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Abstract: Background: In higher eukaryotes, N6-methyladenosine (m6A) is the most common
internal form of messenger RNA modification. By mapping the m6A methyl genome in multiple
species, the potential regulatory function of reversible m6A methylation on mRNA is revealed.
Recent studies have shown that RNA m6A modification influences mRNA transcription, location,
translation, stability, splicing, and nuclear export. However, there are not enough data on the m6A
transcriptome-wide map and its potential biological role in the heat stress of Pak-choi (Brassica rapa
ssp. chinensis). Methods: In this work, MeRIP-seq was used to obtain the first transcriptome-wide
profiling of RNA m6A modification in Pak-choi. Meanwhile, the transcriptome data were obtained
by analyzing the input samples’ sequencing data. Results: Our research indicated that with three
replicates, there were 11,252 common m6A peaks and 9729 common m6A-containing genes identified
in the normal (CK) and heat stress (T43) groups. It was found that m6A peaks were highly enriched
in the 3′ untranslated region in both CK and T43 groups. About 80% of the genes have one m6A site.
The consensus sequence of m6A peaks was also enriched, which showed as AAACCV (V: U/A/G).
In addition, association analysis found that there is a certain relationship between the degree of
m6A methylation and the transcription level, indicating that m6A plays a certain regulatory role in
gene expression. Conclusion: This comprehensive map in the study may provide a solid basis for
determining the potential function of RNA m6A modification in Pak-choi under normal (CK) and
heat stress (T43) conditions.

Keywords: differentially methylated genes; heat stress; N6-methyladenosine; Pak-choi;
transcriptional regulation

1. Background

In higher eukaryotes, N6-methyladenosine (m6A) is the most common form of internal
modification in long-noncoding RNAs and polyadenylated mRNAs, which was first detected in
the 1970s [1]. Generally speaking, it is catalyzed by a multicomponent complex composed of two
active methyltransferases (such as methyltransferase 3 and methyltransferase 14). To date, the most
common of the more than 100 types of RNA modifications identified are m6A, m5C, and m1C RNA
methylation [2,3]. Studies have shown that defects in m6A methylation or demethylation will lead
to serious physiological consequences [4]. With continuous research in this area, it has become
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increasingly clear that m6A is essential for gene expression regulation and plays an important role in
plant development.

Some previous studies have shown that RNA m6A plays an important role in regulating cellular
metabolism and controlling the migration of embryonic stem cells in mammals [5]. In addition,
RNA m6A can also regulate the totipotency of stem cells in mice [6] and the operation of stem cells in
Arabidopsis [7]. In Arabidopsis thaliana, it was found that every 1000 nucleotides contained 0.5–0.7 sites,
and each actively expressed transcript contained 0.7–1.0 sites [8,9]. In plants, m6A is a combination
of m6A methyltransferase and consensus sequence RRm6ACH (R: G/A; H: U > A > C) [7]. In order
to gain a deeper understanding of the potential biological function of RNA m6A modification, it is
necessary to detect m6A modification sites within the transcriptome. With the continuous development
of science and technology on m6A research in humans and mice, a new method has been developed
to perform transcriptome-wide m6A localization analysis, that is, using next-generation sequencing
technology (MeRIP-seq) for methylated RNA immunoprecipitation and analysis of transcriptome-wide
m6A [10,11]. This new research method (MeRIP-seq) has also been used to obtain the first full heat-stress
map in the m6A transcriptome range in Pak-choi. Using this method, more than two-thirds of the
transcripts in Arabidopsis were detected with m6A modification [12]. Recent studies have shown that
m6A is predominantly located near the stop codons and 3′ UTR [12]. These findings also suggest that
m6A modification is highly dynamic and plays a specific role in regulating plant development.

Pak-choi, which is widely grown in the world today, is one of the most important vegetables
in China. However, the gradual increase in ambient temperatures has affected the normal growth
and development of crops, leading to a reduction in crop yield and quality [13,14]. In recent years,
there have been studies on the heat stress response, including research on heat signal transduction
pathways, heat stress protein identification, and transcriptional regulatory factors [15,16]. Previous
studies have found that the expression level of heat stress proteins (HSPs) is affected and regulated
by m6A on RNA [17]. Further research has found that 5′ UTR m6A at a single site mediates thermal
stress-induced translation of HSP70 [10,18]. Currently, there is very little research on transcriptome-wide
N6-methyladenosine methylome profiling of heat stress in Pak-choi and other plants. In this work,
we acquire the first-ever m6A transcriptome-wide map of heat stress in Pak-choi. In order to further
study the function of m6A and provide a basis for identification of m6A future research, we collected
transcriptomes of normal (CK) and heat stress (T43) condition leaf tissues from Pak-choi. Here, we
obtain the first-known m6A map of the transcriptome range in Pak-choi. We also compare and analyze
the patterns of m6A distribution between CK and T43 conditions to obtain differentially methylated
peaks and then analyze potential functions in gene expression regulation under high temperature stress.

2. Results and Discussion

2.1. Transcriptome-Wide Detection of m6A Modification in Pak-choi

Using Illumina Novaseq™ 6000, input and IP libraries of normal and heat stress conditions were
sequenced. Statistical analysis and quality control were performed on the original data generated
by RNA sequencing (Table 1). We acquired almost 80 million reads per library. After screening and
quality control of the original data generated by sequencing, valid reads were mapped to the reference
genome (Table 2). Among the valid reads, about 80% were uniquely mapped to the reference genome
(Table 2). We next analyzed the distribution of m6A in the whole transcriptome for CK and T43
groups. The reads were mapped and distributed along CDS, 5′ UTR, and 3′ UTR, as depicted in
Figure 1. The read frequency in 3′ UTR of m6A–IP samples was significantly higher than that of input
samples. In Arabidopsis, studies have found that a dominant m6A peak near the top codon or 3′ UTR
is observed in most nuclear mRNAs [11,19]. Here, in Pak-choi, our research found that m6A might be
predominantly located in the 3′ downstream region.
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Table 1. Statistics and quality control of raw data generated by sequencing.

Sample Raw Reads Raw Bases Clean Reads Clean Bases Valid Bases Q30 GC

CK_1_input 85.82 M 12.92 G 82.01 M 9.07 G 70.23% 87.33% 48.42%
CK_1_IP 80.33 M 12.09 G 76.98 M 10.38 G 85.82% 87.88% 47.28%

CK_2_input 86.32 M 12.99 G 83.84 M 9.49 G 73.04% 87.36% 48.52%
CK_2_IP 64.75 M 9.71 G 63.71 M 8.38 G 86.28% 89.74% 47.28%

CK_3_input 85.15 M 12.82 G 83.75 M 9.59 G 74.80% 88.50% 48.31%
CK_3_IP 73.17 M 11.01 G 69.33 M 8.84 G 80.32% 87.21% 46.96%

T43_1_input 80.40 M 12.10 G 78.73 M 8.93 G 73.79% 88.72% 48.16%
T43_1_IP 80.10 M 12.01 G 79.10 M 9.40 G 78.27% 87.65% 46.45%

T43_2_input 75.21 M 11.28 G 74.94 M 8.54 G 75.73% 89.72% 48.07%
T43_2_IP 77.01 M 11.59 G 73.52 M 9.47 G 81.67% 88.03% 46.85%

T43_3_input 85.14 M 12.82 G 81.97 M 9.50 G 74.11% 87.03% 48.03%
T43_3_IP 78.39 M 11.80 G 74.95 M 9.48 G 80.35% 88.62% 46.79%

Table 2. Read alignment statistics.

Sample Total Reads Total Mapped
Reads Multiple Mapped Uniquely Mapped Reads Mapped in

Proper Pairs

CK_1_input 82,012,256 72,759,712 (88.72%) 4,178,829 (5.10%) 68,580,883 (83.62%) 66,920,836 (81.60%)
CK_1_IP 76,984,824 67,393,417 (87.54%) 3,465,135 (4.50%) 63,928,282 (83.04%) 59,429,546 (77.20%)

CK_2_input 83,839,082 74,908,623 (89.35%) 4,645,028 (5.54%) 70,263,595 (83.81%) 68,417,558 (81.61%)
CK_2_IP 63,714,740 56,726,613 (89.03%) 3,176,962 (4.99%) 53,549,651 (84.05%) 50,426,514 (79.14%)

CK_3_input 83,747,818 75,954,376 (90.69%) 4,321,180 (5.16%) 71,633,196 (85.53%) 69,931,644 (83.50%)
CK_3_IP 69,326,216 60,695,740 (87.55%) 3,178,979 (4.59%) 57,516,761 (82.97%) 54,734,078 (78.95%)

T43_1_input 78,733,522 71,546,508 (90.87%) 4,487,991 (5.70%) 67,058,517 (85.17%) 65,867,334 (83.66%)
T43_1_IP 79,099,558 69,007,966 (87.24%) 4,462,602 (5.64%) 64,545,364 (81.60%) 61,905,290 (78.26%)

T43_2_input 74,935,246 68,759,115 (91.76%) 4,272,256 (5.70%) 64,486,859 (86.06%) 63,435,032 (84.65%)
T43_2_IP 73,516,480 64,743,517 (88.07%) 3,957,284 (5.38%) 60,786,233 (82.68%) 58,314,510 (79.32%)

T43_3_input 81,967,046 72,968,341 (89.02%) 4,605,436 (5.62%) 68,362,905 (83.40%) 66,579,194 (81.23%)
T43_3_IP 74,954,614 66,014,828 (88.07%) 4,025,106 (5.37%) 61,989,722 (82.70%) 59,600,270 (79.52%)
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Figure 1. Distribution of m6A methylome along Pak-choi transcripts. Each transcript is divided into
three parts: 5′ UTR, CDS, and 3′ UTR. (A) Normal (CK) group; (B) heat stress (T43) group.

The m6A peaks (actually identified as m6A modification sites) were identified based on a
comparison of read distribution between the input and IP samples using the MeTDiff package. In the
T43 and CK groups, 15,919 and 15,436 m6A peaks were identified, respectively (Figure 2A). The average
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length of peaks was 401.04 and 378.02 bp, respectively. The minimum length of peaks was 135 bp.
In addition, 12,392 and 12,363 genes contained m6A peaks in T43 and CK groups, respectively (Figure 2B).
The Veen diagram identifies 11,252 common m6A peaks and 9729 common m6A peak-containing genes
(Figure 2). The GO enrichment analysis showed that the biological processes of RNA processing and
methylation, salt stress response, and protein folding were significantly enriched.

1 
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Figure 2. Number of overlapped m6A peaks (A) and m6A peak-containing genes (B) in CK and
T43 groups.

2.2. m6A Topological Patterns in Pak-choi

Over 90% of the methylated transcripts showed one or two m6A sites, whether in the CK or T43
group (Figure 3), and about 80% contained one m6A site, which was much higher than previously
reported in Arabidopsis (only 27%). A previous study of m6A topology in Arabidopsis chloroplasts and
mitochondria found that only one m6A site in these two organelles covered more than 27% of the
methylated transcripts [20].
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Figure 3. Statistics on the proportion of genes containing different numbers of m6A peaks. (A) CK
group; (B) T43 group.

In order to further understand the position of m6A in the transcripts, the subgene profiles of the
m6A peaks in the transcriptomes of CK and T43 groups were studied. The m6A peaks were assigned
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based on their location on different transcript segments: 5′ UTR, 3′ UTR, and exon. The results showed
that the m6A peaks were markedly located in the 3′ untranslated region (3′ UTR; Figure 4).
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Figure 4. Distribution of m6A peaks within transcripts divided into 5′ UTR, 1st exon, 3′ UTR, and other
exons. (A) CK group; (B) T43 group; (C) the consensus motifs enriched with m6A peaks in the CK group.

To determine whether the identified m6A peaks share common sequence elements that are
characteristic of m6A RNA modification, we performed an unbiased search for consensus motifs
enriched in regions surrounding the m6A peak identified in the CK group (Figure 4C). The conserved
motifs, like AAACCV (V: U/A/G; p = 8.4 × 10−32), were also enriched (Figure 4C). In order to estimate
the relationships between the m6A peak and expression levels, the genes were equally divided into
10 groups according to expression level, from low to high, and the m6A density of each group was
calculated separately. The m6A peak density increased with the increase of expression levels. We also
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used this information to estimate that the genes with the highest expression levels contain about
0.75 m6A peaks per gene in the CK and T43 groups, respectively (Figure 5).
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In order to study the influence of heat stress on m6A modification, differential m6A peaks were
identified between the CK and T43 groups using MeTDiff. A total of 2603 differential m6A peaks
were identified by comparing the CK and T43 groups (Table S1). Analysis of GO enrichment of the
differential m6A peak-containing genes showed that the biological processes of virus-induced gene
silencing, freezing response, and post-translational protein modification were enriched.

2.3. Differentially Expressed Genes Analysis

To investigate the potential relationship of m6A and gene expression, we used FPKM (fragments
per kilobase of exon model per million mapped reads) to quantify the gene expression in T43 and CK
groups using the input sequencing data. As a result, 31,832 genes were detected in at least one sample
(Table S2). By comparing the T43 group and the CK group, we found that 7593 genes were upregulated,
while 9379 genes were downregulated, after high-temperature stress (Figure 6A). These results were
further demonstrated by using gene expression density maps (Figure 6B). The differentially expressed
genes (DEGs) were categorized according to GO annotations (Figure 7A). The biological processes,
such as response to heat, response to cold, and response to salt stress, were enriched. Their molecular
functions were primarily related to protein-binding activity. The cellular components involving the
chloroplast envelope and chloroplast stroma were enriched. Through KEGG (Kyoto Encyclopedia of
Genes and Genomes) enrichment analysis, we found that most differential genes were enriched in the
biosynthesis of amino acids and the translation processing pathway (Figure 7B). Research findings
indicated that changes in m6A might help regulate many genes expressed under stress [17]. In fact,
Zhou et al. [21] found that m6A changes due to heat shock stress and activates hsp70 mRNA translation.
We hypothesized that some of these differential genes might be involved in the amino acid metabolism
synthesis pathway in-vivo. These findings call for further analysis of the relationship between m6A
modification and regulation of transcriptional expression.
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Figure 7. Differential expression genes enrichment analysis. (A) Differential expression genes GO
enrichment; (B) differential expression genes KEGG enrichment.
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2.4. Association Analysis between Differentially Expressed Genes and Differential m6A Peaks

To further associate m6A modification and gene expression, codifferential gene analysis was
conducted. We combined the differentially expressed genes and differential m6A peaks. To visually
represent the link between gene expression and m6A methylation change, we constructed a four-image
map of differential expression genes and differential m6A methylation genes (Figure 8). As a result,
1641 genes were identified as significant codifferential genes with the following screening criteria:
fold change ≥1.5 in m6A peak and expression levels (Figure 8, Table S3). We found that 516 genes
satisfied the significant difference in the upregulation of m6A and significantly downregulated their
expression, and 714 differential genes satisfied the significant difference in the upregulation of m6A
and significantly upregulated their expression. Similarly, 320 genes satisfied the significant difference
in the downregulation of m6A and significantly downregulated their expression, and 91 genes
satisfied the significant difference in the downregulation of m6A and significantly upregulated their
expression (Figure 8). Previous studies have emphasized that m6A modification has a certain effect
on plant development and stress resistance [22]. Further research revealed that m6A can inhibit
site-specific transcriptome cleavage in plants, and this mechanism is necessary to properly regulate the
salt-stress response transcriptome [23]. These results provide a solid foundation for further study of
m6A modification.Plants 2020, 9, x FOR PEER REVIEW 10 of 14 
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3. Materials and Methods

3.1. Plant Material and Tissue Collection

An excellent variety “Suzhouqing” from Pak-choi seeds were grown in pots with a soil matrix
(soil:vermiculite = 3:1) and then placed in an artificial climate room (day: 16 h at 25 ◦C, the light
intensity was set to 150 µmol m−2 s−1; night: 8 h at 18 ◦C). When the seedlings reach the five-leaf stage,
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some seedlings were moved to the growth room without light for heat stress treatment (43 ◦C for
8 h); other seedlings were used as a control group (25 ◦C without light). Control plants and treated
plants were then sampled (leaves). The fresh weight of each sample was kept at 200 mg; fresh leaves
were collected, and large veins were avoided as much as possible. All leaf samples were immediately
frozen in liquid nitrogen, then stored at −80 ◦C in a refrigerator. Three samples of each treatment
were collected from all the above plants to be used in three biological replicates. At the same time,
three trials were repeated.

3.2. Library Construction and RNA Sequencing

We used Trizol reagent (Invitrogen, Carlsbad, CA, USA) to extract total RNA from the samples
obtained. The quality and quantity of the total RNA obtained were analyzed by a Bioanalyzer 2100
and an RNA 6000 Nano LabChip kit (Agilent, Palo Alto, CA, USA) with RIN value >7.0. About
200 µg of total RNA was isolated from poly (A) mRNA using magnetic beads (Invitrogen) with poly-T
oligonucleotides. Then, the cleaved RNA fragment and m6A specific antibody were supplemented with
BSA (0.5µgµL−1). Then, we incubated those mixtures with protein A beads by elution using elution
buffer. The eluted RNA was finally subjected to precipitation analysis with 75% ethanol. According to
the chain-specific library prepared by the dUTP method [24], the eluted fragment containing m6A and
the untreated input control fragment were converted into a cDNA library. The results showed that the
average insertion size of the paired library was about 100 ± 50 bp. Finally, we performed 2 × 150 bp
paired-end sequencing analysis on the Illumina Novaseq™ 6000 platform according to the method
recommended by the supplier.

3.3. Data Analysis

According to the method described by our predecessors, sequence data analysis was performed
on preprocessing sequencing reads and read alignments [25]. First, the original data of IP RNA-seq and
input RNA-seq were analyzed by Trim Galore (version 0.3.7), adapters and low-quality (Q < 25) data
were deleted, and data with readings less than 50 bp were deleted [26]. We also deleted all readings
that map to multiple genomic regions, Keeping only those reads that were uniquely mapped to the
reference sequence for further analysis of the m6A-modified peak.

3.4. Biological Information Analysis

To get clean data, we first used cutadapt [27] and local perl scripts to remove low-quality and
contaminated sequences, followed by FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) software to clean data and conduct quality inspection and control. Finally, the default
parameters of bowtie [28] were used to compare reads to the reference genome (data unpublished)
to read the statistics. By using MeTDiff [29] and ChIPseeker [30], peak calling, differential m6A
peak, and peak annotation analysis were performed, and, at the same time, by using MEME [31] and
HOMER [32], motif analysis was performed on the enriched area. The gene quantification software
used was StringTie [33], and the normalization mode was set to FPKM. The R package edgeR [34] was
used to identify and analyze gene differences.

3.5. Expression and Function Analysis of Multilayer Genes

Cufflinks software (version 2.2.1) was used to measure gene expression levels per million unique
mapping reads of genes per kilobase exon model input sequence reads, followed by the Cuffdiff
program (version 2.2.1) to identify the number of differentially expressed genes between different
samples. These genes (p ≤ 0.05 and normalization factor ≥1.5) are seen as differentially expressed
genes [35]. GO analysis of the hypergeometric distribution test was based on the GO consortium
database and R, using DAVID bioinformatics [36,37].

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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4. Conclusions

For the first time, we provide an m6A map on the transcriptome after heat-stress treatment in
Pak-choi. More importantly, our map reveals the characteristics of m6A distribution in the Pak-choi
transcriptome and its possible functional meaning. We also found a certain relationship between the
degree of m6A methylation and the level of transcription, further indicating that m6A might play
an important role in the regulation of gene expression. The construction of a comprehensive map in
this study may provide a solid basis for determining the functional role of heat stress on RNA m6A
modification in Pak-choi.
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