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Abstract: This paper presents a data driven framework for performance optimisation of Narrow-
Band IoT user equipment. The proposed framework is an edge micro-service that suggests one-time
configurations to user equipment communicating with a base station. Suggested configurations
are delivered from a Configuration Advocate, to improve energy consumption, delay, throughput
or a combination of those metrics, depending on the user-end device and the application. Rein-
forcement learning utilising gradient descent and genetic algorithm is adopted synchronously with
machine and deep learning algorithms to predict the environmental states and suggest an optimal
configuration. The results highlight the adaptability of the Deep Neural Network in the prediction
of intermediary environmental states, additionally the results present superior performance of the
genetic reinforcement learning algorithm regarding its performance optimisation.

Keywords: NB-IoT; internet of things; reinforcement learning; gradient descent; genetic algorithm;
deep learning; machine learning

1. Introduction

Narrow-Band Internet of Things (NB-IoT) [1] is an Internet of Things (IoT) [2] mobile
communication technology, which focuses on Low Powered Wide Area Networks (LP-
WANs) bringing a low cost and power efficient means of communication. Recent advances
in NB-IoT catering to energy efficiency and battery longevity have been introduced, such as
extended Discontinuous Reception (eDRX) and Power Saving Modes (PSM) [3]. However,
there remain many areas to reduce the energy consumption and improve other Quality of
Services (QoSs) such as throughput or delay. The overhead stems from the inheritance of
protocols from Long-Term Evolution (LTE), which traditionally focused on Human Type
Communication (HTC), and can lead to costly overhead when applied in a Machine Type
Communication (MTC) environment [4].

One of the main features of NB-IoT is providing coverage enhancement for devices
that are hard to reach for the network. Which is achieved by combining repetitions in
order to reach a higher effective Signal-to-Noise Ratio (SNR) [5]. This is realised through
clustering the User Equipment (UE) into different coverage groups. The coverage group is
directly correlated with the received power, where the higher the received power the lower
the repetition count.

Although, NB-IoT is designed for battery longevity and reliable connectivity, current
research for NB-IoT continues to explore energy consumption, coverage enhancements
and latency reduction [6]. Many works have highlighted major deviations of energy
assumptions that were published in ref. [7] using standard configurations [8]. As such,
applying off the shelf configurations, that affect the energy efficiency such as Tracking Area
Updating (TAU) or active timer, which plays a direct role on PSM, may be counter-intuitive.
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This leads to a need for bespoke optimisation of pre-configured parameters for the UE
and its application, to ensure battery longevity and performance optimality [9]. Further
areas to improve the QoS are related to the traffic nature of the application, for instance
payload size.

Therefore, this paper explores the employment of data driven models to select the
optimal values for packet size and active timer for UEs, in order to achieve the best
possible outcome in regard to delay, throughput and energy consumption or a combina-
tion of the above. The presented Configuration Advocate (CA) utilises a micro-service
architecture [10] which is exhibited and analysed in detail. Reinforcement Learning (RL) is
used by the CA to recommend configuration changes to the UE with respect to its applica-
tion, network and device parameters. Network and application related variables that stem
from both the UE and Base Station (BS) are taken into account by the RL, such as coverage,
signal strength, packet size and interval [11]. Additionally, two styles of RL are explored:
Genetic Algorithm and Gradient Descent. The main contributions of this paper encompass:

• A CA, that delivers bespoke configurations to UEs depending on device, network and
application parameters.

• Analysis of environmental prediction models: Machine Learning and Deep Learning
with single and multiple output predictions.

• Performance evaluation of two different RL approaches: Gradient Descent and Genetic
Algorithm for configuration suggestions.

A plethora of use case are dependant of the adoption of IoT UE as the core of their
operation, with the aim of maximising health and safety, minimising the amount of work
needed due to its adoption convenience and reducing costs [12]. IoT use cases can be
grouped into four categories: transport and logistics such as [13], healthcare, smart en-
vironments and personal and social related scenarios [14]. With that in mind, this work
specifically targets the reduction of costs in IoT centered use cases, which would be ex-
tremely beneficial for NB-IoT scenarios that require communication at a extended range
with a relatively low cost and energy consumption, such as smart utility metering, smart
cities (parking, lighting, waste management) and agriculture, to name a few.

When compared to the machine learning approaches this paper undertook, the Deep
Neural Network (DNN) showcased a superior performance at predicting the metrics, when
presented with the configuration set by a factor of 12%. As a result, the RL models could
incorporate the environment prediction in its learning phase through the DNN. The Genetic
Algorithm incorporated RL approach outperformed the RL model with Gradient Descent at
its core through a 10% increase of successful suggestions, albeit taking longer to converge.
That being said, the actual metric improvement brought by the configuration suggestion
leaned towards the RL with Gradient Descent approach with a minuscule improvement of
3.6% over the Genetic Algorithm infused RL.

The remainder of this paper is structured as follows, Section 2 provides the state of
the art and literature review assessing the different approaches taken to improve com-
munication and device performance. Section 3 describes the design of the data-driven
models and the CA architecture. A performance analysis is carried out in Section 5. Finally,
a conclusion is presented in Section 6.

2. Literature Review

NB-IoT is not a standalone technology, most of the architecture is inherited from LTE,
in both Down-link and Up-link, allowing the coexistence of NB-IoT with fourth and fifth
generation communication technologies [15].

The focus of NB-IoT is placed on coverage, battery life and device complexity [16].
NB-IoT is more tailored to improving the coverage of transmission for the devices placed
in extreme conditions, by repeating the transmission of the packet. There are three different
Radio-Frequency (RF) classes in which the repetition count is determined: Normal (N),
Robust (R) and Extreme (E). Measurements provided by the power received on the NB-IoT
UE determine its class. The BS assigns the class to the UE, to increase the coverage and
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likelihood of packet success. The extreme RF class is designed to overcome remote areas
where coverage conditions are rough [17].

NB-IoT devices operate in two states: connected or idle. Whilst connected, the device
exchanges data. When the device is in an idle state, cell re-selection, Down-link paging
and Random Access (RA) are carried out [18]. These states are influenced by timers
which are directly utilised by energy saving strategies such as eDRX and PSM [19]. The
PSM is impacted by both the TAU Timer (T3412) and Active Timer (T3324) as it is the
difference between them. The Active Timer is the time the UE should remain reachable
after transitioning to the idle state, whilst, TAU Timer is the extended time for the UE to
send a periodic TAU.

In ref. [20], PSM, and eDRX values have been explored in order to surmise their effect
on the power consumption in smart cities. The authors arrive at the consensus that an
artificial RF band would be beneficial in reducing energy consumption in energy-sensitive
applications albeit sacrificing throughput. This could be beneficial in remote areas where
an increased consumption is a by product of the additional repetitions [21].

A mathematical model is presented in ref. [22] to optimise the up-link of numer-
ous devices connected at different distances from the BS, an analysis for the maximum
throughput is carried out, with the success probabilities of the packets given random
configurations. The paper concluded that the random configurations are more expensive
in terms of resources, as such a bespoke set of configurations are needed to increase the
throughput and up-link by orders of magnitude. Additionally, an analysis of transmission
latency and reliability is presented in ref. [23], showcasing mathematically the performance
of up-link and its detriment to up-link sensitive applications.

A variety of deep learning RL architectures have been readily incorporated as tools
to facilitate support in exploding data traffic, to provide assistance in improving a range
of QoSs [24]. Work in ref. [25], incorporated RL models, namely Q-Based Deep Neural
Network (DNN-Q) and tabular-Q networks, to optimise the up-link of connected NB-IoT
devices in real time. The results suggest the use DNN-Q achieves a higher performance
with less training time, serving NB-IoT devices whilst reducing communication clashes on
the network.

Optimisation carried out on the BS side is considered in ref. [26], where the overall
network transmission efficiency is increased through the use of RL, focusing on devices
placed at various distances. However, the authors note that the RL model seems to favour
immediate rewards, and as such the transmission efficiency of the network may not be
guaranteed in the long-term. RL is further utilised, aiming to optimise power ramping
and preamble picking in order to improve the energy efficiency of NB-IoT systems [27],
shedding light on the inadequacy of RA with respect to energy consumption.

The packet delivery rate and the energy consumption of NB-IoT UE were predicted in
ref. [28]. The model achieved a very high accuracy in the prediction of those two variables.
Although, the dataset used [29] contained a few pre-select variables, meaning that the data
the model was trained on did not reflect the entire spectrum of NB-IoT communication. In
comparison to optimising either the UE or BS side, authors in ref. [30] adopt a flavor of
Genetic Algorithm to reduce energy consumption in networks, focusing on the architectural
design on the network rather than specific configurations.

This paper aims to provide an optimisation framework which incorporates RL models
to allow QoS optimisation from the UE perspective opposed to the BS. This places more
importance on the UE application and device enabling operators to cater to their different
needs. On top of the careful selection of timer values on the UE, for the reduction of energy
consumption, this paper goes further, by optimally suggesting the best packet size value
for the UE application to adopt in order to serve alternative QoSs concurrently.

3. Architecture and System Model

This section describes the CA, which hosts various data-driven models. The CA
obtains measurements from the BS and the UEs and generates configurations that enhances
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performance metric(s) on the UE. The performance metrics focused in this work are delay,
energy consumption, throughput and a combination of all three.

3.1. Scenario

We consider a scenario that is presented in Figure 1. In this scenario, we assume
the architecture supports distributed cloud, and consists of edge-cloud nodes. Where
arbitrary UEs communicate with the edge-cloud nodes that house a CA, to receive a
tailored configuration. When a connection is established, the CA queries the UE through
the use of Over-the-Air (OTA) “AT” commands about its measurements and configurations,
from signal strength to timer values. The CA generates an optimised configuration with the
help of the data driven models and sets them on the UE with “AT” commands. After-which,
the UE can carry out its purpose.

Figure 1. UE devices connects to edge-cloud node housing a CA to obtain a tailored configuration.

On the edge-cloud nodes, a micro-service architecture is utilised to house the imple-
mentation this work undertakes, as depicted in Figure 2. Specifically, in the CA micro-
service, the Network and Detection Interface is responsible for receiving and sending
communication to and from each UEs. Both interfaces act as an intermediary that parses
configurations to and from OTA “AT” commands. The Exchange Interface, has the task to
instantiate a UE abstraction within the CA, saving the configurations obtained from the
Detection Interface in order to store and update the UE configurations, together with the
ability of being utilised by the models layer. Additionally, the Exchange Interface allows
arbitrary adoption of algorithms and models at the higher layers of the micro-service
through a consistent set of communication modes, making way for ease of model changes
and updates.

Docker is the micro-service manager enabling connectivity across independent con-
tainers forming a scalable solution. The Logging micro-service houses an Elastic, Logstash
and Kibana (ELK) stack, implemented to monitor and log the CA interactions in real-time,
in an easy to search platform. The ELK stack is a set of well integrated open source software
components designed for this purpose: Logstash for data collection, Elasticsearch to store
and to query data and Kibana for data visualisation. The stack allows for another means
of online data collection, to periodically train the models on the CA. Thus, ensuring that
the models utilised by the different edge-cloud nodes at BSs can be specialised to their UE
interaction. The ELK stack also serves as a tool to measure network interaction between
the CA and the UEs.
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Figure 2. Proposed micro-services architecture which resides in the edge-cloud nodes.

3.2. Data Collection and Manipulation

The dataset used in this work was collected using two UEs, namely: u-blox SARA-
N211-02B [31] and Quectel BC95-G [32]. Which are commercial off-the-shelf LTE Cat NB1
UEs. A power measurement device (Otii Arc [33]) was equipped onto the UE for noting
the energy consumption, by specifically measuring the voltage and current, under differ-
ent conditions and configurations. The UEs are connected to two commercial networks
located in Norway. The network operators implemented guard-band to reduce interference
between NB-IoT and LTE UEs.

By emulating normal, robust and extreme coverage classes on the UEs with the use of
attenuators, a sparse dataset with instances covering the broad state space can be collected.
This allows a more encompassing data-driven model, that has observed the domain breadth.
A variety of packet sizes were chosen to cover different payload sizes that may arise from
an application: 12,20,128,256 and 512 bytes. For example, in a smart metering use case, the
range of sizes stemmed from 64 to 512 bytes [19]. In our previous work, measurements
were collected from a real-world scenario, where the collection spanned over a year, and
close to 1.3× 104 instances were collected [34].

The dataset is split into two unique subsets: DatasetBase and DatasetEquipment.
DatasetEquipment extends DatasetBase with the addition of readings from power measure-
ment device (Otii Arc) for voltage and current readings on the UE. Whereas, DatasetBase
instances focus on Round Trip Time (RTT), packet loss, SNR, BS set timers (active and
TAU), packet intervals, payload sizes, UE reported energy consumption, Reference Sig-
nal Received Quality (RSRQ) and RRC Connection and Release events. The sizes of the
dataset differ greatly, where DatasetBase, contains 104 instances compared to 1100 for
DatasetEquipment. Due to the different features in each dataset and the changing require-
ments during the data collection phase, the metrics modeled by each dataset also vary,
DatasetBase models both energy consumption and delay, where as DatasetEquipment expands
with the addition of throughput.

In order to ensure that the data-driven models proceed with a smoother learning
experience, the dataset needs to be cleaned. As such, the interquartile range was used
in order to define outliers, specifically removing the box-plot lower and upper whiskers.
After-which z-score was used in order to sieve the dataset removing forced configurations
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as a result of UE and BS parameter negotiation, which wildly contrasted the measurements
recorded for similar configurations.

The definition of Z-score is given by:

Z-score =
x− µ

σ
(1)

Further manipulation is carried out on the dataset, where the dataset is normalized by
utilising MinMaxScaler [35], to be in the range of [0, 1] inclusive. This specific range aids
model learning, specifically for use in Neural Network (NN) activation functions such as
Linear activation function. Constraining the range of values in the dataset for an activation
function increases both accuracy and convergence speed, the activation function used in
this work is discussed further in Section 4. For inference, the same scaling needs to be
implemented on the CA detection interface received parameters to ensure correct input
values for the models. The MinMaxScaler is given by:

x_scaled =
(x−min)

(max−min)
× (max−min) + min (2)

4. Data-Driven Models

The data-driven models serve two purposes. Firstly, it allows a simulation of the
environmental state space, predicting the affect of different configurations on the per-
formance metrics. Secondly, aids the configuration suggestion process by learning and
broadly generalising the state space, thus configurations are unhindered by any sampling
bias that stems from the dataset.

4.1. Environment Prediction

In order to provide a stateful environment for the RL model to generalise efficiently
and correctly assign the most optimal configuration, the performance metrics have to
predicted with respect to the changing configurations. Deep Learning (DL), supervised
and unsupervised learning are explored to achieve environment prediction. Specifically,
focusing on Random Forest, K-nearest Neighbours, Decision Tree, Stochastic Gradient
Descent, Logistic Regression, Naive Bayes, Perceptron, Linear Regression and DNN. Note
that scikit-learn is used for the adoption of Machine Learning (ML) algorithms, whereas,
Pytorch is reserved for the DL approach. Both frameworks allow the exporting of the
trained models to be employed in the CA.

The architecture of the DNN was designed to provide a regressive model with the
least number of layers and neurons reducing computational complexity. From Table 1,
there are 3 hidden layers, each increasing the number of neurons with a factor of 2, the
layers are coated with a Rectified Linear Unit (RelU) activation function. The RelU function
was chosen over other functions such as the linear or sigmoid functions for its ability to
become monotonic with its derivative and its ability to deal with non-linearity within the
layers. Since any negative input given to the function may result in a zero value, the input
features have been normalised beforehand, to conform to such constraints.

Table 1. DNN architecture for DatasetBase and DatasetEquipment.

Type Input (n × d) Output (n × d)

Linear 1× d d× 64
Linear d× 64 64× 128
Linear 64× 128 128× 256
Linear 128× 256 256× 512
Linear 256× 512 512× 3
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4.2. Configuration Suggestion

This work employs RL as the main driver of generalising the state space for the sake
of suggesting optimal configurations. A novel approach is explored, by incorporating RL
models as individuals for a genetic algorithm approach. This method will be compared
with the traditional gradient descent infused RL to ascertain its feasibility. Training the RL
models will take a mini-batch approach, in order to inject a sufficient amount of noise into
the data with each update yet maintaining a speedy convergence.

4.2.1. Reward Function, Loss Function and Actions

The reward function is a critical deciding factor on how the model behaves. For
maximum optimality, the reward function must codify improvement of the metrics for both
short and long term. To reduce complexity, the standardised values of both the features
and labels serve as a basis of the reward. Since, the MinMaxScaler scales the features
proportional to their value, the rewards can be assigned as follows, where ec is energy
consumption, d is delay and tp is throughput:

r(x) =



rec = 1− statex+1(x).ec if metric is energy consumption
rd = 1− statex+1(x).d if metric is delay
rtp = statex+1(x).tp if metric is throughput
1
3 (rec + rd + rtp) if metric is combination in DatasetEquipment
1
2 (rec + rd) if metric is combination in DatasetBase

(3)

Using a step function would be inadvisable in this scenario, as the model will not be
receiving any rewards until the terminal condition is met, leading the model to traverse
a large state space with zero indication on performance, inevitably leading to a longer
convergence time. Therefore, the reward function is shaped asymptotically to guide the
agent towards to the highest reward possible in between the terminal states.

Cases presented in Equation (3) ensure that the reward is positive and between the
range of [0− 1]. The positive allocation of rewards gives the agent a certain degree leniency
when suggesting a configuration, for a gentler convergence. Opposing to a negative reward
allocation, which rushes the agent to reach the most minimal reward, leading to a slower
convergence and a poorer ability to generalise when adopted in a real-world environment.
When a combination of performance metrics is adopted, the reward function enforces an
average weighting scheme, evenly placing importance on each of the metrics, the reward
function could be further evolved by placing more importance on an individual metric
whilst still catering for the other metrics.

In both the energy consumption and the delay optimisation, the goal is to achieve the
lowest possible values for those metrics and as such, the value of the metric in the next
state is inversely proportional to the reward the agent receives, hence the incentive for the
agent is to decrease the value of these metrics. For the case of the throughput, the aim is to
increase the metric value as much as possible and as such, the reward is left as the value
obtained from the next state.

The actions suggested in this work address a large number of UE devices with different
capabilities, without requiring external equipment. The active timer (T3324) is usually
set by the BS, however, the operator can receive a local configuration suggested by the
UE device. Since the active timer directly affects the PSM, optimally selecting the timer
would alter the UE energy consumption. On the other hand, the packet size has a more
encompassing effect, affecting transmission time and transport block size. Hence, the
actions are as follows: Nothing, Increase Active Timer, Decrease Active Timer, Increase
Packet Size, and Decrease Packet Size.

The NN loss function calculates the difference from the true value and the predicted
value, which is important to determine the performance of the model during training.
There are numerous loss functions, and each pertain to individual scenarios. This work
adopts SmoothL1Loss [36] due to its ability to adapt to features with unexpected values,
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stemming from different coverage conditions, UEs and BS. SmoothL1Loss is less sensitive
to outliers and exploding gradients in addition to removing unnecessary amplification of
large losses. This loss function is given by:

L(x, y) =

{
0.5(x− y)2, if |x− y| < 1
|x− y| − 0.5, otherwise

(4)

4.2.2. Exploration versus Exploitation

Exploration and exploitation is a crucial aspect that concerns RL model quality and
generalisability. The exploitation phase, capitalises on the learnt state space to obtain
the highest reward possible, whereas, exploration phase probes the search state for a
more favourable outcome. Implementing the correct ratio of exploration to exploitation
is essential to ensure a well-rounded model that can generalise to different scenarios.
Therefore, an epsilon greedy approach is utilised. An initial large epsilon value at the
start of training is applied for a larger exploration probability. The epsilon value gradually
decreases as the training progresses, decreasing the probability of exploration. Random
actions governs the exploration of the state space.

Conversely, the Genetic Algorithm does not require additional measures to explore
the state space. This is solely based on the inherent nature of the Genetic Algorithm itself.
As the solution space is traversed owing to offspring creation with different Deep Q-Based
Network (DQN) weights every generation. The exploitation phase is proportional to the
number of generations the Genetic Algorithm undertakes until convergence, where the later
generations cultivate a better performing model that exploits the state space effectively.

4.2.3. Gradient Descent

Gradient Descent is typically applied to RL at each iteration of model training to
increase performance. The architecture proposed in Table 2 pertains to a Dueling Deep Q-
Network (Dueling-DQN) [37], where d is the dimension of the input variables described in
Section 3.2. The input given by (n× d) array, represents the shape of the input parameters
from the UE device. The input features are mapped to a maximum of 28 neurons through
linear functions. The advantage and value layers both project to an array of 5 elements
which corresponds to the actions available. Additionally, the layers have a unique purpose
where each action is mapped with the “value” in the environment, assessing the “advantage”
of undertaking the chosen action. A minimum number of neurons was chosen, through
trial and error, for the Dueling-DQN mindful of the computational overhead utilising a
complex architecture incurs.

Table 2. Dueling-DQN architecture for DatasetBase and DatasetEquipment.

Architecture Type Input (n × d) Output (n × d)

Feature Linear 1× d d× 256
RelU - -

Advantage
Linear 1× d d× 256
RelU - -

Linear d× 256 1× 5

Value
Linear 1× d d× 256
RelU - -

Linear d× 256 1× 5

4.2.4. Genetic Algorithm

Contrasting Gradient Descent, adopting Genetic Algorithm theoretically guarantees
arrival at a global optimum. The key components of a Genetic Algorithm approach consists
of selecting, mating and finally mutating the individuals. The Genetic Algorithm employs
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8 individuals as an initial population. The individuals correspond to RL models shown in
Table 3. DQN individuals reduces the complexity of the algorithm and running time to
achieve a faster convergence, in lieu of using a Dueling-DQN. Each individual is initialised
with a random weighting and bias to be evolved in subsequent generations, which play a
key role in the behaviour of the model. Xavier uniform Weighting [38] is adopted to allocate
random weights to the model, Equation (5), due to the utilisation of uniform distributions.
nin and nout is number of neurons in and leaving the layer, respectively:

var(w) =
2

nin + nout
(5)

Table 3. RL architecture for Genetic Algorithm for DatasetBase and DatasetEquipment.

Type Input (n × d) Output (n × d)

Linear 1× d d× 64
ReLU - -
Linear d× 64 64× 5

The loss set for an individual in a generation is their fitness score. The Natural
Selection rate is based on the individual fitness score and is placed at 50%. A single-point
cross-over is adopted for parent mating, where a point in the weights of each layer is chosen
and swapped between the mother and father. This method along with the random selection
of parents is chosen to reduce computational complexity. Lastly, elitism is implemented,
preventing the highest ranking individual from being mutated. The number of mutated
weights to change is shown in Equation (6), where Npop is the population number, µ is the
mutation rate placed at 0.01. µ was selected as a low number to deter a large change in
the individual and favour exploitation rather than exploration. Since the weights of the
DQN are very sensitive, an increase in mutation may render a significant change in the
individuals causing a domino affect for later generations, incurring a longer convergence
time. The actual change to the weights of the DQN model is applied with a Gaussian
function, Equation (7), in order to keep the newly mutated values within an acceptable
range of the pre mutated values, to reduce any unexpected behaviour within the individual.

Nneurons f or mutation = µ ∗ (Npop − 1) ∗ Nneurons (6)

neuronnew =
1

σ
√

2π
exp
−1
2

(
neuronold − µ

σ
)2 (7)

5. Results

The results are split into two subsections. The first subsection ascertains the perfor-
mance of environmental state prediction, with respect to the variety of machine and deep
learning algorithms. Whereas, the second, determines the feasibility of utilising Genetic
Algorithm and Gradient Descent RL for optimal configuration suggestion. The datasets
are further split into three smaller subsets: training, testing and validation subsets, with
70%, 20% and 10% of the dataset size, respectively. The training subset is used to learn
the model weightings, the testing subset serves as unseen data instances to determine the
accuracy of each model, and finally the validation subset is used to fine-tune the machine
learning hyper parameters for a more accurate model.

5.1. Prediction of Environmental States

The prediction of intermediary environmental states has a direct impact on the utility
of the RL algorithm, as it facilitates the ability of the RL algorithm to learn different
intermediary states through simulation.
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The machine learning models being used to predict the single and multi performance
metrics are presented in Table 4 with respect to the testing data subsets. The majority of the
algorithms preformed exceptionally well obtaining an accuracy approximately greater than
99%, excluding Gradient Boosting and Linear Regression. This proves that the dataset can
be predicted with a variety of models without the fear of over fitting. Although decision
trees performed exceptionally well with the single metric prediction, the ensemble of
decision trees curated by gradient boosting under-performed. However, in the multi metric
prediction, the gradient boosting approach managed to obtain a relatively high accuracy
in-line with the other approaches. It is worth noting, that the perceptron obtained a very
high accuracy in all the single metric predictions, which can hint at the ability of a multi
layer perceptron or a deeper model such as DNN, to be able to accurately predict the
combination of metrics which motivated the use of DNN in this work.

The single performance metric prediction can be employed to create an ensemble
method for combined metric predictions which has been shown to provide a high accuracy
as seen from the gradient boosting approach. However, it may suffer to generalise as
different UE devices and BS are introduced into the state space. This could be especially
troubling with forced configurations set from the BS.

Table 4. Accuracy of machine learning models for single and combined performance metrics prediction with respect to
DatasetBase and DatasetEquipment.

Machine Learning Model

Testing Accuracy

DatasetBase DatasetEquipment

Delay Energy Consumption Combination Delay Energy Consumption Throughput Combination

Random Forest 100 100 95 100 100 100 83
Decision Tree 100 100 95 100 100 100 83
K-neighbours 100 100 95 100 100 100 71

Gaussian 99.87 99.2 - 100 100 100 -
Perceptron 99.98 99.98 - 100 100 99.7 -
Linear SVC 99.98 99.98 - 100 100 99.77 -

Logistic Regression 99.98 99.98 - 99.7 99.7 99.7 -
Gradient Boosting 0 0 96 0 0 0 81
Linear Regression 0 0 84 0 0 0 50

Taking the multi-metric prediction further, a DNN is adopted, where the accuracy
of the DNN is plotted against the iteration number for both data subsets are shown in
Figure 3. The DNN demonstrates superior accuracy that both the data subsets obtained,
surpassing the accuracies of ML multi performance metric prediction algorithms, attaining
an accuracy of 99.8% for DatasetBase, and 95% for DatasetEquipment on the testing dataset.
The DNN surpassed the highest DatasetBase ML approach by 3.9%, but the difference is
more stark with the DatasetEquipment reaching 12%. Since the DNN exceeds the accuracy of
all the models recorded previously for the prediction of multi performance metrics, it is
adopted to facilitate learning for the RL model.
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Figure 3. Training and testing accuracy of DNN predicting combined performance metrics for
DatasetBase and DatasetEquipment during training phase.

5.2. Optimal Configuration Suggestion

The comparison of Gradient Descent and Genetic Algorithm for configuration sugges-
tion is explored through the SmoothL1Loss, reward each model achieves for the perfor-
mance metrics, percentage of successful configurations and the performance improvement
between the default configuration with respect to the suggested configuration. This is to
gain a holistic evaluation of the configuration suggestion approach that not only focuses
on final model but its training performance as well.

The final RL model is also evaluated on the testing data for each data subset to indicate
its performance, in the case of Genetic Algorithm the best individual is adopted as the
model to be tested. The reward allocated to the model indicates the quality of suggested
configuration speaking to its performance based on Equation (3). Whereby, a larger reward
is proportional to the performance improvement on the UE.

Table 5 depicts the SmoothL1Loss obtained for each model, with the iteration num-
ber of its convergence concerning each data subset. It is immediately notable that the
DatasetEquipment, converged at a much lower number of iterations that its counter part. This
can be attributed to the inequality of the subset sizes. Nevertheless, the convergence of
the models is not sparse, reaching the same approximate optimum for all the performance
metrics. The loss attained by the RL Genetic Algorithm against the number of generation,
is presented in Table 6 for both data subsets and catering to all the metrics. An immedi-
ate inspection of the loss concludes that the Genetic Algorithm obtained a much higher
loss than that of the Gradient Descent counter part by a factor of 10−3. The number of
generation the Genetic Algorithm needed to converge is somewhat misleading, as each
generation contained a population of agents placed in the simulated environment to learn,
which roughly equates to 104 instances in the Gradient Descent approach. The best loss
had a min of 10−7, which is given by the DatasetBase delay, though by a negligible margin.
It can be seen that the DatasetEquipment had a more consistent loss at convergence for all
the metrics compared to DatasetBase which fluctuates at the converged loss, this hints at
the stability of values in DatasetEquipment compared to DatasetBase, which may make the
DatasetEquipment a more attractive option for deploying the RL model.
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Table 5. Iteration number convergence of RL with Gradient Descent for single and combined
performance metrics suggestion on DatasetBase and DatasetEquipment.

Data Subset Performance Metric SmoothL1Loss Iteration Number

Base
Delay 7.36× 10−11 1× 106

Energy Consumption 2.01× 10−10 1× 106

Combination 1.33× 10−10 1× 106

Equipment

Delay 1.09× 10−9 4× 105

Energy Consumption 9.23× 10−10 4× 105

Throughput 2.54× 10−10 4× 105

Combination 2.91× 10−10 4× 105

Table 6. Generation convergence of RL with Genetic Algorithm belonging to the highest fitness scored
model for single and combined performance metrics suggestion for DatasetBase and DatasetEquipment.

Data Subset Performance Metric SmoothL1Loss Generation

Base
Delay 7.44× 10−7 30

Energy Consumption 2.93× 10−5 86
Combination 7.86× 10−7 10

Equipment

Delay 3.24× 10−5 27
Energy Consumption 1.47× 10−5 3

Throughput 2.12× 10−5 25
Combination 3.22× 10−5 7

Figures 4 and 5 show the Empirical Distribution Function (ECDF) of rewards obtained
by the most optimal model with respect to the performance metrics for both data subsets.
The delay metric reward resembles a step function, reaching a reward of 1 about 70% of
the time as observed in Figure 4b, suggesting that the model has found the optimal set of
actions to undertake. Contrarily, the energy consumption metric, displays a continuous
like function where the model performed well in obtaining a reward of greater than 0.5
90% of the time, there is a sharp incline in the rewards obtained between the ranged of 0.8
to 0.9 accounting for 85% of the rewards obtained. As for the multi performance metrics,
the ECDF indicates that 50% of the rewards stem from the range 0.2 to 0.9 and the other
half of the rewards obtained a reward greater than 0.9. Figure 4a unsurprisingly shows the
same reward structure. This is attributed to the metric representation in both subsets.

However, it is obvious that the DatasetBase performed better, as shown by the larger
concentration of rewards located at the higher end of the reward spectrum. That being
said, the throughput metric, showed a reward of 0 suggesting that the model assigned
every action incorrectly, even though, it was evident that the model converged with the
same approximate loss as the other metrics in the same subset. The DatasetBase models
outperformed the DatasetEquipment models in every performance metric consolidating the
importance of the dataset size regarding Gradient Descent for the models effectiveness and
ability to generalise. It is intriguing to note that the rewards obtained by the RL Genetic
Algorithm (Figure 5) is almost identical to the rewards obtained by the RL Gradient Descent
method in Figure 4. In this regard, RL Genetic Algorithm resulted in a more optimal model,
mimicking the rewards achieved by the Gradient Descent approach, as well as achieving a
better performance for the throughput metric as seen in Figure 4a, where roughly 70% of
the configuration suggestion resulted in the highest reward.
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Figure 4. ECDF of reward for single and combined performance metric suggestion for DatasetBase and DatasetEquipment

utilising the most optimal RL with Gradient Descent.
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Figure 5. ECDF of rewards for single and combined performance metric suggestion for DatasetBase and DatasetEquipment

utilising the most optimal RL individual with Genetic Algorithm.

Finally, the accuracy of the RL models with the performance improvement percentage
is shown in Table 7 with respect to the testing data subset. The performance difference be-
tween Gradient Descent and Genetic Algorithm is almost negligible concerning DatasetBase,
although the accuracy of successful suggestions leans towards the Genetic Algorithm ap-
proach by a minuscule factor of 0.2% if the sum of average performance improvement is
taken as the deciding factor. That being said, the actual metric improvement increase is
dominated by the Gradient Descent for both data subsets by an average of 3.6%. On the
other hand, the percentage of successful suggestions were superior in Genetic Algorithm
with a difference of 10%. What is intriguing in this set of results, is the comparable perfor-
mance of the two approaches albeit the adoption of a simpler DNN architecture for Genetic
Algorithm. This can pave a way for creation of RL architectures with less computational
complexity without sacrificing model accuracy.

Therefore, gathering the results from the optimisation suggestion, with a special
focus on DatasetBase, since the models flourished better in that data subset, the Genetic
Algorithm approach outperformed the Gradient Descent approach. This is a combination
of the increased convergence speed, the performance improvement of the metric compared
to the default configuration and the number of successful suggestions. Although, the
Gradient Descent approach obtained better rewards during training phase, the Genetic
Algorithm approach obtain consistent performance in terms of successful suggestions
coupled with the percentage metric performance between the default configuration and
the Genetic Algorithm suggested configuration.
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Table 7. Successful improvement and suggestion percentage shown for every performance metric with its respective data
subset and the RL approach taken. Where the successful suggestion percentage stems from the suggested configuration
compared to the original on the test dataset.

RL Mechanism Data Subset Metric Successful Suggestion (%) Average Performance
Improvement (%)

Gradient
Descent

Delay 93.7 13.02

Base Energy
Consumption 96.2 7.9

Combination 92.6 19.1

Delay 56.1 6.8

Equipment Energy
Consumption 57.5 7.7

Throughput 39.4 28.6
Combination 43.6 13.9

Genetic
Algorithm

Delay 94.7 12.0

Base Energy
Consumption 95.2 9.0

Combination 97.7 11.4

Delay 47.2 10.5

Equipment Energy
Consumption 76.6 6.7

Throughput 64.4 3.1
Combination 33.1 19.1

6. Conclusions

In this paper, we have presented a Configuration Advocate that utilises data driven
models to select the optimal values for packet size and active timer for UEs, to achieve
the best possible delay, throughput and energy consumption or a combination of the
above. The RL Genetic Algorithm model has been identified as the most optimal approach
compared to Gradient Descent, obtaining a higher successful suggestion by 10%, although,
experiencing a negligible drop in metric improvement of 3.6% and a larger SmoothL1Loss.
Additionally, the feasibility of adopting DL was put into question contrasting between
the accuracy of DNN and various ML models to predict the environment state space, the
results showcased the accuracy advantage of DNN with multi-metric prediction of 12%
over the best performing ML model. Future work needs to be carried out to explore the
use of a more sophisticated RL algorithm as the building block for the Genetic Algorithm
approach to fully comprehend the limitations of Genetic Algorithm infused RL in a real
world application. In addition, future work will revolve around utilising the Genetic
Algorithm infused RL to provide configurations from the BS perspective, for the range of
UEs that the BS encounters, to harmonize with this work and cover optimisation at both
ends of the communication channel.
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