uses reinforcement
learning (ML) to fill birds trajectories data gaps
in an outdoor environment

Chai et al. (2020) [34] Proposed a model that uses ML to reconstruct
missing parts of seismic data

Kang et al. (2019) [36] Proposed a model that uses ML to reconstruct
river water flow time series data

AlHajri et al. (2018) [37]
Proposed a model that uses ML in combination
with FCF and CTF to classify indoors
environments

3. Dataset

In order to carry out this research, data from trajectories in two or three dimensions
with a time interval between the coordinates that represent the movement of an object in
a closed environment were required. A data generator was created by using the UNITY



J. Sens. Actuator Netw. 2022, 11, 29 4 of 12

development engine [41]. This engine was used to model environments and generate
object trajectories within them. An entity was created that represents a moving object and
another that randomly selects new destinations for that object. At each new destination,
the tracked object performs a new optimal path in relation to the distance traveled within
the environment. A tracker was attached to return the position of the object tracked every
frame per second of the simulator and record its X, Y, and Z coordinates in a file. Three
environments were created, namely Environment 1, Environment 2, and Environment 3,
with manually positioned obstacles.

We also used a set with real data, obtained in [19]. This dataset was populated by
tracking the locomotion of individuals within an office for twenty days. Each individual
screened was uniquely identified and data from only one person was used, resulting
in 17,050 records. To perform the tracking, Raspberry Pi and BLE trackers were used.
The data was recorded by using Beaconpi software [42]. This environment will be called
Environment 4 in this article.

The four environments can be seen in Figure 1 and the process of simulating routes
indoors can be viewed at https://youtu.be/9gSDB31t3Yc (accessed on 30 March 2022).

Figure 1. (A–D) show illustrated information from Environments 1, 2, 3, and 4 respectively. Images
with a white background represent the modeled environments, with obstacles highlighted in gray.
In (A–C) there are also yellow squares, which represent access stairs from one floor to the other.
In images with a black background, each white dot represents a place where an object was during
its tracking.

https://youtu.be/9gSDB31t3Yc


J. Sens. Actuator Netw. 2022, 11, 29 5 of 12

4. Methodology

In order to answer the research questions, four prediction models based on ML
algorithms were used (Random Forest (RF) [43], Ada Boost (ADA) [44], Extreme Gradient
Boost (XGB or XGBoost) [45], Histogram-Based Gradient Boost (HGB) [46,47] and ANN).
In addition, the LI method was used as a baseline to compare with the efficiency of the
interpolations performed by ML models.

Then, two validation scenarios were performed. The first one aimed to observe the
effect that the variation in latency time would have on the quality of the interpolated routes.
This was done by varying the number of points to be interpolated between a start and end
point. The second aimed to observe the impact of the quantity of samples on the quality
of interpolation of the trajectories. This is done by gradually increasing the number of
examples to be used in training the models.

4.1. Feature Modeling

The features were extracted from the data described in Section 3, and all algorithms used
in this article use the same modeling. The features used in the modeling are listed below:

1. Starting point of a path (Pi), composed of X, Y, and Z coordinates;
2. End point of a path (Pf ), also composed of the coordinates X, Y, and Z;
3. Relative time at which the end point was recorded (Tf ). The value of Tf is calculated

by adding the number of points from Pi to Pf multiplied by the latency. It is important
to mention that the time of Pi is a reference value, so it is always 0; thus it is not
necessary to use it as a feature;

4. Relative time at which the intermediate point is to be predicted (Tn) with n being the
indicator of chronological order of the point. For example, if you want to predict only
one point between Pi e Pf , then there will be an observation with T1. If we want to
predict m intermediate points, then we will have an observation with T2, and another
with T3 before finally reaching the last point to be predicted (Tm).

The targets of each observation are the X, Y, and Z coordinates of each point located
between Pi e Pf . Furthermore, in order to build several examples, we used the concept
of the sliding window [48] which is illustrated in Figure 2. We also used a parameter
that indicates the number of intermediate points between Pi and Pf , the d. In Figure 2,
the invariant Z axis is assumed for ease of visualization. Each gray circle represents a
point (which have X, Y, and Z coordinates, and the relative time that was recorded) and
intervals with d = 2. All windows, composed by Pi,Pf and a Target, are size three, so we
have 0 ≤ n ≤ 3.

Figure 2. Cont.



J. Sens. Actuator Netw. 2022, 11, 29 6 of 12

Figure 2. (A–D,F) are examples and each gray circle is a position. A is the first example that has
Pi = P1, Pf = P4 and Target = P2. Then, in B, a shift is made on the Target. As there are no more
possibilities to build an example with this window, due to the target having passed through all the
points between Pi and Pf , then it slides to the right, that is, Pi = P2, Pf = P5 and Target = P3, in this
way example C is created. The process continues until it is no longer possible to create new examples
(C–F). All possible observations are illustrated in the table below the six figures, where XPi, YPi, and
ZPi are the coordinates of the starting point, XPf , YPf , and ZPf are the coordinates of the end point
and TPf the recording time end point, TPn and Target and Target are the recording time and the
coordinates of the point to be predicted.

4.2. Setting Up and Running ML Algorithms

For each algorithm, a search for optimal hyperparameters was performed by using
a grid search. The quality of the hyperparameters was ranked from the average of the
mean absolute error (MAE) values of the X, Y, and Z axes. It is worth mentioning that
for the RF, ADA and HGB algorithms, we use implementations of scikit-learn [49] (https:
//scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble (accessed on
30 March 2022)). For the XGB algorithm, we use the xgboost module implementation
(https://xgboost.readthedocs.io/en/stable/python/python_intro.htm (accessed on 30
March 2022)). Finally, for the ANN algorithm, we use the implementation of the tensorflow
(https://www.tensorflow.org/api_docs/python/tf/keras (accessed on 30 March 2022))
[50].

For the RF algorithm [43], we used the RandomForestRegressor, a component imple-
mented by scikit-learn. The hyperparameters max_features = sqrt and min_samples_split = 6
were used. Regarding the latter, its insertion was aimed at reducing excessive memory
usage, in exchange for a negligible deterioration in performance.

The ADA algorithm [44] was modeled by using the AdaBoostRegressor, a component
implemented by scikit-learn. The hyperparameters n_estimators = 50, loss = linear, learn-
ing_rate = 0.1 were used and for base_estimator we used DecisionTreeRegressor, another
component implemented by scikit-learn, with the hyperparameters max_depth = 18 and
min_samples_split = 14.

The XGB algorithm [45] was modeled by using the XGBRegressor component, im-
plemented by the xgboost module. We used the hyperparameters n_estimators = 400,
max_depth = 12, learning_rate = 0.1, and subsample = 0.1.

The HGB algorithm [46,47] was modeled by using the HistGradientBoostingRegressor
component, implemented by scikit-learn. The hyperparameters max_iter = 1000, max_bins = 100,
learning_rate = 0.3, and loss = squared_error were used.

The ANN algorithm used was the multiLayer perceptron type [38,39]. The implemen-
tation of tensorflow [50] was used. After a search for good settings, the one used had four
layers, the first with 2000 neurons, the second with 400 neurons, the third with 15 neurons,
and 3 neurons in the last one. In regard to the activation functions, in the first three, ReLu
was used and in the last one, hyperbolic tangent. The optimizer used was Adam with an
initial learning rate of 0.0001 (reduced during execution due to callbacks).

For more details, we provide the explanation about all parameters of the algorithms
listed in the Supplementary Material.

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble
https://xgboost.readthedocs.io/en/stable/python/python_intro.htm
https://www.tensorflow.org/api_docs/python/tf/keras


J. Sens. Actuator Netw. 2022, 11, 29 7 of 12

The first four algorithms mentioned were used in conjunction with the MultiOutpu-
tRegressor an component implemented by scikit-learn that allows multiple outputs in the
models. With the exception of XGB, which proved to be deterministic, all the others were
run ten times, due to their stochastic characteristics.

Regarding the division of data into test and training, a predefined amount of recordings
were used for training and a fixed amount of 100,000 recordings for testing, taken from the
end of the dataset. Three metrics were collected for each combination of d, environment
and model used. They are Determination Coefficient (R2), MAE and Root Mean Squared
Error (RMSE).

All the code needed to perform the experiments described in this article is available at
https://github.com/ddrc1/indoors-prediction-JSAN (accessed on 30 March 2022).

5. Results

Figure 3 illustrates the results obtained in the first experiment, where the prediction
models were executed with data from a real environment. It is possible to observe three
sections of a route where LI does not deviate from obstacles, a behavior which was already
expected. However, ML models were able to move around curves, avoiding obstacles,
thus answering RQ1. In other words, what is observed is the ability of ML models to
learn where the obstacles are in the environment. This learning takes place without the use
of any information from the plan of the environment, using only the coordinates of the
tracked objects

Figure 3. This Figure represents the floor plan of a real environment. The arrow and black X indicate
the start and end point of the path, respectively. The red X’s represent the real coordinates. The green
circles, gray hexagons, yellow triangles, blue stars, purple diamonds, and orange rotated triangles
correspond to the predictions of LI, Histogram-Based Gradient Boost, Ada Boost, ANN, Random
Forest, and XGBoost, respectively.

Figure 4 illustrates the variation of d = {x|x ∈ N, x ≤ 30} simulating instances of
low and high latency by using a sample of 50,000 records. It is observed that there is
a performance loss as d increases. This is due to the increase in the distance between
the interpolated coordinates and consequently the greater difficulty of predicting the
trajectory taken. However, even for values of d = 30, ML models maintain R2 > 0.8. This
result answers RQ2, showing that it is possible to increase latency up to 30 times while
maintaining good predictions. As for the LI method, it is possible to observe that the values
of the metrics worsen considerably as the value of d is increased. This is fundamentally due

https://github.com/ddrc1/indoors-prediction-JSAN


J. Sens. Actuator Netw. 2022, 11, 29 8 of 12

to the method of assuming a path in a straight line between the two interpolated points.
As d increases, it is more unlikely that the path taken was in a straight line.

1 

 

 

Figure 4. For each environment, three Figures are shown, each with a different metric (Y axis) related
to the variable d (X axis). These metrics are R2, MAE, and RMSE. R2 corresponds to (A,D,G,J). MAE
corresponds to (B,E,H,K). And lastly the RMSE corresponds to (C,F,I,L). In each Figure, two scatter
plots are displayed, with the same representations on the X and Y axes, the difference being only a
complete view on the smaller plot and a greater focus on ML algorithms on the larger plot. The green
circles, gray hexagons, yellow triangles, blue stars, purple diamonds, and orange rotated triangles
match the predictions of LI, Histogram-Based Gradient Boost, Ada Boost, ANN, Random Forest,
and XGBoost, respectively. The horizontal bars refer to the standard deviation, being related to
each model through color. The values shown are the result of averaging the X, Y, and Z axes of
Environments 1, 2, and 3 and the X and Y axes of Environment 4.

Regarding Figure 4, it is observed that the higher the value of d, the higher the MAE
and RMSE values. By definition, MAE and RMSE have the same values when the error is
uniform for all examples in the test dataset [51]. In cases where the total error accumulates
in a few instances of the test dataset, RMSE will increase further [52]. This is due to the
RMSE characteristic of being more sensitive to outliers. In the case of Environment 1, it is
possible to observe that the peaks of the RMSE values are approximately twice the MAE
values, ≈12 and ≈24 respectively. The proportional difference is smaller for the case of



J. Sens. Actuator Netw. 2022, 11, 29 9 of 12

Environment 2, with MAE ≈ 28 and RMSE ≈ 48. This greater proportional difference
occurs due to the error of the predictions being concentrated in fewer examples in the case
of Environment 1. The distribution of coordinates tracked in the environments illustrated
in Figure 1 is revealing for the understanding of this greater concentration of error in a
few trajectories. It is observed that in Figure 1A, especially in the lower left corner of the
second floor, there is a smaller amount of coordinates, which reduces the training data
for trajectories in this region and consequently increases the error of the predictions for
trajectories that take place in this space. Regarding Figure 1B the distribution of coordinates
is more homogeneous in space, which minimizes the appearance of outliers.

In Figure 5, the amount of data was varied, increasing from 5000 to 170,000 with intervals
of 15,000. In general, it is observed that there is a significant improvement in the prediction
performance of ML algorithms until reaching a potential stabilization. It is noticeable that ANN
has greater variation in the values of the metrics (see pink shading) and is also one of the most
sensitive models to the amount of data, where for MAE, in the three environments, it was one
of the models that had the worst results for training with 5000 examples, but outperformed
other training models with 170,000 examples. This result answers RQ3.

Figure 5. For each environment, three Figures are illustrated, each with a different metric (Y axis)
related to the amount of data used in the model training phase (X axis). These metrics are R2, MAE
and RMSE. R2 corresponds to (A,D,G). MAE corresponds to (B,E,H). Lastly the RMSE corresponds
to (C,F,I). The green circles, gray hexagons, yellow triangles, blue stars, purple diamonds, and orange
rotated triangles correspond to the predictions of LI, Histogram-Based Gradient Boost, Ada Boost,
ANN, Random Forest e XGBoost, respectively. The bars, on the other hand, refers to the standard
deviation, being related to each model through color. The values shown in the illustration are the
result of averaging the X, Y, and Z axis predictions in the environments.



J. Sens. Actuator Netw. 2022, 11, 29 10 of 12

For more details, in the Supplementary Material, we provide the results of all the
experiments illustrated in Figures 4 and 5.

6. Conclusions

The main contribution of this article was to solve the problem of network overload
caused by a large number of IoT devices simultaneously sending coordinates to the cloud.
By modeling this as an ML problem, it was shown that it is possible to predict, with a good
accuracy rate, the trajectories performed by objects tracked indoors, and that with larger
amounts of data available for training the models it is possible to improve the model’s
performance. The proposed modeling allows ML algorithms to predict trajectories that
avoid obstacles or that can pass through doors and corridors. It was also observed that this
modeling allows for predictions of up to 30 intermediate coordinates of a trajectory with
R2 > 0.8.

These predictions raised the possibility of increasing the latency of collecting this data,
enabling the prediction of the paths taken on the server-side. This would require data to be
collected with minimal latency over a short period of time. From this, the collected data
can be used to feed ML models, allowing them to learn how trajectories happen in the
monitored environment. It has been shown that the algorithms have learned the location of
doors, walls, and obstacles, even without any access to the blue print.

In regard to future works, we highlight the use of ANN architectures recently used in
the literature for time series predictions which can add to our results, especially by using
the Attention mechanism [53] and Transformer [54]. These architectures have excelled in
handling sequential data, such as text (translation), audio (speech identification), and time
series (prediction). We believe that, in the context of this research, these architectures can
contribute to an even more significant improvement in the results obtained.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.339
0/jsan11020029/s1, Table S1. These values corresponds to the experiments presented in Figure
4 (Environment 1); Table S2. These values corresponds to the experiments presented in Figure 4
(Environment 2); Table S3. These values corresponds to the experiments presented in Figure 4 (Envi-
ronment 3); Table S4. These values corresponds to the experiments presented in Figure 4 (Environ-
ment 4); Table S5. These values corresponds to the experiments presented in Figure 5 (Environment
1); Table S6. These values corresponds to the experiments presented in Figure 5 (Environment 2);
Table S7. These values corresponds to the experiments presented in Figure 5 (Environment 3); Table
S8. Tunned hyperparameters of RandomForestRegressor component, implemented by scikit-learn; Table
S9. Tunned hyperparameters of AdaBoostRegressor component, implemented by scikit-learn. In the
Table S10 are defined the hyperparameters used by DecisionTreeRegressor, also implemented by
scikit-learn; Table S10. Tunned hyperparameters of DecisionTreeRegressor component, implemented by
scikit-learn; Table S11. Tunned hyperparameters for XGBRegressor component, implemented by xg-
boost; Table S12. Tunned hyperparameters of HistGradientBoostingRegressor component, implemented
by scikit-learn. Reference [55] are cited in the supplementary materials.

Author Contributions: Conceptualization, C.C.; methodology, C.C. and D.C.; software, D.C. and
R.A.; validation, D.C.; formal analysis, D.C.; investigation, D.C.; resources, D.C., D.S. and R.A.; data
curation, R.A.; writing—original draft preparation, D.C., D.S. and R.A.; writing—review and editing,
D.C. and C.C.; visualization, D.C. and R.A.; supervision, C.C.; project administration, D.C.; funding
acquisition, C.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Fundação Cearense de Apoio ao Desenvolvimento
Científico e Tecnológico (Funcap) and Fundação Edson Queiroz/Universidade de Fortaleza.

Data Availability Statement: https://github.com/ddrc1/indoors-prediction-JSAN (accessed on 30
March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/jsan11020029/s1
https://www.mdpi.com/article/10.3390/jsan11020029/s1
https://github.com/ddrc1/indoors-prediction-JSAN


J. Sens. Actuator Netw. 2022, 11, 29 11 of 12

References
1. Andreev, S.; Galinina, O.; Pyattaev, A.; Gerasimenko, M.; Tirronen, T.; Torsner, J.; Sachs, J.; Dohler, M.; Koucheryavy, Y.

Understanding the IoT connectivity landscape: A contemporary M2M radio technology roadmap. IEEE Commun. Mag. 2015,
53, 32–40. [CrossRef]

2. Leppänen, T.; Savaglio, C.; Lovén, L.; Russo, W.; Fatta, G.D.; Riekki, J.; Fortino, G. Developing agent-based smart objects for IoT
edge computing: Mobile crowdsensing use case. In Proceedings of the International Conference on Internet and Distributed
Computing Systems, Tokyo, Japan, 11–13 October 2018; pp. 235–247.

3. Voggu, A.R.; Vazhayily, V.; Ra, M. Decimeter Level Indoor Localisation with a Single WiFi Router Using CSI Fingerprinting. In
Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April
2021; pp. 1–5.

4. Zafari, F.; Gkelias, A.; Leung, K.K. A survey of indoor localization systems and technologies. IEEE Commun. Surv. Tutor. 2019,
21, 2568–2599. [CrossRef]

5. Ponte, C.; Caminha, C.; Bomfim, R.; Moreira, R.; Furtado, V. A temporal clustering algorithm for achieving the trade-off between
the user experience and the equipment economy in the context of IoT. In Proceedings of the 2019 8th Brazilian Conference on
Intelligent Systems (BRACIS), Salvador, Brazil, 15–18 October 2019; pp. 604–609.

6. Samie, F.; Bauer, L.; Henkel, J. IoT technologies for embedded computing: A survey. In Proceedings of the 2016 International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ ISSS), Pittsburgh, PA, USA, 2–7 October 2016;
pp. 1–10.

7. Campbell, M. Smart Edge: The Effects of Shifting the Center of Data Gravity Out of the Cloud. Computer 2019, 52, 99–102.
[CrossRef]

8. Faragher, R.; Harle, R. An analysis of the accuracy of bluetooth low energy for indoor positioning applications. In Proceedings of
the 27th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2014), Tampa, FL,
USA, 8–12 September 2014; pp. 201–210.

9. Ruiz, A.R.J.; Granja, F.S. Comparing ubisense, bespoon, and decawave uwb location systems: Indoor performance analysis. IEEE
Trans. Instrum. Meas. 2017, 66, 2106–2117. [CrossRef]

10. Coronel, P.; Furrer, S.; Schott, W.; Weiss, B. Indoor location tracking using inertial navigation sensors and radio beacons. In The
Internet of Things; Springer: Berlin/Heidelberg, Germany, 2008; pp. 325–340.

11. Lee, S.K.; Bae, M.; Kim, H. Future of IoT Networks: A survey. Appl. Sci. 2017, 7, 1072. [CrossRef]
12. Li, X.; Liu, Y.; Ji, H.; Zhang, H.; Leung, V.C. Optimizing resources allocation for fog computing-based internet of things networks.

IEEE Access 2019, 7, 64907–64922. [CrossRef]
13. Cruz, L.A.; Zeitouni, K.; da Silva, T.L.C.; de Macedo, J.A.F.; da Silva, J.S. Location prediction: A deep spatiotemporal learning

from external sensors data. Distrib. Parallel Databases 2021, 39, 259–280. [CrossRef]
14. Wiest, J.; Hoffken, M.; Kresel, U.; Dietmayer, K. Probabilistic trajectory prediction with Gaussian mixture models. In Proceedings

of the 2012 IEEE Intelligent Vehicles Symposium, Alcala de Henares, Spain, 3–7 June 2012. [CrossRef]
15. Hunter, T.; Herring, R.; Abbeel, P.; Bayen, A. Path and travel time inference from GPS probe vehicle data. NIPS Anal. Netw. Learn.

Graphs 2009, 12, 2.
16. Pecher, P.; Hunter, M.; Fujimoto, R. Data-Driven Vehicle Trajectory Prediction. In Proceedings of the 2016 ACM SIGSIM

Conference on Principles of Advanced Discrete Simulation, Banff, AB, Canada, 15–18 May 2016; SIGSIM-PADS ’16; Association
for Computing Machinery: New York, NY, USA, 2016; pp. 13–22. [CrossRef]

17. Liu, S.; Liu, C.; Luo, Q.; Ni, L.M.; Krishnan, R. Calibrating Large Scale Vehicle Trajectory Data. In Proceedings of the 2012 IEEE
13th International Conference on Mobile Data Management, Bengaluru, India, 23–26 July 2012; pp. 222–231. [CrossRef]

18. Malan, S.A.; Brevi, E.D.; Pacella, E.F.; Mancini, A. Vehicle Path Prediction for Safety Enhancement of Autonomous Driving.
Master’s Thesis, Politecnico di Torino, Turin, Italy, 2021.

19. Kennedy, M.; Spachos, P.; Taylor, G.W. BLE Beacon Indoor Localization Dataset; Scholars Portal Dataverse: Toronto, ON, Canada, 2019.
[CrossRef]

20. Akima, H. A new method of interpolation and smooth curve fitting based on local procedures. J. ACM 1970, 17, 589–602.
[CrossRef]

21. Meijering, E. A chronology of interpolation: From ancient astronomy to modern signal and image processing. Proc. IEEE 2002,
90, 319–342. [CrossRef]

22. Wu, Y.C.; Hsu, K.L.; Liu, Y.; Hong, C.Y.; Chow, C.W.; Yeh, C.H.; Liao, X.L.; Lin, K.H.; Chen, Y.Y. Using Linear Interpolation to
Reduce the Training Samples for Regression Based Visible Light Positioning System. IEEE Photonics J. 2020, 12, 1–5. [CrossRef]

23. Upchurch, P.; Gardner, J.; Pleiss, G.; Pless, R.; Snavely, N.; Bala, K.; Weinberger, K. Deep Feature Interpolation for Image Content
Changes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21–26 July 2017.

24. Petschnigg, G.; Szeliski, R.; Agrawala, M.; Cohen, M.; Hoppe, H.; Toyama, K. Digital photography with flash and no-flash image
pairs. ACM Trans. Graph. 2004, 23, 664–672. [CrossRef]

25. Joblove, G.H.; Greenberg, D. Color spaces for computer graphics. In Proceedings of the 5th Annual Conference on Computer
Graphics and Interactive Techniques, Atlanta, GA, USA, 23–25 August 1978; pp. 20–25.

26. Li, Z.; Shi, Y.; Wang, C.; Wang, Y. Accurate calibration method for a structured light system. Opt. Eng. 2008, 47, 053604. [CrossRef]

http://doi.org/10.1109/MCOM.2015.7263370
http://dx.doi.org/10.1109/COMST.2019.2911558
http://dx.doi.org/10.1109/MC.2019.2948248
http://dx.doi.org/10.1109/TIM.2017.2681398
http://dx.doi.org/10.3390/app7101072
http://dx.doi.org/10.1109/ACCESS.2019.2917557
http://dx.doi.org/10.1007/s10619-020-07303-0
http://dx.doi.org/10.1109/ivs.2012.6232277
http://dx.doi.org/10.1145/2901378.2901407
http://dx.doi.org/10.1109/MDM.2012.15
http://dx.doi.org/10.5683/SP2/UTZTFT
http://dx.doi.org/10.1145/321607.321609
http://dx.doi.org/10.1109/5.993400
http://dx.doi.org/10.1109/JPHOT.2020.2975213
http://dx.doi.org/10.1145/1015706.1015777
http://dx.doi.org/10.1117/1.2931517


J. Sens. Actuator Netw. 2022, 11, 29 12 of 12

27. Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [CrossRef]
28. Vikranth, S.; Sudheesh, P.; Jayakumar, M. Nonlinear tracking of target submarine using extended kalman filter (ekf). In

Proceedings of the International Symposium on Security in Computing and Communication, Jaipur, India, 21–24 September 2016;
pp. 258–268.

29. Patel, H.A.; Thakore, D.G. Moving object tracking using kalman filter. Int. J. Comput. Sci. Mob. Comput. 2013, 2, 326–332.
30. Seng, K.Y.; Chen, Y.; Chai, K.M.A.; Wang, T.; Fun, D.C.Y.; Teo, Y.S.; Tan, P.M.S.; Ang, W.H.; Lee, J.K.W. Tracking body core

temperature in military thermal environments: An extended Kalman filter approach. In Proceedings of the 2016 IEEE 13th
International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, USA, 14–17 June 2016;
pp. 296–299.

31. Lam, C.H.; Ng, P.C.; She, J. Improved distance estimation with BLE beacon using Kalman filter and SVM. In Proceedings of the
2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6.

32. Li, G.; Geng, E.; Ye, Z.; Xu, Y.; Lin, J.; Pang, Y. Indoor positioning algorithm based on the improved RSSI distance model. Sensors
2018, 18, 2820. [CrossRef]

33. Hirakawa, T.; Yamashita, T.; Tamaki, T.; Fujiyoshi, H.; Umezu, Y.; Takeuchi, I.; Matsumoto, S.; Yoda, K. Can AI predict animal
movements? Filling gaps in animal trajectories using inverse reinforcement learning. Ecosphere 2018, 9, e02447. [CrossRef]

34. Chai, X.; Tang, G.; Wang, S.; Lin, K.; Peng, R. Deep learning for irregularly and regularly missing 3-D data reconstruction. IEEE
Trans. Geosci. Remote. Sens. 2020, 59, 6244–6265. [CrossRef]

35. Chen, Y.; Huang, W.; Zhang, D.; Chen, W. An open-source Matlab code package for improved rank-reduction 3D seismic data
denoising and reconstruction. Comput. Geosci. 2016, 95, 59–66. [CrossRef]

36. Kang, M.; Ichii, K.; Kim, J.; Indrawati, Y.M.; Park, J.; Moon, M.; Lim, J.H.; Chun, J.H. New gap-filling strategies for long-period
flux data gaps using a data-driven approach. Atmosphere 2019, 10, 568. [CrossRef]

37. AlHajri, M.I.; Ali, N.T.; Shubair, R.M. Classification of indoor environments for IoT applications: A machine learning approach.
IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2164–2168. [CrossRef]

38. Silva, I.D.; Spatti, D.H.; Flauzino, R.A. Redes Neurais Artificiais para Engenharia e Ciências Aplicadas, 2nd ed.; Artliber Editora Ltda:
São Paulo, SP, Brazil, 2016.

39. Bonaccorso, G. Machine Learning Algorithms; Packt Publishing Ltd.: Birmingham, UK, 2017.
40. Carvalho, D.; Sullivan, D.; Almeida, R.; Caminha, C. A Machine Learning Approach to Interpolating Indoors Trajectories. In

Proceedings of the Anais do IX Symposium on Knowledge Discovery, Mining and Learning, Rio de Janeiro, Brazil, 4–8 October
2021; pp. 145–152.

41. Juliani, A.; Berges, V.P.; Teng, E.; Cohen, A.; Harper, J.; Elion, C.; Goy, C.; Gao, Y.; Henry, H.; Mattar, M.; et al. Unity: A general
platform for intelligent agents. arXiv 2018, arXiv:1809.02627.

42. Kennedy, B.; Taylor, G.W.; Spachos, P. Ble beacon based patient tracking in smart care facilities. In Proceedings of the 2018 IEEE
International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Athens, Greece, 19–23
March 2018; pp. 439–441.

43. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
44. Rätsch, G.; Onoda, T.; Müller, K.R. Soft margins for AdaBoost. Mach. Learn. 2001, 42, 287–320. [CrossRef]
45. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference

On Knowledge Discovery And Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
46. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision

tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154.
47. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
48. Chi, Y.; Wang, H.; Yu, P.S.; Muntz, R.R. Moment: Maintaining closed frequent itemsets over a stream sliding window. In

Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM’04), Brighton, UK, 1–4 November 2004; pp. 59–66.
49. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
50. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A

system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

51. Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing
average model performance. Clim. Res. 2005, 30, 79–82. [CrossRef]

52. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in
the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [CrossRef]

53. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
54. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you

need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

55. Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K. Xgboost: Extreme Gradient Boosting; R Package Version
0.4-2 1; 2015; pp. 1–4. Available online: https://mran.microsoft.com/snapshot/2015-11-30/web/packages/xgboost/index.html
(accessed on 30 March 2022).

http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.3390/s18092820
http://dx.doi.org/10.1002/ecs2.2447
http://dx.doi.org/10.1109/TGRS.2020.3016343
http://dx.doi.org/10.1016/j.cageo.2016.06.017
http://dx.doi.org/10.3390/atmos10100568
http://dx.doi.org/10.1109/LAWP.2018.2869548
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1007618119488
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.3354/cr030079
http://dx.doi.org/10.5194/gmd-7-1247-2014
https://mran.microsoft.com/snapshot/2015-11-30/web/packages/xgboost/index.html

	Introduction
	Related Work
	Dataset
	Methodology
	Feature Modeling
	Setting Up and Running ML Algorithms

	Results
	Conclusions
	References

