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Abstract: The plant U-box (PUB) protein is the E3 ligase that plays roles in the degradation or
post-translational modification of target proteins. In rice, 77 U-box proteins were identified and
divided into eight classes according to the domain configuration. We performed a phylogenomic
analysis by integrating microarray expression data under abiotic stress to the phylogenetic tree
context. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) expression
analyses identified that eight, twelve, and eight PUB family genes are associated with responses to
drought, salinity, and cold stress, respectively. In total, 16 genes showed increased expression in
response to three abiotic stresses. Among them, the expression of OsPUB2 in class II and OsPUB33,
OsPUB39, and OsPUB41 in class III increased in all three abiotic stresses, indicating their involvement
in multiple abiotic stress regulation. In addition, we identified the circadian rhythmic expression for
three out of 16 genes responding to abiotic stress through meta-microarray expression data analysis.
Among them, OsPUB4 is predicted to be involved in the rice GIGANTEA (OsGI)-mediating diurnal
rhythm regulating mechanism. In the last, we constructed predicted protein-protein interaction
networks associated with OsPUB4 and OsGI. Our analysis provides essential information to improve
environmental stress tolerance mediated by the PUB family members in rice.
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1. Introduction

Ubiquitination is a protein degradation system that regulates the amount of intracellular
accumulation of signaling substances by selectively degrading certain proteins [1]. Especially in
plants, various hormone signaling mechanisms, development, biotic, and abiotic stress signaling
mechanisms have been reported to be closely related to ubiquitination [2,3]. Ubiquitin is a small
8-kDa protein in all eukaryotes. It is attached to specific proteins by the three enzymes Ub-activating
enzyme (E1), Ub-conjugating enzyme (E2) and Ub-ligase (E3). Specific proteins that are subsequently
polyubiquitinated are degraded by the 26S proteasome [4,5]. Among these, E3 ligase plays a major role
in determining the specificity of the substrate and is largely divided into single-subunit E3 ligase and
multi-subunit E3 ligase depending on the structure.

The single-subunit E3 ligase acts as an E3 ligase by itself, without any additional protein [6].
Single-subunit E3 ligase is subdivided into three proteins according to the domain: RING (for Really
Interesting New Gene), U-box, and HECT (for Homology to E6-AP carboxyl terminus). Interestingly,
other single-subunit E3 ligases exist in similar numbers among eukaryotes, but the number of U-box E3
ligases in plants is higher than in other eukaryotes. For example, 21 and 2 U-box E3 ligases were found
in human and yeast [7,8], while Arabidopsis and rice were known to be 64 and 77, respectively [9,10].
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Thus, the diversity of plant U-box genes suggests that the U-box domain may play an important role in
performing plant-specific intracellular processes.

The circadian clock is an evolutionary system adapted to fluctuating environmental changes in
the earth [11]. In particular, circadian clocks of immovable plants have more authority than animals
and participate in various developmental processes [12]. The circadian clock is divided into an input
that accepts the external environment signal, an oscillator that generates the rhythm according to
the change cycle of the external environment, and an output that is controlled by this oscillator [13].
The most representative function of the output in the plant circadian clock is flowering. In other
words, the circadian clock of the plant recognizes the photoperiod and determines the timing of the
flowering [14]. For example, Arabidopsis induces the degradation of CYCLING DOF FACTOR 1 (CDF1),
which prevents the expression of CONSTANS (CO), an important gene for flowering, by inducing the
binding between two proteins of GIGANTEA (GI) and FLAVIN-BINDING, KELCH REPEAT, F-BOX 1
(FKF1) in the long-day condition. However, in a short-day condition, the binding between the two
proteins GI and FKF1 is decreased, so that the expression of CO is kept low and the flowering time is
delayed [15].

In rice, 77 U-box E3 ligase genes are known, of which only six genes have been reported [16–20].
In other words, many rice U-box E3 ligase genes have not yet been studied, and phenotypic interference
due to functional redundancy may be one of the reasons [21]. Therefore, we analyzed transcriptome
data using the phylogenomics tool and tried to obtain information on the environmental response
characteristics of individual genes. This study comprehensively analyzed the expression characteristics
in response to abiotic stress (drought, salinity, and cold) and the circadian clock which have not
been studied in the previous genome-wide PUB family. Based on this, we will provide important
fundamental data for studying the functions of individual PUB gene family.

2. Materials and Methods

2.1. Multiple Alignment and Phylogenetic Analysis

To perform our phylogenetic analysis of the PUB family, we used the protein sequences of 77 PUB
genes identified in a previous global analysis of the rice PUB family [10]. The protein sequences for
our phylogenomic analysis were downloaded from the Rice Genome Annotation Project Website [22].
After multiple-alignment of those sequences with ClustalX [23], we generated a phylogenetic tree using
the Neighbor-Joining method, as incorporated in the MEGA5 tool kit for phylogenetic analysis [24].

2.2. Meta-Analysis of Gene Expression Data and Heatmap Development

Affymetric- and agilent-microarray data (GSE6901, GSE36040 and GSE38023), and RNA-seq data
(GSE92989) were downloaded from the NCBI Gene Expression Omnibus (GEO, http://www.ncbi.nlm.
nih.gov/geo/). We then uploaded the normalized expression data to the Multi Experiment Viewer and
visualized the data via heatmaps (http://www.tm4.org/mev.html).

2.3. Plant Materials and Abiotic Stress Treatment

Rice (O. sativa L.cv. Dongjin) seeds were germinated on the Murashige Skoog medium for 14 days
at 28 ◦C. Subsequently, the seedlings were washed with sterilized water to completely remove the agar
and were air-dried for 0, 2, 6, and 12 h at 28 ◦C for drought stress treatment [25]. To simulate salinity
stress, we exposed 14-day-old plants to 200 mM NaCl for 0, 2, 6, and 12 h at 28 ◦C [26]. In the last,
we exposed 14-day-old plants to 4 ◦C ± 1 ◦C for 0, 2, 6, and 12 h for cold stress treatment. The control
plants remained at 28 ◦C. Leaves and roots of three plants were pooled for one biological replicate and
each treatment had three biological repeats.
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2.4. Plant Materials for Diurnal Rhythm

To investigate the functional associations of PUB family members with the diurnal rhythm
and OsGI (GIGANTEA)-mediating regulatory pathway, Wild-type (WT) plant and osgi mutant seeds
(LOC_Os01g08700) were germinated on the Murashige Skoog medium for 7 days at 28 ◦C [27].
They were then transferred to individual pots and grown in an incubator (12-h light/12-h dark,
28 ◦C/22 ◦C) for 30 days. After that, their leaves were sampled at 2-h intervals for 24 h.

2.5. RNA Extraction and Real-Time Quantitative PCR

Samples were frozen in liquid nitrogen and total RNAs were extracted using RNAiso Plus
(Takara Bio, Kyoto, Japan). Using MMLV Reverse Transcriptase (Promega, Madison, WI, USA) and the
oligo(dT) 15 primer, first-strand cDNA was synthesized as we recently reported [28,29]. For normalizing
the amplified transcripts, we used a primer pair for rice ubiquitin 5 (OsUbi5/Os01g22490) [30]. All primers
for these analyses are summarized in Table S1.

2.6. Analysis of a Predicted Protein–Protein Interaction Network

Using the STRING tool (https://version-10-5.string-db.org/) [31], we generated a hypothetical
protein–protein interaction network involving E3 ubiquitin ligase, transcription factors (TFs), and
flowering regulatory genes. The network was edited with the Cytoscape tool (https://cytoscape.org/;
version 3.6.0) (The Cytoscape Consortium, New York, NY, USA) [32,33].

3. Results and Discussion

3.1. Integration of Abiotic Stress Expression Patterns with a Phylogenetic Tree Context of the Rice PUB Family
Reveals the Key PUB Family Members for the Stress Responses

According to the recent report on the PUB family in rice, 77 estimated U-box proteins were
identified through a whole-genome analysis algorithm and divided into eight classes according to the
domain configuration (Figure 1 and Figure S1) [10]. We have constructed a phylogenetic tree using
protein sequences for each of the five classes except I, VI, and VIII, which have only one or two genes
in the eight classes. The expression of 77 genes was visualized using drought- and salinity-treated
RNA-seq data (GSE92989) using seedling roots [26], and cold-treated microarray data (GSE6901 and
GSE38023) from using seedling leaves. When the resultant microarray data were examined according
to criteria where t-test p-values were <0.01 and upregulation showed a greater than 1 (log2 scale)-fold
change for control versus abiotic stress, we were able to identify 16 genes (Figure 1). The remaining
genes in the heat-map were visualized in gray color. As a result, we identified eight (OsPUB2, OsPUB4,
OsPUB5, OsPUB8, OsPUB33, OsPUB39, OsPUB41 and OsPUB67), twelve (OsPUB2, OsPUB3, OsPUB5,
OsPUB6, OsPUB33, OsPUB39, OsPUB41, OsPUB46, OsPUB51, OsPUB63, OsPUB64 and OsPUB67),
and eight (OsPUB2, OsPUB10, OsPUB33, OsPUB39, OsPUB41, OsPUB43, OsPUB46 and OsPUB64)
upregulated genes under drought, salinity, and cold stress conditions [25,26]. Interestingly, expression
of OsPUB2 in class II and OsPUB33, OsPUB39, and OsPUB41 in class III increased in all three abiotic
stresses. In addition, most genes with increased expression in drought, salinity, and cold stress were
included in classes II, III, and VII. These results indicate that among the 77 PUB families, there are
pivotal classes and genes that respond to environmental stress.

3.2. Real-Time Quantitative PCR Analysis Confirmed Expression Patterns in Response to Drought, Salt and
Cold Stresses of 16 PUB Family Genes in Rice

To confirm the global transcriptome data, we carried out quantitative reverse transcription
polymerase chain reaction (qRT-PCR) analysis of PUB family genes in the drought, salinity, and cold
stress conditions. Fourteen-day-old seedlings were treated with drought, salinity, and cold stress for 0,
2, 6, and 12 h, respectively. Root samples under drought and salinity stress and leaf samples under
cold stress are collected for cDNA synthesis.

https://version-10-5.string-db.org/
https://cytoscape.org/
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Figure 1. Meta-analysis of OsPUB genes expression patterns using drought- salinity- and cold-treated 
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As the first step, we tested the expression of OsDREB1A, a drought and cold stress marker gene,
for drought (0, 2, 6, and 12 h) and cold (0, 2, 6, and 12 h) stress samples, and of expression of OsbZIP23,
a salt stress marker gene, for salt (0, 2, 6, and 12 h) stress samples [34,35]. As expected, expressions
of OsDREB1A and OsbZIP23 were significantly stimulated compared to the control at all tested time
points of stress treatment (Figure 2), indicating that samples under drought, salt, and cold stress
treatments are well qualified for the further differential expression analyses. To validate expression
patterns of selected PUB genes, we chose a 2 h sample (salinity) and 12 h samples (drought and cold)
out of the time series stress treatments showing stronger and more stable upregulation of marker genes.
Subsequently, we confirmed that expressions of 16 PUB genes were significantly upregulated under
drought, salinity and cold stresses (Figure 2). These results are in agreement with expression patterns
analyzed using transcriptome data associated with abiotic stress.

Plants 2020, 9, x FOR PEER REVIEW 5 of 10 

a salt stress marker gene, for salt (0, 2, 6, and 12 h) stress samples [34,35]. As expected, expressions of 
OsDREB1A and OsbZIP23 were significantly stimulated compared to the control at all tested time 
points of stress treatment (Figure 2), indicating that samples under drought, salt, and cold stress 
treatments are well qualified for the further differential expression analyses. To validate expression 
patterns of selected PUB genes, we chose a 2 h sample (salinity) and 12 h samples (drought and cold) 
out of the time series stress treatments showing stronger and more stable upregulation of marker 
genes. Subsequently, we confirmed that expressions of 16 PUB genes were significantly upregulated 
under drought, salinity and cold stresses (Figure 2). These results are in agreement with expression 
patterns analyzed using transcriptome data associated with abiotic stress. 

 
Figure 2. qRT expression profiles for 16 OsPUB genes selected from global transcriptome data 
analysis. OsDREB1A and OsbZIP23 were used as marker genes for abiotic stress (A). Abiotic stress 
samples were prepared from drought (B), salinity (C), and cold (D) (0, 2, 6, and 12 h) in root or leaf. 
Rice ubiquitin (OsUbi5) was served as internal control. ** p value < 0.01; *** p value < 0.001. N = 3. 

3.3. PUB Family Genes Are Involved in OsGI Mediating Diurnal Regulation Pathway 

Diurnal rhythm in plants is regulated by light and the circadian clock, and metabolism, 
physiology, and behavior change between day and night [36]. In addition, recent studies have shown 

Figure 2. qRT expression profiles for 16 OsPUB genes selected from global transcriptome data analysis.
OsDREB1A and OsbZIP23 were used as marker genes for abiotic stress (A). Abiotic stress samples were
prepared from drought (B), salinity (C), and cold (D) (0, 2, 6, and 12 h) in root or leaf. Rice ubiquitin
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3.3. PUB Family Genes Are Involved in OsGI Mediating Diurnal Regulation Pathway

Diurnal rhythm in plants is regulated by light and the circadian clock, and metabolism, physiology,
and behavior change between day and night [36]. In addition, recent studies have shown that circadian
rhythm correlates with abiotic stress [37–39]. To identify the PUB genes in rice associated with diurnal
rhythm, we analyzed expression patterns using publicly available Agilent 44k array data (GSE36040)
obtained in rice leaves harvested under diurnal rhythm in nine different developmental stages [40].
Of the 77 PUB genes, nine (OsPUB2, OsPUB4, OsPUB16, OsPUB20, OsPUB34, OsPUB47, OsPUB52,
OsPUB63, and OsPUB77) genes were observed to show diurnal rhythm in the leaves (Figure S1).
Among the 16 genes with increased expression in Abiotic stress, three (OsPUB2, OsPUB4, and OsPUB63)
genes were associated with diurnal rhythm (Figure 1). To confirm expression associated with diurnal
rhythm, 37-day-old leaves were sampled at 2 h intervals for 24 h, and we confirm that diurnal rhythms
of OsPUB4 and OsPUB63 were observed through Real-Time qPCR analyses. There was no difference
in expression in the dark state of OsPUB4, but expression increased when the plant first recognized the
light (Figure 3). In contrast, OsPUB63 showed no expression difference in the light state but increased
expression in the dark state (Figure 3). Unfortunately, OsPUB2 was associated with diurnal rhythms in
the Agilent 44k array data, but no significant change in expression was observed in Real-Time qPCR
analysis (Figure S2).

To obtain the insight into the mechanism on the regulation of the diurnal rhythm of these PUB
genes, we used rice gi mutants with defects in the diurnal rhythm [27]. In osgi, diurnal expression
of a well-known marker gene for diurnal rhythm, LATE ELONGATED HYPOCOTYL (LHY) [41],
was dramatically down-regulated across all time points (Figure 3B). Interestingly, OsPUB4, like LHY,
disappeared from diurnal rhythm expression patterns in osgi mutants (Figure 3B). In contrast, OsPUB63
was able to observe the same diurnal rhythm expression patterns in both the control (dongjin) and
osgi mutants. These results indicate that the OsPUB4 gene is involved to the OsGI-mediating diurnal
rhythm regulating mechanism.
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Figure 3. Diurnal expression patterns of two OsPUB genes in mature leaves, using available Agilent
44k array data over the entire plant life span (A), or evaluated at 12 time points over 24-h period in
“Dongjin” rice and osgi mutant (B). OsLHY was standard marker gene for diurnal rhythm. OsUbi5
was served as the internal control. The continuous white and black bars indicate day and night time,
respectively. ZT, zeitgeber time (ZT = 0 at lights-on).
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3.4. OsPUB4 Is Under the Control of OsGI, One of Main Regulators of the Circadian Clock

GI is involved in maintaining the circadian clock of downstream genes. It has been reported
that the circadian rhythms of flowering regulatory genes such as Ehd1 (Early heading date 1), Hd3a
(Heading date 3a), RFT1 (RICE FLOWERING LOCUS T 1), Hd1 (Heading date 1) and OsMADS51 are
significantly reduced in osgi mutants [27,42,43]. Interestingly, like the flowering regulation genes
mentioned earlier, the circadian rhythm of OsPUB4 also decreases in the osgi mutant (Figure 3).
This result indicates that OsPUB4 might be under the control of OsGI, one of the main regulators of
the circadian clock. We created a putative network on the STRING website (https://string-db.org/cgi/
input.pl?sessionId=dsUIDFue7qrX&input_page_show_search=on) to check the correlation between
OsPUB4 and OsGI. As expected, the network includes photoreceptors such as PHYA (Phytochrome
A), PHYB (Phytochrome B), and transcription factors related to flowering time such as Ghd7 (Grain
number, plant height, and heading date7), HD3A and HD2 (Figure 4).
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4. Conclusions

In this study, we selected genes that respond to abiotic stress in the OsPUB family, and further
confirmed their circadian clock. Recent studies have shown that genes associated with the circadian
clock and flowering time are associated with abiotic stress [38,39]. For example, in Arabidopsis,
the GI-overexpressed transgenic plants show increased salt sensitivity, while the osgi mutants show a
salt tolerance phenotype [44]. In addition, LOV KELCH protein 2 (LKP2), which regulates circadian
rhythm and flowering time in plants, increases dehydration tolerance when overexpressed [45]. The key
clock component (TOC1, the timing of CAB expression 1) that binds to the promoter of the ABA-related
gene increases drought tolerance in toc1-RNAi plants. Conversely, overexpression of TOC1 increases
water loss in drought conditions, leading to a decrease in survival rate [46]. Interestingly, there is no
correlation between the effects of mutations on clock function and abiotic stress resistance. Instead,
changes in the expression level of the clock gene in the mutants are presumed to have a direct effect on
the regulation of the abiotic stress response [38]. For example, half of the genes responsive to drought,
salinity, heat, and osmoticum were found to have diurnal rhythm [47]. This transcriptomic analysis
suggests that many genes that respond to abiotic stress are under the control of the circadian clock.
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Therefore, we speculate that OsPUB4 will play a role similar to COP1 (Constitutive
photomorphogenic 1). COP1 is an E3 ubiquitin ligase containing RING-finger and WD40 domains,
and is known to be involved in the control of seedling development, flowering time, and circadian
rhythm [48]. In particular, HY5 (Long hypocotyl 5), PHYA, PHYB, PIL1 (Phytochrome interacting
factor 3-like 1), CO (CONSTANS), GI (GIGANTEA), etc. were identified as substrates of COP1 [49–54].
Accordingly, we expect OsPUB4 to participate in circadian rhythms and abiotic stress responses by
controlling the stability of various proteins.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/9/1071/s1,
Figure S1: Heat-map expression data associated with the diurnal rhythm of the OsPUB family genes. Figure S2:
Diurnal expression patterns of OsPUB2 gene evaluated at 12 time points over 24-h period in “Dongjin” rice and
osgi mutant. Table S1: Summary of primer sequences used for qRT-PCR analyses of this study.
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