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Abstract: The Internet of Things (IoT) is revolutionising how energy is delivered from energy
producers and used throughout residential households. Optimising the residential energy consump-
tion is a crucial step toward having greener and sustainable energy production. Such optimisation
requires a household-centric energy management system as opposed to a one-rule-fits all approach.
In this paper, we propose a data-driven multi-layer digital twin of the energy system that aims
to mirror households’ actual energy consumption in the form of a household digital twin (HDT).
When linked to the energy production digital twin (EDT), HDT empowers the household-centric
energy optimisation model to achieve the desired efficiency in energy use. The model intends to
improve the efficiency of energy production by flattening the daily energy demand levels. This is
done by collaboratively reorganising the energy consumption patterns of residential homes to avoid
peak demands whilst accommodating the resident needs and reducing their energy costs. Indeed,
our system incorporates the first HDT model to gauge the impact of various modifications on the
household energy bill and, subsequently, on energy production. The proposed energy system is
applied to a real-world IoT dataset that spans over two years and covers seventeen households. Our
conducted experiments show that the model effectively flattened the collective energy demand by
20.9% on synthetic data and 20.4% on a real dataset. At the same time, the average energy cost per
household was reduced by 10.7% for the synthetic data and 17.7% for the real dataset.

Keywords: Digital Twin (DT); Energy Efficiency; Internet of Things (IoT); Smart Homes; Data-Driven
Approach; Household-Centric Approach; Reinforcement Learning (RL)

1. Introduction

The residential electric energy supply–demand paradigm is an ongoing challenge
that gathers more momentum with the surge of new energy-hungry devices (e.g., electric
vehicles, and HVAC (heating, ventilation, and air conditioning)), and novel methods
for energy peak shaving (e.g., energy storage). Indeed, electric gadgets with the need
for energy are increasing in residential areas and have various usage and consumption
patterns. Moreover, with the dominance of digitisation, the usage of residential homes
is also changing due to the surge of people working from home. Notwithstanding the
continuous change in energy demand, consumers expect energy providers to always cater
to their energy demands at competitive prices [1].

To sustain a cost-effective energy production mechanism, providers seek to avoid
peak energy generation. This is often referred to as peak shaving, which aims to prevent
spikes in energy and flatten the daily energy generation curve. There are two standard
methods for peak shaving. The first relies on storing unused energy during low energy
demand periods and tapping into stored energy when more is needed. This consequently
saves on the electricity bill.
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The second method is based on a dual tariff approach designed by energy providers
to motivate consumers into changing their habits toward operating their appliances during
off-peak hours [2]. Dual tariff (rates) refer to different tariffs for cost per unit of energy
consumption: the low tariff (i.e., cheaper cost) applies when the energy demand is low,
and the high tariff (i.e., higher cost) applies during peak energy demand periods. However,
both these methods have a limited impact on the energy supply–demand paradigm as they
are rigid and do not account for the rapidly changing demand profile and tools available to
energy producers.

One approach for avoiding peak energy generation relies on tapping into alternative
sources, such as stored energy or renewable energy to cater for peak demands [3,4]. These
works mostly follow an energy provider-centric perspective that does not fully benefit
from the energy demand diversity among households and does not prioritise the cus-
tomers’ needs. An alternative household-centric perspective examines how to optimise the
scheduling of electric appliances to avoid energy peak demands [5,6]. However, customers
are often reluctant to any change of appliances’ schedule that does not account for their
preferences and specific needs.

To this end, authors, such as [7,8], formulate a multi-objective optimisation problem
that aims to maximise customer satisfaction in addition to avoiding peak energy demands.
Nevertheless, the proposed solutions follow a central processing approach that requires
detailed energy information about each household to be shared with the central controller
for optimisation. Non-intrusive load monitoring is often proposed instead, however high
granularity is needed to yield reliable precision in smart event detection [9]. According
to the authors in [10], privacy concerns about sharing smart meter information with high
granularity hinder the adoption of smart energy solutions and the exploitation of renewable
and green energy alternatives.

Internet of Things (IoT) is revolutionising how energy is delivered from energy pro-
ducer and used throughout residential households. The proliferation of the IoT sensory
devices is part of what makes digital twins possible. A digital twin (DT) serves as a virtual
representation of physical assets in real-time that mirrors their status and behaviour. In this
paper, we propose a data-driven multi-layer DT of the energy system composed of energy
provider (i.e., power plant and local transformer) and households at smart homes as shown
in our conceptual system model in Figure 1. Households are at the edge of the system
where local DTs of the electric appliances are generated in what we refer to as household
DT (HDT), as shown in Figure 2. These digital replicas of appliances mirror their energy
usage and patterns.

We devise a distributed reinforcement learning method that runs in the virtual digital
world to optimise the scheduling of the household appliances before applying the end
result to the physical assets. The HDT shelters all sensitive data about the household and
would only escalate the aggregated information to the central controller within the Energy
DT (EDT) as shown in Figure 2. The energy provider EDT comprises the central controller
and multiple local transformers. The former interacts with various local transformers
to obtain the aggregated energy demand of each area and returns the optimised hourly
tariffs based on the peak-to-average energy production ratio. EDT and HDT would be
interlinked and equipped with machine learning algorithms to dynamically optimise the
energy supply–demand from both perspectives of providers and consumers. To this end,
HDT would optimise the residential energy cost based on the area-specific dual tariffs
determined by the EDT.

We have adopted a distributed reinforcement learning technique at an edge computing
digital twin (HDT) for three main reasons. First, the HDT edge computing protects people’s
privacy, and hence would foster the adoption among residential customers of such smart
energy solutions. Secondly, reinforcement learning is a self-learning method that adjusts to
the changing propensities of a household to using electric appliances. For instance, in the
case of new tenants, new appliances, or new family members, the algorithm can self-adjust
and rapidly yield optimised results. Similarly, the changing tariffs that the EDT may define
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will automatically impact the algorithm and adjust the resulting scheduling to minimise the
energy cost for the household. Thirdly, the optimisation takes place in the virtual replica
and would only be applied to the physical assets if the results are satisfactory; thus, there
is a limited risk of unstable behaviour or undesired outcome.
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Figure 1. A system model linking the energy producer to the residential households at smart homes
(where their electric appliances are connected to Internet of Things (IoT) gateways).
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Figure 2. Multi-layered Digital Twin (DT) representation of the system model and data exchange.
Each house has an EDT that comprises its local transformer connected to a central energy controller.

The paper is structured as follows. In Section 2, we review the state-of-the-art in the
area of residential electric appliances energy management. We formulate the residential
appliance scheduling in a dual tariff mode as an optimisation problem in Section 3. In
Section 4, we present the novel multi-layer DT framework and the distributed reinforcement
learning method proposed for solving the optimisation problem. These are validated in
Section 5, in which we first present the framework evaluation metrics, which we then
successfully apply to synthetic data. In Section 6, we apply the novel method to a real
dataset and present and discuss the results using the framework evaluation metric. We
finally conclude the paper and offer a future direction in Section 7.
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2. Background and Related Work

This section highlights some of the existing work in residential energy management. In
particular, we examine works that propose to optimise the residential energy consumption
with the goal of reducing the peak-to-average ratio of energy demand. This optimisation
is often performed by rescheduling operational timings of home appliances. Some of the
parameters considered in this optimisation include the electricity cost, peak-to-average
ratio, and user discomfort that may be caused by incurred delays. The existing literature
can be grouped into three main approaches: the energy provider-centric approach, the
user-centric approach, and one that taps into alternative energy sources as presented in
this section.

We refer to the first approach as energy provider-centric as it is biased toward meeting
the provider’s needs. Thus, this approach is concerned with flattening the residential
energy demand regardless of the potential discomfort it may cause to the residents. For
instance, the authors [11] aimed to reduce the baseload energy consumption using smart
meter and daily indoor and outdoor temperature data. The proposed energy-efficient ap-
proach targeted residential customer with high potential energy-saving while considering
heterogeneity in baseload energy consumption pattern across customers.

In [5], the authors presented a method to manage energy demand–supply through
hourly predictions of energy consumption based on historical data. The accurate prediction
of energy demand allows providers to adjust the supply accordingly, thus, improving the
efficiency of the energy production system. Similarly, in [6], the authors proposed a strat-
egy to estimate multi-story apartments’ power consumption in residential buildings.The
simulation result showed the direct relationship between an increase in the apartment area
and energy consumption and an inverse relationship with the number of occupants.

Although both of these proposed systems ([5,6]) feed on historical data that should
capture the residents’ propensity to energy consumption, they still do not give occupants
the chance to limit rescheduling of appliances based on their preferences. In addition, the
authors in [12] proposed multi-energy flexibility measures for peak shaving. The work
aimed to achieve greater profit margins for the building energy supplier. However, it did
not consider the residents’ energy usage and behaviour and the possibility to reschedule
their appliances.

In view of this limitation, we refer to the second approach as user-centric as it allows
residents to express their preferences with regard to which appliance may be rescheduled,
for how long it may be delayed, and which energy mode to operate. Thus, user preferences
are central to the second approach, which aims at maximising the user comfort by avoiding
the breach of any of these preferences ([7,8,13–16]). For example, the authors in [13] pre-
sented a neural network-based method for forecasting the next hour’s energy consumption
and Q-learning to decide the best action for appliances that can either delay their usage or
alter the mode of operation to save energy.

In this case, the best action aims to minimise energy production cost and maximise
the users’ comfort by abiding by their preset preferences. Similarly, the authors in [7]
presented a model for human-behaviour-centred smart appliance scheduling of smart
homes. The primary objective was to minimise electricity cost and peak to average ratio
while maximising user comfort. In [8] as well, the authors proposed a hybrid of meta-
heuristic techniques with the prime goal of optimising the design of the controller. The
controller was tasked with reducing energy consumption, minimising electricity cost, and
maximising user comfort.

In [14], the authors presented a Markov-modelling based energy management system
that rescheduled home appliances based on the user preferences, consumption threshold,
and smart grid signal. The appliances were categorised into shiftable and non-shiftable
appliances, where shiftable appliances were scheduled based on consumer learnt behaviour
and grid supply state. In [15], the authors presented demand-side load scheduling that
aimed to minimise electricity costs and maximise user comfort while flattening the load
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curve to low peak hours. This was achieved by switching the non-significant load and
preventing high consumption devices from operating during peak hours.

Likewise, in [17], the authors proposed a model that categorised users on their energy
demand pattern in the residential sector. The proposed model classified users through
the contract-based theory, which benefits both parties, i.e., utility and the users, from
the economic perspective.This approach uses the optimisation problem, which jointly
maximises the electricity market and user profit. Similarly, [16] proposed demand-side
management by integrating water heater control strategy as a load shift. The aim was to
curtail load demand while taking into account user comfort.

The authors in [18] advocated deep reinforcement learning as the key technology for
capturing individual trends and managing the energy consumption in smart buildings.
In this context, the learning agents were equipped with a deep learning capability to
identify the optimum action for each of their possible states. The work did not validate
the proposed method for peak shaving and required high computational power for model
training. The works cited under the user-centric approach successfully targeted the cost of
energy production by rescheduling appliances and avoiding peak energy demands.

At the same time, each of the listed works accounted for the residents’ preferences
in the rescheduling operation, thus, earning the user-centric characteristic. However, the
main drawback of these methods is that they all rely on a central-processing approach
to forecast and optimise appliance scheduling. The central processing necessitates that
all energy consumption data from households is shared with the central server. This is
a significant hindrance because users are often reluctant to share high resolution energy
consumption data that may reveal personal information and habits [19]. On the other hand,
under-sampling the shared data to protect the residents’ privacy limits the accuracy and
gains of the centralised optimisation process. In an attempt to decentralise data storage,
authors in [20] investigated the application of blockchain and artificial intelligence in a
smart city environment. They highlighted, however, how the blockchain’s distributed
aspects have fundamental privacy issues by virtue of its design.

This leads us to the last group of research that leverages alternative energy sources
for storing excess energy during low demand and supplementing the energy grid supply
during peak demand. For instance, the authors in [3] presented an energy management
system for the UK domestic sector where the energy demand depended on supply from
the grid, photovoltaic (PV), and batteries. Similar to the energy-provider-centric approach
(e.g., [5]), a predictive model was used to estimate the gain of shifting possible loads from
on-peak hours to off-peak hours while accounting for alternative sources.

Similarly, [4] proposed a residential energy management system that considered
time-of-use pricing and tapped into the grid supply, PV, and charging and discharging of
batteries. The main limitation of these methods are that batteries and PVs are not often
available in all houses and that the cost of equipping all households with alternative energy
sources/storage may be prohibitive. A fuzzy logic-based energy management system was
proposed in [21] to smooth the grid’s power supply incorporated with an electrothermal
microgrid. It comprised a microgrid containing PV, wind generators, storage batteries, and
collectors. The objective function was to utilise renewable energy sources to reduce the
grid power supply. This work did not look into appliance rescheduling but demonstrated
the potential of renewable energy in supplementing the energy grid supply.

In [22], the authors addressed the sustainable power usage problem for multiple
homes from an economic and environmental perspective. The main objective was to reduce
electricity costs and CO2 emissions while considering user preferences and renewable
energy sources. The authors in [23] addressed the problem of peak shaving in smart
buildings that were powered by solar PV-based microgrids. They proposed a collaborative
model between multiple buildings/microgrids to exchange data and energy with the
common objective of shaving peak energy demands while energising electric vehicles. In
general, methods that rely on renewable energy require a considerable upfront capital
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investment and may lack robustness due to the inherent fluctuating levels of renewable
energy production.

In summary, the energy-provider-centric methods are prone to compromising the
users’ comfort and the current user-centric methods require central processing that exposes
sensitive information about the residents. Alternative and renewable sources represent
a promising solution toward curtailing the need of peak energy production; however,
these require investment from either residents or energy providers to provide batteries or
renewable energy plants. Moreover, most of the existing works that promote alternative
sources rely on central processing and disregard the users’ preferences toward load shifting.

To this end, we present a multi-layer DT approach for mirroring residential energy
consumption and a multi-objective problem formulation for reducing energy demand
peaks by pertinent load shifting as defined in Section 3. Unlike existing literature, the
multi-layer DT adopts edge computing and ensures that household specific and sensitive
data is not shared with the central server. The optimisation method aims to reduce the
peak-to-average ratio of cumulative energy demand in a given area and minimise each
household’s energy cost.

In contrast with the central-processing methods discussed in this review, we propose
an edge-based reinforcement learning approach that is controlled by common cost param-
eters determined by the central processor. Reinforcement learning is a low computation
learning technique that can run in each local controller η in each household (see Figure 2).
Due to its self adjusting ability to changing environments, reinforcement learning is ideal
for this application where household energy conditions often change due to holidays,
children, work situations, etc. The proposed method of multi-layer DT and reinforcement
learning is detailed in Section 4.

3. Problem Formulation

Consider a residential area with a set of K smart homes or households H = {H1, · · · , HK},
as shown in Figure 1. Each house Hh, where h = {1 · · · , K}, has a set A of electric appliances
such that A = {A1, A2, · · · , AZ}where Z is the maximum number of electric appliances at
a given household Hh. The power consumption Wa (in Watts) of each appliance Aa in each
household is monitored through Individual Appliance Monitors (IAMs).

Thus, the actual energy consumption (in kilowatt hour (kWh)) of each appliance Aa in
each household Hh can be obtained from the IAM readings as Ea(t) = Wa(t)× ∆(t)/1000,
where t represents each hour of a day t = {1, 2, · · · , 24} and ∆(t) = 1 hour (i.e., one
hour interval). In the absence or interruption of the IAM monitoring of an appliance Aa,
a typical energy consumption Na (in kilowatt hour (kWh)) can be used which may be
obtained from the manufacturer and brand/model information of the appliance or other
sources (https://www.energuide.be/en/questions-answers/how-much-energy-do-my-
household-appliances-use/71/, accessed on 19 June 2021).

Henceforth, we assume that Ea(t) = Na(t) when IAM readings are not available.
The total energy consumption ET

h (t) of a given household Hh at time t can be formulated
as follows:

ET
h (t) =

Z

∑
a=1

Ea(t) (1)

where Z is the number of appliances at a given household, h is the household index, and
Ea(t) is the energy consumption for an appliance Aa. We assume that the households’
energy consumption is represented and aggregated at two different levels in a so-called
multi-layer DT (as shown in Figure 1): (1) a local energy controller (i.e., IoT gateway) ηh
located at the edge of the system (i.e., at HDTh in each household Hh), and (2) a local
energy transformer L. The local energy transformer L and the energy plant are mirrored
into the EDT (as shown in Figure 2), where L aggregates the collected hourly energy
consumption ET(t) for all connected local energy controllers η that belong to a set of smart
neighbourhood houses.

https://www.energuide.be/en/questions-answers/how-much-energy-do-my-household-appliances-use/71/
https://www.energuide.be/en/questions-answers/how-much-energy-do-my-household-appliances-use/71/
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The local transformer L does not interact with each household’s appliances, but in-
stead, it interacts with the local energy controller (i.e., IoT gateway ηh) that is installed at
the edge (i.e., at each household Hh). It, then, shares the collected ET(t) of all neighbour-
hood houses with the energy production plant without revealing house-specific data to
protect people’s privacy and their energy usage and behaviour within their households.
See Figure 2 for more details.

Research has shown that different areas exhibit distinctive features, including peak
energy consumption, time of peak energy use, and seasonal variations [24]. On that
account, we aim to capture the energy consumption characteristics of different areas in
our problem formulation by identifying the period of the day that experiences the peak
energy consumption. In our work, we divided the day into three equal parts and, for
each area controlled by a local transformer L, the peak time between the three parts was
determined based on the energy consumption. This is represented by Φ = {1, 2, 3} such
that 1 refers the period 12:00-to-8 a.m., 2 refers to 8 a.m.-to-4 p.m. and 3 refers to 4 p.m.-to-
12:00 a.m. Based on this parameter Φ, an area-centric dual tariff is possible by calculating
the area-specific coefficient M. As detailed in Table 1, M is a ratio between the hourly
average energy consumption during the peak period Φ and the hourly average energy
consumption throughout the day.

Each household has a usage pattern Uh = {U1
h , · · · , UZ

h } where the usage of each
appliance Aa is represented by Ua

h = {ua(1), ua(2), · · · , ua(t), · · · , ua(24)}, where (ua(t) =
0) when the appliance is switched-off, (ua(t) = 1) when the appliance is switched-on, and
(ua(t) = 2) when the appliance is on standby. Each appliance remains ON for a duration
Ta(w) in hours, where Ta(w) represents the average duration of appliance Aa’s usage on a
day w of the week (w = {1, · · · , 7}) as determined from IAM readings (see Section 6.2.1).
A nominal or typical (https://www.energuide.be/en/questions-answers/how-much-
energy-do-my-household-appliances-use/71/, accessed on 19 June 2021) duration of
appliance usage, τa is used instead, where IAM readings are not available to calculate
Ta(w).

Each household Hh selects a priority/preference list Ph = {P1
h , · · · , PZ

h } where each
value Pa

h indicates the residents’ preferences for usage scheduling an appliance Aa. Without
loss of generality, in our work, we assumed three possible priority levels, such that Pa

h = 1
for the strict and highest priority where no delay is tolerated (d2

1 = 0 h), Pa
h = 2 indicates

that a short delay is allowed (d2
2 in hours), and Pa

h = 3 is the least priority, i.e., a long delay
is allowed (d2

3 in hours). In addition, we define an intermediate delay for each priorityin
order to increase the flexibility and degree of freedom in the optimisation. Thus, a vector
Dp = {d1

p, d2
p} is defined for each of the predefined priorities as detailed in Table 2.

Let C(t) refer to the cost of the energy consumption ET(t) (formulated in Equation (1))
for each household Hh during hour t. C(t) is calculated at each local energy controller ηh
based on dynamic electricity hourly tariffs determined by the central energy controller and
the local transformer L. The central energy controller fixes two tariffs: ρ is the low cost
per unit of energy consumption, and R is a higher cost per unit of energy consumption,
where both ρ and R are in £/kWh. This dual tariff is the same for all areas and all local
transformers. To this end, ρ is used as a fixed rate to calculate energy cost for consumption
below θ, a threshold defined by the central controlled in kWh.

Energy consumption that exceeds the threshold θ is billed at the high rate R, as shown
in Equation (2). In principle, θ is dynamically adjusted according to the energy demand
from multiple local transformers. In this study, a single local transformer is considered,
and the value of θ is fixed. The local transformer L calculates an area-centric coefficient
M; effectively, the high rate R is multiplied by M in the cost calculation to generate an
area-specific high tariff. This dual tariff scheme is depicted in Figure 3.

C(t) =

{
ρ× ET(t) if ET(t) ≤ θ

ρ× θ + R×M× (ET(t)− θ) if ET(t) > θ
(2)

https://www.energuide.be/en/questions-answers/how-much-energy-do-my-household-appliances-use/71/
https://www.energuide.be/en/questions-answers/how-much-energy-do-my-household-appliances-use/71/


J. Sens. Actuator Netw. 2021, 10, 37 8 of 33

Table 1. Parameter descriptions.

Description Range/unit

Hh A household that is connected to one local transformer, see Figure 1 H = {H1, · · · , HK}, h = 1, · · · , K

t Indicates the hour of the day t = {1 . . . 24}.

A Set of Z electric appliances A = {A1, . . . , Aa, . . . , AZ}, a is the appliance index where a = {1, · · · Z}

Na Nominal energy consumption of appliance Aa

This is taken from published product data
(https://www.daftlogic.com/information-appliance-power-consumption.htm, accessed on 19 June
2021). Three energy classes per appliance are considered, for each class, Na has a different value (in
kWh).

Ea
h(t) Actual energy consumption of appliance Aa in household Hh at time t Actual IAMs measurement (in kWh)

ET
h (t) Total energy consumption of all appliance in household Hh at a time t ET

h = ∑Z
a=1 Ea

Ua
h Usage pattern of appliance Aa in household Hh

A binary vector of 24 values (i.e., a day interval 24 h) where value = {0, 1, 2}, 0 = switch-off, 1 =
switch-ON, and 2 = stand-by and

Pa
h Priority of appliance Aa in household Hh

Pa
h ∈ P = {1, 2, 3} where 1 for no tolerable delay (i.e., the strict and highest priority) and 3 for the

highest tolerable delay (i.e., low priority).

Sa
h

Hourly energy consumption of appliance Aa in household Hh when Aa is in standby mode (i.e.,
Ua

h(t) = 2) Average of actual measurements (in kWh)

Oa
h Hourly energy consumption of appliance Aa in household Hh when Aa is in ON mode (i.e., Ua

h(t) = 1) Average of actual measurements (in kWh)

τa Typical nominal duration of usage of appliance Aa ( τa is only used when IAM readings are not
available) Duration in hours

Ta
h (w) Mean duration of usage of appliance Aa in household Hh on a day of the week w = {1, · · · , 7} Duration in hours calculated from IAM readings

Dp Allowed delays for appliances with priority p Dp = {d1
p, d2

p} in hours; user defined based on the requirements of each household for each appliance

ρ Cost of low energy rate (i.e., low cost per unit of energy consumption) £/kWh defined by central controller

R Cost of high energy rate (i.e., high cost per unit of energy consumption) £/kWh defined by central controller

θ
Energy consumption level threshold such that if ET

h (t) < θ, ρ is used for the cost of energy
consumption per unit £/kWh and R is used for consumption exceeding θ

kWh defined by central controller

Φ Peak time for energy consumption in the neighbourhood defined by the local transformer L Φ = {1, 2, 3}, 1 for the time interval 12:00-to-8 a.m., 2 for 8 a.m.-to-4 p.m. and 3 for 4 p.m.-to-12:00 a.m.

M Ratio between peak time and mean of energy consumption defined at a neighbourhood area (where H
houses are located) by a local transformer L

M = ∑H
h=1

a
b , where a is the mean hourly energy consumption during the peak time Φ such as

a =
∑t+7

t EΦ(t)
8 and b is the mean hourly energy consumption over 24 h such as b =

∑24
t=1 ET (t)

24 .

Fh Locally maintained probability of appliance usage in household Hh in the form of a 7 × 24 × Z matrix. Each entry Fa
w,t represents the probability of Appliance Aa being used on week-day w at hour t

calculated based on IAM readings

https://www.daftlogic.com/information-appliance-power-consumption.htm
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Table 2. Appliance priorities and related delays.

Priority Intermediate Delay Maximum Delay

p = 1 d1
1 = 0 d2

1 = 0
p = 2 d1

2 = d2
2/2 d2

2
p = 3 d1

3 = d2
3/2 d2

3

Figure 3. Dual tariff scheme where energy consumption below the threshold θ is billed at the low
tariff ρ and higher consumption is billed at R×M.

Our problem can be formulated as an optimisation problem that aims at finding the
optimal scheduling U∗h = {U∗1h , · · · , U∗Zh } of all appliances A in each household Hh in
order to reduce the expected daily energy cost Ĉ of the given household. To this end, for
each hour of the day 1 ≤ t1 < 24 (t1 refers to the current time), the expected daily energy
cost Ĉ is formulated as:

Ĉ =
24

∑
t=1

C(t) (3)

The expected daily energy consumption Ĉ of a household Hh at anytime t1 is, thus,
estimated based on the previous known pattern Uh(t) for t ≤ t1 and the predicted usage
pattern U′h(t) for t ≥ t1. For each appliance Aa in household Hh, the predicted usage
pattern U′h

a(t) for t ≥ t1 is defined based on the following rules:

• Case 1: If Uh
a(t1) = 0, then U′h

a(t1) = 0 and U′h
a(t) = g(F (w, t, a)) for all t > t1,

where g(n) is a random generating function of integers {0, 1} biased by the probability
n and F (w, t, a) is the probability stored in the probability matrix F of appliance Aa

being ON at time t of day w of the week.
• Case 2: If Ua

h(t1) = 1, then there are three options to consider:

– Option1: No delay. U′h
a(t1) = 1; for t1 < t ≤ t1 + Ta(w), U′h

a(t) = 0. Indeed an
appliance cannot be switched ON before the the first cycle is completed after
Ta(w) hours; for t > t1 + Ta(w), U′h

a(t) = g(F (w, t, a));
– Option2: Delay by d1

p, which is the intermediate delay for priority p. In this
case, U′h

a(t) = 0 for t1 ≤ t < d1
p; for t = t1 + d1

p, U′h
a(t) = 1 (In other words, the

appliance was delayed from t1 to t1 + d1
p; then, to avoid the appliance getting

switched ON during the cycle, U′h
a(t) is set to 0 for t1 + d1

p < t ≤ t1 + d1
p + Ta(w),

U′h
a(t) = 0; for t > t1 + d1

p + Ta(w), U′h
a(t) = g(F (w, t, a));

– Option3: Delay by d2
p, which is the maximum delay tolerated for priority p. In this

case, U′h
a(t) = 0 for t1 ≤ t < d2

p; for t = t1 + d2
p, U′h

a(t) = 1 (in other words, the
appliance was delayed from t1 to t1 + d2

p; similar to Option2, U′h
a(t) = 0 for t1 +

d2
p < t ≤ t1 + d2

p + Ta(w) and for t > t1 + d2
p + Ta(w), U′h

a(t) = g(F (w, t, a)).
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Thus, the optimisation problem selects the best of the three options whenever Case 2
occurs, where the best option is the one that yields the minimum cumulative cost, as
formulated below:

min
(U′h)

Ĉ =
24

∑
t=1

C(t) (4a)

subject to ∀Aa ∈ Hh, ∑(U′ah (t)|U′ah (t) = 1) = ∑(Ua
h(t)|U

a
h(t) = 1) (4b)

In Equation (4b), the optimisation problem is constrained by the cumulative diurnal
duration of ON time of each appliance. In other words, the optimisation problem is not
permitted to reduce the number of ON hours of any appliance in U′h in comparison with
Uh in an attempt to reduce the cost.

If a brute force approach were adopted to solve the optimisation problem in Equation (4a),
it would entail exploring each possible usage pattern of each of the Z appliances at any given
hour of the day. To this end, at any given time t, the algorithm would need to consider, in
addition to options at time t, all options for all remaining hours. For instance, for t = 1 (i.e.,
the first hour of the day) there are 24 unknown periods of scheduling {1, · · · , 24}, whereas
for t = 21, there are only four unknown periods {21, · · · , 24}.

For each unknown period, the number of possible scheduling permutations depends
on two parameters: Z which is the number of appliances per household, and |Dp| which is
the size of the vector of allowed delays for appliances of priority p (in our work, we set
|Dp| = 2 for all appliances, see Table 1). At any given time, any appliance has |Dp|+ 1
possible options of scheduling including |Dp| possible delays and no delay. Hence, there

are (25− t)(|Dp |+1)Z
possible scheduling/costs in principle, where t is the current time (i.e.,

the current hour of the day) and (25− t) refers to the remaining hours in a day (i.e., 24 h
for t = 1). Let Z = 10 and |Dp| = 2; the number of possible scheduling and resulting costs
is (25− t)310

and, for any hour of the day t < 24, (25− t)59049 → ∞.
A more realistic scenario may be to limit the number of appliances that may be

simultaneously ON at any time of the day to Z′ < Z, since rarely are all home appli-
ances turned ON at the same time. In this case, the number of possibilities at time t is

(25− t)(|Dp |+1)Z′
and, for Z′ = 2, the number of computations required to decide on the

optimum schedule at time t = 1 is 2432
= 2.6× 1012. This is an inhibiting computational

cost beyond the capabilities of residential IoT gateways (η), which are often simple and
lightweight devices. For this reason, we propose a reinforcement learning method in
Section 4.2 owing to its simplicity, low computation requirement, and established conver-
gence [25].

4. Methodology

Overall, our problem is formulated as an energy supply–domain problem that aims to
avoid energy supply peaks by controlling the energy demand of all K households. This
is done by a dual-tariff cost-driven rescheduling of household appliances that results in
the minimum daily energy cost per household Ĉ whilst abiding by the resident-defined
rescheduling constraints. In this work, we propose a distributed approach to solving the
rescheduling problem. Each household’s HDT is concerned with optimising the scheduling
of its appliances based on the common parameters set by the central controlled (EDT).
To this end, energy consumption patterns Uh for all appliances A of the household Hh
are captured based on historical data. The optimum rescheduling patterns U∗ah for each
appliance Aa are identified for two main objectives.

The first objective is that the energy cost per household is minimised by shifting the
energy consumption toward low energy periods billed at a low tariff ρ. The dual-tariff
controlled by the central controller at the EDT is affected by an area-specific coefficient M,
determined by the local transformer L (also part of EDT).
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The area-specific coefficient targets two aspects: (1) to associate the high tariff R with
the area-specific peak period Φ and (2) to incorporate the area-specific peak-to-average-
ratio in the high tariff billing. Thus, the second objective is to nudge customers to avoid
peak energy consumption by directly impacting the household’s energy bill in relation to
their contribution to the peak-to-average-ratio. The constraints limiting the solution space
of the optimisation problem are two fold. The first relates to the capping on tolerated delays
per household per appliance (Dp, where p = {1, 2, 3} is the index that refers to the priority).
The other ensures that the cumulative daily usage per appliance per household is sustained
(i.e., the total duration of appliances being ON is not modified as in Equation (4b)).

In the rest of this section, we present the methodology followed in mirroring the
electric appliances in the HDT. We then propose a distributed reinforcement learning
solution to the energy peak shaving paradigm, which takes place in the HDT before
informing the actual physical assets.

4.1. Multi-Layer Digital Twin

Differently from the central processing approaches, such as [5,6], we propose to adopt
a multi-layer DT architecture for data collection and processing as shown in Figure 2. The
lower layers are located at the edge of the system, i.e., the residential smart homes, and
control all private and sensitive information locally (e.g., Uh, Ea

h, Pa
h ). The local transformer

L (see Figure 1) collects information about the cumulative energy consumption of each
household in the neighbourhood ET

h . The local transformer L aggregates such information
from all households in the neighbourhood and shares it with the energy production plant
without house-specific data.

This transformer also relates back to the local controllers ηh (h = {1, · · · , K}) the dual
tariff costing determined at the central controller (R, ρ, and θ in Table 1). The central energy
controller, located at the energy production plant EDT, collects information from multiple
transformers covering the whole region and optimises the peak/off-peak tariffs ρ and R
and the threshold θ that triggers the high tariff billing (see Table 1). These parameters can
be optimised at the EDT and changed dynamically to reduce the peak-to-average energy
demand ratio collectively. This optimisation problem is beyond the scope of our work since
we only consider a single neighbourhood with a single local transformer L.

Each neighbourhood controlled by a local transformer L experiences specific energy
consumption patterns. For instance, a residential neighbourhood with a majority of senior
citizens may have an energy consumption peak time between 16:00 and 19:00. On the
other hand, a residential neighbourhood of young families with children and working
parents would have peak consumption at later hours. To this end, L monitors the hourly
consumption of all connected households K and identifies, accordingly, the peak time that
is specific to the area (Φ in Table 1). This specific information is used to tailor the dual-tariff
model dictated by the central controller based on the characteristics of a neighbourhood
without the need for exchanging sensitive data.

In our multi-layer approach, the objective of the central energy controller (EDT) is to
optimise the dual tariff timing and parameter setting in order to shave the peaks of energy
demand. In parallel, the local controller ηh in the smart homes’ DT, i.e., HDTh, optimises the
usage patterns Ua

h of each electric appliance’s replica according the residents’ preferences
Pa

h and the estimated energy cost C(t) (based on information from EDT including ρ, R, θ,
Φ, and M). To this end, HDTh collects hourly energy consumption information from each
appliance, Ea(t), based on IAM readings. Where IAM readings are not available or are
interrupted, brand-related data or typical consumption data is used instead, referred to as
nominal energy consumption Na.

The residents’ preferences are represented by assigning a priority of usage to each
appliance. A priority Pa

h = 1 for a given appliance Aa indicates that this household is not
flexible in delaying its usage. For instance, an electric kettle or television set are likely to
have a priority one. A priority value Pa

h = 2 or Pa
h = 3 indicates the willingness from the

residents to delay the usage of the appliance (e.g., washing machine or dishwasher). In
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this case, a higher priority value indicates the willingness to delay for a longer time. The
tolerated delays for each priority are also defined by the residents in Dp. For a detailed
description of each of these parameters, please refer to Table 1.

Based on the fixed parameters (Pa
h , Dp, and Na) and streaming data (Ea), the HDT is

concerned with replicating the behaviour of each appliance Aa. To this end, usage patterns
Ua

h are extracted and the user-centric duration Ta
h of keeping an appliance ON is calculated

and maintained in each HDTh. We present, in detail, the methods used to extract these
behavioural patterns in Section 6.2.

4.2. Reinforcement Learning Approach

In this section, we present the reinforcement learning (RL) approach that takes place at
the IoT gateway located at the edge, i.e., in the local controller ηh of every smart home DT
HDTh (h = {1, · · · , K}). We leverage the multi-layer DT concept introduced earlier and
replicate the status and behaviour of each appliance of household Hh in the corresponding
HDTh. This, then, allows the local controller ηh to optimise the scheduling of the appliances
in the virtual space before its actual implementation. In other words, the RL takes place in
the HDTh and is controlled by ηh of a single household; thus, it has no information about
the appliance scheduling and energy consumption of other households.

As various appliances (and their twins) indicate the need to switch ON (when the
usage pattern Ua

h changes from 0 or 2 to the value 1) throughout the day, the RL algorithm
finds the optimum collective scheduling pattern (i.e., U∗h = {U∗1h , · · · , U∗Zh }), by consider-
ing all possible delays. The optimum scheduling is the one that would minimise the daily
energy cost of the household and respect the resident preferences.

To this end, the residents of the household assign a priority between {1, 2, 3} to each
appliance to indicate how important it is for them to not delay the scheduled appliance.
This is captured in the parameter Pa

h , where a is the index of the appliance, such as
a = {1, · · · , Z} (see Table 1). Based on the setting of this parameter Pa

h , the tolerated delays
for each appliance in household Hh are decided. To this end, the residents of the household
decide the maximum tolerable delay d2

p for each of the priorities where p takes the values
{1, 2, 3} as in Table 1.

In this work, we consider that appliances with priority Pa
h = 1 do not tolerate delay,

hence d2
1 = 0. The RL algorithm will explore three options for each of the appliances

where Pa
h > 1: Option 1: no delay, Option 2: delay by d1

p = d2
p/2 , and Option 3: delay

by d2
p. The energy cost is calculated based on the data shared by the central controller

and updated hourly, as shown in Table 1 (R, ρ and θ). Another factor incorporated in the
cost calculation is the area-centric peak time φ calculation and corresponding margin M as
detailed in Table 1. Indeed, the cost calculation parameters indirectly allow collaborative
energy scheduling between households without sharing household-specific data.

RL is a learning method based on multiple agents. In our context, learning agents are
the DTs of each appliance within a HDTh linked to the local controller ηh [26]. An agent
interacts with its surroundings, senses its current state and the state of the environment,
and chooses an action. The actions available to each agent are: {No delay, Delay by d1

p, or
Delay by d2

p}. The goal of an RL agent is to minimise the total penalty (or maximise the
total reward). To this end, a learning agent exploits the best actions currently known and
explores new actions.

This is known as the exploration–exploitation trade-off. In this work, we employ
Q-Learning, a widely used reinforcement learning technique, which learns an action-value
function (Q(σt, αt)). An action-value function represents the expected penalty value of an
agent being in a given state and taking a specific action. At every learning step, an agent in
state σt chooses an action αt that minimises Q(σt, αt) as:

Q(σt, αt)← Q(σt, αt) + λ[pt+1 + δ min
α

Q(σt+1, α)] (5)
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where Q(σt, αt) is the current action-value function, λ is the learning rate, pt+1 is the
expected penalty at the next time step, δ is the discount factor, and minα Q(σt+1, α) is the
optimal future action-value function at the next time step. Q-learning is often employed to
solve various optimisation problems in IoT applications owing to its limited complexity
(hence, compatible with lightweight IoT devices) and its ability to adapt to changing
environments.

For instance, a Q-learning-based privacy-preserving power strategy was proposed to
manage energy in an IoT-Enabled Smart Grid [27]. Similarly, Q-learning was selected for
its good tradefoff between flexibility and complexity in an adaptive power management
for IoT system-on-hips in [28]. Q-learning was also used in an IoT-enabled smart disaster
management owing to its ability to adapt to the ever changing and complex world [29].

In our context, the learning agents are the twins of the appliances, and the RL takes
place within the HDTh, particularly at the IoT gateway η. For simplicity, the index h is
dropped from the mathematical notation in the following formulation since everything
concerns a single household. In a given HDT, a learning agent Aa, can be in three different
states {σ1, σ2, σ3} based on the potential delay (or action α) d = {0, d1

p, d2
p} as shown in

Algorithm 1.

Algorithm 1 Rules for status update

if C(t) < C(t + d) and ET(t + d) < θ then
State σ1, where C(t) is the energy cost of all appliances at time t (calculated as in
Equation (2), ET(t) is the total energy consumption of all appliances at time t (calcu-
lated as in Equation (1), and θ is the energy threshold above which the high rate R
applies. In this state, the agent should be motivated to delay switching ON, to this end
the penalty is set to C(t + d)/B. In this case, B is an attenuation factor to reduce the
penalty associated with the delay d. In our work, an attenuation B = 100 was found to
lead to optimum results.

end if
if C(t) < C(t + d) and ET(t + d) ≥ θ then

State σ2, the agent’s action is dictated by the cost of energy when the switching ON is
delayed. Thus, the penalty is equal to C(t + d).

end if
if C(t) ≥ C(t + d) then

State σ3, the agent’s action is dictated by the cost of energy when it is switching ON
now, and the penalty is equal to C(t).

end if

The proposed RL approach is summarised in Algorithm 2 which takes place every
hour of every day in each household equipped with a smart local controller (i.e., IoT
gateway η). The controller keeps track of the energy usage propensity of the household
by maintaining the matrix F . For each hour of the day, the order of multi-agents that
perform the Q-learning is randomised to ensure fairness among the appliances. In order
to keep track of the appliances that have been given a chance to Q-learn, a status check is
initialised to zero (i.e., Appliances-Checked=zeros(1:Z)) every hour and is updated upon
the completion of an agent’s learning activity. As seen in Algorithm 2, each appliance has a
single turn at Q-learning each hour; hence, the complexity of the algorithm is in the order
of the number of appliances, i.e., O(Z).
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Algorithm 2 Local controller η: RL-driven HDT

For each day of the week w, for each hour of the day t, and for each appliance Aa,
maintain a probability of the appliance being switched ON F (w, t, a).
for t=1:24 do

Update-Common-Parameters(R, ρ, θ, Φ, M)
Appliances-Checked=zeros(1:Z)
while Not(Appliances-Checked=Ones(1:Z)) do

Randomly select appliance Aa from List A
Appliances-Checked(a)=1
if Ua(t) = 1 then

for all σs ∈ œ where σs is permitted by Aa do
Update-Status of Aa, based on Algorithm 1
Update-Q-table of Aa, based on Equation (5)

end for
Q-learn, select the action that leads to the minimum cost based on Q-table

end if
end while

end for
Update(F (w, t, a)) for day of the week w.

5. Evaluation Framework

In this section, we define the metrics to evaluate the performance of the proposed
method by examining both the energy provider and smart home objectives. We then de-
scribe the generation of synthetic data used to validate the proposed RL-based rescheduling
method and the corresponding results.

5.1. Evaluation Metrics

The energy provider aims at avoiding energy production peaks to increase the cost-
efficiency of the plant. To this end, the central controller located at the energy provider’s
EDT (see Figure 2) is concerned with limiting the daily variability of energy demand and,
hence, that of the production. This is traditionally addressed by the peak shaving approach,
which targets avoiding peaks and troughs. In our work, we propose to purposefully
reschedule appliances in households with the aim of reducing the dispersion among hourly
energy demand levels in a day. It follows that the EDT-centric performance of our method
is best gauged using statistics of dispersion. We propose to use the following metrics:

• IQR: The interquartile range (shown in Figure 4) is a measure of variability, based
on dividing a data set into quartiles. Quartiles divide a rank-ordered data set into
four equal parts. The values that separate parts are called the first, second, and third
quartiles; and they are denoted by Q1, Q2, and Q3, respectively, and IQR can be
expressed as IQR = Q3 −Q1.

• MAD: The median absolute deviation is a robust measure of the variability of a
univariate sample of quantitative data. For a univariate data set X1,X2,. . . ,Xn with
median X̃, the MAD is defined as the median of the absolute deviations from the
data’s median, MAD = median

(
|Xi − X̃|

)
(see Figure 4).

• Range: The range is the difference between the largest and smallest value in a dataset.
Differently from IQR and MAD, it is a metric that gauges the dispersion without
excluding the outliers (e.g., the peaks and troughs).

• SD: The standard deviation of a dataset is the square root of its variance. For a
univariate data set X1,X2,. . . ,Xn with mean X, the variance is ∑(Xi − X)2. Similar to
Range, SD accounts for outliers in the calculation.
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Figure 4. The interquartile range (IQR).

The local controller ηh of household Hh aims to reduce the effective cost of energy of
the household and not to reduce the daily energy consumption. In other words, the local
controller would not prohibit an appliance to be used in a given day but would instead
suggest delaying the usage to reduce the cost (see Equations (4a) and (2)). Appliances that
are originally scheduled to go ON during late evenings may be delayed to the early hours
of the following day. In this case, our daily cost calculation accounts for the energy usage
as part of the same day, i.e., includes the modified early hours energy consumption in the
daily cost of the given day.

5.2. Synthetic Data

In order to validate our methodology, we first generate a synthetic dataset of residen-
tial electric appliance energy consumption. For our purpose, we define ten types of ap-
pliances: A = {Fridge, Blender, Toaster, Kettle, Microwave, WashingMachine, Dishwasher,
TumbleDryer, Television, Computer}, (refer to Table 1 for A with Z = 10). Since we do not
have actual IAM readings for each appliance type, we define three categories of nominal
energy consumption taken from published data (refer to Table 1, Na). The typical usage
durations of each appliance, except Fridge, were also taken from published sources (refer
to Table 1, τa). A Fridge is assumed to always be ON in all households; hence, the usage
pattern and duration are predefined and the same for all households.

Given the defined appliances pool, we then generate K = 100 random households,
where each household Hh is assigned one and only one of each appliance in A resulting
in household specific set Ah. For each Aa ∈ Ah, a nominal energy consumption Na is
randomly allocated from the three defined categories. Similarly, the resident preferences of
Household Hh are randomly generated by defining the usage patterns of each appliance,
Ua

h and the associated priority Pa
h , except for Fridge. The usage pattern Ua

h , in this case, is
limited to ON (Ua

h = 1) or OFF (Ua
h = 0) and does not account for standby mode.

In our implementation, the priority of an appliance is not determined entirely by
the appliance type. In other words, two households (say Hx and Hy) that have the same
appliance (say Aa) may assign different priorities Pa

x and Pa
y to it depending on the residents’

specific needs. In our synthetic data set, the daily frequency of using a given appliance
is also randomly generated but is limited to a maximum of three times per day; in other
words, max ∑24

t=1 Ua
h(t) = 3. Moreover, a minimum separation of four hours between two

consecutive times is respected and the longest duration of using an appliance is τa ≤ 4 h
for all appliances.

We run our simulations 100 times and in each snapshot, we generate 100 random
households that are assumed to be linked to the same local transformer L (refer to Figure 1).
For each snapshot, we calculate the cost of energy per household with and without RL and
the EDT central controller’s dispersion statistics.

Figure 5 shows the results of both traditional and RL-based residential energy de-
mands. The mean cumulative hourly energy consumption of the 100 households is dis-
played, which averages the outcomes of all 100 simulation runs. Evidently, the RL-driven
approach succeeded in shaving the peaks where possible (19:00–24:00) and levelling the
troughs (01:00–04:00 and 15:00–17:00), as seen in Figure 5. Furthermore, we applied the eval-
uation metrics defined above to gauge the dispersion of the data. The RL-driven method
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reduced the four dispersion statistics systematically and suppressed extreme outliers (e.g.,
troughs and peaks) as can be seen by the results shown in Table 3.

Table 3. The statistic dispersion results on the synthetic dataset.

Stat Traditional RL Reduction (%)

IQR 58.8808 49.9202 15.2
MAD 35.4318 28.4871 19.6
Range 147.3344 118.7087 19.4

SD 44.1044 34.8780 20.9

Figure 5. The mean of the cumulative energy consumption of 100 homes over 100 random snapshots:
Traditional and Reinforcement Learning. The RL approach succeeded in shaving the peaks and
levelling the troughs.

On the other hand, we examined the impact of the RL-driven method on the individual
household energy cost by calculating the cost reduction for each snapshot i as:

∆h,i = (Ĉh,i − Ĉ∗h,i)/Ĉh,i (6)

where Ĉh,i = ∑24
t=1 Ch,i(t) is the daily total energy cost of all appliances in household h in

simulation run i and Ĉ∗h,i = ∑24
t=1 C∗h,i(t) is the corresponding RL-driven cost. The histogram

of the daily mean cost reduction of all households over 100 simulation runs is shown in
Figure 6 with an average of 10.71% reduction in household cost.
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Figure 6. Histogram of the average cost reduction per household (in percentage) when using the
Reinforcement learning approach based on Equation (6).

6. Experimental Evaluation

In this section, we applied the methodology defined in Section 4 to the residential
energy consumption taken from the real dataset. We first present the dataset in Section 6.1.
Next, we explain the method of processing the raw data to extract the appliance utility
patterns of each household in Section 6.2. In Section 6.2.1, we present the results of our RL
method using the multi-layer DT that is fed by the real dataset.

6.1. REFIT Home Dataset

This section explains the real-world datasets used in our evaluation. We give a short
explanation of the real dataset that is used in this paper. We conducted a set of experiments
using two main public datasets: the REFIT load measurement dataset [30] and REFIT Smart
Home dataset [31].

The first REFIT dataset is an electrical load measurements dataset that includes electric
power consumption in Watts for 20 households located at the Loughborough area in the
UK. The IAM readings were recorded and sampled at an interval of 8 s over a period
of 2 years. The dataset contains power consumption at both the house-level (aggregate
readings) and appliance-level for more than 10 appliances (e.g., fridge, freezer, microwave,
and dishwasher). It is worth mentioning that the data was recorded for at most nine
different appliances for each house.

The data was cleaned and preprocessed (https://pureportal.strath.ac.uk/en/datasets/
refit-electrical-load-measurements-cleaned, accessed on 19 June 2021). In particular, dupli-
cated timestamps were merged, readings for IAMs were set to 0 Watts if they exceeded
4000 Watts (above the maximum possible limit of the sensor), and NaN values were for-
warded filled. The dataset includes a total of 119, 495, 879 data-points (check Table A1 in
Appendix A for the number of data-points for each house).

The second REFIT dataset is for the same 20 houses of the first dataset. However, the
houses were upgraded to smart homes by deploying and installing a set of sensory devices,
such as smart meters, radiator valves, thermostats, door sensors, and window sensors,
among others. This dataset also includes some climate readings collected from a nearby
weather station. There were 18 houses within 3 km of the weather station, and the other
two houses were within 20 km of the station.

https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-measurements-cleaned
https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-measurements-cleaned
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In this dataset, readings were collected for 389 rooms, 618 appliances (e.g., television,
kettle, and washing machine), 34 showers, 19 fixed heaters, 672 light bulbs for 319 lights,
252 radiators (hot water radiators that were supplied by a central heating system), 1567 sen-
sors, and 1055 openings (e.g., door, window sensors) that were linked to 2536 surfaces (e.g.,
floor, window, and ceiling). The total number of time-series readings was 25,312,397 for
2320 time-series variables attached and associated with particular sensors or appliances.

As shown in Figures 7 and 8, houses 10, 5, 8, 3, and 21 had the highest energy consump-
tion. To this end, we analysed the consumption of home appliances per hour, day, and month
of the year for these selected houses. We then evaluated our framework and the effect of our
proposed RL-driven method for rescheduling appliances in order to reduce the energy cost
and flatten the peak demands. More details about the consumption for each appliance in
these houses is also included in Appendix B Figures A2–A16.

Figure 7. The average household k-Watt consumption for each household in each hour of the day.
The numbers at the top of bars are the household occupancy.

Figure 8. The percentage of household consumption w.r.t the total consumption in the area for each
household. The numbers at the top of bars are the household occupancy.
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6.2. Multi-Layer Digital Twin with the Real Dataset

In this section, we describe the implementation of the multi-layer DT architecture to
the real dataset presented in Section 6.1. Referring to Figure 2, we aimed to generate an
HDT for each household in our dataset and a partial EDT that comprised a single local
transformer and the central energy controller.

6.2.1. Home Digital Twin (HDT)

The HDT for each household includes the DTs of nine connected electric appliances
A = {A1, . . . , A9} and a local controller η that runs the RL method and communicates with
the local transformer L. The DT of each appliance reflects its status (i.e., the consumed
power, which is updated every six to eight sec using IAMs) and its learnt behaviour. In
a given household, the behaviour of each appliance Aa is captured in five data-driven
models that feed on historical and streaming data.

The first three models aimed to calculate the following: the average hourly energy
consumption when the appliance is ON and stand-by, the resident usage pattern for each
appliance per week and day, and the expected duration of an appliance remaining ON.
First, the average hourly energy consumption when the appliance is ON was updated
after every usage and stored in Oa (see Table 1). Secondly, the average hourly energy
consumption when the appliance is on stand-by was updated once a day and stored in Sa

(see Table 1). Thirdly, the propensity of residents to use an appliance Aa at time t of the day
of the week w was updated daily and stored in the matrix F in the form of probability of
usage where 0 ≤ F (w, t, a) ≤ 1.

The fourth model was concerned with capturing the expected duration on an appliance
remaining ON in a given household. To this end, we first identified the status ua(t) of an
appliance Aa at time t where an appliance can be OFF for ua(t) = 0, Standby for ua(t) = 2,
or ON for ua(t) = 1. This was determined by processing streaming values to compute
Ea(t) and compare the result to Oa and Sa (Sa < Oa) as follows:

ua(t) =


0 (OFF) if Ea(t)� Sa

2 (Standby) if Ea(t) ∼ Sa

1 (ON) if Ea(t) ∼ Oa

(7)

Figure 9 shows an example of kWh energy consumption for a television at H3 on 6
June 2014. In this figure, the television is on stand-by when it consumes energy between
0.025 and 0.085 kWh. On the other hand, the TV site is OFF when it has roughly 0
kWh, while it is ON when it has energy consumption of at least 0.14 kWh. To this end,
Sa = 0.025 kWh, Oa ≥ 0.085 kWh (check Equation (7) for details).

Given the rough time granularity in our work (1 h), it is expected that appliances,
such as a microwave would have varying ON power consumption when comparing a
full hour of ON time to half an hour, for instance. Higher granularity would result in
better representation of usage patterns and average energy consumption. However, more
frequent rescheduling would require higher control overhead and may yield instability
in the system. In our future work, we plan to examine the impact of improving the time
granularity to 30 min instead of the current one hour consideration.

The resident behaviour and usage of appliances may change over time. For instance,
occupants tend to have high demand for the cooling system in summer while there is a
need for the heating system in winter. To this end, the expected duration of each appliance
during an ON cycle is not fixed for each day of the week/month/year. The model should
be aware of any changes in the usage of each appliance in each household. In principle,
our model should be adaptive to variations in the residents’ usage pattern. In this work,
we calculated an expected duration of the ON-cycle for each day of the week based on the
consecutive hours where the status of an appliance was ua = 1.
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It is possible to use the same approach to model the expected duration for each half-
day (12 h) or third-day (8 h) of the week. Without loss of generality, we restricted the model
to one expected duration per day of the week Ta(w) as follows:

Ta(w) = ω0Ta(w) + ω1T′a(w) (8)

where ω0 is the weight associated to the known model (Ta(w)—based on historical data)
and ω1 is the weight given to the new average duration on the given day (T′a(w)). At the
end of the day, t = 24, all instances |I| where ua(t) changes from 0 or 2 to 1 during the 24 h
of the day are identified. For each such instance Ii, the number of consecutive hours ONi
where ua(t) = 1 is counted; the average of these numbers is T′a(w) = ∑ ONi/|I|.

The last model aimed to capture the daily usage pattern Ua for each appliance
in the household in a format that can be used by the RL method. Thus, Ua was first
initialised based on the status information of the appliance in each hour of the day
Ua = {ua(1), ua(2), . . . , ua(24)}. Then, for any occurrence ua(t) = 1, the status of the
appliance for the following Ta(w) hours was replaced with 0. The objective was to high-
light the hour when the appliance is switched ON and to prohibit rescheduling while the
appliance is ON.
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Figure 9. Energy consumption (in kWh) for TV site at house 3 on 6 June 2014.

6.2.2. Selected Subset of Data

The dataset presented in Section 6.1 includes 20 households. However, some key
information relating to the appliances in Households 11, 12, and 13 are missing. To this end,
we excluded these from the experimental evaluation and instead restricted the analysis to
the houses listed in Table 4. For each house, we extracted information about the household,
including the Occupancy, Occupation, and Appliances. Based on this information, priorities
associated with each appliance (Table 5 were hand-crafted according to the availability of
at least one of the occupants at home during working hours and the presence of children.
The former was deduced from the Occupation data and the usage patterns of appliances,
such as toasters, microwave, and kettle during the day.
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Table 4. Household data including occupancy, occupations, children, and appliance types.

Household 1 2 3 4 5 6

Occupancy Couple Family Couple Couple Family Couple
Nb of Children 0 2 0 0 2 0

Occupation1 Part-time Part-time Part-time Retired Part-time Part-time
Occupation 2 none none none Retired Part-time Part-time

App1 Fridge Fridge-Freezer Toaster Fridge Fridge-Freezer Freezer
App2 Freezer(1) Washing Machine Fridge-Freezer Freezer Tumble Dryer Washing Machine
App3 Freezer(2) Dishwasher Freezer Fridge-Freezer Washing Machine Dishwasher
App4 Washer Dryer Television Site Tumble Dryer Washing Machine(1) Dishwasher MJY Computer
App5 Washing Machine Microwave Dishwasher Washing Machine(2) Desktop Computer TV/Satellite
App6 Dishwasher Toaster Washing Machine Desktop Computer Television Site Microwave
App7 Computer Hi-Fi Television Site Television Site Microwave Kettle
App8 Television Site Kettle Microwave Microwave Kettle Toaster
App9 Electric Heater Overhead Fan Kettle Kettle Toaster PGM Computer

Household 7 8 9 10 15 16

Occupancy Family Couple Couple Family Single Family
Nb of Children 2 0 0 2 0 4

Occupation1 Part-time Retired Part-time Part-time Part-time Part-time
Occupation2 none Retired none none n/a none

App1 Fridge Fridge Fridge-Freezer Magimix(Blender) Fridge-Freezer Fridge-Freezer(1)
App2 Freezer(1) Freezer Washer Dryer Toaster Tumble Dryer Fridge-Freezer(2)
App3 Freezer(2) Washer Dryer Washing Machine Chest Freezer Washing Machine Electric Heater(1)
App4 Tumble Dryer Washing Machine Dishwasher Fridge-Freezer Dishwasher Electric Heater(2)
App5 Washing Machine Toaster Television Site Washing Machine Computer Site Washing Machine
App6 Dishwasher Computer Microwave Dishwasher Television Site Dishwasher
App7 Television Site Television Site Kettle Television Site Microwave Computer Site
App8 Toaster Microwave Hi-Fi Microwave Hi-Fi Television Site
App9 Kettle Kettle Electric Heater K Mix Dehumidifier

Household 17 18 19 20 21

Occupancy Family Couple Family Family Family
Nb of Children 1 0 1 1 2

Occupation1 Part-time Retired Part-time Part-time Part-time
Occupation2 none Retired none none none

App1 Freezer Fridge(garage) Fridge Freezer Fridge Fridge-Freezer
App2 Fridge-Freezer Freezer(garage) Washing Machine Freezer Tumble Dryer
App3 Tumble Dryer Fridge-Freezer Television Site Tumble Dryer Washing Machine
App4 Washing Machine Washer Dryer(garage) Microwave Washing Machine Dishwasher
App5 Computer Site Washing Machine Kettle Dishwasher Food Mixer
App6 Television Site Dishwasher Toaster Computer Site Television
App7 Microwave Desktop Computer Bread-maker Television Site Kettle
App8 Kettle Television Site Games Console Microwave Vivarium
App9 Television Site (2) Microwave Hi-Fi Kettle Pond Pump

Table 5. The allocated priorities to each appliance in each household.

Household App1 App2 App3 App4 App5 App6 App7 App8 App9

1 1 1 1 3 3 3 2 1 1
2 1 3 3 2 1 1 1 2 2
3 2 1 1 3 3 3 1 2 2
4 1 1 1 3 3 2 1 2 2
5 1 3 3 3 1 1 1 1 1
6 1 3 3 1 2 2 2 2 1
7 1 1 1 3 3 3 2 1 1
8 1 1 3 3 2 2 1 2 2
9 1 1 1 3 3 3 2 1 1
10 1 1 1 1 3 3 2 1 3
15 1 3 3 3 1 1 1 1 1
16 1 1 2 2 3 3 2 1 1
17 1 1 3 3 2 2 2 2 1
18 1 1 1 3 3 3 2 1 2
19 1 3 1 2 2 2 2 1 1
20 1 1 3 3 3 2 2 2 2
21 1 3 3 3 2 2 2 1 1
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6.3. Results with Real Dataset

We applied the RL technique to the HDT of each of the selected 17 households over
a period of one month: from the first to the thirtieth of June 2014. We first examined the
cumulative (of the 17 households) energy demand dispersion using the metrics defined in
Section 5.1 and compared the current energy consumption to the results of the RL approach.
The results are summarised in Table 6.

Table 6. The statistics dispersion results on the REFIT real-dataset.

Stat Traditional RL Reduction (%)

IQR 2.1987 1.6106 26.7
MAD 1.16588 0.9022 22.6
Range 4.9765 4.0721 18.2

SD 1.4130 1.1254 20.4

It is evident from the reduction in all dispersion metrics (notably the IQR and SD)
that the RL method succeeded in flattening the hourly cumulative energy demands of
the 17 households. This can also be visually seen in Figure 10 in which we present the
cumulative hourly energy consumption of the 17 households averaged over the total period
of 30 days.

We then examined the mean hourly energy consumption per household by averaging
the 24 values corresponding to Traditional EC and Smart EC shown in Figure 10 and divided
by the total number of households (i.e., 17). We compared the value obtained from the
real dataset 4.1 KWh/household/hour to the one obtained from the synthetic dataset
in Section 5 shown in Figure 5 in which we obtained 1.0 KWh/household/hour. The
difference is very high and can partially be explained by the appliances’ stand-by energy
consumption in the real dataset, which was not accounted for in the synthetic data.

To this end, we calculated the energy-aware RL-driven energy consumption in the
HDT, which automatically switches an appliance off if it is not in use. This is shown in
Figure 10 as Smart EC w/o Standby and the average consumption is 3.4 kWh/household/hour.
The difference with the synthetic data is still significant. A closer examination of the real
dataset presented in Table 5 reveals that most of the 17 households included multiple
‘always-ON’ appliances, such as fridges and freezers and multiple heavy-consumption
appliances, such as washing machines and tumble dryers.

In the synthetic data, a single heavy-consumption appliance and a single ‘always-
ON’ appliance were randomly allocated to each household. In addition, the partial infor-
mation that we have about the electric appliances in these households indicates that many
belong to low energy efficiency classes and, hence, are expected to consume more energy
for the same usage pattern.
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Figure 10. The mean of the cumulative energy consumption of 17 homes over 30 days in June 2014:
Traditional and Reinforcement Learning. The RL approach succeeded in shaving the peaks and
levelling the troughs.

Next, we examined the impact of the RL-driven energy consumption on the household
incurred energy cost. On average, a household saved 3.2% of the energy cost in comparison
with the current cost by adopting the RL-driven method. If the appliances were to be
switched off when not in use instead of being on standby, a household would save 17.7%
of the cost in comparison with the RL-driven method. This is shown in Figure 11, which
depicts the histogram of the energy cost reduction (in%) as defined in Section 5.

The energy cost reduction achieved with the real dataset, while keeping appliances in
stand-by mode, was significantly less than the 10.7% achieved with the synthetic data. This
is an expected outcome since the number of households here was 17, whereas 100 synthetic
households were generated in Section 5, and the percentage of appliances per household
that do not tolerate rescheduling (Fridges and freezers) is higher; hence, the degree of
freedom is smaller.

We then analysed the complexity of the proposed algorithm by measuring the time
it takes each household to complete the RL method each hour of each day. The average
time over the 30 days for each household is shown in Figure 12. The overall average is
1.35× 10−4 s on Matlab R2019b running on an Intel(R) Core(TM) i7-8565U with a CPU
speed of 1.80 GHz. The results are encouraging as they demonstrate the suitability of the
algorithm to run on lightweight devices. Moreover, the algorithm runs independently in
each household and, hence, is only affected by the number of its appliances (Z) with a
complexity in the order of O(Z).

It follows that the proposed method is scalable and the completion time of the al-
gorithm can be expected to increase linearly in the order of 1.35 ms for Z = 100, for
instance. On the other hand, the number of households does not impact the scalability
of the proposed method. On the contrary, a higher number of households improves the
overall performance since it would entail a higher degree of freedom in the optimisation
process.
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In summary, we demonstrated, using synthetic data and real data, that our pro-
posed multi-layer DT empowered by an RL-driven method at the edge (HDT) successfully
achieved the dual-objective optimisation problem formulated in Section 3. The first objec-
tive was to reduce the household energy cost without breaching any scheduling preferences
determined by residents. The RL-driven method achieved up to 17.7% within the optimisa-
tion space defined by the resident preferences constraints. Furthermore, the Q-learning
timing measurements consolidated that the computational complexity of the proposed
method was suitable for lightweight IoT gateway devices.

The second objective was to flatten the collective energy demand of the neighbourhood
without uploading HDT-specific data to a central controller (for privacy concerns). The
EDT control of parameters that intentionally direct the local learning at each HDT to avoid
collective energy demand peaks successfully achieved this aim by reducing the dispersion
of hourly cumulative energy demand over 24 h by up to 20.9%.

Figure 11. Histogram of the average cost reduction per household (in % and based on Equation (6),
without standby mode and with the Reinforcement learning approach.
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Figure 12. The average duration for each household to complete the hourly RL routine averaged over
30 days.

7. Conclusions

We proposed a multi-layer digital twin architecture to mirror the energy system
composed of energy provider (EDT) and residential homes (HDT). We proposed an edge-
based reinforcement learning approach to purposefully rescheduling home appliances
and nudge the collective energy demand toward a flatter pattern. The novel architecture
protected the household’s privacy at the edge of the system, i.e., an IoT smart gateway
installed at each household. The smart gateway collected the hourly real-time energy
consumption for all appliances in a given household. It then shared the aggregated
information with the energy production plant without revealing house-specific data and
household behaviours.

The proposed reinforcement learning (RL) approach was adaptive. For instance, when
deploying new appliances or having new family members, RL can adapt effectively and
yield optimised results by adjusting the scheduling of appliances at each household to
minimise the household’s energy cost. In principle, the optimisation occurs in the virtual
replica (HDT) and would only be applied to the physical assets if the results are satisfactory;
thus, there is a limited risk of unstable behaviour or undesired outcome. Overall, the
prime goal of the algorithm was to reduce the energy cost for the residential sector while
maximising user comfort. Since the EDT controls the energy billing parameters, these were
effectively designed so that the edge-based RL method could successfully optimise the
collective energy utilisation patterns and avoid energy peak demands.

Our conducted experiments on synthetic and real-world smart home datasets show
that the proposed architecture and self-adaptive RL approach effectively reduced the
dispersion of the collective diurnal energy demand by 20.9% and 20.4% for the synthetic
and real-life datasets, respectively. The proposed method successfully reduced the energy
cost per household by 10.7% and 17.7% for the synthetic and real-life datasets, respectively.
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Appendix A. REFIT Load Measurement Dataset

The number of data-points for each house in the REFIT load measurement dataset are
shown in Table A1.

Table A1. REFIT: electrical load measurement dataset.

House No. of Data-Points Occupancy

House 1 6,960,008 2
House 2 5,733,526 4
House 3 6,994,594 2
House 4 6,760,511 2
House 5 7,430,755 4
House 6 6,241,971 2
House 7 6,756,034 4
House 8 6,118,469 2
House 9 6,169,525 2

House 10 6,739,284 4
House 11 4,431,541 1
House 12 5,859,544 3
House 13 4,737,371 4
House 15 6,225,696 1
House 16 5,722,544 6
House 17 5,431,577 3
House 18 5,007,721 2
House 19 5,622,610 4
House 20 5,168,605 2
House 21 5,383,993 4

Total 119,495,879

Appendix B. REFIT Smart Home Dataset

In this section, we present an in-depth visualisation of the REFIT Smart Home dataset
used in this research. Figure A1 shows the average energy consumption (in kW) for
each household at 5:00 p.m. The numbers at the top of bars are the household occu-
pancy. The energy consumption of households with four occupants is further analysed in
Figures A2–A4 for Household 10, Figures A5–A7 for Household 5, and Figures A8–A10 for
Household 21. Similarly, the energy consumption of households with two occupants is fur-
ther analysed in Figures A11–A13 for Household 8 and Figures A14–A16 for Household 3.
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Figure A1. Household load at 5:00 PM. The numbers at the top of bars are the household occupancy.

Figure A2. The average consumption per month of home appliances for house 10 with four occupants.

Figure A3. The average consumption per day of home appliances for house 10 with four occupants.
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Figure A4. The average consumption per hour of home appliances for house 10 with four occupants.

Figure A5. The average consumption per month of home appliances for house 5 with four occupants.

Figure A6. The average consumption per day of home appliances for house 5 with four occupants.
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Figure A7. The average consumption per hour of home appliances for house 5 with four occupants.

Figure A8. The average consumption per month of home appliances for house 21 with four occupants.

Figure A9. The average consumption per day of home appliances for house 21 with four occupants.
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Figure A10. The average consumption per hour of home appliances for house 21 with four occupants.

Figure A11. The average consumption per month of home appliances for house 8 with two occupants.

Figure A12. The average consumption per day of home appliances for house 8 with two occupants.
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Figure A13. The average consumption per hour of home appliances for house 8 with two occupants.

Figure A14. The average consumption per month of home appliances for house 3 with two occupants.

Figure A15. The average consumption per day of home appliances for house 3 with two occupants.
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Figure A16. The average consumption per hour of home appliances for house 3 with two occupants.
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