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Abstract: The banana is a typical climacteric fruit that undergoes ethylene dependent ripening.
During fruit ripening, ethylene production triggers a developmental cascade that results in a series of
physiological and biochemical changes. The fruit transcriptomes of untransformated wild-type (WT)
and RNAi transgenic banana plants for Mh-ACO1 and Mh-ACO2 have been previously sequenced
and analyzed, and most of the differentially expressed genes were enriched in ‘carbon fixation in
photosynthetic organism’, ‘cysteine and methionine metabolism’, ‘citrate cycle (tricarboxylic acid
cycle, TCA cycle)’, and ‘starch and sucrose metabolism’ based on Kyoto Encyclopedia of Genes and
Genomes (KEGG) annotation. In this research, we investigated the expression fluctuations of genes
involved in carbohydrate metabolism affected by alterations of ethylene biosynthesis associated with
ripening in banana fruits. Expression profiles of sucrose synthase, sucrose phosphate synthase, neutral
invertase, and acidic invertase/β-fructofuranosidase, as analyzed by Avadis and Trinity, showed
that both analyses were complementary and consistent. The overall gene expression tendency was
confirmed by the implementation of quantitative real-time reverse transcription-polymerase chain
reaction (RT-PCR) with mRNAs of banana fruits in Mh-ACO1 and Mh-ACO2 RNAi transgenic plants.
These results indicated that altered expression of genes associated with ethylene biosynthesis strongly
influenced the expression levels of genes related to starch and sucrose metabolism, as well as the
glycolysis pathway in ripening banana fruits.

Keywords: carbohydrate metabolism; transcriptome; fruit ripening; RNA interference;
1-aminocyclopropane-1-carboxylic acid (ACC) oxidase

1. Introduction

The bananas (Musa spp.) is an important staple food source in subtropical and tropical regions
and is the largest herbaceous evergreen monocot belonging to the genus Musa. Banana is cultivated
as a cash crop and is a major annual crop in Southeast Asia. The sweetness of a ripe banana is
contributed by soluble sugar accumulation that is biosynthesized from the starch reserve during
the respiratory climacteric rise. The average starch content of banana fruits in the pre-climacteric
period is 70–80%. However, the starch is almost completely converted into soluble sugars during
ripening, which results in less than 1% starch content at the end of the climacteric period [1–3].
Sucrose, glucose, and fructose are main soluble sugars detected in ripening banana [1,4]. Initially,
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the predominant sugar during banana ripening was sucrose, reaching more than one-tenth of the fresh
weight and then total soluble sugars content increased, which indicated that the rate of conversion
was high [5]. During the development of a banana, starch and amylopectin accumulate gradually and
starch’s synthase (SS; EC2.4.1.21) activity increases until the late stage, remaining constant during
starch breakdown (climacteric). However, it almost vanishes during storage and is accompanied by
amylopectin and starch granule degradation [6]. Only β-amylase (EC3.3.1.2) activity increased before
onset of the respiration peak and along with starch decrease. During banana fruit ripening, starch and
sucrose metabolism and glycolysis pathways are influenced by ethylene production [7]. Adenosine
diphosphate (ADP)-glucose pyrophosphorylase (AGPase; EC2.7.7.27) is the first rate-limiting enzyme
in starch biosynthesis and the AGPase family has been found to be highly expressed in developing
fruits. Compared with the high expression of MaAPS1 at all phases of fruit development and ripening,
the activity of MaAPL-3 and -2a increased just during the fruit development stage and early-stage
ripening, and the MaAGPase expression patterns varied greatly among genotypes [8].

Genes encoding major enzymes involved in starch biosynthesis and degradation have been
investigated in several plants such as Arabidopsis, potato, rice, lotus, and grass species [9,10]. Sucrose
phosphate synthase (SPS; EC2.4.1.14) is supposed to be the key enzyme that regulates the sucrose
biosynthesis. Gene expression levels of SPS and sucrose synthase (SUS; EC2.4.1.13) were strongly
stimulated by ethylene accumulation [11,12]. The expression level of SPS increased distinctly but
showed a very low activity at the onset of the climacteric stage and then steadily increased during the
post climacteric stages. Moreover, little content of Fructose 2,6-bisphosphate (Fru(1,6)P2; EC3.1.3.46)
was found in unripe fruit but increased markedly with an increased respiration rate [6]. The expression
of uridine diphosphoryl (UDP)-glucose pyrophosphorylase (UGPase, EC2.7.7.9) in banana pulp
was higher than that in peel and consistent with starch degradation and sucrose synthesis in pulp.
Expression of the UGPase gene was induced by exogenous ethylene and sugars, especially sucrose and
fructose [13].

In our recent study, transgenic banana plants using RNA interference (RNAi) technology
against two ACC oxidase genes—Mh-ACO1 and Mh-ACO2—were individually generated for better
understanding on the physiological functions of these two ACC oxidase genes. The ethylene production
of banana fruits reduced in RNAi transgenic banana lines compared with the untransformed plants
showed gene silencing effects of hairpin-type siRNA expression [14]. Moreover, Mh-ACO1, Mh-ACO2,
and Mh-ACS1 genes related to ethylene biosynthesis were down-regulated in ripening fruits of
Mh-ACO1 and Mh-ACO2 RNAi transgenic bananas [14]. Furthermore, mRNA accumulations of genes
involved in ethylene signaling were strongly influenced in RNAi transgenic bananas [14]. Therefore,
in this study, we focused on expression patterns and levels of genes involved in ethylene production
and carbohydrate metabolism in Mh-ACO1 and Mh-ACO2 RNAi transgenic banana plants in the search
for a possible link between these two pathways in ripening banana fruits, although both pathways are
distinct in terms of biochemical function. We found out that altered expression of genes associated
with ethylene biosynthesis strongly influenced the expression levels of genes related to starch and
sucrose metabolism in ripening banana fruits.

2. Results

2.1. Transcriptomic Analysis of As1, As2, and WT in Targeted Silencing of Two Paralogous ACC Oxidase
Genes in Banana

Global transcriptome of ripening banana fruits from untransformed wild-type (WT) and two RNAi
transgenic banana plants targeting either Mh-ACO1 (As1) or Mh-ACO2 (As2) had previously been
sequenced [14]. For research in this report, the RNA-Seq data were aligned onto 11 chromosomes of
banana using the Strand NGS software package in order to visualize the spatial relationships between
sequencing enrichment and specific chromosome regions. As shown in Figure 1, these data revealed a
similar mapping pattern among the chromosomes of all three samples of WT, As1, and As2, with exactly
the same patterns of chromosomes 3 and 7. However, in chromosomes 1 and 5 of samples As1 and As2,
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apparently distinctive mapping peaks were found compared with the control sample. A detailed gene
description for entities with high coverage and significant differential expression in Figure 1 is listed in
Table S1. Among these entities, particular genes involved in carbohydrate metabolism were as follows:
Granule-bound starch synthase (GSMUA_Achr1G08190_001), putative invertase inhibitor PMEI
(GSMUA_Achr1G15410_001), alpha-glucan phosphorylase L isozyme (GSMUA_Achr4G32600_001),
putative inactive beta-amylase 9 BAM9 (GSMUA_Achr5G08040_001), alpha-amylase AMY1.1
(GSMUA_Achr8G04140_001), and beta-glucosidase 31 (GSMUA_Achr11G06730_001).
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Figure 1. Expression profiles of untransformed wild-type (WT) and two RNAi transgenic banana plants
transcriptome RNA-Seq data aligned onto 11 chromosomes of banana by a computationally-optimized
Burrows Wheeler transform (called COBWeb) in the Strand NGS software package. The Y-axis indicates
the relative expression level as represented by the total number of uniquely mapped sequenced reads
(or entities) covered alongside each respective chromosome on an X-axis scale. Genes involved in
carbohydrate metabolism are highlighted by the red star. WT, As1 and As2 represent untransformed
control, Mh-ACO1, and Mh-ACO2 RNAi transgenic bananas, respectively.
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2.2. Expression Profiles of Selected Relevant Genes in Starch and Sucrose Metabolism

Based on KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis in starch and
sucrose metabolism, there were 23 gene families in As1 versus WT control detected as differentially
expressed, including 9 up-regulated, 8 down-regulated, and 6 families with gene members having
either up- or down-regulation of gene expression, while 24 gene families were detected with differential
expression in As2-vs-WT, containing 9 up-regulated, 13 down-regulated gene families, and 2 gene
families with both up- and down-regulated gene members. In total, there were 25 gene family groups
with 441 genes in terms of the number of unigenes subjected to this analysis. Genes in these gene
family groups are listed in Table S2.

Schematic expression patterns of genes related to starch and sucrose metabolism are shown in
Figure 2 for the samples of As1 versus WT control (As1-vs-WT; Figure 2a) and samples of As2 versus
WT control (As2-vs-WT; Figure 2b). As shown in Figure 2a,b, the gene expressions for sucrose synthase,
sucrose phosphate synthase, glucan phosphorylase, and trehalose 6-phosphate synthase were detected
down-regulated in both As1-vs-WT and As2-vs-WT, whereas gene expressions for polygalacturonase,
β-fructofuranosidase, β-amylase, glucose-6-phosphate isomerase, and UDP-glucose-6-dehydrogenase
were found up-regulated in both As1-vs-WT and As2-vs-WT. Among genes involved in starch and
sucrose metabolism, α-amylase gene was found down-regulated only in As1-vs-WT and showed no
significant change in As2-vs-WT. The endoglucanase gene was found down-regulated in As2-vs-WT
and maintained the same expressions in As1-vs-WT. The gene for UDP-glucuronate 4-epimerase was
found up-regulated in As1-vs-WT (Figure 2a) and down-regulated in As2-vs-WT (Figure 2b).
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Figure 2. Schematic expression patterns of genes related to carbohydrate metabolism. Enzyme
names are indicated between metabolites. Arrowheads with red or blue color indicate differential
up- or down-regulation compared with the control WT, respectively. The red and blue arrowheads
encircled by a ring indicate that both up- and down-regulated contig ID’s were found. (a) Starch and
sucrose metabolism pathway in the sample of As1 versus WT control (As1-vs-WT). (b) Starch and
sucrose metabolism pathway in the sample of As2 versus WT control (As2-vs-WT). (c) Glycolysis and
gluconeogenesis pathway in the sample of As1-vs-WT. (d) Glycolysis and gluconeogenesis metabolism
pathway in the sample of As2-vs-WT. WT, As1, and As2 represent untransformed control, Mh-ACO1,
and Mh-ACO2 RNAi transgenic bananas, respectively.

Moreover, the gene expressions of endoglucanase (EC3.2.1.4) and alpha, alpha-trehalase
(EC3.2.1.28) were detected down-regulated and up-regulated, respectively, in As2-vs-WT, whereas
these two gene families showed no change in gene expression in As1-vs-WT. Moreover, the expressions
of hexokinase (EC2.7.1.1) gene family were only up-regulated in As1-vs-WT and showed no differences
in As2-vs-WT.
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2.3. Expression Profiles of Selected Relevant Genes in Glycolytic Metabolism

A total of 15 differentially expressed gene families were found to participate in glycolytic
metabolism in As1-vs-WT, among which there were 8 up-regulated and 2 down-regulated gene
families with 5 gene families containing either up- or down-regulated gene members. The number of
differentially expressed gene families in the glycolysis pathway was 16 in As2-vs-WT, and these gene
families consisted of 10 up-regulated, 1 down-regulated gene families, and 5 gene families with either
up- or down-regulated members. In total, there were 20 gene families with 257 genes in terms of the
number of unigene IDs subjected to this analysis. Genes in these gene families are listed in Table S3.

The most significantly enriched up-regulated DEGs in As1-vs-WT were gene families for
6-phosphofructokinase, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase, pyruvate
decarboxylase, pyruvate dehydrogenase E2 component, and dehydrolipoamide dehydrogenase
(Figure 2c). Gene families for class I fructose-bisphosphate aldolase, aldehyde dehydrogenase, alcohol
dehydrogenase, pyruvate dehydrogenase, E1 component, pyruvate kinase, and glyceraldehyde-
3-phosphate dehydrogenase showed both up- and down-regulated gene expression members
in As1-vs-WT.

Gene families for 6-phosphofructokinase, 2,3-bisphosphoglycerate-independent phosphoglycerate
mutase, pyruvate decarboxylase, enolase, pyruvate dehydrogenase E1 component,
and dihydrolipoamide dehydrogenase were up-regulated in As2-vs-WT (Figure 2d). Some gene
families, such as genes for class I fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate
dehydrogenase, pyruvate kinase, aldehyde dehydrogenase, and alcohol dehydrogenase were detected
containing both up- and down-regulated gene members in As2-vs-WT, as shown in Figure 2d.

Gene expression variations between As1 and As2 in glycolysis metabolism were found (Figure 2c,d).
The genes that encode 6-phosphofructokinase 1 (EC2.7.1.11), 2,3-bisphosphoglycerate-dependent
phosphoglycerate mutase (EC5.4.2.11), and enolase (EC4.2.1.11) were up-regulated in As2-vs-WT,
while in As1-vs-WT only up-regulation of the gene family for 2,3-bisphosphoglycerate-dependent
phosphoglycerate mutase was found. Moreover, up-regulation of hexokinase gene family and
down-regulation of phosphoenolpyruvate carboxylase (EC4.1.1.32) gene family were detected only in
As1-vs-WT but not in As2-vs-WT. For expression of the enolase gene, there was no significant change in
As1-vs-WT but significant up-regulation was observed in As2-vs-WT. For expression of the gene family
of pyruvate dehydrogenase E2 component, there was up-regulation in As1-vs-WT, while there was
no change in As2-vs-WT. The gene family of pyruvate dehydrogenase E1 component contained both
up-and down-regulation in As1-vs-WT, but only up-regulation was detected in As2-vs-WT (Figure 2c,d).

2.4. Gene Expressions of Sucrose Synthase, Sucrose Phosphate Synthase, and Neutral Invertase as Analyzed by
Avadis and Trinity

Banana fruits have the typical climacteric behavior with an outbreak in ethylene production
to initiate the ripening process. In order to gain a deeper insight into molecular mechanism of
banana fruit ripening, the genes related to carbohydrate metabolism were conducted for further
comprehensive studies. Sucrose and carbohydrate accumulation are imported into banana fruits in the
form of starch during banana ripening [15,16]. Once ripening has been triggered, the banana fruits
ripen quickly and sweeten due to conversion of starch-degraded products to soluble sugars [17,18].
Moreover, the invertase gene family is particularly interesting. There are two types of invertases:
one is acidic, targeted to the cell wall and vacuole, the other one neutral/alkaline functioning in the
cytosol. In order to investigate the gene activities of sucrose-phosphate synthase, sucrose synthase,
neutral invertase (NI, EC3.2.1.26), and acidic invertase/β-fructofuranosidase (bFF, EC3.2.1.26) involved
in the carbohydrate metabolic pathway, the gene expression profiles for these genes were analyzed
by two different analysis software: Avadis and Trinity. The contigs analyzed by Trinity and their
corresponding genes in the Banana Genome Hub are listed in Tables S2 and S3, respectively, and their
expressions visualized by heat map according to fragments per kilobase to transcript per million
mapped reads (FPKM) value (Tables S4 and S5) are shown in Figure 3, respectively. In this analysis,
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expression levels of contigs c25936_g1, c46712_g1, c46712_g1, c46712_g3, c52822_g1, and c26965_g1,
corresponding to sucrose synthase, c36898_g1, c52943_g1, c20684_g1, and c78118_g1, corresponding
to sucrose phosphate synthase, and c70839_g1, c71850_g1, and c79871_g1, corresponding to neutral
invertase, showed apparently different among WT, As1, and As2 banana samples (Figure 3), and the
expression profiles for these genes showed similar tendency based on reads per kilobases per million
reads (RPKM) value (Tables S4 and S5). In the analysis with Avadis, data of RNA-Seq were aligned onto
banana chromosomes for the comparison among samples with normalization of RPKM. The entities
covered on the specific positions corresponding to the genes of sucrose synthase, sucrose-phosphate
synthase, neutral invertase, and acidic invertase/β-fructofuranosidase on aligned chromosomes are
listed in Table S6, and their gene expressions visualized by a heat map are shown in Figure 3. Entitis
corresponded to the sucrose synthase gene, sucrose phosphate synthase, and neutral invertase also
expressed differentially among WT, As1, and As2 banana samples are shown in Figure 3. The overall
expression tendency of differentially expressed genes analyzed by Trinity is in agreement with those
analyzed in Strand NGS. It is worthy of further investigation on the roles of these differentially
expressed genes in fruit ripening.
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Figure 3. Differentially expressed genes of sucrose synthase (SUS), sucrose phosphate synthase (SPS),
neutral invertase (NI), and acidic invertase/β-fructofuranosidase (bFF) in Mh-ACO1 RNAi (As1),
Mh-ACO2 RNAi (As2), and the control (WT) banana plants. The analyzed softwares are Strand NGS
software package (Avadis) (a) and Trinity package (b). To highlight the relative differences between
plants, log2 transformed fold change values for each contig are displayed. The detailed data are given
in Tables S2 and S3.



Plants 2020, 9, 1120 8 of 13

2.5. Expression Profiles of the Sucrose Biosynthesis Pathway Genes Based on Real-Time Quantitative Reverse
Transcription Polymerase Chain Reaction (qRT-PCR) Data

Quantitative RT-PCR, using total RNAs from transgenic banana fruits, was performed to validate
the expression profiles of the genes involved in sucrose biosynthesis in Mh-ACO1 and Mh-ACO2 RNAi
transgenic bananas. The expression patterns of all selected genes based on qRT-PCR (Table S7) were
similar to those detected by high-throughput sequencing. The overall tendency of these expression
messages was clearly down-regulated (albeit not apparent), such as the patterns shown at stages 1
and 3 for neutral invertase gene Inv-N1 in both As1 and As2, and up-regulated at all stages tested
for genes of sucrose synthase 1 (SUS1) and sucrose-phosphate synthase 1 in both As1 and As2
(Figure 4). Moreover, in samples As1 and As2, the following observations were made, as shown in
Figure 4: (1) a reduction in gene expression levels of Inv-N1 at stage 3 in As1 and at stages 1, 3, and 7 in
As2; (2) a significant increase in gene expression levels of SUS1 at stage 5 in As1 and at stages 1 and
3 in As2; and (3) a significant increase in gene expression levels of SPS1 at stage 7 in both As1 and
As2. Interestingly, gene expression of up-, down-, and up again- patterns was present in As1 for SUS1,
where the gene expression was decreased at stage 3, increased at stage 5, and decreased again at stage
7. As for the gene expression of SPS1 in As1, it decreased at stage 3 and increased again at stage 7.
In the sample of As1, the gene expression of Inv-N1 slightly decreased at stage 3 when compared to
WT, and showed no obvious change between stages 5 and 7. Moreover, in the sample of As2, the gene
expression of Inv-N1 was significantly down-regulated at stage 3, whereas expression of the gene SUS1
at stages 1 and 3 and SPS1 at stage 7 were significantly up-regulated (Figure 4). These results suggest
that carbohydrate metabolism-related genes expressed during ripening may be controlled by ethylene
biosynthesis-related genes in banana fruits.
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Figure 4. Expression patterns of the sucrose biosynthetic pathway genes in Mh-ACO1 (a) and Mh-ACO2
(b) RNAi transgenic banana fruits. Relative mRNA abundances were visualized based on qRT-PCR
data. Four continuous blocks from left to right indicate that fruits were harvested at stages 1, 3, 5, and 7.
Log2 transformed values of relative transcript abundance was normalized with the wild type banana.
Gene expression levels are shown with a rainbow color scale. Red indicates high relative expression,
yellow indicates moderate relative expression, and green indicates low relative expression. Genes
without differential expression between transgenic banana and wild type are shown by grey boxes.
The experiment was performed in two biological and three technical replicates. SUS1, sucrose synthase.
SPS1, sucrose phosphate synthase. Inv-N1, neutral invertase.

3. Discussion

Banana fruits are the most popular fresh fruits worldwide with great economic value. During
ripening of banana fruits, softening, discoloration, and decay make the fruits become fragile and
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lose value. In order to delay ripening and increase postharvest quality and storability of banana
fruits, RNA interference against banana ACC oxidase genes had been applied to modify ethylene
biosynthesis [14]. Most of the up-regulated DEGs in RNAi transgenic bananas are involved in starch
and sucrose metabolism, glycolysis/gluconeogenesis, carbon metabolism, and biosynthesis of amino
acids in KEGG enrichment analysis, indicating a close relationship between ethylene production
and carbohydrate metabolism. According to previous studies, carbohydrate metabolism during
banana fruit ripening is accelerated by the elevated activity of enzymes such as amylase, glycosidase,
starch phosphorylase, sucrose synthase, sucrose phosphate synthase, and invertase, leading to
increased enzyme activity in the pentose phosphate pathway and the formation and accumulation
of monosaccharides in banana fruits [19]. Activities of enzymes participating in starch-sucrose
interconversion such as sucrose synthase, sucrose phosphate synthase, and neutral invertase result in
the degradation of the starch reserve and the formation of hexose sugars during banana fruit ripening.
Furthermore, the carbohydrate properties of the storage organs affect the quality of banana fruits.
However, the linkage between ethylene synthesis and ethylene-regulated expression of genes involved
in starch and carbohydrate metabolism, one of the major criteria of fruit quality, has been far less
investigated. Here, we show that the genes participating in carbohydrate metabolism were also affected
by ethylene biosynthesis associated with ripening banana fruits.

Starch synthases catalyze amylose biosynthesis in higher plants [20]. In both As1 and As2,
the expression of starch synthase genes was higher than those in WT samples (Figure 2a,b), indicating
that the level of the amylose content in the banana fruits may be higher in both As1 and As2. According
to our results, sucrose synthase and sucrose-phosphate synthase catalyzing sugar-starch conversion
steps and a cytosolic neutral invertase may be key regulators for starch accumulation in the ripening
banana fruits. This finding provides useful information for future investigation focused on clarifying
the molecular mechanisms of determination of the starch properties in banana fruits.

More specifically, the following events have been evident occurring in the samples of As1 and As2.
(1) The gene expressions for sucrose synthase and sucrose phosphate synthase were down-regulated,
and with the increase in the gene expression level of β-fructofuranosidase, sucrose was decomposed
into α-D-glucose and β-D-fructose in Mh-ACO1 and Mh-ACO2 RNAi transgenic banana lines, resulting
in the reduction of sucrose accumulation. (2) Glucan phosphorylase in plants is usually called starch
phosphorylase and the gene family for glucan phosphorylase showed down-regulated expression in
As1 and As2, which reduced the phosphorylation process of starch. Moreover, the up-regulation of
β-amylase genes accelerated the rate of starch decomposition into maltose. (3) Gene expression for the
gene family of sucrose phosphorylase did not change, so the catalysis of sucrose transformation into
D-fructose was not affected. (4) Under the action of phosphate catalytic fructose kinase, β-D-fructose-6
phosphate may be increasingly produced from β-D-fructose through the up-regulation of genes for
hexokinase in As1 (Figure 2a) or fructokinase in As2 (Figure 2b). (5) It was found out that the genes for
UDP-glucose-6-dehydrogenase, polygalacturonase, and β-glucuronidase were up-regulated, implying
that the pectate, D-galacturonate, and D-glucuronate may be enriched in the Mh-ACO1 and Mh-ACO2
transgenic banana plants. (6) The breakdown of cellulose to soluble sugars involves the action of
a multi-enzyme system. Cellulose is degraded by the synergistic action of three types of enzymes,
namely endoglucanase (EC3.2.1.4), exoglucanase (EC3.2.1.91), and β-glucosidase (EC3.2.1.21). It was
found out that the gene expression for endoglucanase was down-regulated in As2, implying that the
synthesis of D-cellobiose might be reduced. However, this situation was not occurring in As1. (7) The
starch decomposition into dextrin might be reduced because the gene expression for α-amylase was
down-regulated in both As1 and As2.

The increase in gene expressions of polygalacturonase and β-glucuronidase, both in As1 and As2,
as shown in Figure 2a,b, respectively, indicated that the structure of pectin and other hexuronates
(D-galacturonate and D-glucuronate) might be changed in banana peels and pulps of As1 and
As2. D-galacturonate and D-glucuronate are the sugar constituents of pectic polysaccharides which
constitute a dominant portion of the primary cell walls of higher plants [21].
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In total, 21 gene families involved in glycolysis and gluconeogenesis [22] were monitored during
ripening of banana fruits in As1 and As2. Out of 21 gene families coding for enzymes involved in
glycolysis/gluconeogenesis pathway and pyruvate metabolism, 15 gene families (accounting for 71%)
were found to be up-regulated in gene expression in both As1 and As2.

The rate-limiting enzymes of the glycolysis and gluconeogenesis pathway were hexokinases,
6-phosphofructokinase 1, and pyruvate kinase [7]. From a comparison of all the enzymes involved in
glycolysis, it appears that hexokinase in As1 and 6-phosphofructokinase 1 in As2 have higher gene
expression levels in relation to WT levels. While gene expression for enolase remained unaffected in
As1 (Figure 2c), the expression level of enolase gene was up-regulated in As2 (Figure 2d), implying
that in As2, the efficiency of enzymes directly participating in glycolysis and glucose consumption
may be increased.

The gene expression levels for hexokinase in As1 and for 6-phosphofructokinase [23,24] in As2
were increased, implying that the breakdown of phosphohexoses and hence the synthesis of pyruvate
and ATP may be accelerated both in As1 and As2. This viewpoint was further enhanced in that
point the pathway of carbon metabolism through phosphorylation was catalyzed by enolase in As2
(Figure 2d).

Taking all these results into accounts, the silencing of either MhACO1 or MhACO2 gene, and hence
the decrease in ethylene biosynthesis in both As1 and As2, may affect the breakdown of phosphohexoses
and also may directly or indirectly elevate the levels of pyruvate and ATP.

4. Materials and Methods

4.1. Plant Materials

The Musa spp. cv. Pei-Chiao (AAA group, Cavendish subgroup) was used. Untransformed (WT)
and Mh-ACO1 (As1) and Mh-ACO2 (As2) RNAi transgenic banana plants were obtained as previously
described [14]. They were grown in a planting medium including soil, peat, and sand at a proportion
of 1:1:1 by volume in a 300 dm3 plastic tank. The banana plants were cultivated to flower and set
fruits under an isolated greenhouse. The banana fruits were harvested roughly 15 weeks after flower
emergence when the fruits had developed close to maturity. Banana fruit ripening is divided into
stages 1 to 8 by peel color according to the CSIRO Banana Ripening Guide: all green, green with trace
yellow, more green than yellow, more yellow than green, green tip, all yellow, yellow flecked with
brown, and yellow with much brown, respectively [25]. The harvested fruits were treated as previously
described [26].

4.2. Total RNA Extraction and Whole-Transcriptome Deep Sequencing

To analyze transcriptomic changes, fruits were harvested from As1, As2, and WT plants at ripening
stage 3. Total RNA from pulp and peel of banana was extracted using NEBNext® UltraTM RNA Library
Prep Kit for Illumina® (NEB, Ipswich, MA, USA). The integrity of RNA samples was estimated by
electrophoresis on a 1.2% agarose gel. The integrated RNA samples consisting of a mixture of equal
amounts of RNA from banana pulp and peel were used for transcriptome analysis using HiSeqTM 2500
Illumina to generate paired-end sequencing reads. The cleaned reads were assembled into unigenes
using Trinity [27] after adaptors and low-quality sequences were removed. The generated unigenes
were assigned functional annotations by similarity searches with Blastx against protein databases nr, nt,
and SWISS-PROT. The best hits obtained from the blast against the nr database using Blastx2GO were
used to extract Gene Ontology (GO) (E-value < 10−6). Blastx was also used to align unique sequences
to the KEGG (E-value < 10−10). Normalized read counts adjusted to FPKM were used to identify
differentially expressed unigenes using DEGSeq from the R Statistical software package [28], with a
threshold of FDR < 0.05 and log2 Ratio ≥ 1. [log2 (Fold Change)] > 1 and q-value < 0.005 were used as
the threshold to identify and compare differentially expressed genes (DEGs) in As1-vs-WT, As2-vs-WT,
and As1-vs-As2. To quantify the relative gene expressions by heat map visualization normalized by
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FPKM value (Tables S2 and S3), only those IDs specifically matching to genes that were annotated in
the Banana Genome Hub with pairwise identity of greater than 95% as a cutoff using BlastN (as shown
in Tables S2 and S3) were used. Tables S2 and S3 list the contig names corresponding to genes present
in the Banana Genome Hub.

4.3. Real-Time Quantitative RT-PCR

The quantification of the transcripts of selected candidate genes related to starch and sucrose
metabolism was performed by real-time quantitative RT-PCR (qRT-PCR) using the cDNA synthesized
from RNA samples of banana fruits at ripening stages 1, 3, 5, and 7 by ProtoScript® First Strand cDNA
Synthesis Kit (NEB, Ipswich, MA, USA). The sequences of primers used in qRT-PCR are listed in
Table S8. The relative expression level was calculated according to the 2−∆∆Ct formula [29]. Expression
levels in Ct values of the candidate genes were first normalized to the expression levels of ACTIN and
then to the respective expression levels in WT plants. Each experiment had three replicates. Heat
maps [14] were applied to visualize the relative mRNA abundances.

4.4. R Programming for Heat Map Illustration

The graphical visualization of expression profiles of genes associated in carbohydrate and sucrose
metabolism in As1 and As2 transgenic banana plants was plotted as heat maps with R programming
language within the Gplots package [30]. In WT, As1, and As2 unigene libraries from transcriptome
sequencing after performing RNA-Seq, the number of the final assembled contig IDs was 88,031.
To create heat maps for those IDs that specifically matched to the annotated genes in the Banana
Genome Hub with pairwise sequence comparison exceeding 95% using BlastN were used.

5. Conclusions

In this study, the fruit transcriptomes of WT and RNAi transgenic banana plants for Mh-MACO1
and Mh-ACO2 were analyzed, revealing that the expression of genes involved in carbohydrate
metabolism were affected by alterations of ethylene biosynthesis associated with ripening in banana
fruits. Expression profiles of genes relevant to starch and sucrose metabolism, as well as of genes
involved in glycolysis pathway, were thoroughly analyzed. The overall gene expression tendency
through different ripening stages was validated by the implementation of quantitative real-time RT-PCR
with mRNAs of banana fruits in Mh-ACO1 and Mh-ACO2 RNAi transgenic plants. Future work needs
to further elucidate the global metabolomics examinations among WT, Mh-ACO1, and Mh-ACO2
RNAi transgenic banana plants. These studies will provide new insights into the mechanisms and
consequences of ethylene biosynthesis-related genes in carbohydrate metabolism during banana
fruit ripening.
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