

Figure S1. Multiple sequence alignments of *SlMS10* proteins identified. XP_025885203.1, *Solanum lycopersicum* XP_006365867.2, *Solanum tuberosum*; XP_015065394.1, *Solanum pennellii*; XP_016449679.1, *Nicotiana tabacum*; XP_016562081.1, *Capsicum annuum*. Consensus keys: '*', single, fully conserved residue; ':', conservation of strong groups; '.', conservation of weak groups; '.', no consensus.

Figure S2. (A) Gel electrophoresis of PCR products amplified from putative transgenic plants. (B)Phenotypes of edited plants (C) Fruit shape of T_1 generation obtained by crossing between edited plants and KS-13 lines (D) Selection of null segregant in T_1 and T_2 generation by PCR analysis. No band indicated T-DNA free plants.

Figure S3. Relative expression levels of cr-ms10-1-4 compared to that of WT and actin detected by quantitative RT-PCR. Solyc02g079810, MS10; Solyc08g062780, AMS-like; Solyc03g053130, SISTR1; Solyc04g008420, AMS-like-1; Solyc01g081100, MS32; Solyc03g113530, AtTDF1-like; Solyc10g005760, MYB103-like; Solyc06g069220, Aspartic protease-1; Solyc07g053460, Cysteine protease; Solyc03g116930, Sister chromatid cohesion; Solyc03g046200, Endo-,3-beta-glucanase; Solyc03g078400, Actin.

Species	Species Identifier		
	bHLH DNA-binding superfamily protein	NP_568010.1	
	bHLH DNA-binding superfamily protein	NP_172107.1	
	bLH protein 93	NP_569014.1	
	BR enhanced expression 2	NP_195372.1	
Arabidoncia thaliana	bHLH DNA-binding superfamily protein	NP_180680.2	
Arubiuopsis inulunu	bHLH DNA-binding superfamily protein	NP_193864.1	
	bHLH DNA-binding superfamily protein	NP_001030774.1	
	bHLH DNA-binding superfamily protein	NP_191957.2	
	bHLH DNA-binding family protein	NP_174541.1	
	bHLH DNA-binding family protein	NP_193522.1	
	BTB/POZ domain-containing protein-like	KAF3625311.1	
	transcription factor ABORTED MICROSPORES-like isoform	KAF3650000.1	
	BTB/POZ domain-containing protein-like	KAF3625311.1	
Cancicum annuum	transcription factor ABORTED MICROSPORES isoform	XP_016537577.1	
Cupsicum unnuum	transcription factor ABORTED MICROSPORES isoform	XP_016537580.1	
	flavoprotein wrbA-like	KAF3666794.1	
	3-hydroxyisobutyryl-CoA hydrolase 1-like	KAF3625310.1	
	bHLH transcription factor Upa20	ABW22630.1	
Capsicum chinense	Capsicum chinense protein BC332_02983		

Table S1. Amino acid sequences of *SlMS10* and other gene homologues related to male sterility investigated in this study.

Malus domestica	transcription factor bHLH106-like	NP_001281284.1
Medicago truncatula	transcription factor bHLH93 isoform	XP_003612938.1
	transcription factor EAT1	XP_015634639.1
Oruza catizza Ianonica Croun	transcription factor TDR	XP_015625730.1
Oryzu suttou juponicu Group	transcription factor TIP2	XP_015645943.1
	undeveloped tapetum 1	AAX55226.1
Pisum sativum	Basic helix-loop-helix protein A	E3SXU4.1
	bHLH91-like	XP_004229579.1
Solanum Inconarcicum	transcription factor ABORTED MICROSPORES isoform X2	XP_004245356.1
Solunum tycopersicum	transcription factor DYT1	XP_025885203.1
	bHLH transcriptional regulator	NP_001234654.2
Solanum nonnallii	transcription factor DYT1	XP_015065394.1
Sounum pennenn	transcription factor bHLH91-like	XP_015087359.1
	transcription factor bHLH91-like	XP_006354586.1
	transcription factor DYT1	XP_006365867.2
Solanum tuberosum	transcription factor ABORTED MICROSPORES isoform	XP_006351593.1
	transcription factor bHLH91-like	XP_006354586.1
	transcription factor bHLH89-like	XP_006354670.1

Table S2. Design of sgRNAs for CRISPR genome editing on *SlMS10* gene in tomato using the CRISPR RGEN tool program (http://www.rgenome.net/).

M-10		Dimention	GC content (%, w/o	Out-of frame	Μ	lism	atch	es
MS10 RGEN Target (5' to 3')		Direction	PAM)	score	0	1	2	3
sgRNA1	GCCTATTTCTCTCAGCCTTAAGG	-	45.0	68.9	1	0	0	0
sgRNA2	GTCTGCCAAAAGAAAAGAGGTGG	+	45.0	73.1	1	0	0	0
sgRNA3	ATGGAGGCAATGAATGCTCTTGG	+	45.0	67.0	1	0	0	0

Table S3. Frequency of genome editing of SlMS10 gene using CRISPR/Cas9 system.

	No. of	No. of	No. of		Gen	otype	
Target region	regenerated plants	transgenic plants	edited plants	homo- allelic	hetero- allelic	bi- allelic	Multiple- allelic
SlMS10-sg 1	44	42	15	4	3	8	-
SlMS10-sg 2	20	18	13	2	3	6	2

Table S4. Detection of mutations on the putative off-target sites in edited plants.

Target	Putative off-target	Off-target locus	Sequence of off-target site	No. of mutation plants
	OFF 1	ch02:611807-611829	GCCTATTgaTtTCAaCCTTAGGG	0
	OFF 2	ch03:2207687-22076709	GCCTAgTTCT <mark>tg</mark> CAGCtTTATGG	0
sgRNA	OFF 3	ch03:9357140-9357162	GCCTATT <mark>gta</mark> CaCAGCCTTACGG	0
1	OFF 4	ch09:1577070-157729	GaggATTTCTCTtAGCCTTAGGG	0
	OFF 5	ch09:58165589-58165611	cCaTATTTCTCTCAagCTTAAGG	0
	OFF 6	ch12:6683409-6683409	aCCTATTTCTtTCAGgtTTATGG	0
	OFF 1	ch01:56429029-56429051	<mark>tc</mark> CTGC <mark>a</mark> AAAAGAAAAGA <mark>a</mark> G	0
sgRNA 2	OFF 2	ch01:74607309-74607931	ccCTGCaAAAAGAAAAGAaG	0
	OFF 3	ch03:29122126-29122148	<mark>a</mark> TCTG <mark>ag</mark> AAAAGA <mark>g</mark> AAGAGG	0
	OFF 4	ch07:6556684-6556706	GTCT <mark>ttt</mark> AAAAGAAAAGA <mark>c</mark> G	0
	OFF 5	ch10:42400100-42400122	agCTGCCAAAAGAAAAGgGa	0

Table S5. Variation of length and width of each flower organs in edited lines (cr-ms10-1-4 and cr-ms10-2-8) and wild type.

Flower organs	WT (mm)	cr-ms10-1-4 (mm)	cr-ms10-2-8 (mm)
Sepal length	$24.14 \pm 1.65a$	$13.54 \pm 1.06b$	$14.15 \pm 1.15b$
Sepal width	2.01 ± 0.12a	$1.69 \pm 0.16b$	$1.72 \pm 0.20b$
Petal length	$15.95 \pm 0.52a$	$12.15 \pm 0.52b$	$13.47 \pm 0.50b$
Petal width	$6.00 \pm 0.06a$	$2.77 \pm 0.41b$	$2.68 \pm 0.53b$
Style length	7.69 ± 0.13a	$6.92 \pm 0.47b$	$5.96 \pm 1.17b$

Style width	$0.70 \pm 0.09a$	$0.88 \pm 0.19a$	$0.77 \pm 0.33a$
Ovary length	$2.78 \pm 0.02a$	$1.85 \pm 0.05b$	$1.78 \pm 0.09b$
Ovary width	$3.02 \pm 0.34a$	$2.09 \pm 0.09b$	$2.37 \pm 0.34b$
Anther cone length	7.92 ± 1.59a	$6.76 \pm 0.88b$	$6.79 \pm 0.84b$
Anther cone width	1.31 ±0 .09a	$1.08 \pm 0.03b$	$1.15 \pm 0.04b$

Means \pm standard deviation (\pm sd.), n = 3. Statistical differences among the agronomic traits were detected by Duncan's multiple range test (p < 0.05).

Table S6. Oligonucleotide primers of the putative off-target sites for mutation analysis in edited plants.

Off-target site	Primers	Sequence (5'→3')
DNA 1 OFF1	FW	TTTAATAATCATCTCGTCTGGTCA
SGRINA I OFFI	RV	TGTTGATTATAATTGTTTATC
DNIA 1 OFF2	FW	TTGTGCAGCTGCTTTCTAATTC
SERINA I OFF2	RV	TAAATAAAACCATTTATTTGAACAT
COPNIA 1 OFF2	FW	AATCCTAAGTGACGACCAGCA
SERINA I OFFS	RV	TCATTGAAGGGGAGATTTGG
COPNIA 1 OFF4	FW	CAGATGTTACCGCTGAGGTG
SgRINA I OFF4	RV	CCTTTCCTTCCATATTGTCCA
CORNA 1 OFF5	FW	TTAAATATTTTTAAGACTTAA
SgRIVA I OFFS	RV	AACCTATATGAAGAGTCACAT
CORNA 1 OFF6	FW	TGCAGCTAGCATTTTGGGTA
SgRIVA I OITO	RV	CCGAAGTAGCACCAAGAAGG
CORNA 2 OFF1	FW	GGGAGAAGTGGAGAATGACG
SgRIVA 2 OFFT	RV	TTCCTCTCCAGCCACCATAC
CORNA 2 OFF2	FW	TTGTTCGTCTTGTGTTGCTG
SgRIVA 2 OFF2	RV	CATCCCCCACCTTCTCTCT
sorNA 2 OFF3	FW	GTTCCTACTGGGCGCAACT
sgR117 2 0115	RV	TTCACCGTCTCTCTCCTTCC
$s\sigma RNA 2 OFF4$	FW	GACCATTAGTGGTGAATTCTTGC
35111A 2 0114	RV	TCGCTTCTTTCCCTTTTTCTC
CORNA 2 OFF5	FW	GACATGTTCAAAGGCAAACAAA
SERINA 2 OFF'S	RV	ACCAGATTTGCCTCAACGAC

Table S7. Oligonucleotide primers used for recombinant vector construction, deep sequencing and RT-PCR analysis in these studies.

Primers	Sequence (5'→3')	Purpose
sgRNA1 up	gattGCCTATTTCTCTCAGCCTTA	
sgRNA1 down	aaacTAAGGCTGAGAGAAATAGGC	Voctor construction
sgRNA2 up	gattGTCTGCCAAAAGAAAGAGG	vector construction
sgRNA2 down	aaacCCTCTTTTCTTTTGGCAGAC	
pBOsC sgSEQ FW	CAGCTTGGCTCTAGTCGACC	Confirm of sgRNA
sgRNA scaffold region	CGGTGCCACTTTTTCAAGTT	in pKAtC vector
Kanamycin-R Fw	ATGATTGAACAAGATGGATTGCAC	Transgenic plant
Kanamycin-R Rv	TCAGAAGAACTCGTCAAGAAGGC	identification
NGS MS10 1st- Fw	GAATTCCCCAGTACCCCATT	
NGS MS10 1st-Rv	TGCAGCACACAGTACAAGG	
NGS sg1 2nd-Fw	ACACTCTTTCCCTACACGACGATAATTCAAACAACTCTGAAGAAAGG	NGS analysis
NGS sg1 2nd-Rv	GTGACTGGAGTTCAGACGTGTAATGAAGGTTTTTGATTCATTGC	
NGS sg2 2nd-Fw	ACACTCTTTCCCTACACGACGGACAGTAAAACAACTTTGATCTTTG	
NGS sg2 2nd-Rv	GTGACTGGAGTTCAGACGTGTCATATGTTTCTCCTACCTCCACA	
<i>Ms</i> 32 – FW	TGTTTCCATTACCAAGATGC	
<i>Ms</i> 32 – RV	GGGGGTTGTGGGGGGTAGATT	
SISTR1 – FW	TGTTTCCATTACCAAGATGC	DT DCD an alassia
SISTR1 – RV	GGGGGTTGTGGGGGGTAGATT	KI-rCK analysis
SlMS10 – FW	AGATCTCTCTGATTCGATTAGCTTCAG	
SlMS10 - RV	TCTTGAAATGGAAGCAACTCAGG	

AtAMS-like – FW TGCAGAGATGTTATGTTTCAGCATC AtAMS-like - RV TCGTCTCTGTCTCTTTCTCCTTCTG AtMYB103-like -ACAAATTACCTTAGGCCTGATCTCAAACA FW AtMYB103-like -AATTCCCATACCAGATAATTTCTTTTGAG RV AtMS1-like-1 -GGGCGTCTTTGCTACAATCCCAAC FW ATCCATCCTTGATTGCCAACATAATCG AtMS1-like-1 – RV AtTDF1-like1 – GAACGGATAATGATGTGAAGAACCT FW AtTDF1-like1 – CTGGTCTAGACATAAATGCACCTTTT RV Cysteine protease -ATTGGTGTCGATTGGAGGAAG FW Cysteine protease -CAAATGCACTTTCCATAAACCC RV Asparatic protease-GTGATATTAATTGGCTTCAATGTGAACC 1 – FW Asparatic protease-ATACTCGCCGGAACCTGTAACATC 1 – RV Sister chromatid AGTGAGATCATGAGAATTACAGCTCC cohesion – FW Sister chromatid GATGAAGTTTGACAGCACTTTCTTG cohesion – RV Endo-1,3-β-AAAAAGATTACTACGCGAGTCAAAACATTT glucanase – FW Endo-1,3-β-GACGGATCAGGAAGGACAGTAGATTTT glucanase – RV SIACTIN - FW GGGATGGAGAAGTTTGGTGGTGG SlACTIN - RV CTTCGACCAAGGGATGGTGTAGC