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Abstract: The present work proposed a low-cost portable device as an enabling technology for
agriculture using multispectral imaging and machine learning in soil texture. Clay is an important
factor for the verification and monitoring of soil use due to its fast reaction to chemical and surface
changes. The system developed uses the analysis of reflectance in wavebands for clay prediction.
The selection of each wavelength is performed through an LED lamp panel. A NoIR microcamera
controlled by a Raspberry Pi device is employed to acquire the image and unfold it in RGB histograms.
Results showed a good prediction performance with R2 of 0.96, RMSEC of 3.66% and RMSECV
of 16.87%. The high portability allows the equipment to be used in a field providing strategic
information related to soil sciences.

Keywords: machine learning; multispectral image; soil; clay; agriculture

1. Introduction

Smart farming represents the use of information and communication technology
systems applied in agriculture with the objective of obtaining better results, greater perfor-
mance and higher quality production with safety and precision while optimizing human
work [1,2].

From these new technologies, a cultivation area can be divided into as many plots
as it has internal differences supported by soil analysis and each plot can receive a cus-
tomized treatment to obtain the maximum benefit from it. This is also known as precision
agriculture [3–5].

However, it is necessary to characterize the variability of the chemical and physical at-
tributes of the soil through a representative sample of such variations. So, soil analysis is the
only method that allows, before planting, to recommend adequate amounts of correctives
and fertilizers to increase crop productivity and, as a consequence, crop production and
profitability. Soil science is considered a strategic research topic for precision agriculture
and smart farms [6,7].

The clay content defines the texture of the soil. It interferes with several factors
including plant growth and productivity, water infiltration into the soil and its storage,
retention and transport, availability and absorption of plant nutrients, living organisms, soil
quality, productivity and temperature, levels of structure and compaction, soil preparation,
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irrigation and fertilizer efficiency. Therefore, the clay content plays a fundamental role in
crop productivity [8].

The traditional way of collecting soil in the fields and analyzing it in the laboratory
is the most accurate, but it takes time and uses an alkaline solution that needs to be
neutralized before wasting [9]. New research has been proposed to optimize this, but with
limitations. Satellite images are important for obtaining quick information on the surface
of soils in large areas. However, mapping large areas of soil presents difficulties as most
areas are usually covered by vegetation [10].

The use of spectral images expands the capacity of studies in several areas and their
application has been growing in agriculture in order to recognize patterns [11–13]. For
these types of analyses, two well-known scientific methodologies are used: Spectroscopy
and imaging. Optical spectroscopy is a term used to describe the phenomena involving a
spectrum of light intensities at different wavelengths. Imaging can be conceptualized as the
science of image acquisition of the spatial shape of objects. Currently, the most advanced
way to capture images is digitally [14].

Multispectral and hyperspectral imaging systems are image analysis techniques that
are also based on capturing the same image at different wavelengths.The difference consists
in the number of captured wavelengths: While multispectral systems use up to 10, hyper-
spectral systems can exceed 100 wavelengths, with the latter generating larger amounts of
data [15].

Since single-board computers have become more accessible to the general public,
the Raspberry Pi has become one of the more popular systems, mainly in the scientific
community, promoting research in IoT and all features involved [16,17]. Leithardt et al. [18]
and Felipe Viel et al. [19] developed works that exemplified the application of the Raspberry
Pi in IoT.

In addition, machine learning tools as Partial Least Regression (PLSR) have been ap-
plied for multivariate calibration in soil spectroscopy [20], images [21] and sensor data [22].
These algorithms eliminate variables that do not correlate with the property of interest,
such as those that add noise, non-linearities or irrelevant information [23].

Considering the importance of research in areas involving soils (agriculture, geochem-
istry, geology), the ability to use devices such as the Raspberry Pi and the use of computer
vision techniques such as spectral imaging, the following research problem was defined:
“Is it possible to use multispectral imaging techniques to predict clays?”.

The main objective is to develop a computer vision system to predict the amount
of clay in the soil using multispectral imaging techniques on a Raspberry Pi device. The
relevance of this work is in the absence of a fast, mobile, cheap and non-destructive method
to measure clay content in soil.

This article is structured in six sections. Section 2 presents an approach to the soil
texture and colors, multispectral images, machine learning and OpenCV libraries. Section 3
describes the related works, while Section 4 presents materials and methods employed.
Section 5 shows the results of the implementation and its discussions. Finally Section 6 is
intended for conclusions and future works.

2. Background

The process of building a clay prediction system based on multispectral images
covers several areas of knowledge such as optics, soil science, computer vision and
artificial intelligence.

2.1. Optics

The extraction of characteristics from the objects can be performed through the re-
flected energy, depending on some factors such as the positioning of the object, the compo-
sition of the material, the roughness of the material and the type of surface that this material
displays at the time of capture. Each material can have a specific spectral behavior where
characteristics such as humidity, deterioration and decomposition are agents that influence
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the performance of its identification. Thus, the amount of bands in the spectrum required
for the identification of a given material depends on the amount of material discriminated
and also on its variations [24].

Light is a special band of electromagnetic radiation within the spectrum that can
be perceived by the human eye, this band is divided into six regions, which are violet,
blue, green, yellow, orange and red; the perception of these colors is determined by light
reflected by an object. For example, green colored objects mainly reflect wavelengths
between 500 and 570 nm (green color in the electromagnetic spectrum), and absorb most
other wavelengths [25].

A spectral imaging system is, essentially, composed of four components: Lighting,
focus lens, a detector and a wavelength selection system. The first spectral imaging
systems were designed to filter an object’s light and use a monochrome digital camera to
record the reflected light. More modern systems illuminated the sampling object with a
monochromatic light [26]. In recent years, LED lamps have been adopted because they
present the advantage of less variation in brightness when compared to ordinary white
lamps [27].

2.2. Soil Science

Smart farms employ different technologies and sciences, among which soil science
stands out. Soil science strategies allowed implementation of technologies related to
precision agriculture that can enable several smart services on a farm [28].

Soil classification is important for correct soil management in a sustainable manner;
in view of the different physico-chemical compositions of each type of soil, color is an
indicator of chemical composition. The Munsell table is the most common method for
this type of classification. It consists of a simple device for comparing the color of the soil
divided into three color patterns, which are:

1. Hue: This is usually red or yellow;
2. Value: This is light or dark; the darker, the closer the value is zero;
3. Chroma: This corresponds to the brightness, with zero corresponding to gray [29].

The color of the soil is directly influenced by three factors: Organic matter, water
concentration and the oxidation state of iron and manganese oxides. Since soils with
higher water contents are darker than when dry, water also interferes with the amount
of microorganisms present, which also makes the soil darker. Oxidation in high quantity
leaves the soil more grayish or bluish; otherwise, it will be more reddish [30].

So, soil color is one of the most useful characteristics for soil evaluation, informing
about redox, aeration, organic material and soil fertility. Some colors and characteristics of
good quality soils are:

1. Superficial dark brown: This offers a wealth of organic matter, good aggregation and
a good amount of nutrients;

2. Light yellow and red in the subsoil: This indicates high concentrations of iron ox-
ide and good drainage; iron oxides also contribute to the aggregation of the soil,
containing air and water for root development.

Some colors and characteristics of poor quality soils are:

1. Spotted or stained with opaque yellow and orange, bluish gray or olive green: This
indicates permanent flooding of the soil and lack of oxygenation and aeration of
the soil;

2. Rusted colors (ferrihydrite): Indicates constant flooding;
3. Whitish and pale colors: This indicates the presence of a water layer above the

clay [31].

2.3. Computer Vision

The RGB model is the most famous color model; as the name suggests, the primary
colors are red (red), green (green) and blue (blue). Any shade of color can be obtained
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by mixing different amounts of primary colors, this color system can be represented by
three perpendicular axes, such that each axis represents a color, resulting in a cube where
the entire spectrum of colors meets inside. Each point inside the cube describes the primary
color components that result in a certain color; each point has values defined in a triple,
each reference a primary RGB color, where the values range from 0 to 255 [32].

A histogram is a graph that describes the scale of luminosity values that a camera
can register; ranging from pure black to pure white, the scale itself varies between 0 and
255, respectively. The image histogram is also known as frequency distribution, it is the
graphical representation that describes the gray levels of the pixels present in the scene. It
is determined by simply counting the number of times that a given level of gray occurs in
the image. Histograms are constructed band by band, separately; each band has a unique
histogram. The histogram only specifies the number of pixels in each level of gray, without
informing the spatial distribution between pixels; another important aspect is that the
histogram can be interpreted as a distribution of the probability of occurrence of a certain
level of gray [33].

OpenCV is a widely used computer vision and machine learning library and provides
algorithms for image processing, resource detection, object detection and video analysis.
In addition, it is open source and built to provide a common infrastructure for computer
vision applications and to accelerate the use of machine perception in commercial products.
It has more than 2500 optimized algorithms, which include a comprehensive set of classic
and state-of-the-art machine vision and machine learning algorithms [34].

2.4. Machine Learning

Partial Least Squares Regression (PLSR) is a machine learning algorithm method for
building predictive models when there are several factors and these are highly collinear. The
algorithm’s emphasis is on predicting responses and not necessarily finding understanding
of relationships between variables. For example, PLS is generally not suitable for tracking
factors that have an insignificant effect on the response. PLS has as its central idea the
extraction of latent factors that represent both the variation of the factors, while modeling
the responses. The general objective is to use fewer factors to predict responses in the
population [35].

The number of factors or latent variables (LVs) in the model is chosen based on the
value of Root Mean Squares Errors of Cross Validation (RMSECV). When working with a
larger set of samples, validation can be performed by continuous blocks or random subsets
in which a larger number of samples is taken and the model is built with the remaining
ones, estimating their concentrations. The prediction errors are averaged for each number
of LVs and the one with the lowest error will be the number of LVs in the model.

Other figures of merit also used to evaluate a prediction model are:

1. Linearity, defined by the coefficient of determination (R2), is aware of the model’s
ability to provide results directly proportional to the amount of analyte present in the
sample, as shown in the Equation (1) [36].

R2 =

(
n(∑(x ∗ y))− (∑ x) ∗ (∑ y)√

[n ∑ x2 − (∑ x)2] ∗ [n ∑ y2 − (∑ y)2]

)2

(1)

2. Veracity: This is the degree of accuracy between the reference values and the pre-
dicted values. In the case of multivariate analysis the Root Means Squares Errors of
Calibration (RMSEC) is used, as shown in the Equation (2) [36]. The same equation is
applied to evaluate RMSECV.

RMSEC =

√
∑i=1

n (xi − yi)2

n
(2)
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The Kennard–Stone algorithm is a uniform mapping algorithm that selects samples
that best represent the training set. To ensure uniform distribution of the subset of samples
represented by the data space based on the instrumental response, the Kennard–Stone
algorithm segregates samples in regions of the distant space of the samples already selected.
For this purpose, the algorithm uses the Euclidean distance [37].

3. Related Work

There are several works in the field of multispectral imaging in the most diverse areas
of application. The selected articles’ subjects are related to multispectral data, smart farm
and soil prediction.

In 2014, Svensgaard et al. built a mobile and closed multispectral imaging system to
estimate crop physiology in field experiments. This system shuts out wind and sunlight to
ensure the highest possible precision and accuracy. Multispectral images were acquired
in an experiment with four different wheat varieties and two different nitrogen levels,
replicated on two different soil types at different dates. The results showed potentials,
especially at the early growth stages [38].

In 2015, Hassan-Esfahan developed an Artificial Neural Network (ANN) model
to quantify the effectiveness of using satellite spectral images to estimate surface soil
moisture. The model produces acceptable estimations of moisture results by combining
field measurements with inexpensive and readily available remotely sensed inputs [39].

Treboux and Genoud presented in 2018 the usage of decision tree methodology on
segregation of vineyard and agricultural objects using hyperspectral images from a drone.
This technique demonstrates that results can be improved to obtain 94.27% of accuracy and
opens new perspectives for the future of high precision agriculture [40].

Žížala et al. performed in 2019 an evaluation of the prediction ability of models
assessing soil organic carbon (SOC) using real multispectral remote sensing data from
different platforms in South Moravia (Czechia). The adopted methods included field
sampling and predictive modeling using satellite data. Random forest, support vector
machine, and the cubist regression technique were applied in the predictive modeling. The
obtained results show similar prediction accuracy for all spaceborne sensors, but some
limitations occurred in multispectral data [41].

Lopez-Ruiz et al. presented in 2017 the development of a low-cost system for general
purposes that was tested by classifying fruits (putrefied and overripe), plastic materials and
determining water characteristics. This work shows the development of a general-purpose
portable system for object identification using Raspberry Pi and multispectral imaging,
which served as the basis for the present study [42].

Table 1 compares articles regarding the application, data analysis, type of sensors and
properties, including the proposed work. The following criteria allowed comparison of
the proposed model and the aforementioned studies identifying relevant characteristics
for evaluation:

1. Sensors: This shows the sensors used in the related studies;
2. Analysis: This identifies which tool is used for data analysis. In other words, it

identifies how results were generated for decision making or information to users;
3. Spectral range: This informs the type of spectral image employed (multispectral

or hyperspectral);
4. Application: This describes the object, material or scenery analysed.

Table 1. Comparison of related works.

Criterion [38] [39] [40] [41] [42] This Work

Sensors Camera Satellite Camera Satellite Camera Camera
Analysis MMA ANN DT SVM N/A ML

Spectral range Multi Multi Hyper Multi Multi Multi
Application Wheat Soil Vineyard Soil Fruit Soil
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No study directly related to clay prediction in precision agriculture was found in the
literature based on multispectal analysis using LED lamps. The research that presented the
multispectral data for decision making mostly made use of resources from satellite images
or non-portable solutions, differently to as suggested in the present article.

4. Materials and Methods

A total of 50 soil samples were selected from different collection points of the Vale
do Rio Pardo/RS, Brazil, where the clay concentrations ranged from 4% to 72%. These
samples were supplied by the Central Analitica soil laboratory (Santa Cruz do Sul, Brazil),
where they were dried in a MA037 oven (Marconi, Piracicaba, Brazil) with air circulation
for a period of at least 24 h at a temperature between 45 and 60 ºC. Afterwards, the samples
were ground in a NI040 hammer mill (Marconi, Piracicaba, Brazil), with 2 mm strainer, and
stored in cardboard boxes.

This work proposes a system that predicts the amount of clay contained in soil samples
using a panel of LED lamps of various colors. The lamps were arranged around a Raspberry
Pi NoIR microcamera with OV5647 sensor (OmniVision Technologies). The OV5647 is
a low voltage, high performance, 5 megapixel CMOS image sensor that provides up to
2592 × 1944 video output and multiple resolution raw images via the control of the serial
camera control bus or MIPI interface. The sensor has an image array capable of operating
up to 15 fps in high resolution with user control of image quality. The camera is connected
to the BCM2835/BCM2836 processor on the Pi via the CSI bus, a higher bandwidth link
that carries pixel data from the camera back to the processor. This bus travels along the
ribbon cable that attaches the camera board to the Pi. So, the OV5647 sensor core generates
streaming pixel data at a constant frame rate [43].

The microcamera (Pi NoIR v1.3) was coupled to a Raspberry Pi 3 Model B computer
that processes the captured images. This device was launched in February 2016 and it
uses a 1.2 GHz 64-bit quad-core Arm Cortex-A53 CPU, has 1GB RAM, integrated with
40 extended GPIO pins and CSI camera port for connecting a Raspberry Pi camera [44].
The analysis consisted in capturing images of the soil samples and each captured image is
a result of the exposure of the sample to a certain color emitted by a specific LED.

The system used light by means of multispectral spectroscopy, which analyzes light
as a set of waves, using bands of the electromagnetic spectrum between 460 to 630 nm
(nanometers), which corresponds to the range of visible light and which corresponds to the
set of LEDs, according to Table 2.

Table 2. LED set used.

LED Wavelength (nm) Size (mm) Voltage (V)

White 500–620 5 3.0–3.2
Yellow 580–590 5 2.8–3.1

Red 620–630 5 2.8–3.1
Green 570–573 5 3.0–3.4
Blue 460–470 5 3.0–3.4

The use of LEDs of various colors allows the analysis of the object reflectance in
various bands of the electromagnetic spectrum, which is captured by the NoIR camera—
selected due to its low-cost and reduced dimensions. When compared to conventional
lamps, the use of LED lamps results in a reduced variation in brightness on the object as
well as in the consumption [45].

The processing of the reflected spectra captured by the microcamera is performed by
the Raspberry Pi, which has the capacity to perform this type of task, presenting small
dimensions and low-energy consumption and offering low-costs. The entire system was
arranged inside a black box to avoid the disturbance caused by natural light. The techniques
applied in the processing of the selected images were:

1. The generation of histograms of the image in each light spectrum;
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2. The use of the histograms in a machine learning training algorithm;
3. All the results obtained in already existing methods will present the results.

Figure 1 shows the general functioning of the system. The soil samples were placed
in front of the LED panel and the camera is centered between a set of LED lamps of five
different colors (blue, green, red, yellow and white). When starting the program, it captures
images of the same sample on each color of light emitted by the panel.

Figure 1. Representation diagram of the instrument.

The initial development of the work was carried out through the construction of the
imaging capture structure, which was composed by the LED lights and the NoIR camera
inside a box that was duly painted black in order to provide minimal interference in the
reflection of the light emitted from the panel. The welding of 5-volt resistors with 330 ohms
of resistance was also performed between the LEDs and the GPIO of the Raspberry Pi to
prevent the lamps from burning.

Therefore, the assembly becomes simpler, not requiring the multiplexing of the LED
lamps. Figure 2a presents the resulting structure. Regarding the arrangement of the lamps
and camera; they were organized in such a way that the incident light was as linear as
possible around the camera. So, 30 lamps were installed, six in each wavelength, resulting
in a total set of five different wavelengths for analysis.

After welding and assembling the hardware components, tests were carried out to
verify the existence of shaded parts on the samples which would affect the performance
of the application. Still regarding the cause of shading on the sample, parameters such as
disposition and quantity of employed LEDs were essential factors that caused this effect on
the images.

Thus, two approaches to solving the problem were possible, the first being an increase
in the number of used lamps and the second being the approximation of the lamps, which
would result in the modification of its arrangement without changing the quantity.

The first approach—the increase in the number of lamps—was discarded due to
the limited availability of resistors and space for the installation of the lamps, as well as
the Raspberry Pi GPIO’s ability to support the number of lamps. Therefore, the defined
solution was the modification of the arrangement of the LEDs that were already being
used, resulting in a distribution in a circular shape.

After changing the arrangement of the lamps there was an improvement in shading;
however, this did not fully resolve the issue, so a light deflector was developed in order to
avoid the dispersion of the light beam, significantly improving the linearity of the light
reflected in the sample, as presented in Figure 2b.
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Figure 2. LED system and micro-camera disposition scheme (a) and photograph (b).

The application software was developed using Python 2.7 programming language
with GPIO libraries to manipulate the Raspberry pins, with the CV2 library referring to
the OpenCV to process the images and the PiCamera library to manipulate the camera
as well as to capture the images. This software in Python works in the shell terminal of
Raspbian GNU/Linux 10. Figure 3a presents an image that was the result of capturing the
soil sample in each beam of light.

OpenCV is a library that can be applied to computer vision and machine learning,
offering computational power for admission, detection and image processing. Regarding
computer vision, it covers the extraction, manipulation and analysis of images in order to
obtain useful information from them to perform a specific task [34].

The software structure consists of a main class responsible for defining the area of
interest before capturing and defining the activation sequence of the LEDs, in addition to
the acquisition of the images, one of each color. Finally, the image is cropped in order to
follow the area of interest used, in this case 128 × 128 pixels, as shown in Figure 3b.
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Figure 3. Image of the soil sample captured (a) and processing crop (b).

We employed the Scikit Learn module with machine learning libraries, more specif-
ically the Partial Least Squares Regression (PLSR) technique. For the correct use of the
PLSR method there is a need for a linear data profile, which does not occur with luminance
values. Thus, only the histograms of the images were used, as follows:

1. Extraction of the image under the effect of a certain LED color;
2. The image is divided into three histograms;
3. The histograms are concatenated, as well as each of the LED colors.
4. As a result, a CSV file (Comma Separated Values) is generated with all histograms in

all LED colors, as illustrated in Figure 4.

Figure 4. Processing to generate CSV file from matrix of histograms.

Algorithm 1 shows the procedures developed for the acquisition and processing of
images and the prediction of clay results.
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Algorithm 1 Procedure of predicting clay through histogram images.
Input: Image parameters (ROI) and number of PLSR factors
Output: Predicion charts and reporting data
1: roi = 128
2: factors = 6
3: leds = [’green’,’red’,’white’,’yellow’,’blue’]
4: histograms = [ ]
5: for led in leds do
6: files = acquireImages(led)
7: for file in files do
8: histograms.add(processingHistograms(file, roi))
9: end for

10: end for
11: csv = generateCSV(histograms)
12: ref = loadReferences()
13: predictionModel = computePLSR(csv, ref, factors)
14: reportingData(predictionModel)
15: plotingData(predictionModel)

The first step consists in acquiring images controlling all LEDs individually using
Rapsberry Pi GPIOs. All images are exported in PNG format. The second step creates
the red, green and blue histograms from the images obtained in the previous step. The
third step transforms the histograms created in the CSV file, joining all 256 color levels of
each histogram forming 768 variables per sample. The fourth step computes the prediction
model using the PLSR algorithm using the CSV data to correlate with reference data using
a specific number of factors. After the model generation reports with predictions and their
charts are showed.

All PLSR models were developed based on Daniel Pelliccia’s website, which provides
a step by step tutorial on how to build a calibration model using partial least squares
regression in Python [46].

5. Results and Discussions

The calibration models for all sets of histograms were embedded in a Raspberry Pi
device. For later comparison of the performance of the models that presented better results,
quantifications were made from the figures of merits, both to validate them based on
linearity (R2) and on the Root Mean Square Error of Calibration (RMSEC), as well as to
evaluate them as calculated by the Root Mean Square Error of Cross Validation (RMSECV).

At first, the addition of three histograms for each LED separately allowed to build
the calibration model, thus originating 768 variables. Each model employed a different
number of factors according to the best result of RMSECV, as shown in Table 3.

Table 3. Results obtained comparing all training models by LED.

LED Green Red White Yellow Blue

Variables 768 768 768 768 768
Factors 6 10 8 9 6

R2 0.82 0.607 0.857 0.839 0.806
RMSEC (%) 7.93 11.74 7.06 7.51 8.24

RMSECV (%) 19.36 23.89 13.66 13.59 26.35
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The white LED generated the best model with the highest R2, estimated at 0.857, and
the lowest RMSEC (7.06%). Regarding the RMSECV (13.66%), the value was very close to
the yellow LED (13.59%) in this same item.

Then, seeking better results, new modeling was carried out with separate RGB his-
tograms for each LED. In this case, a number of factors equal to 10 were set-up, so that all
models could be compared from the same configuration, according to Table 4.

Table 4. Results obtained comparing all training models by LED and RGB histogram.

LED Green Red White Yellow Blue Histogram

Variables 256 256 256 256 256 -
Factors 10 10 10 10 10 -

R2 0.507 0.586 0.838 0.614 0.236 Red
RMSEC (%) 13.13 12.03 7.56 11.61 16.34 Red

RMSECV (%) 17.35 24.21 20.86 18.73 20.33 Red

R2 0.705 0.243 0.751 0.590 0.378 Green
RMSEC (%) 12.16 16.27 9.33 11.97 14.74 Green

RMSECV (%) 23.64 25.72 21.61 22.14 22.61 Green

R2 0.552 0.151 0.818 0.221 0.799 Blue
RMSEC (%) 12.51 17.23 7.98 16.50 8.37 Blue

RMSECV (%) 18.06 48.31 22.29 19.67 32.56 Blue

Comparing the generated values, no model obtained better indexes of figures of merit
than the white LED, which presented the highest R2, estimated at 0.857, and the lowest
RMSEC (7.06%). In relation to the RMSECV (13.66%), the value was very close to the yellow
LED (13.59%) in this same item.

Lastly, a single model was built with all histograms for all LEDs, resulting in 3840 variables.
In this case, the model employed a better number of factors, according to the result of
RMSECV, as demonstrated in Table 5. This model generated the best results regarding
linearity (R2 equal to 0.962) and RMSEC (3.66%). About the figure of merit RMSECV, the
result was shown to be greater than in the first generated model. Figure 5 shows the linear
performance of this model.

Table 5. Results obtained with all data.

LED Joined Histogram

Variables 3840
Factors 5

R2 0.962
RMSEC (%) 3.66

RMSECV (%) 16.87

Therefore, the Kennard–Stone algorithm was applied to segregate the samples in
a group for calibration and another for validation. From 50 soil samples, the algorithm
selected 34 samples for the calibration model and 16 samples for the validation or test model.
Table 6 presents the predicted results from the calibration model and its reference values.



J. Sens. Actuator Netw. 2021, 10, 40 12 of 16

Figure 5. Results of machine learning calibration model.

Table 6. Prediction results using Kennard–Stone algorithm.

#Sample Clay Ref% Clay LED% #Sample Clay Ref% Clay LED%

55121 4 6.12 55830 36 35.51
55051 6 5.34 55892 37 37.51
55066 7 12.14 53981 39 40.20
55129 10 1.83 56181 40 35.84
55049 11 11.04 55433 41 49.42
55446 15 22.31 53982 44 40.73
55478 19 19.59 55375 45 37.17
56145 20 22.84 56005 46 46.96
55469 24 27.21 55406 47 41.86
56148 25 23.78 55360 49 50.63
56103 26 24.95 60231 51 50.92
53977 27 28.50 56479 58 54.81
55988 29 33.24 56259 61 64.97
56105 31 28.64 55189 64 62.73
55962 32 35.45 60199 68 70.11
55437 34 29.86 60172 71 67.03
54015 35 34.20 60182 72 70.54

When comparing the results of the calibration model generated in this multispectral
LED system with works by different authors, better predictive assessment rates were
achieved. Wetterlind et al. in 2015 [47] obtained an R2 of 0.76 with an RMSECV of 6.4% and
Tümsavaş in 2019 [8] found an R2 of 0.91 with an RMSECV of 3.4%, both using the NIR
spectroscopy method. The minor RMSECVs of these authors are due to the low sample
representativeness. Both focused their experiments on batches of approximately 0.5 km2,
while this work represents various points in Vale do Rio Pardo, Brazil, around 13,255.7 km2.
In addition, other factors such as sensitivity, reproducibility and equipment interference,
intrinsic to the method, could also be discussed.

6. Conclusions

This work presented the use of multivariate calibration techniques in soil imaging
from a multispectral camera in order to predict the amount of clay present in the samples.
Concerning calibration results with low RMSEC values, however, the performance during
the prediction could present better indexes.
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Clay is one of the required parameters, among others, in order to assess soil fertility.
As presented in this work, the concentration of this substance in the soil was quantitatively
achieved through a multispectral camera. It was also possible to perceive a great potential
in the correlation with the official routine analysis.

As advantages, the methodologies that were developed in this work are simple and
maintain the integrity of the samples without the need for methods of greater complexity,
presenting relatively low cost. The samples are analyzed in less time without the use of
reagents and in a non-invasive way.

The combination of OpenCV and machine learning libraries with a low powered
device, as a Raspberry Pi, will allow a wide range of research opportunities in agriculture,
more precisely smart farms.

As future work, a larger number of samples could make the model more full bodied,
predicting more linear effects due to a larger population. Another approach that could be
taken is the generation of smaller calibration groups or range calibration. After a global
model estimates an initial result, smaller models, with a restricted calibration range, could
improve the accuracy of the sample.

Future research will organize the data collected in Context Histories [48,49] to allow
pattern recognition [50], context prediction [51] and similarity analysis [52]. These analyses
will improve the possibilities to implement intelligent services in the agriculture environ-
ments. Finally, the proposed technology can be embedded on equipment used in smart
farms such as smart tractors and drones.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
CMOS Complementary Metal-Oxide-Semiconductor
CPU Central Process Unit
CSI Camera Serial Interface
CSV Comma Separated Values
DT Decision Trees
GPIO General Purpose Input/Output
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IoT Internet of Things
LED Light Emitting Diode
LVs Latent Variables
ML Machine Learning
MMA Methods of Multivariate Analysis
MIPI Mobile Industry Processor Interface
N/A Not Available
NoIR No Infra-Red
OpenCV Open Source Computer Vision Library
PLS Partial Least Squares
PNG Portable Network Graphics
R2 Coefficient of Determination
RAM Random Access Memory
Ref Reference sample
RGB Red Green Blue
RMSEC Root Mean Square Error of Calibration
RMSECV Root Mean Square Error of Cross Validation
SVM Support Vector Machines
Symbols
n Number of samples
x Predicted clay concentration
y Reference clay concentration
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