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Abstract: An autonomous vehicle relies on sensors in order to perceive its surroundings. However,
there are multiple causes that would hinder a sensor’s proper functioning, such as bad weather or
lighting conditions. Studies have shown that rainfall and fog lead to a reduced visibility, which is
one of the main causes of accidents. This work proposes the use of a drone in order to enhance the
vehicle’s perception, making use of both embedded sensors and its advantageous 3D positioning.
The environment perception and vehicle/Unmanned Aerial Vehicle (UAV) interactions are managed
by a knowledge base in the form of an ontology, and logical rules are used in order to detect and
infer the environmental context and UAV management. The model was tested and validated in a
simulation made on Unity.

Keywords: knowledge base; ontology; UAV; autonomous vehicle

1. Introduction

An autonomous vehicle is legally defined as a “vehicle that uses artificial intelligence,
sensors, global positioning system coordinates, or any other technology to carry out the
mechanical operations of driving without the active control and continuous monitoring
of a human operator” [1,2], meaning that it uses both software and hardware elements in
order to perceive its surroundings and safely navigate them. It also implies that sensors are
very important added component of an autonomous vehicle, since they act as a perception
tool to the vehicle.

That being said, sensors remain electronic components, and they can only operate
under the right conditions. By its nature, an autonomous vehicle is required to navigate
into different environments, and the variations of brightness and weather might have an
impact on the sensors’ efficiency.

On the other hand, an autonomous vehicle is also evolving in an environment which
is becoming more intelligent and more connected, and the concept of “smart city” is slowly
taking shape [3]. It relies on different entities’ ability to communicate in order to exchange
information and ensure security. It would be interesting to use this in order to enhance the
vehicle’s perception in a situation where it is needed. It has been shown, for example, that
vehicular sensors do not work well in a bad-weather or bad-lighting situations, but there
could be ways to solve this issue using new technologies, such as UAVs (Unmanned Aerial
Vehicle, also known as drones).

In addition to the perception process, data should be processed and calculated through
a layer of intelligence in order to guarantee the road users’ safety: Decision-making can be
implemented in many different ways, such as by using machine-learning approaches [4],
statistical methods [5] or logical rules [6].
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In 2007, Fuchs et al. [7] submitted the idea of exploiting the vehicle’s context in order
to offer a better Driver Assistance System (DAS). “Context” being an ambiguous word, the
definition chosen was the one from Endsley in 1995 [8,9] and it is characterized as “. . . the
perception of elements in the environment within a span of space and time, the comprehension
of their meaning and the projection of their status in the near future”. They notably proposed
to hierarchize the context and sub-contexts in order to efficiently exploit the different
information coming from them, identifying in the process the different levels of contexts
(spatial context, local context, traffic objects, participants, road conditions, etc.). By fusing
the data from those different but parallel situations, the intelligent system would then be
able to advise the driver on the best action to take. In addition, they also made two other
interesting propositions that will be considered in this work. The first one was to have
vehicles communicate and exchange information between them in order to have a better
grasp of the surrounding context and optimizes the decision-making process. The other
interesting proposition was that due to the increasingly complex driving situations that
a vehicle would encounter, a knowledge-based approach seems to be optimal in order to
store and manage all the different information.

This paper presents a model based on a knowledge base that detects a vehicular
context and uses a UAV and logical rules in order to enhance vehicular perception. The
work is then validated using a driving simulator.

The structure of the paper is as follows: Section 2 is dedicated to Related Works.
Section 3 describes the ontology developed for this work as well as the proposed commu-
nication protocol. Section 4 introduces the simulator and the use cases chosen for testing.
The paper is finally concluded with an analysis and a perspective of our future works.

2. Related Works
2.1. Vehicular Perception

Weather is an external variable that cannot be controlled. A driver’s visibility can be
heavily hindered by the quality of the weather, and this phenomena has been intensely
studied in the past, some studies dating back as far as the 1970s [10]. In their 2019 work,
Harith et al. [11] identified 45 different works made in 21 countries and covering more than
500,000 accident cases caused by adverse weather, mostly rain and fog conditions. They
concluded that a driver’s vigilance is key to keeping the road safe.

This concern is shared by Das et al. [12], who agree that rainy weather is one of the
most hazardous driving conditions, causing up to 25% of crashes in some areas. They
assembled a dataset based on the crash records in the state of Florida, and managed to prove
that there is a relationship between road accidents and poor visibility due to bad weather.

The same team used data mining on extensive data sets and aimed to isolate aggravat-
ing circumstances that can increase the accident rate when coupled with rainfalls [13]. The
patterns that emerge can provide valuable insight for safety professionals, but at the time
of the study, a comparison with a clear-weather similar dataset was lacking.

Andrey et al. [14] point out that despite the accident rate increasing by up to 70% in
case of rain, it returns to a normal value when the rain stops, despite the lingering effect of
wet roads. This would mean that the main reason behind those accidents might actually be
the poor visibility conditions rather than the slippery roads.

Visibility is also affected by lighting conditions. Cameras are among the most present
sensors in a vehicle, and they perform poorly if the lighting is not adequate. Carlevaris-
Bianco et al. [15] built a dataset containing similar images with different illuminations, and
underlined the difficulty an intelligent unit could have in processing the same situation if
the lighting is different.

Most of the causes of illumination variations are natural and independent of humans,
for example night time or weather situations. The Gade et Moeslund [16] study says that
lighting variation impacts many parameters of an image (intensity, color balance, etc.),
but also proposes the use of thermal camera instead, despite having their own sets of
drawbacks, such as the inability to classify the detected objects. Visibility can also be
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improved in software via algorithms, as shown by Tarel et al. [17,18]. They focused their
works on foggy roads and showed great results for their filtering algorithm.

Considering the numerous works made on the topic, it is then clear that inclement
weather and illumination have a negative impact on road safety. For a human driver,
this requires an increased vigilance and trying to improve the global visibility (fog lamps,
windshield wipers, etc.) [19], but in an Intelligent Transport System (ITS), it is more about
a general improvement of the perception.

As with any other robotic body, an autonomous vehicle relies on sensors in order
to perceive its surroundings. In their survey work, Yurtsever et al. [20] pointed out the
importance of perception in autonomous driving and included types of sensors (camera,
lidar, radar, etc.and their corresponding algorithms (object detection, event detection,
semantic segmentation, etc.) in their review. They also classified the sensors in two
different categories:

Exteroceptive sensors for perceiving the environment and Proprioceptive for internal
vehicle state monitoring tasks. Vehicular sensors are ultimately the same as a human driver
using their eyes as sensors to assess the situation on the road. Table A1 offers a comparison
of the human eye to the other most common vehicular sensors, based on some parameters
including performances in bad-weather and bad-illumination situations. Extensive tests
have been made and results were documented in the work of Shoettle [20,21].

In 2018, Van Brummelen et al. [22] made an extensive review of the current state
of vehicular perception. They define autonomous vehicle navigation with five main
components: Perception, Localization and Mapping, Path Planning, Decision Making, and
Vehicle Control, with Perception being described as using “sensors to continuously scan
and monitor the environment, similar to human vision and other senses”. In order to
achieve that, a considerable amount of different sensors can be considered [22–24]:

• Radars have been used for decades for vehicular applications [25,26]. This technology
has proved itself to be great in mid-to-long range measurement and have a great
accuracy, in addition to doing well in a poor-weather situation [27]. It is still heavily
present in vehicles but has a small Field Of View (FOV) and shows poor results in
near-distance measurement and static object detection. There is also the problem of
receiving interference from other sources or vehicles.

• Cameras have shown an interesting potential, in both single and stereo vision. When
considering the perception quality, they are the least expensive sensor that can be
used [24]. They allow a quick classification of the obstacle and a potential 3D mapping
of the area. Stereoscopy in particular shows very good results in detecting forms,
depth, colors and velocity, although it requires substantial computational power [28].
The most advanced models can also be used for long-range precise detection, but they
have a more important cost [29]. However, the performance highly depends on the
weather and brightness [27], and the required computational power can sometimes
be heavy.

• LIDAR technology relies on measuring laser light reflection to infer the distance to a
target. It has been studied since the 1980s [30] but it is only in early 2000 that it has
found its way in vehicular application [31,32]. It is a useful tool for 3D mapping and
localization, and can be used on a large FOV [27], but it relies heavily on good-weather
conditions and is not efficient outside a defined range.

• An infrared camera measures temperature radiations in order to detect moving ob-
jects, and it shows great results in both bad weather (rain, snow, fog), and lack of
brightness [16,33]. However, they cannot be used for the classification of an image’s
object and cannot inform on their distance.

Other types of sensor can be found on vehicles, such as ultrasounds, and some of their
performances can be found in Table A1 in Appendix A. However, there is no unique “ideal”
sensor that allows a perfect perception on a bad weather.

In their 2015 ADAS [34] review, Bengler et al. [35] said that vehicular perception has
evolved from being centered on the vehicle toward its surroundings (exteroceptive to
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proprioceptive), and argued that the next natural step will be to fuse data from multiple
sensors in order to obtain a better reliability.

2.2. UAV for Vehicular Applications

It would then be interesting to consider the use of a sensor which is external to the
vehicle. One such tool would be the Unmanned Aerial Vehicle (UAV), also known as a
drone. In their 2017 paper, Menouar et al. [36] initiated the idea of using UAV as supporting
items of the Intelligent Transport System (ITS), proposing multiple possible uses. Indeed,
their ability to move in a 3D space at high-speed, as well as their size that allows package
transportation while remaining smaller than cars, give them important benefit in a world
where transportation is mainly 2D-oriented.

Shi et al. [37] made a study focusing on the data throughput in a UAV–Vehicle case
and reached a speed of 2 MB/s in their simulations comparing a regular 802.11p car-only
communications with a 2.4 GHz Dedicated Short Range Communication (DSRC) with a
swarm of drones. They also made an interesting remark on the quality of the service by
pointing out that a higher vehicle density generates a higher delay between messages.

The majority of works around UAVs focus on their use as a network node. There are,
however, a few works on UAV–Vehicle communications, such as Hadiwardoyo et al. [38]
which tested the impact of land topology on UAV–Vehicle communication and showed
great results in long-distance communication, reaching a distance of over 1 km.

There are also cases of UAVs being used for Wireless Sensors Network (WSN), such
as in Zhan et al. [39], who proposed an energy-efficient data collection in a UAV-enabled
WSN. Being mobile, a UAV’s position can be deployed in an optimized way in order to
gather data from a specific source.

2.3. Data Fusion

When data are gathered from multiple sensors and multiple sources, it is also impor-
tant to consider a way of fusing them.

There are a multitude of reasons that could lead to performance issues, for example
error accumulation over time [40]. Through the combination and association of sensing
methods, it is possible to overcome the weaknesses of individual components.

In a broader sense, sensor fusion is considered as the “process of managing and handling
data and information coming from several types of sources in order to improve some specific criteria
and data aspects for decision tasks” [41]. Thanks to the redundancy and complementarity of
information, the obtained perception is optimized in order to guarantee the best decision-
making. It is a method generally applied to sensors embedded on a single body, but in a
smart city environment, this could also concern sensors from different entities.

Some studies have taken an ontology-approach to this solution, as shown by the
review work of Bendadouche et al. [42]. For example, Calder et al. [43] used a reasoning
approach in order to validate the behaviour of multiple sensors in a coastal ecosystem.
Through the use of logical rules, they tried to infer if a sensor is functioning properly: Did
the sensor log a measurement? Was it done at the correct time? Is the registered value in an
acceptable range?

Compton et al. also worked on a sensor-dedicated ontology [44]. They aimed to make
a model abstracted enough to allow that. This consequent work would then allow an
easy way of both adding new sensors, and reading the gathered value. This work, as
well as [43] was later on merged in the Semantic Sensor Network (SNN) ontology [45],
which is described as an “ontology for describing sensors and their observations, the involved
procedures, the studied features of interest, the samples used to do so, and the observed properties, as
well as actuators”.
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2.4. Secured Communication

The use of a perception agent external to the vehicle (the UAV) means that there will
be some need of a communication between both entities, which implies there will need to
be some form of security in order to ensure the integrity of data. There are many possible
approaches, such as the RSA encryption [46] or the MD5 hashing method [47]. A more
detailed review of cryptographic functions can be found in Fattahi’s work [48].

Data security usually takes place in the higher levels of communication (higher layers
of the OSI model [49]). This work proposes an additional security approach which would
also take place on the Physical Layer. Indeed, the Visible Light Communication (VLC)
relies on the modulation of light generated through Light Emitting Diode (LED) in order to
transmit data. The necessary Line Of Sight (LOS) condition makes it difficult for a malicious
agent to manipulate or intercept the data flow in a vehicular environment. However, VLC
does have its own set of disadvantages and performs poorly in some environment, which
is why it is more interesting to use it as a complementary protocol. VLC in hybrid works
has already been considered in the past. In [50], it is stated that RF communication is
sensitive to jamming attacks and interference, and even if the use of Cognitive Radio
(intelligent detection of unused transmission channels) can minimize the risks, they still
propose the addition of VLC communication to strengthen security. Another experiment
was conducted by [51], where a joint 5G/VLC prototype was set up. The smart city sensors
data were gathered and transmitted to the road infrastructures (traffic light) through 5G,
and then to the cars via VLC. This hybrid solution allows for the data to quickly reach
vehicles while making sure the wireless network is not saturated. A similar study is led
by Rahaim et al. [52], where VLC would act as a complementary protocol that would take
over when WiFi reaches maximum capacity. In 2016, Rakia et al. [53] introduced a dual-hop
data transmission system. The first hop transmits data on VLC to a relay node where an RF
protocol will take over. In order to optimize the energy consumption, the DC component
of the received optical signal is harvested and then used to power the RF communication.
The proposed system showed great throughput results, even if the DC bias and power-
harvesting component could still be improved, according to the authors. The work of Pan
et al. [54] was also based on a VLC energy-harvesting feature in a hybrid RF/VLC settings,
this time focusing more on data privacy. The hybrid VLC/RF approach allows to ensure
only the designated receiver acquires the message, preventing eavesdropping.

We can outline a few deductions from this literature review:

• An inclement weather or poor illumination leads to a weakened visibility which is a
main factor of car crashes;

• In an environment that is more and more connected, there are some intelligent tools
that can be requested to provide additional data to improve perception and visibility,
such as UAV;

• Having data from various sensors raises the question of having a mean of fusing them.
Knowledge-based approaches, especially ontologies, have shown great potential for
multi-sensors management;

• When using an external entity, the communication must be guaranteed to be secured.
In that regard, VLC technology offers a strong potential.

The methodology presented in this paper is based on those deductions: In a situation
where the vehicle’s sensors are hindered, there is the possibility to request data from a UAV
stationed nearby (as illustrated in Figure 1). The gathered information are transmitted
through a secured channel, and the data are logged and federated in an ontology, where
they are then processed.
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Figure 1. An illustration of a simple scenario. The vehicle’s perception is limited by the environment,
and it can then rely on the drone to gather data instead.

3. Proposed Methodology
3.1. Knowledge Base

Using multiple sources of information require a means of federating and managing
them. There are multiple ways of doing so, one of them being as a knowledge base [55].
A knowledge base is an object-model way of representing data. As an expert system [56],
it contains not only all the different actors and entities of a given situation, but also the
abstract concepts, the properties and relationships between the stored elements.

In addition to the structured data storage, the other important feature of a knowledge
base is the intelligence layer that can be obtained through the use of inference rules.
By setting up an appropriate set of logical commands, the stored data can be analyzed,
processed, compared and rearranged in order to produce an output that can be reused.

There are different ways to implement a knowledge-based model, such as logic pro-
gramming [57] or a knowledge-graph [58]. An ideal representation of a knowledge base is
as an ontology. The Stanford 101 Guide defines Ontology [59] as “a formal explicit descrip-
tion of concepts in a domain of discourse, properties of each concept describing various
features and the attributes of the concept, and restrictions on slots”. An ontology basically
defines the main actors within a domain of discourses and the different interactions and
relationships between them. A few of the main components of an ontology are listed in
Table 1 [60].

Table 1. Main components of an ontology.

Component Description

Class

Object describing the concepts in the domain, whether they are
abstract ideas or physical actors. Classes can be hierarchized by
levels, for example having a Vehicle as a top-class
containing Car, Bus and Bike as sub-classes

Individuals Real instances belonging to Classes and representing
the actual elements stored in the knowledge base

Properties

The specific information relative to classes. They can
be intrinsic to an object, or extrinsic, representing the
interconnections between different concepts and allow
to link two individuals together.

In addition to being able to represent all the elements of a situation, it is possible to
add a layer of intelligence and reflection through the use of reasoners. A reasoner is a tool
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that can infer logical conclusion from a set of given facts, making the classification of an
ontology easier. For example, if we declare an instance V as a Car, and the class Car is a
sub-class of vehicle, then the reasoner infers that V is a vehicle.

An ontology allows the link of different individuals and their properties. This permits
the use of those elements for a decision-making process. They can be solely dedicated to the
building of a decision-making process, as well as the storage of the previous solutions [61].
For a more complex situation, some reasoners can be supplied by Semantic Web Rule Lan-
guage (SWRL) rules [62]. It is a language of logic description that enables the combination
of different rules to build a more complex axiom. The official documentation gives the
following basic example to define the syntax: hasParent(?x1,?x2) ˆ hasBrother(?x2,?x3) ->
hasUncle(?x1,?x3). By joining the two axioms hasParent and hasBrother, it is possible to apply
the hasUncle relation to the individuals, hence making the individual X1 the child of X2
and the nephew of X3.

The ontology used for this study focuses on both the vehicle and its surroundings.
There are many different interlinked classes, but only a few of them make up the core of
the application:

• Vehicle represents the different; vehicles detected in the environment. The class
encompasses both the Car and the UAV entities

• Weather lists all the possible type of weathers that can be encountered. In this case, it
covers [Sunny, Fog, Rain, Snow];

• Environment describes the context in which the vehicle it evolves, one amongst
[NormalEnv, DarkEnv, BadWeatherEnv, UnusualEnv];

• Sensors covers the sensors that are used for the perception on a vehicle, as detailed
in [22]. The main ones are [cameraMono, cameraStereo, cameraInfra, Lidar, Radar, Sonar].
In addition, there are also environmental sensors used to determine the environment
status, [rainSensor, brightnessSensor, fogSensor]. It is illustrated in Figure 2 and detailed
Table A2 in Appendix A.

Figure 2. Class and subclasses of sensors.

The use of ontologies for vehicular applications has already been considered in the
past. Armand et al. [63] proposed an ontology allowing for a coherent understanding of a
driving environment and through the use of the adequate rules, properties and entities.
Their works were encouraging for knowledge-based ADAS, despite the meticulousness
required for declaring all the rules, and the inference time considered too long [6].
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In addition to the population of the knowledge base, a layer of intelligence is added
through the use of logical rules. The environmental sensors are permanently logging
the gathered value. Upon reaching a certain threshold, the reasoner engine infers a new
Environment class, and the necessary Sensors are activated accordingly.

3.2. VLC Communication

The communication protocol management would still need to be a part of the knowl-
edge base. There are indeed three possible choices which depends of the environment.

• Radiofrequency: The DSRC (Dedicated Short (RF) [64] is the communication protocol
designated for automotive V2X use. It is the standard protocol, but the strength of the
signal depends of the land form and its sensitivity to electromagnetic interference.

• VLC: The VLC protocol performs poorly in some weather conditions, but it can also
improve the lighting in darker areas. It can be an interesting choice.

• Hybrid RF/VLC: This protocol allows a better Quality of Service via the redundancy
of information. If the context allows it, this should be the preferred choice.

The VLC/RF hybrid approach is suitable in this situation due to the following reasons:

• Intelligent Transport Systems can natively communicate with their surroundings [65]
• VLC is a technology revolving around light, making for a brighter environment.
• The redundancy of information allows for a more secured communication and ro-

bust system.

The method proposed in this paper is to hauseve VLC and RF as a hybrid commu-
nication protocol in order to ensure that no information is lost during data transmission
between two agents: The “heavy” data are sent through VLC, because of its high speed
and reliability, and the hash of the data (much smaller and used to verify the integrity of
the transmitted information) are sent through an RF channel. An illustration of this process
can be found in Figure 3.

Figure 3. Illustration of the proposed communication protocol.

3.2.1. Hashing Algorithms

“Hashing” refers to the process of passing data through a function that produces a
fixed-sized string of characters. There are some benefits to hashing, and it is a useful tool in
data security and data integrity: the same set of data will always produce the same string
of characters as output, meaning that if the initial information is compromised, even by a
few bits, the returned hash will be completely different from what is expected.

There are indeed many types of hash functions, with different level of safety guar-
antees. The concept proposed in this paper focuses on the protection against data loss
during transmission and speed transmission, and to that end a basic hashing algorithm
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such as MD5 is acceptable [66]. Pamula et Ziebinski [67] proposed the real-time hashing
of a buffered live video stream by using Field Programmable Gate Arrays (FPGA). That
study managed to reach a hashing throughput of more than 400 Mb/s for blocks of 512 bits
thanks to hardware acceleration, generating a signature for each frame.

An FPGA validation system setup at the receiver would then be able to generate the
hash of 1 Gb of data in about 65 ms, and quickly ask for a resend if an error is detected.

3.2.2. VLC Transmission Speed

As stated in the previous section, VLC also presents an advantageous transmission
speed. This would mean that, for a similar Round-Trip Delay (RTD), the size of the data
frames would be bigger than when using RF communication. This would allow for the
acknowledgement process and the hashing data check to happen more regularly too,
enabling a faster transmission of data.

Depending on the type of LED and receivers used, the transmission rate can greatly
vary: Table 2 offers an illustration of some of the throughputs reached by other works, as
well as the average unloading time of 200 Gb of data. The first study made use of OLED in
order to reach a speed of 3 Mb/s, and the same team made an Artificial Neural Network as
an equalizer and high-speed receivers in order to improve the speed to 170 Mb/s. Another
study made use of FPGA and 64 Quadrature Amplitude Modulation [68] (QAM) to reach a
VLC throughput of 5 Gb/s.

Table 2. Transmission speed of some VLC studies.

Study Speed Transmission Time (for 200 Gb)

Haigh et al., 2013 [69] 3 Mb/s 18 h
Haigh et al., 2016 [70] 170 Mb/s 19 min
Shi et al., 2019 [71] 5 Gb/s 40 s

With the use of VLC, the data can then be transmitted at an extremely high-speed,
ensuring a good transmission of the gathered data. Most digests generated by hashing
functions are only a few hundred bits long, making their fast transmission via RF light.
In addition, and as stated above, the computing of a new hash can be reduced to a few
nanoseconds with the use of FPGA technology, guaranteeing a fast verification of the
received data.

4. Simulation and Results
4.1. Simulated Environment

The model was tested and validated in a simulated environment. The interface was
based on the Udacity [72] project, a car simulator built with the Unity engine [73]. It
allows the building of driving surroundings (roads, obstacles), driving conditions (rain,
fog, physics constraints, etc.), and the manual control of the vehicle.

On a technical level, the driving data are logged in a JSON format and sent via an engine
to the knowledge base. The reasoner will then be called to infer the environmental status.

The communication between the simulator and the knowledge base is done through
a socket connection. We considered two different software tools to do so: the Java OWL
API [60] and the Owlready Python library. We compared both of those approaches in order
to choose the optimal one for our study.

In Figures 4 and 5, we compared both engines execution times. We executed both of
them in a similar environment where the vehicle encounters some heavy-processing events.
As we can see, and depending on the situation, the Python tool offers steady performances
with a processing time of around 1 s. Java occasionally outperforms it, but it has more
trouble in harder contexts: We can observe a high peak when the car encounters a fire
hazard. The execution speed being an important factor, the choice was made to go with
the Owlready tool for this study. An illustration of the process can be found in Figure 6, in
which the XML object represents the ontology.
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Each sensor has its own way of gathering and processing data. For example, cameras
relying on deep learning algorithms in order to classify objects [74], LIDAR technology
supporting this process with depth-computation [75] or radar sensors for the detection of
close elements [76]. The multiple type of methods and algorithms are not considered in
this work. The methodology proposed in this paper focuses on a higher lever of processing
aimed at the decision-making operation. This is made possible thanks to the simulated
environment that allows to virtually generate the necessary environmental data while
retaining the constraints of the studied sensors, which have been defined according to the
state of the art in Section 2 and Appendix A.
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Figure 4. Computed inferring time for the Java tool.
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Figure 5. Computed inferring time for the Python tool.
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Figure 6. Illustration of the technical implementation.

4.2. Logical Rules

A set of logical rules has been implemented for the context detection, and the Pellet
reasoner was used for this work [77]. Figure 7 illustrates an example of a reasoning process
for a foggy situation detection and sensors activation. UAV can carry a multitude of sensors,
such as cameras, lidar, radar or ultrasound. Due to weight constraints and considering the
known energy consumption issues of UAV [78], it is difficult to embed all the sensors on a
single drone, and it is more efficient to use combinations of sensors.

Figure 7. Flowchart of the reasoning process.
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When a bad weather situation is detected, the system looks for a UAV nearby and
checks if the correct sensors are embedded on it. It is interesting to note that because of
the strict and rigorous syntax of the SWRL language, when an “If” condition encounters a
“No” result, the whole rule is dropped, meaning that in some cases an important number
of rules must be developed for covering a single situation.

Figure 8 gives an in-depth look of the process with the logical rules applied to the
foggy situation.

1. Car(?C) & FogSensor(?fogS) & hasSensor(?C,?fogS)
& hasFogValue(?fogS, ?fogV) & swrlb:greaterThan(?fogV, 50)
& Weather(?W)
->Fog(?W)

2. Fog(?F) & Environment(?Env)
-> BadWeather(?Env)

3. Fog(?F)& UAV(?u)& Radar(?ra)& cameraInfra(?c)&
hasSensor(?u,?c)& hasSensor(?u,?ra)
-> isActiveUAV(?u,true)

4. UAV(?u) & Car(?c) & RF(?r) & isCloseToUAV(?c,?u)&
& Action(?a) &
-> RequestData(?a) &
isActiveCommunicationProtocol(?r,true)

Figure 8. Set of rules for the management of a foggy environment.

A quick introduction to the SWRL syntax: Car(?C) represents an individual named C
that belongs to the Class Car. The operator & (or )̂ represents an AND logical operation,
and the operator -> represents the logical operation THEN. The first rule then reads: IF
THERE IS an individual C of class Car AND an individual fogS of class FogSensor AND the
individual C has the property hasSensor fogS AND the individual fogS has the property
hasFogValue fogV AND the value of fogV is greater than the numerical value 50 AND
there exists an individual W of class Weather THEN the weather W is inferred to be of the
class Fog.

Here is a breakdown of this set of rules:

1. The environmental sensors embedded on the main vehicle will send back some data.
If it is above a certain threshold, the environment is inferred as Foggy;

2. A Foggy environment is considered as a Bad Weather environment, same as Rainy
or Snowy;

3. The model looks up for a UAV carrying sensors that works well in this environment
and is within reach. If it is deemed acceptable, the UAV is considered for potential
data transmission;

4. If the proximity condition is fulfilled, a data request is made. Due to VLC performing
poorly in heavy fog [79], an RF-communication protocol is chosen.

The general decision process methodology is summarized in Figure 9: by considering
the environmental elements (brightness, weather) and the state and efficiency of the
sensors in the said environment, the system chooses the appropriate sensors, entities
and communication protocols and requests their activation.
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Figure 9. Influence of the environment on the inference process.

4.3. Experimentation Description

The experimentation using the case description was made by having different human
agents drive a determined course. The drivers control the vehicle with a keyboard and
the simulator, acting as the vehicle’s sensors, logs the environmental driving data into the
knowledge base. Those data are of various natures and correspond to what a real vehicle
would collect, such as the localisation, speed of the vehicle or the presence of an obstacle in
front of the vehicle. The simulator allows the virtual generation of those data.

For example, when the vehicle reaches an area where there is fog, the fog sensor of the
vehicle will receive a numerical value of 70, which is higher than the threshold fixed at 50
for fog-detection and the Weather individual will be classified as Fog. An illustration of this
process is shown in Figure 10. The raw data are sent from the simulator to the ontology
through the Python pipeline. Details of the transmitted data can be found in Table A3.

Figure 10. Interactions between the different agents. The human agent controls the car, the driving
data generated are stored in the knowledge base, and the eventual important information are
displayed to the user in a widget, as shown in Figure 11.
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Once logged in the knowledge base, they are processed by the set of logical rules and
the tools described in Section 4.1. If the system inference requires a perception enhancement,
and if the conditions are verified (i.e., available UAV in reach with all the correct sensors),
the additional information will be displayed on screen, as shown in Figure 11: a message
informs the user that an obstacle is at a certain distance of the vehicle. This distance is
computed thanks to the localization of the ego vehicle, and the localization of the obstacle
detected by the UAV.

The drivers are to encounter the following situations, as illustrated in Figure 12:

• The driver needs to take a turn in an intersection with limited visibility.
• The driver goes through a foggy area.
• The driver needs to go through a certain area where one of the buildings is on fire.

The limited-visibility areas are built so that the controlled vehicle would crash into
stationary or moving obstacles if they are not careful enough. The obstacles are purposely
positioned to maximize the chances of a hit in case of bad driving, for example by over-
speeding. In each location, a stationary UAV is positioned in order to cover a specific site.
The UAV communicates with the vehicle to provide information on the covered area. Upon
request, it will transmit the gathered data to the vehicle, giving important information
such as the distance to an obstacle, as shown in Figure 11. In this way, the ego vehicle gets
knowledge of obstacles in a specific area in advance.

Figure 11. Information of the distance between the vehicle and an obstacle. This information is
displayed when the vehicle makes a request to a UAV.

In this experiment, specimen drivers are grouped into two sets: The first group drives
the circuit without any warning indications, while the second is guided with an interface
warning them on potential obstacles, even with a limited visibility. The different sets
are then evaluated on mainly three criteria: average speed, speed variation in a difficult
situation, and the number of crashes or bad decisions made.

Figure 12. Illustration of the driving environment in the simulator.

The logical rules associated to the different situations can be found in Figures 13 and
14 (the rules relative to a foggy environment can be found in Figure 8):
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1. Vehicle(?V) & hasDistanceFromVehicle(?O, NearDistance)
&Environment(?Env) & Object(?O)
-> hasObstructedView(?V, ?O)

2. Vehicle(?V) & UAV(?U) & cameraStereo(?cm) & hasSensor(?U, ?cm) &
RF(?r) &HybridCommunication(?h) &Object(?O) & hasObstructedView(?V, ?O) &
NormalEnvironment(?Env) & isCloseToUAV(?V,?u) & Action(?a)
-> RequestData(?a) & isActiveSensor(?cm, true)
& isActiveCommunicationProtocol(?r, true)
& isActiveCommunicationProtocol(?h,true)

Figure 13. Set of rules for the management of an obsctructed view.

1. Vehicle(?V) & FireHazard(?H) & Environment(?Env)
-> FireHazardEnvironment(?Env)

2. Vehicle(?V) & UAV(?U) & isCloseToUAV(?V, ?U) & cameraStereo(?cm) & Radar(?r)
& cameraInfra(?ci) & hasSensor(?U, ?ci) & hasSensor(?U, ?r) &
hasSensor(?U, ?cm) & FireHazardEnvironment(?Env) & Action(?a)
-> RequestData(?a)

3a. RF(?r) & hasCommunicationProtocol(?U, ?v) & FireHazardEnvironment(?f) &
hasBrightnessValue(?br, ?bv) & hasCommunicationProtocol(?U, ?h) &
brightnessSensor(?br) & swrlb:lessThan(?bv, 70) ^ Hybride(?h)
& VLC(?v) & UAV(?U) & hasCommunicationProtocol(?U, ?r) &
-> isActiveCommunicationProtocol(?h, true)
& isActiveCommunicationProtocol(?v, true)
& isActiveCommunicationProtocol(?r, true)

3b. RF(?r) & hasCommunicationProtocol(?U, ?v) & FireHazardEnvironment(?f) &
hasBrightnessValue(?br, ?bv) & hasCommunicationProtocol(?U, ?h) &
brightnessSensor(?br) &
Hybride(?h) & VLC(?v) & UAV(?U) & hasCommunicationProtocol(?U, ?r) &
FireHazardEnvironment(?ue) & swrlb:greaterThan(?bv, 70)
-> isActiveCommunicationProtocol(?r, true)
& isActiveCommunicationProtocol(?v, false)
& isActiveCommunicationProtocol(?h, false)

Figure 14. Set of rules for the management of a Fire Hazard. It is interesting to notice that due to
the different possible states of brightness and the VLC efficiency threshold, there are two mutually
exclusive rules concerning the choice of the communication protocol.

Figures 15–17 illustrate views from the simulated environment:
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Figure 15. The first obstacle with limited visibility.

Figure 16. The second obstacle with a foggy area.

Figure 17. The third obstacle with a fire hazard.

4.4. Results and Discussion

The first set of participants was made up by of three different profiles: A normal
driver, a careless driver and an overly-cautious driver. They were asked to complete the
course with no prior knowledge of the circuit or any form or driving assistance. Their
overall results can be found in Table 3.

The second set of participants also consists of the same three different profiles but
with driving assistance added, and their results are shown in Table 4.
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Some interesting results can be extracted by comparing the two sets. Thanks to the
assistance provided by the inferred rules, the second set of subjects actually manage
to finish the circuit faster than the controlled subjects. Their trust in the assistance system
allows them a better management of their speed and the overall driving quality. There are
still some incidents to deplore, especially for the Careless Driver profile, but the high speed
they adopt makes it difficult for them to react on time. The assistance still allows for an
lesser number of road incidents.

Table 3. Results of the tests with no additional guidance.

Average Speed Time to Complete
the Circuit Max Speed Number of

Incidents

Normal driver 27 km/h 67 s 69 km/h 1
Cautious driver 16 km/h 92 s 37 km/h 0
Careless driver 33 km/h 54 s 78 km/h 3

Table 4. Results of the tests with assistance from knowledge base and UAV.

Average Speed Time to Complete
the Circuit Max Speed Number of

Incidents

Normal driver 31 km/h 50 s 78 km/h 0
Cautious driver 22 km/h 65 s 46 km/h 0
Careless driver 44 km/h 41 s 120 km/h 2

Overall, the system performs to allow a better and safer driving. However, it still
has its own set of drawbacks, for example the execution speed. As stated in Section 2,
the inference time takes some time, reaching around 1.5 s in our studies, and seeming to
increase proportionally to the knowledge base population size. This is somehow improved
by alternating the data gathering process and the inference process in order to optimize
the time management, but due to the straightforward and brute approach of a rule-based
system, it will ultimately be tied to the hardware power.

The same rule-based approach requires a rigorous approach and consideration of
every possible situation that the vehicle can encounter. To the contrary of a Neural Network
approach, the complexity of our system is not in its technicality but is more appropriate in
considering the multiple situations that can happen in different contexts. Having a greater
set of rules and elements is the key to ensuring a better operation of the model.

5. Conclusions

In this paper, a vehicular perception-enhancement knowledge base system is pre-
sented. It gathers the data from a vehicle’s surroundings in order to determine the environ-
mental context thanks to a set of logical rules. The system relies on the use of drones (UAV)
and their embedded sensors for the collection of additional perception data. The system
was tested on a driving simulator with a realistic physics engine. Driving data are saved
and logged in an ontology, where they are accordingly stored and processed. In situations
where the perception is limited, for example, in bad weather or a fire hazard, the model
can request additional data from the drones. The drones are equipped with a set of various
sensors allowing them to cover multiple situations. In addition to the UAV activation, the
knowledge base can also use the environmental context and the available set of sensors
to decide which ones are unreliable. Hence, through the use of the drone’s sensors, the
vehicle can enhance its perception and detect obstacles in a poor-visibility environment.
The model was tested by analyzing the performances of two sets of drivers in a simulation
experiment. The experiment consists of having the subjects follow a specific circuit where
they will encounter same situations with limited visibility. The first set of drivers received
no additional guidance, while the second was assisted by the knowledge base and UAV.
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The latter performed better than the former; the participants were able to finish the circuit
on average 20 s faster and with 50% less incident.

The main contributions of this paper revolves around the management of multiple
types of sensors. Indeed, an optimal perception is obtained through the use of a variety of
sensors, each having its own characteristics. There are multiple studies on the use of UAV
for communication purposes, but only recently have they been considered for data fusion
of sensors. Furthermore, a knowledge base allows an effective storing and management of
sensors, whether they are directly embedded on the vehicle or located on a different unit,
such as a UAV.

The work presented in this paper is a first step in the UAV–Vehicular perception-
enhancement process. Perception is a key factor in autonomous vehicle and there are
multiple recent works focusing on improving it [80–82]. Due to the advantageous posi-
tioning of UAV, we believe that there can be a real interest in using drones for vehicular
applications. The use of a knowledge base for the federation of data from multiple sources
is also a promising concept, and can be generalized to other major aspects of vehicular
applications, such as V2X or communication protocol management.
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Appendix A

Table A1. Comparison of the human eye performances to other vehicular sensors. Green means the sensor works ideally for the given situation, yellow that it is of acceptable range, and
red that it works poorly for a specific role.

Parameter Human Eye Monoscopic Camera Stereoscopic Camera Thermal Camera
Object detection Very Good Good Very Good Good for shape detection
Object recognition Very Good Good Good Poor
Range detection Up to 300 m Poor Good Poor
Poor weather performance Poor in snow, fog and heavy rain Poor in snow, fog and rain Poor in snow, fog and rain Good in snow, fog and rain
Poor illumination performance Poor Poor Poor Good
Parameter Human Eye Lidar Radar Ultrasound

Object detection Very Good Very Good Very Good for distance
measurement Very Good

Object recognition Very Good Good Poor Poor
Range detection Up to 300 m Up to 200 m Up to 200 m Very Good
Poor weather performance Poor in snow, fog and heavy rain Poor in snow, fog and rain Good Good
Poor illumination performance Poor Good Indepent of illumination Independent of illumination

Table A2. More details on the Sensors class.

Class Description

Active Sensors Lidar Uses a Laser in order to map the surroundings
Radar Uses electromagnetic waves in order to determine a distance
Ultrasound Uses ultrasonic waves in order to determine a distance

Passive Sensors Monoscopic Camera Captures a continuous set of images that can be processed
Stereoscopic Camera Two different Cameras allowing the consideration of depths in image processing
Thermal Camera Capture infrared and thermal emissions. Works in harsher conditions but the results are hard to process

Environmental Sensors Rain Sensor Determines the Rain situation
Fog Sensor Determines the Fog situation
Brightness Sensor Determines the brightness value (Darkness or Overbright situation)
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Table A3. Main classes of the ontology and their associated variables from the simulator. The virtual data generated by the experiments are sent to the ontology which classify and process
them according to the declared properties and logical rules.

Variable Ontology Class Values and/or Linking Property Associated Simulator Value Comment

Vehicle Speed
hasSpeed [NoSpeed,ExtraLowSpeed,LowSpeed,
NormalSpeed,HighSpeed,Overspeed] (float) VehicleSpeed

Position of the vehicle isOnRoad [Roads] (string) Name of the Road where the vehicle is

Distance to Obstacle
hasDistanceFromVehicle [FarDistance,
MediumDistance,NearDistance] (float) DistanceToVehicle

Weather status [Fog,Sun] (int) FogSensorValue Default value “Sun”
Brightness status [Dark,Normal,Overbright] (int) brightnessValue
Environmental Status [Normal,Dark,BadWeather,Hazardous] - Inferred from other elements
Hazard [FireHazard] (int,int) X & Y Position of the hazard Not declared if there is no Hazard

Sensors available
hasSensor [cameraMono,cameraStereo,cameraInfra,
fogSensor,brightSensor,lidar,radar,sonar] (string) Names of the sensors on the vehicle For both the car and the UAV

Communication protocols hasCommunicationProtocol[RF,VLC,Hybrid] (string) Name of the communication protocol
UAV data isActiveUAV [true,false] - Inferred from other elements
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