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Abstract: Applications of wireless sensor network (WSN) often expect knowledge of the
precise location of the nodes. Many different localization protocols have been proposed that
allow nodes to derive their location rather than equipping them with dedicated localization
hardware such as GPS receivers, which increases node costs. We provide a brief survey of
the major approaches to software-based node localization in WSN. One class of localization
protocols with good localization performance patches together relative-coordinate, local
maps into a global-coordinate map. These protocols require some nodes that know
their absolute coordinates, called anchor nodes. While many factors influence the node
position errors, in this class of protocols, using Procrustes Analysis, the placement of the
anchor nodes can significantly impact the error. Through simulation, using the Curvilinear
Component Analysis (CCA-MAP) protocol as a representative protocol in this category, we
show the impact of anchor node placement and propose a set of guidelines to ensure the best
possible outcome, while using the smallest number of anchor nodes possible.

Keywords: WSN; localization protocols; protocol performance; anchor node placement;
CCA-MAP

1. Introduction

Scientists, engineers, and researchers use wireless sensor networks (WSN) for a wide array of
applications. Many of these applications rely on knowledge of the precise position of each node.
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While some may only require relative coordinates within the network, most biological, geophysical,
and other scientific applications require coordinates on a global coordinate system. Perhaps the obvious
solution is for each node in the network to be equipped with GPS or other location positioning services.
However, constraints on cost, power consumption, as well as visibility of satellites dictate the need for
an alternative solution.

Many protocols have been proposed to calculate the relative positions of nodes in a network, see
for example [1,2]. The next section provides a classification and brief survey of localization protocols
proposed in the literature. Procrustes analysis is a common method to convert from relative to global
coordinates, requiring some of the nodes to have a local source of global coordinates. This can be
achieved by operators recording the global coordinates during network deployment, by embedding a
GPS receiver in a subset of the nodes, or some other means. We call these enhanced nodes anchors.
After the initial review of localization protocols, focusing on a specific approach to node localization,
we explore the effect of anchor node placement within the network on the overall localization errors, on
a network-wide basis. This provides network planners with a set of general rules to minimize the number
of anchor nodes required while avoiding poor node localization.

During previous work designing localization protocols, researchers typically placed anchors at
random within the network [3,4]. They then simulate the network multiple times with different anchors
in order to statistically exclude anchor node placement from their results [1,2]. However, our initial
investigations and simulations demonstrate however that the placement of anchor nodes in the network
does have an often dramatic effect on the localization error. The two plots shown in Figure 1 graphically
establishes that anchor node position does make a difference. Each plot shows the same network with
a different choice of three anchors. A line is drawn between the actual and calculated position of each
node to visualize the localization error. The circles show the radio range of each anchor, and a triangle
is drawn between the three anchors used in this example.

Figure 1. Sample localization results. (a) reasonable; (b) poor.
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The two plots shown are taken from a set of 100 randomly chosen anchor sets. While the first choice
has reasonable errors, the second choice has an error more than ten times the mean error of the first.
The two anchor set triangles do not immediately show an obvious reason that could explain this drastic
change in error.

Since there is a chance that the localization errors can be large due to anchor node placement, scientists
and engineers need to know what degree of accuracy the localization algorithm provides in many cases.
First of all, if a network designer has an existing sensor network or is planning to deploy one, they need
to know where to place the anchor nodes to ensure localization accuracy. While the freedom of where to
place the anchor nodes may be constrained due to physical factors, the network designer still must be able
to choose anchor placements wisely. Secondly, even if the network is already deployed, the guidelines
can provide confidence that the localization results are good enough and the research resulting from the
sensed data itself is valid with respect to location of the sensed data.

Some papers have touched upon anchor node placement [5–8], which we review in Section 3. These
few studies are quite limited and typically focus on particular use cases or localization algorithms. We
have yet to come across a comprehensive study of the anchor node placement, and this paper provides
such a study of possible anchor node placements and their effects on overall network localization
accuracy. Specifically, this paper establishes two guidelines based on metrics that a user of a wireless
sensor network can calculate at any time during network planning or deployment, based on information
readily available to them. These guidelines provide a way to exclude extremely poor localization results
and ensure that the localization results fall within a range of errors that are statistically insignificant. We
do not address a variety of other possible factors that may may also influence localization error, such as
overall properties (size, density, etc.) of the network.

At a high level, the guidelines are a result of the fact that the probability of extremely high localization
error results from anchor nodes being roughly in a geographically straight line. As the anchor nodes are
spread out from a straight line, the probability of high errors decreases, leaving network designers a
relatively simple chore when choosing anchor nodes locations.

While this paper is a comprehensive study of anchor node placements when using Procrustes analysis,
we focus on a specific set of network design assumptions. We assume the network planners want to
minimize the number of anchors since they consume more power and cost more. We therefore use the
minimum number of anchors of three to provide two-dimensional coordinates. Finally, we assume that
the network density is sufficient to provide a fully connected network, meaning that there is a single
connected graph of all the nodes in the network.

The rest of this paper is organized as follows: Section 2 surveys different approaches to
software-based node localization. Section 3 presents the limited related work on anchor node placement.
Section 4 introduces CCA-MAP, the localization protocol that we use to experimentally explore the
impact of anchor node placements (and which was used in deriving the motivating example in Figure 1).
Section 5 outlines various proposed anchor node placement metrics and summarizes how they perform.
The cause of extreme edge cases is explored in more detail in Section 6. Section 7 applies the derived
guidelines to networks with different shapes, and Section 8 summarizes the results and suggests future
research.
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2. A Survey of Localization Algorithms

Many localization algorithms have been proposed for WSNs. In this section, we first provide a
classification of localization techniques in static WSNs. Then, papers presenting algorithms proposed
for mobile WSNs are reviewed and finally papers focusing on testbed implementation for WSNs
are discussed.

2.1. Centralized vs. Distributed

Localization algorithms can be categorized as centralized [5,9] or distributed [10,11] algorithms
based on their computational organization. In centralized algorithms, nodes send data to a central
location where computation is performed and the location of each node is determined and sent back
to the nodes. The drawbacks of centralized algorithms are their high communication costs and intrinsic
delay. In most cases, these costs increase as the number of nodes in the network increases, thus making
centralized algorithms inefficient for large networks. As a result, distributed algorithms that distribute
the computational load across the network to decrease delay and to minimize the amount of inter-sensor
communication have been introduced [9]. In distributed algorithms, each node determines its location
by communication with its neighboring nodes. Generally, distributed algorithms are more robust and
energy efficient since each node determines its own location locally with the help of its neighbors,
without the need to send and receive location information to and from a central server. Distributed
algorithms however can be more complex to implement and at times may not be possible due to the
limited computational capabilities of sensor nodes.

2.2. Range-Free vs. Range-Based

For determining the location of a sensor node, two types of techniques exist: range-free [3,12,13] and
range-based [14–17]. Range-free techniques use connectivity information between neighboring nodes
to estimate the nodes’ position while range-based techniques require ranging information that can be
used to estimate the distance between two neighboring nodes. On the one hand, range-free techniques
do not require any additional hardware and use proximity information to estimate the location of the
nodes in a WSN, and thus have limited precision. On the other hand, range-based techniques use range
measurements such as time of arrival (ToA), angle of arrival (AoA), received signal strength indicator
(RSSI), and time difference of arrival (TDoA) to measure the distances between the nodes in order to
estimate the location of the sensors.

2.3. Anchor-Based vs. Anchor-Free

Another classification of localization algorithms for WSNs is based on whether or not external
reference nodes (i.e., anchors) are needed. These nodes usually either have a GPS receiver installed
on them or know their position by manual configuration. They are used by other nodes as reference
nodes in order to provide coordinates in the absolute reference system being used.
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Anchor-based algorithms [1,2,10,18] use anchor nodes to rotate, translate and sometimes scale a
relative coordinate system so that it coincides with an absolute coordinate system. In such algorithms, a
fraction of the nodes must be anchor nodes or at least a minimum number of anchor nodes are required for
adequate results. At least three noncollinear anchor nodes for 2-dimensional spaces and four noncoplanar
anchor nodes for 3-dimensional spaces are required. The final coordinate assignments of the sensor
nodes are valid with respect to a global coordinate system or any other coordinate system being used.
A drawback to anchor-based algorithms is that another positioning system is required to determine
the anchor node positions. Therefore, if the other positioning system is unavailable, for instance, for
GPS-based anchors located in areas where there is no clear view of the sky, the algorithm may not
function properly. Another drawback to anchor-based algorithms is that anchor nodes are expensive
as they usually require a GPS receiver to be mounted on them. Therefore, algorithms that require many
anchor nodes are not very cost-effective. Location information can also be hard-coded into anchor nodes,
however, in this case, careful deployment of anchor nodes is required, which may be very expensive or
even impossible in inaccessible terrains.

In contrast, anchor-free localization algorithms [19,20] do not require anchor nodes. These algorithms
provide only relative node locations, i.e., node locations that reflect the position of the sensor nodes
relative to each other. For some applications, such relative coordinates are sufficient. For example, in
geographic routing protocols, the next forwarding node is usually chosen based on a distance metric that
requires the next hop to be physically closer to the destination, a criteria that can be evaluated based on
relative coordinates only.

2.4. Individual vs. Collaborative Localization

Localization protocols also differ in their basic approach to calculating node position. In one class
of protocols, nodes individually determine their location, using information collected from other nodes,
typically involving trilateration, triangulation, or multilateration [21]. In a straightforward way, direct
reach of at least three anchor nodes is needed for a node to compute its location coordinates [3,13,21].
In computing the position using any of the above methods, algorithms often employ iterations [4,21],
to start from the anchor nodes in the network and to propagate to all other free nodes calculating their
positions. One of the problems of this approach is its low success ratio when the network connectivity
level is not very high or when not enough well-separated anchor nodes exist in the network. To localize
all the nodes, these algorithms quite often require that 20%–40% of the total nodes in the network be
anchor nodes [13,22], unless anchor nodes can increase their signal range [3].

To solve the problem of demanding large numbers of anchor nodes, some approaches apply limited
flooding to allow reach of anchor nodes in multiple hops, and to use approximation of shortest
distances over communication paths as the Euclidean distance [13]. However, such a hop-based distance
approximation works rather poorly in anisotropic networks, introducing large position errors. In many
scenarios, they do not seem to significantly reduce the number of anchor nodes either. The high network
connectivity levels required for success of such algorithms also give rise to practical concerns, as dense
neighborhoods often severely impede radio network throughputs. In addition to the issues of large
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number of anchor nodes and high connectivity level, the accumulated location errors also need to be
dealt with in this type of approach [4] to maintain the accuracy of position estimates.

Cooperative localization schemes take a quite different approach, formulating the localization
problem as joint estimation problems. Instead of using only the constraints between the sensor nodes
and anchor nodes as in trilateration, triangulation, or multilateration, cooperative solutions jointly
utilize as much as possible the connectivity and distance constraints among all the nodes and apply
optimization techniques to derive location coordinates. Thus the cooperative method often needs fewer
anchors and applies more constraints in generating a better position projection. In [1,9,10], the node
positions are calculated using the connectivity constrains applying a technique called Multi-Dimensional
Scaling (MDS). In [5], inter-node distance measurements are modeled as convex constraints. Then
linear programming methods were adopted to estimate the locations of free nodes. In our own prior
work [2,23], we applied Curvilinear Component Analysis, an efficient non-linear mapping technique,
to jointly determine node locations, based on connectivity constraints. These cooperative localization
methods are often quite powerful as they require only a minimum number of anchor nodes and produce
highly accurate results, whether the network is isotropic or not.

2.5. Mobile WSN Localization Algorithms

Recently, the subject of mobility in WSNs has gained much interest due to the increasing number
of applications that require mobile sensor nodes. Animal tracking, logistics applications, and elderly
healthcare home monitoring are but a few of such applications. In addition, studies conducted on
introducing mobility in WSNs have demonstrated an overall improvement not only by increasing the
overall network lifetime, but also by improving the data capacity of the network as well as addressing
delay and latency problems [24,25]. As a result, many researchers have started to investigate the concept
of mobility in WSNs. A number of algorithms that can estimate the location of mobile nodes within
WSNs have been developed [20,25–32]. Some algorithms, such as our own prior work on iCCA-MAP
reported in [26,27] assume that the anchor nodes are static and one a few sensor nodes are mobile.
Others, such as the Mobile Anchor Point (MAP) algorithm [33], use mobile anchor nodes to localize
static WSN nodes. A last group of papers allow both the anchors and the mobile nodes to be mobile,
such as the Extended Mobile Anchor Point (EMAP) algorithm [30] and the work by Hu and Evans [29]
or Stevens-Navarro et al. [32].

2.6. WSN Localization Algorithms Testbed Implementations

Most proposed protocols are evaluated via simulations to demonstrate the effectiveness of their
localization algorithms. However, some researchers also implement their work in a testbed to
experimentally validate their localization protocol. The next paragraphs highlight some works involving
real testbed measurements.

Chenji et al. [34] proposed a fuzzy logic based approach for mobile node localization in challenging
environments. Their paper is mainly based on simulation results but they also present a proof-of-concept
implementation on hardware. Similarly, the authors in [35] deploy and study an algorithm called
ROCRSSI+ based on simulation and implementation results.
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Another study, presented in [36], investigates the performance of different localization algorithms
(namely ML, Min-Max, Multilateration and ROCRSSI) based on radio signal strength measurements
in an indoor environment. Likewise, a second paper [37] analyzed an outdoor RF-based localization
algorithm based on a mobile beacon.

In [38], the authors focus on applications in harsh and dynamic factory automation environments. In
fact, they developed a testbed in order to characterize the radio signal propagation model in order to
correlate the RSSI and range empirically.

Finally, in our own prior work, we studied the implementation of CCA-MAP [2,23] in a testbed of
TinyOS-based motes, as reported in [39]. The results show that the localization error in the testbed
confirms the strong performance of CCA-MAP.

3. Related Work on Anchor Node Placement

While much attention has been paid to localization accuracy and computational effort, the importance
of intelligent anchor node placement is often recognized, but dismissed as future study.

Often, authors will come across anchor placement by accident and discuss it based on their own
empirical evidence. Shang et al. [1] and Li et al. [2] both choose anchors at random within the network.
Shang et al. do mention that a co-linear set of anchors chosen in one example “represents a rather unlucky
selection”, without supporting evidence of why this is unlucky.

Earlier work by Doherty et al.[5] requires anchor nodes to be placed at the edges, and ideally at
the corners of the network. In this case, however, the algorithm is a simple constraint problem. One
constraint requires that all the unknown nodes be placed within the convex hull of the anchors, and
therefore, better results are obtained when anchors are at the corners.

While few, there have been a some explicit studies of anchor node placement. Hara et al. [40]
propose a method of choosing anchor node locations to achieve a specific accuracy target. The proposal,
however, only applies to rectangular network areas and anchor nodes must be placed at the center of
a sub-rectangle of the original rectangle when divided into equal sized rectangles. Further, it assumes
simple RSSI-based localization.

Ash et al. [6] provide analytical proof that placing anchor nodes uniformly around the perimeter
of a network provides the best results, in the absence of any other information about the sensor
node positions. However, again this assumes a rectangular network, and more importantly a simple
localization algorithm like [5] or other multilateration techniques. When using all inter-node distances
at once, as in MDS-MAP [1] and CCA-MAP [2], this analysis breaks down.

Karl and Willig [7] dedicate an, albeit short, sub-chapter to the Impact of anchor placement in
their book. Referring [5] and [41], again they defer to perimeter anchor placement as the optimal
choice. Unfortunately, the technique proposed involves adaptive deployment, whereby a mobile node
with absolute positioning available, like GPS, wanders through the network and attempts to determine
the optimal anchor placements as it travels. For the purposes of a priori planning, this technique is
not feasible.

Cheng et al. [42] present a novel technique to handle the effects of adverse anchor placement,
specifically in clumps. The algorithm, HyBloc, is a hybrid of MDS and proximity-distance map
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(PDM) [43]. HyBloc combines the two algorithms to draw on the best aspects of each. Namely, PDM
is shown to have good performance in anisotropic networks, while MDS performs well even with few
anchors. Anisotropic networks have irregular shapes or holes in the network connectivity. HyBloc,
therefore, works by using MDS to add artificial, secondary anchor nodes in specific isotropic areas of
the network, and then uses PDM to complete the overall localization for the entire network.

Another study focuses on the effect of indoor conditions and anchor placement as it relates to RSSI
and other radio propagation measurements [44]. The experiments were conducted in a small, enclosed
space, and anchor nodes were placed either on the ceiling or the floor of the room. The study concludes
that anchor nodes on the ground are better for monitoring moving people in the room, the extension of
which is that anchor nodes need to be in the same plane as the nodes they are being used to locate.

More recently, reference [8] studied anchor node placement for passive localization. Here, nodes
passively listen to global events such as thunder, lightning, seismic waves, etc. They found that, for
effective passive localization, the optimal placement of the anchor nodes is at the center of the network
in such a way that no three anchor nodes share linearity. The more the non-linearity, the better the
localization. These results are closest to our own, in that they do not restrict the placement of anchor
nodes to the perimeter of the network. However, in our results, we show that anchor nodes can also
provide good localization results when placed at the perimeter. Also, we found that there there is a limit
to the benefit that can be achieved by careful anchor node placement, with specific lower bounds on the
degree of collinearity of anchor nodes sufficient to achieve optimal localization results.

Overall, the previous studies on anchor placement are limited. Specifically, they focus on particular
use cases and assumptions that are different from the ones here. The overarching theme of the studies,
though, is to place the anchors at the edges of the network. Despite the different assumptions, this idea
makes sense from a purely geometric point of view, and is therefore used as the initial hypotheses in
this paper.

4. The CCA-MAP Algorithm

In this section, the CCA-MAP [2,23] algorithm is briefly introduced as it is the basis for the
experimental studies we report later on. CCA-MAP was chosen as localization algorithm since it is
among the best performing algorithms, with the following characteristics [23]:

• High localization accuracy, even when using only the minimal number of required anchor nodes.
• Where available, supports the use of ranging information, resulting in even better localization

performance (assuming that the ranging measurements are reasonably accurate).
• Flexibility whether to run it as a distributed or a centralized algorithm.
• Has a variant, iCCA-MAP [26,27], that can localize nodes in a mobile WSN.

CCA-MAP is a cooperative node localization algorithm, which applies an efficient non-linear data
mapping technique called Curvilinear Component Analysis (CCA) [45], to localize nodes in a WSN.
Cooperative localization schemes formulate the localization problem as a joint estimation problem and
apply optimization techniques to derive location coordinates considering all constraints on inter-node
distances, rather than considering only constraints between the sensor nodes and anchor nodes.
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The CCA-MAP scheme builds local maps at each node in the network and then patches them together
to form a global map. CCA is employed in computing the node coordinates in the local map. Each node
computes its local map using only the local information. If accurate ranging capability is available in
the network, local distance between each pair of neighboring nodes is measured and known. Otherwise,
only connectivity information is used, assigning a value of 1 to the edge between each neighboring
pair of nodes. Then, a distance matrix for all the nodes in the R hop neighborhood of node x can be
constructed using the shortest distance matrix as approximation. CCA’s reduction technique can generate
quite accurate results with a reasonably accurate distance matrix of a small size. In addition, a smaller
matrix results in faster computation time. Therefore, R can be set to 1 if the network is dense; otherwise
it is set to 2. In the ranging-based scenarios, a one-hop neighborhood distance matrix of at least 12× 12

produced good results. In the range-free cases, the distance matrix is considerably more inaccurate using
the hop count approximation. Thus a larger distance matrix assists in mapping to the node position
coordinates using CCA. We set R = 1 when the one-hop neighborhood has a very large size (above 30),
otherwise R = 2 is chosen. The steps of CCA-MAP are thus as follows:

1. For each node x, neighbors within R hops are included in building its local map. Compute the
shortest distance matrix of the local map and take it as the approximate distance matrix LD.

2. Each node applies the CCA algorithm using the local distance matrix LD as both the input data
set and the distance matrix of the input data set. This generates the relative coordinates for each
node in the local map of node x of its R hop neighborhood.

3. Merge local maps.
4. Given sufficient anchor nodes (≥ 3 for 2-dimensional space and ≥ 4 for 3-dimensional), transform

the merged map to an absolute map based on the absolute positions of anchors.

In step 3, a randomly selected node’s local map is used as the starting point. Each time, the neighbor
node whose local map shares the most nodes with the current map is selected to merge its local map into
the current map. Two maps are merged/patched using the coordinates of their common nodes. To merge
a new local map B into the current map A, a linear transformation (translation, reflection, orthogonal
rotation, and scaling) is determined to ensure that the coordinates of the common nodes in map B after
transformation best conform with those in current map A. This operation, called the Procrustes method,
is the same whether we are merging maps or translating the relative coordinates into global coordinates,
based on the known anchor locations.

Briefly, the Procrustes method [46] works as follows: Using the known coordinates of the anchor
nodes, a linear transformation of translation, reflection, orthogonal rotation, and scaling is determined for
the anchor nodes from the calculated to known coordinates. The transformation is chosen by minimizing
the sum of squared errors for the resulting coordinates. Specifically, given actual anchor coordinates, Y ,
Procrustes gives a transformation as shown in Equation (1) that minimizes the difference between the
actual coordinates and the calculated coordinates, Z. In the equation, b is a scalar component, T is the
rotation/reflection component, and c is the translation component.

Z = b ∗ Y ∗ T + c (1)
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The transformation is then applied to all nodes in the network by simply replacing Y in Equation (1)
with the local coordinates for nodes to be localized in the given absolute coordinate system (i.e., the one
used to determine the anchor node locations).

Computing of local maps can be distributed to each local node, or can be carried out at more powerful
gateway nodes of each cluster, should the sensor network have a hierarchical structure to relieve the
resource-constrained sensor nodes from any of the computing and communication demands imposed
by localization. The local maps can be merged in parallel in different parts of the network by selected
nodes. The computations can also be done sequentially in a centralized fashion on a central computer.
There is no need for anchor nodes in patching the maps. When at least three anchor nodes are found
in the patched map of a subnetwork, an absolute map of the subnetwork can be computed using the
coordinates of the anchor nodes to obtain the absolute coordinate values of all the nodes in the map of
the subnetwork.

In the remainder of this paper, we focus on the last step in CCA-MAP: once a global map with relative
coordinates has been determined, the Procrustes method turns these relative coordinates into absolute
coordinates, based on the anchor nodes. We are interested in determining rules for placing anchor nodes
such that the result of this step results in the best possible localization performance.

5. Best Anchor Node Placements

Before searching for the best anchor node placement we must first define what best means, in terms
of localization error. Localization error is the distance between the actual and calculated position of
each node, measured as a factor of radio radius (or range). This coincidentally also implies that we
are exploring this problem in the context of global localization—how well do the calculated global
coordinates match the actual global coordinates of a node. While every network has its own application
requirements, and thus there are many options for what statistics to examine for accessing the quality of
locations, this paper looks at the mean localization error across all nodes in the network. Alternatives
could include looking at the best 50% or 80% of nodes, based on how many nodes could be removed
from the network for the purpose of the resulting sensed data.

5.1. Anchor Node Placement Metrics

As discussed above, we limit ourselves to three anchor nodes. These three anchors span a triangle
in the network. In order to determine the best anchor node placement, we examine three categories
of metrics: the error of the anchor node localization itself, network area coverage, and characteristics
of the triangle formed by the anchor nodes. The data in the following graphs is taken from a random
selection of 1,000 anchor sets of three nodes each. The node placement is random within a 20 by 20 unit
square area, and all nodes have a radio range of 2.5 units, providing a completely connected network.
All networks, unless stated differently, have 400 nodes, and the radio model is the disk model (i.e., every
node within radio range can receive messages sent by a transmitter). To localize nodes, CCA-MAP
uses the range-free localization approach. In all graphs, distances are expressed relative to our chosen
geographic unit.
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5.1.1. Anchor Node Error

The first category is to choose nodes as anchors that we expect to have high location accuracy.
Obviously, this information is only available after running the localization algorithm. Because we are
trying to provide an a priori design technique for network planners, the information chosen to reach this
goal must be something the network planner can determine before any localization has been performed.
For this purpose we choose the number of one-hop neighbors. On average, increased network density
results in higher localization accuracy [1,2]. Since most localization algorithms depend heavily on
network connectivity, the hypothesis is that nodes with more neighbors will have lower localization
errors. The idea is that the lower error in the anchors themselves should then translate into a more
accurate transformation of the entire network.

To test this idea, we used the sum of the unique one-hop neighbors for all anchor nodes and the mean
error of the anchor nodes themselves as metrics. Unfortunately, neither of these metrics provide better
localization accuracy, and therefore we did not explore this hypothesis further.

5.1.2. Network Area Coverage

As suggested in many of the related studies in Section 3, an optimal anchor placement is to have the
anchors as far apart as possible, around the edges of the network. The rationale behind this hypothesis
is that if a wider area of the network is covered by the anchor nodes, then the resulting calculated
transformation will take into account more network variations. To measure this, we take the sum of the
distance between each pair of anchor nodes.

Figure 2. Sum of distance between anchors vs. localization error.
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Figure 2 shows the sum of distances for each anchor set versus mean localization error for that anchor
set. The plot shows that again there is low correlation between the distance between anchors and the
location calculation. Also, it is clear that a small subset of the anchor placements lead to far greater error
than the norm. We explore the cause of these outliers in Section 6. The outliers are spread relatively
evenly regardless of distance between anchor nodes, and therefore this is not a good indicator of an
outlier. However, when the outliers are excluded, a moderate level of correlation is seen: as the distance
increases between the anchor nodes, the probability of getting a high localization error decreases.

5.1.3. Anchor Node Triangle

Based on the speculative statements by Shang in [1], we propose and examine an additional metric
attempting to measure collinearity of the anchor nodes: the height of the anchor node triangle. More
specifically, we calculate the height in each direction of the triangle, and use the shortest value.

Figure 3 plots the minimum height of the triangle formed by the three anchor nodes versus mean
localization error. The first observation is that the outlier cases are more tightly correlated to triangle
height than any of the other metrics. The outlier points all have comparatively small minimum triangle
heights. This is explored in more detail in Section 6.2.

Figure 3. Minimum height of anchor triangle vs. localization error.
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5.2. Best Anchor Node Placement

Analyzing the metrics discussed above, the best indicator of a good anchor placement is the sum of
the distance between anchor nodes, once the outliers are excluded. This metric is best because it has the
best fit (lowest r2) to the mean localization error. Practically speaking, this means that network designers
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can choose between proposed anchor placements and use the measured distance between them to provide
guidance about which placement will result in the least amount of error.

Figure 4 uses data from 20 networks, each occupying an area of 20 × 20 units with a radio range of
2.5 units. All nodes are randomly placed in each network. 5,000 anchor sets of three nodes each are
chosen from the randomly placed nodes. The outliers are then removed from the data and the sum of
distance between the anchors is plotted against the mean localization error. The data is grouped into
intervals 2 units wide to generate a histogram of the data. A horizontal bar through the mean of each
interval displays the width of that histogram interval. Further, a 95% confidence interval of the mean
value is shown as a vertical bar. This plot shows that, as the sum of distances between the anchors
approaches ten times the radio range, the differences in localization error are statistically insignificant.
Therefore, network designers can choose anchor node locations at their convenience, as long as they
meet this criteria.

Figure 4. Histogram: Sum of distance between anchors vs. localization error for 20 random
square networks, excluding outliers.
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6. Avoiding the Worst Anchor Node Placements

As seen in the previous section, some anchor node placements are significantly worse than the average
case. In this section, we explore in more detail the cause of these outliers and, more importantly, whether
this condition is detectable a priori and hence preventable in the real world.
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6.1. Effects of Procrustes Analysis

Figure 1(b) shows a network map of an example outlier anchor node placement for a random network.
A line is drawn between the real location and the calculated location for each individual node. The
length of this line is the localization error. For purposes of comparison, Figure 1(a) is a randomly chosen
non-outlier case, where the node difference lines are short, representing low localization error. However,
in the outlier case, the node difference lines criss-cross the network along a clear, single angle. This
visual representation suggests the reflection component of the final linear transformation is to blame for
the extremely poor, outlier results.

Unfortunately, simply disabling the reflection component of the Procrustes transformation algorithm
does not solve the problem. The output of the Procrustes algorithm is a linear transformation, which
includes a rotation or reflection matrix. We examined the characteristics of the generated transformation
functions to look for patterns. For a given network, the transformation for most of the anchor sets has
almost the same angle of either rotation or reflection, while the outliers have the opposite property
with a wide variance in the angle. However, in each network, it is not consistently either rotation
or reflection that leads to poor localization results. Therefore, relying on whether the transformation
contains a reflection or rotation component is not a sufficient indicator for a network designer knowing
that an outlier case has been detected and that the localization results are essentially useless. Also,
neither the scaling or translation component of the linear transformation indicate the extremely poor
localization performance.

6.2. Outlier Indicators

As discussed above, unfortunately there is no direct indicator that a particular anchor set generates
a transformation with an incorrect angle. Therefore, network designers must avoid all anchor sets that
could potentially generate such an angle. As demonstrated in Section 5.1.3, the height of the triangle
formed by the anchor nodes is a good indicator of the possibility of a poor transformation angle. This
is further explored in Figure 5. This time, the x-axis is on a log scale to better show the outlier cases.
Also, the height has been normalized to a fraction of the transmission radius. Further, 95% confidence
intervals are shown for the mean localization error of each 0.1r increment. A solid horizontal line is
shown throw each mean value, indicating the width of the increment, since it can be difficult to visualize
on a log scale. The horizontal dashed line indicates the cutoff for what are considered outliers, based
on the large gap in data points. The vertical dashed line indicates the first interval in which there are no
outliers. As the minimum height increases, the mean localization error decreases, as does the confidence
interval of that mean.

Based on the minimum height statistics, we can now give network designers a metric of how collinear
is too collinear for a set of anchor nodes. The raw statistics indicate that if the triangle formed by
the anchor nodes has a minimum height greater than 0.6 times the radio range, then there is very
low probability of getting an extreme outlier case. However, also in the data shown, there are some
near-outlier cases beyond this point. While these cases are not of the extreme nature discussed, it may
be worthwhile to provide a margin of error here to avoid these cases as well. Therefore, we assert that
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the triangle formed by the anchor nodes should have a minimum height equal to the radio range of
the network.

Figure 5. Histogram: Minimum anchor height vs. localization error, grouped in intervals
of 0.1r.
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7. Applicability to Varying Network Topologies

So far, we have examined anchor node placement for an isotropic square network, with randomly
placed nodes. However, in the real world, networks are not always so simple. There are often regions in
the network where it is not possible to put nodes, due to physical barriers like a lake, buildings or access
to property. In this section, we look at how the results thus far apply to C-shaped and long, narrow
pipeline network topologies.

7.1. C-Shape Network Topology

A C-shape network consists of a relatively square region with an empty area on one side, as shown
in Figure 6. In terms of anchor placement requirements, we do not expect any difference between the
recommendations presented for square networks.

To show that there is no difference between C-shape and square network topologies, 10
random C-shape networks with 5000 anchor sets each were simulated in the same manner as the square
networks. Figure 7(a) shows the localization error relative to the sum of the distances between the
anchors, as in Section 5.2. As expected, the mean localization error flattens out as the sum of distances
between anchor nodes reaches about 10 times the radio range. There is a slight increase in the floor of
the mean localization error as compared with the square network, but this has to do with the performance
of the CCA-MAP algorithm in the presence of the empty region of nodes in the network. The increase in
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mean localization error at the end of the plot, and specifically the increase in the confidence interval, is
caused by the small sample size in the random selection of anchor set with a very high distance between
nodes.

Figure 6. Example of C-shape network topology.
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Figure 7. Anchor metrics for 10 random C-shape 20-by-20 unit networks with 400 nodes,
5,000 anchor sets each, and a radio range of 2.5 units. (a) Sum of distance between anchors
vs. mean localization error, excluding outliers; (b) Minimum height of anchor triangle vs.
mean localization error.
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Similarly, the same criteria for eliminating the outlier localization results also holds for the C-shape
topology. Figure 7(b) shows that as long as the minimum height of the triangle formed by the anchors
nodes is greater than the radio range, the outlier case can be avoided.

7.2. Pipeline Network Topology

In some applications, the network region has very little depth to it, such as when monitoring a gas
pipeline or along a highway or railroad line. The extreme case is where there is a single node placed
along a straight axis. This is the worst possible scenario, as it is most likely to cause the outlier condition
for localization. In that case, it may be worthwhile to explore the possibility of using other localization
techniques, such as the use of GPS at each node, or recording the location as the nodes are placed.

Figure 8. Sum of distance between anchors vs. mean localization error for random pipeline
25-by-1,2,3 and 4 unit networks with 200 nodes, 1,000 anchor sets each, and a radio range
of 2.0 units.
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However, when there is a bit of depth to the network, there is still the possibility of achieving good
localization results through proper anchor node placement. To demonstrate the importance of having
an anchor node triangle height of at least the radio range, Figures 8 and 9 show mean localization error
for four different networks, with increasing network depth, but the same length. As before, we attempt
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to distinguish the outlier case with a plot of the sum of distance between anchors. Figure 8 shows that
as the network depth increases, the floor of possible localization errors drops. In particular, when the
network depth is only 1, the floor is about 0.5r, whereas when the depth is 4 units, or twice the radio
range, the floor drops to roughly 0.25r. Also, as the sum of the distance increases and the network depth
is greater than the radio range, the outlier cases become apparent. This is somewhat counterintuitive: in
flatter networks, each node has, on average, more neighbors (captured by CL or Connectivity Level in
the figure headings). For localization algorithms such as CCA-MAP or MDS-MAP, that should, all else
being equal, result in better localization performance.

Figure 9. Minimum height of anchor triangle vs. mean localization error for random pipeline
25-by-1,2,3 and 4 unit networks with 200 nodes, 1,000 anchor sets each, and a radio range
of 2.0 units.
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The plots of minimum triangle height in Figure 9 show that for networks with a depth less than
the radio range, the separation of good and outlier cases is impossible. Specifically, when the network
depth is one, half the radio range, the mean localization error is basically flat across all triangle heights
possible. As it becomes possible to have anchor sets forming a triangle with height more than the radio
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range, localization performance drops to below 0.5r when the triangle height is also greater than the radio
range. However, the minimum triangle height no longer appears to be a good indicator of outlier cases.

In the end, even though the results are better when the depth of the pipeline is more than the radio
range, it is impossible to reliably avoid the outlier condition. Therefore, for a pipeline topology, we
recommend to use a different class of localization algorithms that does not rely on transforming local
coordinates into global coordinates with anchor nodes. In particular, localization algorithms that exploit
the specific constraints of a pipeline topology may perform well here. Note that CCA-MAP, like
most other proposed localization algorithm, is neither dependent on nor exploiting specific topological
properties. If no other algorithms are possible or desirable, we recommend making the network as deep
as possible and to spread the anchors as far apart along the length of the pipeline as possible.

8. Conclusions

This study provides two key guidelines for network designers and users of wireless sensor networks
when choosing anchor node positions or assessing the quality of localization results. Namely, make
sure that the sum of the distance between anchor nodes is at least ten times the radio range and that
the minimum height of the triangle formed by the anchor nodes is at least equal to the radio range.
Further, the larger these two metrics are, the lower the mean localization error of the network will be, on
average, and the lower the probability of using an anchor set that will cause extremely poor localization
performance. Informally, this means do not put the anchor nodes in a straight line or close to each
other. We have further shown that these criteria apply to network topologies where the overall network
area is two-dimensional, but fails when the network topology approaches one-dimension, meaning it is
extremely narrow compared with the radio range, for example when monitoring pipelines or roads.

While the simulations in this study use the CCA-MAP algorithm, the results apply to any protocol
in which a local coordinate system is transformed into a global coordinate system using a set of anchor
nodes with Procrustes analysis. Further, the scope of the study extends beyond wireless sensor network
protocols and can be applied to any transformation problem where a small subset of points is used as the
basis to transform a set of points.

As reported in [47,48], the Procrustes method suffers from numerical instabilities and errors. In fact,
some of the outliers in our results may be explained by this, so further studies on the numerical stability
of the method and its impact on the localization performance would be warranted.

While we have provided some recommendations for anchor placement, there are a few key areas
where future study could enhance the results. First, an examination of the other factors affecting
localization performance would be beneficial, specifically, an analysis of the impact of the network
connectivity levels. A raw examination of other as of yet undiscovered factors could also uncover ways to
further improve localization accuracy. Second, expanding these results to three dimensions may benefit
some network designers. For example, a sensor network may be deployed through a high-rise building
or on a bridge. While we expect the results to be similar, it is worthwhile to confirm this. Outside the
scope of sensor networks and the physical world, these results could also apply to any dimension of
data. This would effectively be an exhaustive study of Procrustes analysis where a set of data in one
coordinate system is transformed into another coordinate system based on a subset of known points.
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A final area of future research could be to explore other methodologies besides Procrustes analysis to
provide a transformation between local and global coordinates. This may be especially beneficial if
applied to pipeline topologies.
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