
Journal of 

Actuator Networks
Sensor and

Article

A Spreading Factor Congestion Status-Aware Adaptive Data
Rate Algorithm

Charles Lehong 1,*, Bassey Isong 1,* , Francis Lugayizi 1 and Adnan Abu-Mahfouz 2

����������
�������

Citation: Lehong, C.; Isong, B.;

Lugayizi, F.; Abu-Mahfouz, A. A

Spreading Factor Congestion

Status-Aware Adaptive Data Rate

Algorithm. J. Sens. Actuator Netw.

2021, 10, 70. https://doi.org/

10.3390/jsan10040070

Received: 17 August 2021

Accepted: 14 October 2021

Published: 3 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Science Department, North-West University, Mafikeng 2745, South Africa;
francis.lugayizi@nwu.ac.za

2 Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa; a.abumahfouz@ieee.org
* Correspondence: lehongcharles@gmail.com (C.L.); bassey.isong@nwu.ac.za (B.I.)

Abstract: LoRaWAN has established itself as one of the leading MAC layer protocols in the field
of LPWAN. Although the technology itself is quite mature, its resource allocation mechanism, the
Adaptive Data Rate (ADR) algorithm is still quite new, unspecified and its functionalities still limited.
Various studies have shown that the performance of the ADR algorithm gradually suffers in dense
networks. Recent studies and proposals have been made as attempts to improve the algorithm. In this
paper, the authors proposed a spreading factor congestion status aware ADR version and compared
its performance against that of four other related algorithms to study the performance improvements
the algorithm brings to LoRaWAN in terms of DER and EC. LoRaSim was used to evaluate the
algorithms’ performances in a simple sensing application that involved end devices transmitting
data to the gateway every hour. The performances were measured based on how they affected DER
as the network size increases. The results obtained show that the proposed algorithm outperforms
the currently existing implementations of the ADR in terms of both DER and EC. However, the
proposed algorithm is slightly outperformed by the native ADR in terms of EC. This was expected
as the algorithm was mainly built to improve DER. The proposed algorithm builds on the existing
algorithms and the ADR and significantly improves them in terms of DER and EC (excluding the
native ADR), which is a significant step towards an ideal implementation of LoRaWAN’s ADR.

Keywords: adaptive data rate; LoRaWAN; LPWAN; energy consumption; data extraction rate;
spreading factor; LoRaSim

1. Introduction

Over the years Long-Range Wide Area Networking (LoRaWAN) has grown to become
one of the leading Media Access Control (MAC) layer protocols in the Low Power Wide
Area Networking (LPWAN) space [1]. The LoRaWAN protocol typically runs on top of the
LoRa physical layer developed by Semtec. The modulation technique used in the LoRa
physical layer is a derivative of the Chirp Spread Spectrum (CSS) modulation and allows
technologies such as LoRaWAN to achieve robust multi-kilometre communications while
consuming minimal amounts of energy [2]. The popularity of LoRaWAN is owed to its
simplicity, openness and cost-effectiveness. Because of the CSS modulation technique
which allows for robust long-distance wide-area wireless communications, LoRaWAN is
deployed following a simple star topology which keeps it both simple and cost-effective.
At the centre of the network is a high capacity gateway surrounded by and serving up
to thousands of end devices. The end devices are typically battery-powered sensors and
actuators that spend most of their time sleeping except when they have data to transmit
to the gateway. This makes the end devices energy-efficient and ensures that they can
survive on batteries for years [3]. The gateway is connected, through a non LoRaWAN
backhaul, to a centralized network server which performs all the complex operations of
the network such as filtering duplicate data and performing data rate optimization for the
end devices [3].

J. Sens. Actuator Netw. 2021, 10, 70. https://doi.org/10.3390/jsan10040070 https://www.mdpi.com/journal/jsan

https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://orcid.org/0000-0002-3915-4627
https://orcid.org/0000-0002-6413-3924
https://doi.org/10.3390/jsan10040070
https://doi.org/10.3390/jsan10040070
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jsan10040070
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/article/10.3390/jsan10040070?type=check_update&version=1


J. Sens. Actuator Netw. 2021, 10, 70 2 of 12

Despite presenting itself as one of the most desirable network technologies in the
LPWAN space, one of LoRaWAN’s biggest limitations is that it operates in the freely
available Industrial, Scientific and Medical (ISM) bands [4], which it has to share with other
technologies while at the same time adhering to duty cycle regulations in those bands.
Furthermore, LoRaWAN networks are often deployed in very challenging networking
conditions. Therefore, LoRaWAN must have a network management mechanism to handle
these network constraints. Furthermore, the responsibility of this mechanism must go
beyond network management, it must also include the intelligence to manage the end
devices’ transmission parameters to handle these network constraints, as well as improve
network reliability and efficiency [1]. LoRaWAN already has one such mechanism, the
Adaptive Data Rate (ADR) algorithm. The ADR is an algorithm used by LoRaWAN’s
network server to optimize the end devices’ transmission powers and data rates. When
the algorithm is enabled, it ensures that the end devices use the highest data rates and
the lowest transmission powers possible, thus enforcing network reliability and energy
efficiency and improving network capacity [5].

Although the ADR was introduced into LoRaWAN as a solution towards improving
the efficiency of the end devices’ transmissions, studies have shown that the algorithm
leads to increases in traffic collisions, especially in large networks [6–8]. These findings
have received significant attention from academia: numerous studies and proposals have
been produced as potential solutions to this problem. These solutions have been critically
studied and summarized by the authors in [4]. The authors showed that these solutions
have constantly brought improvements to the ADR. However, the authors also have argued
that these improvements are still not adequate and that arriving at an ideal implementation
of the ADR remains an open research area. Therefore, in this paper, the researchers used
the knowledge gained from studying the findings in [4] to design an enhanced version of
the ADR that uses congestion statuses of spreading factors to determine optimized data
rates for end devices. The proposed algorithm was then evaluated in a series of simulated
experiments and its performance was compared against four other algorithms with the
same characteristics from the papers [7–9] in terms of data extraction rate (DER) and energy
consumption (EC) [4]. The evaluation results show that the proposed algorithm achieves at
least 40 per cent better DER performance and at least 100 per cent better EC performance
over the other four algorithms. The process of evaluating the proposed algorithm was
guided by the following research objectives:

(i) To modify the Adaptive Data Rate algorithm to consider congestion statuses of data
rates during the data rate optimization process to improve the collision probabilities
of end devices’ traffic in Long-Range Wide Area Networks.

(ii) To use simulations to evaluate the effectiveness of the proposed modifications to
the Adaptive Data Rate algorithm in mitigating the occurrence of traffic collisions in
Long-Range Wide Area Networks.

The rest of this paper is organized as follows: Section 2 discusses the ADR and related
algorithms proposed by other researchers. Section 3 presents the proposed algorithm.
Section 4 presents the experimental design that guided this research. Sections 5 and 6
present the results and their discussion, respectively, while Section 7 concludes the paper
and provides insight for future work.

2. Adaptive Date Rate Algorithms in LoRaWAN
2.1. Adaptive Date Rate Overview

ADR is an algorithm employed in the LoRaWAN network to optimize the transmission
parameters for stationery LoRa end devices [4]. The LoRaWAN provides the transmission
parameters spreading factor (SF), bandwidth (BW), transmission power (TP), and coding
rate (CR), that the ADR can manipulate to optimize the end devices’ data rates, energy
consumptions, airtimes and the capacity of the network [4]. The specifications of the
ADR are provided in detail in [10]. Semtec provides the simplified descriptions and
implementation recommendations of the ADR in [5,11] respectively.



J. Sens. Actuator Netw. 2021, 10, 70 3 of 12

The process by which the ADR optimizes transmission parameters for end devices
is as follows: initially, the end devices choose transmission parameters randomly, usually
the highest TP and lowest SF possible. When the device wants to enable the ADR, it
alerts the network server by setting the ADR bit on one of its transmissions to the network
server. Once the network server receives the alert, it starts collecting up to 20 uplink
messages. From the 20 uplinks, the Frame counter values, and the Signal-to-Noise ratios
(SNRs) are collected to be used in the ADR process. From the SNRs collected, the network
server determines the maximum SNR (SNRmax) and uses it to calculate the margin using
Equation (1) [4]:

margin = SNRmax − SNRlimit −margindefault (1)

where the SNRlimit is the minimum SNR required to demodulate a signal and the margindefault
is the installation margin specific to the device being used and in most cases is 10 dB. The
calculated margin is then used to calculate the number of times (i.e, the Nstep) the algorithm
is executed using Equation (2):

Nstep = int(margin/3) (2)

where int is the integer value and based on the computed Nstep value, one of the following
actions can be executed:

• If the Nstep = 0, the transmission parameters are already optimal, so the algorithm
terminates.

• If the Nstep > 0, the algorithm starts by reducing the SF to its lowest possible value,
and then it reduces the TP to its lowest possible value.

• If the Nstep < 0, the algorithm increases the TP to its highest possible value. Nothing
is done to the SF at this stage since LoRa end devices already have automatic data
rate decay.

Once the optimal TP and SF have been determined by the algorithm, the network
server waits for the end device to transmit an uplink message and then attaches the
information about the optimized transmission parameters to the downlink response to
the end device. Once received, the end device can then switch to the newly determined
transmission parameters. Furthermore, to ensure that connectivity to the network server
with the new parameters is still possible, the end device uses an ADR acknowledgement
counter every time an uplink message is transmitted. If a certain limit is reached without a
response from the server, the end device set an ADR acknowledgement delay. If a response
from the network server is received before the delay is reached, the ADR acknowledgement
counter is reset. If no response is received, the end device assumes that connectivity is lost
and tries to regain it by gradually increasing the TP until a response is received. If still no
response is received, the SF is increased each time the delay is reached until a response is
received or the SF reaches its maximum possible value [4].

2.2. Related Adaptive Date Rate Algorithms

The researchers collected, studied, and critically analyzed nine papers that proposed
algorithms meant to improve the ADR algorithm and more details can be found in [4]. From
the nine papers, four algorithms were selected for empirical analysis in this paper. These
algorithms were selected for evaluation in this paper as they share the same characteristics
as the algorithm being proposed in this paper. To be exact, the selected algorithms are
based on modified versions of the ADR and were mainly intended to improve LoRaWAN
in terms of reliability by improving the overall network DER as network sizes increase.
Table 1 provides a summary of these algorithms and the rest of this section discusses them
in detail.



J. Sens. Actuator Netw. 2021, 10, 70 4 of 12

Table 1. Summary of selected ADR algorithms [4].

Challenges Addressed Proposed Solutions Critical Analysis

Reduction in network throughput when
the ADR is employed [9]

A contention-aware ADR with restricted
usage of data rates.

The proposed algorithm used the
gradient projection method to determine
distribution ratios that minimize
contention in each data rate and
maximizes network throughput.

The increase in collisions in ADR-enabled
LoRa networks [7]

An EXPLoRa-SF algorithm that creates
orthogonal channels to avoid
network collisions.

EXPLoRa-SF divides the network into
channels and then assigns a data rate to
each. The channels are orthogonal and
therefore, collisions cannot occur between
traffic from the different channels.

The increase in collisions and unfairness
amongst network traffic [7]

An EXPLoRa-AT algorithm that promotes
fairness amongst network traffic.

EXPLoRa-AT extends EXPLoRa-SF to
include the intelligence to equalize
airtimes for all traffic in different
transmission channels and to enforce
channel usage fairness and thus reduce
network collisions.

Collision unfairness between end devices
that are near and far from the
gateway [8].

A fair adaptive data rate algorithm that
promotes data extraction fairness at the
gateway.

The authors used mathematical
modelling to derive the fairest data rate
distribution ratios and set up the ADR to
use these ratios to make data rate
optimization decisions.

Kim and Yoo [9] discovered that the native ADR algorithm performed poorly under
large LoRa network conditions. They found that the algorithm reduced the network’s
overall throughput. To mitigate this problem, the authors proposed a contention-aware
approach to the ADR. The solution used the gradient projection method to compute
optimized data rate distributions that optimized throughput for each data rate group.
This in turn reduced network contention and optimized the overall network throughput.
The solution was evaluated using simulation representing the European ISM band with
a one per cent duty cycle. The simulation networks consisted of 5 to 10,000 end devices
each transmitting 50 to 100 bytes of data. The evaluation was based on throughput and
its effectiveness was compared against the traditional ADR algorithm and to a version
of the ADR with a balanced number of end devices (NEDs) in each data rate group.
The proposed solution outperformed the traditional ADR algorithm in terms of overall
network throughput, however, the solution performed poorly in terms of end device
transmission success rate. Hence, in terms of transmission reliability, the solution still
needs to be improved.

Abdelfadeel et al. [8] also revealed that when enabled in a network, the ADR algorithm
leads to data transmission unfairness where packets from end devices closer to the gateway
are more likely to be extracted by the gateway than those from the end device further
away from the gateway. Consequently, the authors proposed a fair ADR algorithm. The
algorithm’s goal is to ensure fairness amongst network traffic regardless of the end devices’
distances from the gateway and to optimize the overall network energy consumption.
Accordingly, the author used mathematical modelling to derive the fairest data rate ratios
to be used by the algorithm to compute end devices’ data rates, and balanced transmission
powers across end devices to mitigate the effects of the capture effect. The algorithm was
evaluated using LoRaSim and compared against algorithms from [12] and [13] in terms of
data extraction rate and energy consumption. The results revealed the overall superiority
of the algorithm over both algorithms except in terms of energy consumption, where [12]
was more superior.

The last two algorithms considered in this paper are presented by Cuomo et al. [7].
In their quest to find a way to improve the ADR, Cuomo et al. [7] exposed that in some
cases, forcing an end device to use a lower data rate can reduce collisions in a LoRa net-



J. Sens. Actuator Netw. 2021, 10, 70 5 of 12

work. Accordingly, they proposed two implementations of the ADR. The simpler of the
two, EXPLoRa-SF, was built to reduce network collisions by segregating end devices into
channels based on their distance from the gateway. The second approach, EXPLoRa-AT,
was built on the functionalities of EXPLoRa-SF and included an intelligence mechanism to
equalize airtimes for all traffic in different transmission channels and to enforce channel us-
age fairness. Both algorithms were implemented and tested using LoRaSim and compared
against the native ADR algorithm in terms of throughput and data extraction rate. The
simulation environment was a network operating in the European ISM band consisting of
500 to 2000 end devices each transmitting a 160-byte packet every 5 to 3600 s. The overall
results showed superior performances of both algorithms over the native ADR.

3. Spreading Factor Congestion-Aware ADR

In this section, the researchers present the proposed algorithm. The algorithm was
named spreading factor congestion-aware ADR approach and is specified in Algorithm 1.
The name of the algorithm came from the fact that it uses the congestion statuses of each
spreading factor in the network to determine the best one for the end device that requested
the ADR. The development of this algorithm was performed to answer the question:
how can a modified Adaptive Data Rate algorithm be developed to efficiently manage
and reduce signal interferences in LoRaWAN? And to carry out the defined research
objective (i). The proposed algorithm has seven main global variables (i.e., snrList, sfList,
uplinkCnt, optimizedSF, defaultMargin, snrLimit, sfUsageIndex). These variables are
explained as follows:

Algorithm 1: Spreading Factor Congestion-Aware Adr Approach

Inp.:
Outp.:
Steps:
1:

Signal-to-noise ratio and spreading factor values of the uplink messages.
An optimized spreading factor value for the end device that requested ADR.
snrList← 0

2: sfList← 0
3: uplinkCnt← 0
4: optimizedSF← 12
5: defaultMargin← 10
6: snrLimit← [7: −7.5, 8: −10, 9: −12.5, 10: −15, 11: 17.5, 12: −20]
7: sfUsageIndex← associative array of spreading factors and their usage indexes
8:
9: function optimizeDataRate(uplinkSNR, uplinkSF)
10: snrList[uplinkCnt]← uplinkSNR
11: sfList[uplinkCnt]← uplinkSF
12: uplinkCnt← uplinkCnt + 1
13: if uplinkCnt = 20 then
14: maxSNR←max(snrList)
15: maxSF← sfList[indexOf(maxSNR)]
16: minSF←minSpreadingFactor(maxSNR, maxSF)

17:
optimizedSF← optimizeSpreadingFactor(minSF,
maxSF)

18: uplinkCnt← 0
19: else
20: exit
21: end if
22: return optimizedSF
23: end function
24:
25: function minSpreadingFactor(maximumSNR, maximumSF)
26: margin←maximumSNR − snrLimit[maximumSF] − defaultMargin
27: steps← round (margin / 3)
28: SF←maximumSF



J. Sens. Actuator Netw. 2021, 10, 70 6 of 12

Algorithm 1: Spreading Factor Congestion-Aware Adr Approach

29: while steps > 0 and SF > sfMin do
30: SF← SF − 1
31: Steps← steps − 1
32: end while
33: return SF
34: end function
35:
36: function optimizeSpreadingFactor(minimumSF, maximumSF)
37: optSF←minimumSF
38: counterSF←minimumSF
39: while counterSF <= maximumSF do

40:
if sfUsageIndex[optSF] > sfUsageIndex[counterSF]
then

41: optSF← counterSF
42: end if
43: counterSF← counterSF + 1
44: end while
45: sfUsageIndex[optSF] = sfUsageIndex[optSF] + 1
46: return optSF
47: end function.

snrList: a list of SNR values to be used in determining the best data rate. The list is initially
empty and is updated each time the end device sends an uplink to the network server.
sfList: a list of SFs that corresponds to the collected SNR values. The list is also initially
empty and is updated each time the end device sends an uplink to the network server.
uplinkCnt: a counter to keep track of the number of uplinks that the end device has sent to
the network server since the ADR was requested.
optimizedSF: the SF that will represent the optimized data rate. This variable stores the
value that the algorithm will calculate once enough data has been collected.
defaultMargin: the device-specific margin. This value is given in the devices’ datasheets. A
value of 10 is used in this experiment as it is generally the value for most devices.
snrLimit: a list of limits required for each SF for the receiver to be able to demodulate the
received signal. These values are used in determining the margin required for optimizing
the data rate.
sfUsageIndex: a list of stored values representing the number of devices using each SF. The
values will be used to determine the SF with the fewest devices using it. This list is one of
the most important pieces required by the algorithm.

As it can be seen from the pseudocode in Algorithm 1, the algorithm is split into
three functions that perform specific tasks. All the functions are vital to the operation of
the algorithm:
optimizeDataRate function: The optimizeDataRate function is the main entry point to the
algorithm. It accepts the uplink SNR value as well as the uplink SF, stores them in their
respective lists, and then updates the counter. Just like in the native ADR, once the counter
has reached 20 uplink messages, the algorithm starts to calculate the optimized data rate.
In the optimizeDataRate function, the maximum SNR value and the maximum SF are com-
puted. The results are then passed in as parameters to the minSpreadingFactor function.
minSpreadingFactor function: As the name suggests, this function is used to determine the
lowest value of the SF that the end device can support while being able to reach the gateway.
This SF is what will represent the optimized data rate. To compute this value, the function
first calculates the margin and the number of steps the algorithm needs to run from the
passed in parameters and the default margin using Equations (3) and (4) respectively:

margin = maximumSNR − snrLimit[maximumSF] − defaultMargin (3)

steps = round (margin/3) (4)



J. Sens. Actuator Netw. 2021, 10, 70 7 of 12

where snrLimit[maximumSF] is the SNR limit from the SNR limit list that corresponds
with the value stored in the maximumSF variable and the defaultMargin is the device-
specific margin given in the device datasheet. And the “round” in Equation (4) represents
the integer part of the resulting calculated value. From here, the function then loops
from the calculated value of steps until the value reaches zero and tries to minimize the
value of the SF to its possible optimal value. Once the loop exits, the remaining value of
the SF is considered as the lowest value that the end devices can support. This value is
returned to the main function and stored in the minSF variable. Once the mainFunction
has the value of the minimum SF, the optimized SF can be computed. To do this, the
optimizeSpreadingFunction function is called by passing in the minimum SF and the
maximum SF values to it as parameters.
optimizeSpreadingFunction function: Using these values (i.e., minimum SF and the max-
imum SF), the function runs a loop from the minimum SF to the maximum SF and tries
to find the least utilized SF value using the SF usage indexes stored in the sfUsageIndex
list. If the least utilized SF is found, it’s returned. If not, the minimum SF value is returned
instead. This ensures that the returned value is optimized even when the least utilized
SF is not found. The optimized SF is then returned to the main function and stored in
optimizedSF variable, and the counter is then reset. The value stored in the optimizedSF
variable is then sent down as part of the response to the end device the next time the device
sends an uplink.

4. Evaluation Setup

The goal of this research experiment was to empirically evaluate the spreading factor
congestion-aware ADR algorithm and to study its performance in terms of reliability and
energy efficiency against that of the traditional ADR algorithm and the related algorithms
presented in Section 2.2. Data was collected using network simulations via LoRaSim,
“a discrete-event simulator based on SimPy for simulating collisions in LoRa networks
and to analyse scalability” [12]. The end devices in the network setup were varied in
steps of 100 from 100 to 2000. This was done to represent an increase in network size
and allowed the researchers to study the performance implications of the algorithm in
varying network sizes. The European ISM band was chosen for the network simulation
setup. This ISM band was chosen as currently, it is the only band that is supported by
all existing implementations of the ADR. The parameters used for the simulations are
shown in Table 2 and are specific to the chosen ISM band except for the coding rate. A
coding rate of 4/5 was chosen as it is the lowest coding rate available in LoRaSim and it
the researchers wanted to ensure that it is kept constant so that it had little to no effect on
the achieved evaluation results. In the simulations, the end devices chose transmission
parameters: TP and SF based on the algorithms’ specifications. In the scenario without the
ADR algorithm, the transmission parameters were chosen randomly by the end devices.
The simulation scenarios were set up such that all end devices could reach the gateway
with their selected transmission parameters. This was done to ensure that each end devices
traffic was accounted for in the overall evaluation results. The simulation network setup
consisted of a single gateway at the centre of the network with the end devices randomly
scattered around it, as illustrated by the simplified topology in Figure 1. In the topology,
the end devices were connected to the gateway through a LoRa network with LoRaWAN
as the communication protocol, while the gateway, the network server and the application
server were connected through an internet protocol backhaul.

The chosen simulation scenario represented a simple sensing application where end
devices sense and transmit data to the gateway at 1-h intervals. This type of application was
relevant enough for the researchers to use to collect performance data about the different
algorithms. In this research experiment, this application involved the end devices sending
20-byte packets to the gateways every 1 h. The end devices and the gateway adhered to
the 1% duty cycle required by applications operating in the European ISM band [14]. All
simulation scenarios mentioned lasted for one week and were executed ten times as in [8].



J. Sens. Actuator Netw. 2021, 10, 70 8 of 12

The results were reported as averages from the iterations and visualized using graphs. The
evaluated parameters from the results were the Data Extraction Rate (DER) and Energy
Consumption (EC).

Table 2. Simulation parameters.

Parameter Value

Carrier Frequency 868 MHz
Bandwidth 125 KHz

Coding Rate 4/5
Transmission Powers 2 dBm to14 dBm

Spreading Factor 7 to 12

J. Sens. Actuator Netw. 2021, 10, x FOR PEER REVIEW  8 of 13 
 

 

 

Figure 1. Experimental design. 

The chosen simulation scenario represented a simple sensing application where end 

devices sense and transmit data to the gateway at 1‐h intervals. This type of application 

was relevant enough for the researchers to use to collect performance data about the dif‐

ferent algorithms. In this research experiment, this application involved the end devices 

sending 20‐byte packets to the gateways every 1 h. The end devices and the gateway ad‐

hered to the 1% duty cycle required by applications operating in the European ISM band 

[14]. All simulation scenarios mentioned lasted for one week and were executed ten times 

as in [8]. The results were reported as averages from the iterations and visualized using 

graphs. The evaluated parameters from the results were the Data Extraction Rate (DER) 

and Energy Consumption (EC). 

Table 2. Simulation parameters. 

Parameter  Value 

Carrier Frequency  868 MHz 

Bandwidth  125 KHz 

Coding Rate  4/5 

Transmission Powers  2 dBm to14 dBm 

Spreading Factor  7 to 12 

5. Results 

This section presents the results of the simulated experimental study performed to 

carry out the objectives presented in the introduction and to answer the following research 

questions:   

(1) How can a modified Adaptive Data Rate algorithm be developed to efficiently man‐

age and reduce signal interferences in Long‐Range Wide Area Networks? 

(2) How effective are the proposed modifications to the Adaptive Data Rate algorithm in 

reducing signal interferences in Long‐Range Wide Area Networks? 

DER is the ratio of traffic sent by end devices to the traffic received by the gateway. 

The value ranges from 0 to 1 and the closer the value is to 1, the better the DER. At 100 

end devices in the network, the results obtained for the proposed algorithm are closely 

matched with  those of  the other algorithms presented  in Section 2.2. At  this point,  the 

proposed algorithm’s performance displays a slight superiority over the rest of the algo‐

rithms, achieving a DER of 0.97, a value that is 0.02 units higher than that of the closest 

competition from ADR‐Dense. Overall, the performance relationship displayed by the re‐

sults  is an  inverse proportionality relationship. The performance of  the proposed algo‐

rithm starts high when the network size is small and exponentially degrades as the net‐

work size  increases. Throughout all network sizes,  the proposed algorithm has shown 

Figure 1. Experimental design.

5. Results

This section presents the results of the simulated experimental study performed
to carry out the objectives presented in the introduction and to answer the following
research questions:

(1) How can a modified Adaptive Data Rate algorithm be developed to efficiently manage
and reduce signal interferences in Long-Range Wide Area Networks?

(2) How effective are the proposed modifications to the Adaptive Data Rate algorithm in
reducing signal interferences in Long-Range Wide Area Networks?

DER is the ratio of traffic sent by end devices to the traffic received by the gateway.
The value ranges from 0 to 1 and the closer the value is to 1, the better the DER. At 100 end
devices in the network, the results obtained for the proposed algorithm are closely matched
with those of the other algorithms presented in Section 2.2. At this point, the proposed
algorithm’s performance displays a slight superiority over the rest of the algorithms,
achieving a DER of 0.97, a value that is 0.02 units higher than that of the closest competition
from ADR-Dense. Overall, the performance relationship displayed by the results is an
inverse proportionality relationship. The performance of the proposed algorithm starts
high when the network size is small and exponentially degrades as the network size
increases. Throughout all network sizes, the proposed algorithm has shown superior
performance over the rest of the other algorithms including the native ADR and network
with no ADR. As the network size continues to increase, the performance of the proposed
algorithm starts to pull away from the rest, degrading less and less compared to the rest of
the algorithm. ADR-Dense and FADR, which are the closest competitors to the proposed
algorithm, begin to achieve DER results below 0.5 at about 1200 end devices. At this point,
the proposed algorithm still achieved an ADR value of over 0.6. What is significant from the
results presented in Figure 2 is that throughout all the network sizes studied, the proposed
algorithm managed to achieve a DER of over 0.5. At the maximum number of end devices,



J. Sens. Actuator Netw. 2021, 10, 70 9 of 12

the DER achieved by the proposed algorithm stands at about 0.52. Surprisingly, the closest
result to this is that of a network with no ADR algorithm employed and is at 0.36. That
means at 2000 end devices, the proposed algorithm achieves a 44% better performance over
its closest competitor. Overall, the proposed algorithm has shown superior performance
over the discussed algorithms in Section 2.2, the ADR and the network with no ADR.

J. Sens. Actuator Netw. 2021, 10, x FOR PEER REVIEW  9 of 13 
 

 

superior performance over the rest of the other algorithms including the native ADR and 

network with no ADR. As the network size continues to increase, the performance of the 

proposed algorithm starts to pull away from the rest, degrading less and less compared 

to the rest of the algorithm. ADR‐Dense and FADR, which are the closest competitors to 

the proposed algorithm, begin to achieve DER results below 0.5 at about 1200 end devices. 

At this point, the proposed algorithm still achieved an ADR value of over 0.6. What  is 

significant from the results presented in Figure 2 is that throughout all the network sizes 

studied, the proposed algorithm managed to achieve a DER of over 0.5. At the maximum 

number of end devices, the DER achieved by the proposed algorithm stands at about 0.52. 

Surprisingly, the closest result to this  is that of a network with no ADR algorithm em‐

ployed and is at 0.36. That means at 2000 end devices, the proposed algorithm achieves a 

44% better performance over its closest competitor. Overall, the proposed algorithm has 

shown superior performance over the discussed algorithms in Section 2.2, the ADR and 

the network with no ADR. 

 

Figure 2. Data extraction rate as the network size increases. 

As can be seen from Figure 3, the proposed algorithm’s energy consumption is di‐

rectly proportional to the size of the network. As the number of end devices in the network 

increases so does the network’s overall energy consumption. At a hundred end devices, 

the proposed algorithm’s energy consumption is very low and closely matched with that 

of both the ADR and the algorithms presented in Section 2.2. From the results, EXPLoRa‐

SF and EXPLoRa‐AT were the worst performing algorithms from the experiment, achiev‐

ing the highest energy consumption in the network. At 2000 end devices, both algorithms 

had energy consumptions 700 and 450 per cent higher than that of the native ADR and 

the proposed algorithm, respectively. The algorithms whose performances were the clos‐

est to those of the native ADR and the proposed algorithm were FADR and ADR‐Dense. 

However, at 2000 end devices, both algorithms still managed to consume energies that 

were 200 and 100 per cent higher than those of the native ADR and the proposed algo‐

rithm, respectively. Although the proposed algorithm had lower energy consumptions as 

compared to the other algorithms across all network sizes, overall, the EC performance of 

the algorithm was still inferior to that of the native ADR, which had the lowest energy 

consumptions across all network sizes as compared to the rest of the algorithm. However, 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 200 400 600 800 1000 1200 1400 1600 1800 2000

D
at
a 
Ex
tr
ac
ti
o
n
 R
at
e

Number of End Devices

SFC‐Aware ADR ADR‐Dense EXPLoRa‐AT

EXPLoRa‐SF FADR No ADR

Figure 2. Data extraction rate as the network size increases.

As can be seen from Figure 3, the proposed algorithm’s energy consumption is directly
proportional to the size of the network. As the number of end devices in the network
increases so does the network’s overall energy consumption. At a hundred end devices,
the proposed algorithm’s energy consumption is very low and closely matched with that of
both the ADR and the algorithms presented in Section 2.2. From the results, EXPLoRa-SF
and EXPLoRa-AT were the worst performing algorithms from the experiment, achieving
the highest energy consumption in the network. At 2000 end devices, both algorithms had
energy consumptions 700 and 450 per cent higher than that of the native ADR and the
proposed algorithm, respectively. The algorithms whose performances were the closest to
those of the native ADR and the proposed algorithm were FADR and ADR-Dense. However,
at 2000 end devices, both algorithms still managed to consume energies that were 200 and
100 per cent higher than those of the native ADR and the proposed algorithm, respectively.
Although the proposed algorithm had lower energy consumptions as compared to the
other algorithms across all network sizes, overall, the EC performance of the algorithm was
still inferior to that of the native ADR, which had the lowest energy consumptions across all
network sizes as compared to the rest of the algorithm. However, the proposed algorithms
energy consumptions were not too high. In fact, at 2000 end devices, the algorithm’s energy
consumption was a little over 40 per cent higher than that of the ADR.



J. Sens. Actuator Netw. 2021, 10, 70 10 of 12

J. Sens. Actuator Netw. 2021, 10, x FOR PEER REVIEW  10 of 13 
 

 

the proposed algorithms energy consumptions were not too high. In fact, at 2000 end de‐

vices, the algorithm’s energy consumption was a little over 40 per cent higher than that of 

the ADR.   

 

Figure 3. Energy consumption rate as the network size increases. 

6. Discussion 

6.1. Data Extraction Rate 

The goal of the proposed algorithm was to reduce collisions in LoRaWAN by using 

SF congestion statuses to determine the optimized data rates for end devices with ADR 

enabled. It is important to note that in a network like LoRaWAN it is impossible to elimi‐

nate collisions, even with network management mechanisms such as the ADR or any ver‐

sions thereof, especially in dense networks. That is because LoRaWAN has a limited num‐

ber of transmission parameters that these mechanisms can manipulate to give network 

traffic  the best  chances of  successful  transmission. And  as network  sizes  increase,  the 

number of potential colliders with every transmission also increases. Therefore, how well 

an algorithm performs in terms of DER is judged based on the extent to which the algo‐

rithm reduces the number of collisions when it is employed in a LoRaWAN network. The 

DER results presented  in Section 4  indicate that the proposed algorithm has an overall 

superior performance over both the native ADR and the related algorithms presented in 

Section 2.2. 

This helped the authors to answer research question 2: the proposed algorithm has 

proven  to be highly  effective  in mitigating  the occurrence of  collisions  in LoRaWAN, 

achieving the highest DER of all the algorithms that were under investigation in all net‐

works sizes. In small network sizes, the proposed algorithm performed closely with the 

other algorithms. However, as the network size continued to grow, the performance of 

the proposed algorithm became more and more superior. When  the DERs of  the other 

algorithms had dropped below 0.5, that of the proposed algorithm was above 0.7. That is 

a 40 per cent or better performance than the other algorithms. This shows the significant 

performance boost the proposed algorithm can bring to LoRaWAN.   

Surprisingly, at the largest network size (of 2000 end devices) the proposed algorithm 

managed to achieve a DER above 0.5 and still maintain a 40% superior performance over 

the rest of the algorithms. This appealing performance of the proposed algorithm in dense 

network settings is owed to how it performs data rate optimization. The algorithm keeps 

track of the congestion statuses of each SF. And when optimizing the data rate for an end 

device, it uses the congestion statuses to find out which of the computed optimized data 

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

0 500 1000 1500 2000

En
er
gy
 C
o
n
su
m
p
ti
o
n
 (
J)

Number of End Devices

SFC‐Aware ADR ADR‐Dense

EXPLoRa‐AT EXPLoRa‐SF FADR

Figure 3. Energy consumption rate as the network size increases.

6. Discussion
6.1. Data Extraction Rate

The goal of the proposed algorithm was to reduce collisions in LoRaWAN by using
SF congestion statuses to determine the optimized data rates for end devices with ADR
enabled. It is important to note that in a network like LoRaWAN it is impossible to eliminate
collisions, even with network management mechanisms such as the ADR or any versions
thereof, especially in dense networks. That is because LoRaWAN has a limited number
of transmission parameters that these mechanisms can manipulate to give network traffic
the best chances of successful transmission. And as network sizes increase, the number
of potential colliders with every transmission also increases. Therefore, how well an
algorithm performs in terms of DER is judged based on the extent to which the algorithm
reduces the number of collisions when it is employed in a LoRaWAN network. The DER
results presented in Section 4 indicate that the proposed algorithm has an overall superior
performance over both the native ADR and the related algorithms presented in Section 2.2.

This helped the authors to answer research question 2: the proposed algorithm has
proven to be highly effective in mitigating the occurrence of collisions in LoRaWAN, achiev-
ing the highest DER of all the algorithms that were under investigation in all networks
sizes. In small network sizes, the proposed algorithm performed closely with the other
algorithms. However, as the network size continued to grow, the performance of the pro-
posed algorithm became more and more superior. When the DERs of the other algorithms
had dropped below 0.5, that of the proposed algorithm was above 0.7. That is a 40 per cent
or better performance than the other algorithms. This shows the significant performance
boost the proposed algorithm can bring to LoRaWAN.

Surprisingly, at the largest network size (of 2000 end devices) the proposed algorithm
managed to achieve a DER above 0.5 and still maintain a 40% superior performance over
the rest of the algorithms. This appealing performance of the proposed algorithm in dense
network settings is owed to how it performs data rate optimization. The algorithm keeps
track of the congestion statuses of each SF. And when optimizing the data rate for an end
device, it uses the congestion statuses to find out which of the computed optimized data
rates uses the SF with the lowest congestion status. This ensures that the end device’s
traffic experiences the lowest collision probability possible. And while the data rate may
not be the most efficient at times, this is compensated by better transmission reliability.



J. Sens. Actuator Netw. 2021, 10, 70 11 of 12

6.2. Energy Consumption

Low energy consumption is essential in LoRaWAN as most of the end devices are
battery powered and are expected to survive on those batteries for years. As such, even
though the focus of the proposed algorithm was on DER, it was still essential that the
authors measure its EC performance to evaluate and study its implications on the overall
LoRaWANs EC and end devices’ battery lives. The overall EC results indicate that the pro-
posed algorithm has a superior performance over the algorithms discussed in Section 2.2.
Despite this, the results also indicate that the algorithm is still outperformed by the na-
tive ADR. The inferior performance against the native ADR is however expected as the
proposed algorithm was not designed to improve EC but rather DER.

As it can be seen from Figure 3, the relationship displayed by the results is a directly
proportional one. As the network size increases, the overall network EC also increases.
This behaviour is expected as more end devices in the network lead to more contributors
to the overall network EC. Also, an increase in network EC cannot be eliminated as end
device transmissions depend on energy consumptions. Furthermore, higher energy usages
are essential for achieving long-distance transmissions without corrupting the transmitted
traffic. Lastly, end devices depend on increasing transmission powers to try and regain
connectivity to the network server.

Even though the native ADR outperformed all the algorithms it was compared with,
the proposed algorithm still managed to achieve reasonable EC performances closest to
those of the native ADR. For small network sizes, the EC performance differences between
the proposed algorithm and the native ADR were barely noticeable. From the experimental
results, it is evident that the performance differences become most noticeable at 2000
end devices in the network. At this network size, the proposed algorithm consumed 70
joules more energy than the native ADR. The extra energy consumption by the proposed
algorithm was to be expected as, in addition to computing optimized data rates for end
devices, it also must go a step further and ensure that the data rates provide the end devices’
traffic with optimized collision probabilities. Therefore, considering this reason, it can be
argued that the proposed algorithm performed desirably. Especially because the algorithm
was only built to improve DER.

7. Conclusions

ADR, which is the resource allocation mechanism currently being employed in the
LoRaWAN, has proven to be quite immature and poor performing, especially in dense net-
work scenarios. This paper proposes a modified version of ADR and presents an empirical
analysis of its performance in terms of DER and EC. The evaluation was performed using
simulations to study and critically analyze the proposed algorithm’s performance impli-
cations on LoRaWAN as network sizes increase and how well the algorithm performed
against the native ADR and four other related algorithms proposed by different researchers.
The results have shown that when network sizes are small, the proposed algorithm and the
algorithms considered in this paper perform fairly well and close to each other. Only when
the network sizes get too large that the proposed algorithm’s superiority starts to be most
noticeable. That is, when the network sizes gradually increase, the proposed algorithm
completely outperforms the rest of the algorithms, including the native ADR. At around
1000 end devices in the network, all the other algorithms were achieving DERs that were
below 0.5 while the proposed algorithm managed to achieve a DER of about 0.7. That
is over 40% better performance compared to all the algorithms that were considered in
the experiment. The proposed algorithm continued to maintain this superiority across all
network sizes and at 2000 end devices in the network it still managed to achieve a DER
that was above 0.5. For EC, the ADR still has superior performance over the proposed
algorithm and the other related algorithms that were considered in this research. Of course,
that is to be expected as the algorithms are mostly targeted towards improving the DER.
Based on the results discussed and arguments made here, the authors can further argue
that the ADR performs poorly under dense networks and that although attempts have



J. Sens. Actuator Netw. 2021, 10, 70 12 of 12

been made to improve it, these attempts still need to be supplemented. And conclude that
the proposed algorithm builds on the existing algorithms and the ADR and significantly
improves them in terms of DER and EC (excluding the native ADR), which is a significant
step towards an ideal implementation of LoRaWAN’s ADR.

In the future, the authors plan to build the algorithm’s support for other ISM bands as
opposed to just the European ISM band as it is the only band that is currently supported
by ADR algorithms. Furthermore, the authors plan to improve the proposed algorithm
to consider EC during transmission parameter optimizations. This could improve the
algorithm’s overall performance and nudge it closer to the ideal implementation of a
network management mechanism.

Author Contributions: Conceptualization, C.L. and B.I.; methodology, C.L. and B.I.; software, C.L.,
and B.I.; validation, C.L., and B.I.; C.L. and B.I.; formal analysis, investigation, resources, and
data curation, C.L.; writing—original draft preparation, C.L.; writing—review and editing, B.I.;
visualization, C.L.; supervision, B.I. and F.L.; project administration and funding acquisition, A.A.-M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, S.; Raza, U.; Khan, A. How Agile is the Adaptive Data Rate Mechanism of LoRaWAN? In Proceedings of the 2018 IEEE Global

Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 206–212. [CrossRef]
2. De Carvalho Silva, J.; Rodrigues, J.J.; Alberti, A.M.; Solic, P.; Aquino, A.L. LoRaWAN—A low power WAN protocol for Internet

of Things: A review and opportunities. In Proceedings of the 2017 2nd International Multidisciplinary Conference on Computer
and Energy Science (SpliTech), Split, Croatia, 12–14 July 2017.

3. LoRa Alliance, LoRaWAN, What Is It: A Technical Overview of LoRa and LoRaWAN. Available online: https://lora-alliance.org/
resource_hub/what-is-lorawan/ (accessed on 21 June 2021).

4. Lehong, C.; Isong, B.; Lugayizi, F.; Abu-Mahfouz, A.M. A Survey of LoRaWAN Adaptive Data Rate Algorithms for Possible
Optimization. In Proceedings of the 2020 2nd International Multidisciplinary Information Technology and Engineering Conference
(IMITEC), Kimberley, South Africa, 25–27 November 2020.

5. Semtec. Understanding the Lora Adaptive Data Rate; Semtec Corporation: Camarillo, CA, USA, 2019.
6. Garlisi, D.; Tinnirello, I.; Bianchi, G.; Cuomo, F. Capture Aware Sequential Waterfilling for LoRaWAN Adaptive Data Rate. IEEE

Trans. Wirel. Commun. 2020, 20, 2019–2033. [CrossRef]
7. Cuomo, F.; Campo, M.; Caponi, A.; Bianchi, G.; Rossini, G.; Pisani, P. EXPLoRa: Extending the performance of LoRa by suitable

spreading factor allocations. In Proceedings of the 2017 IEEE 13th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017.

8. Abdelfadeel, K.Q.; Cionca, V.; Pesch, D. Fair Adaptive Data Rate Allocation and Power Control in LoRaWAN. In Proceedings of
the 2018 IEEE 19th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Chania,
Greece, 12–15 June 2018; pp. 14–15. [CrossRef]

9. Kim, S.; Yoo, Y. Contention-Aware Adaptive Data Rate for Throughput Optimization in LoRaWAN. Sensors 2018, 18, 1716.
[CrossRef] [PubMed]

10. L.A.T. Committee. LoRaWAN 1.1 Specification. Version no. 1.1.; L.A.T. Committee: Beaverton, CA, USA, 2017.
11. Semtec. LoRaWAN—Simple Rate Adaptation Recommended Algorithm: Common Class A/B/C Specification; Semtec Corporation:

Camarillo, CA, USA, 2016.
12. Bor, M.C.; Roedig, U.; Voigt, T.; Alonso, J.M. Do LoRa Low-Power Wide-Area Networks Scale? In Proceedings of the MSWiM ‘16:

The 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Malta, Malta,
13–17 November 2016; pp. 59–67. [CrossRef]

13. Reynders, B.; Meert, W.; Pollin, S. Power and spreading factor control in low power wide area networks. In Proceedings of the
presented at the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017.

14. LoRa Alliance, LoRaWANTM 1.1 Regional Parameters. Available online: https://lora-alliance.org/resource_hub/lorawan-
regional-parameters-v1-1ra/ (accessed on 21 June 2021).

http://doi.org/10.1109/GLOCOM.2018.8647469
https://lora-alliance.org/resource_hub/what-is-lorawan/
https://lora-alliance.org/resource_hub/what-is-lorawan/
http://doi.org/10.1109/TWC.2020.3038638
http://doi.org/10.1109/WoWMoM.2018.8449737
http://doi.org/10.3390/s18061716
http://www.ncbi.nlm.nih.gov/pubmed/29799513
http://doi.org/10.1145/2988287.2989163
https://lora-alliance.org/resource_hub/lorawan-regional-parameters-v1-1ra/
https://lora-alliance.org/resource_hub/lorawan-regional-parameters-v1-1ra/

	Introduction 
	Adaptive Date Rate Algorithms in LoRaWAN 
	Adaptive Date Rate Overview 
	Related Adaptive Date Rate Algorithms 

	Spreading Factor Congestion-Aware ADR 
	Evaluation Setup 
	Results 
	Discussion 
	Data Extraction Rate 
	Energy Consumption 

	Conclusions 
	References

