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Abstract: Oryza sativa is a major food crop in Asia. In recent years, typhoons and sudden downpours 

have caused field flooding, which has resulted in serious harm to the production of rice. In this 

study, our data revealed that the plant heights of the five Japonica varieties increased during 

submergence. The elongation rates of TN14, KH139, and TK9 increased significantly during 

submergence. Chlorophyll contents of the five varieties significantly decreased after submergence 

and increased after recovery. Moreover, the chlorophyll content of KH139 was significantly higher 

than those of the other four varieties after recovery. The plant survival rates of the five varieties 

were higher than 50% after four-day submergence. After eight-day submergence, the survival rate 

of KH139 remained at 90%, which was the highest among the different varieties. The KH139 

presented lower accumulation of hydrogen peroxide and the catalase activity than those of the other 

four varieties under submergence. The sucrose synthase 1 and alcohol dehydrogenase 1 were induced 

in KH139 under submergence. The results presented that different varieties of japonica rice have 

different flood tolerances, especially KH139 under submergence was superior to that of the other 

four varieties. These results can provide crucial information for future research on japonica rice 

under flooding stress. 
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1. Background 

Global climate change has led to extreme climate in recent years. Global warming has caused 

sea-level rise, affected crop cultivation, and led to decreased crop production. The frequency of 

flooding disasters worldwide caused by biological stresses, such as high temperature, low 

temperature, droughts, and salt-damaged soils caused by extreme climates, has increased by 

approximately 65% in the past 25 years [1]. Oryza sativa is a major food crop worldwide and it is 

widely cultivated in Asia. Flooding disasters have considerably affected agricultural production in 

Asia, particularly in several Southeast Asian countries, such as the Philippines, Myanmar, and 

Indonesia, and have led to a considerable decrease in crop yield. Thus, flooding disasters have 

become an issue that must be urgently confronted [2]. 

In a normal growth environment, higher plants perform aerobic respiration and transport the 

products of photosynthesis from the source to the sink through the glycolysis pathway, so that the 

related reactions of carbon metabolism can occur [3]. Sucrose can be decomposed into glucose and 

fructose in two ways. Sucrose can be catalyzed into fructose and glucose through sucrose invertase, 

or it can be catalyzed into fructose and uracil-diphosphate glucose through sucrose synthase (SUS). 

When hypoxia is caused by flooding stress, a plant limits the pathway of sucrose invertase, reduces 

energy consumption, and increases SUS activity for preserving the source of reactants that are 
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essential for glycolysis [4]. Research has indicated that during flooding treatment, the expression of 

the SUS genes of rice increases with the flooding period. Moreover, ethylene induces submergence1 

(SUB1), which regulates the expression of SUS genes [5]. The expression of SUS genes increases when 

corn is subjected to hypoxia treatment. Corn under hypoxic stress is speculated to induce sucrose for 

accelerated decomposition in order to maintain the glycolysis reaction and reduce the ATP 

consumption [6]. In addition, research have shown that plants lacking genes that required for 

fermentation, such as alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC), or mutants 

defective in sucrose metabolism, such as SUS, revealed lower tolerance in hypoxia condition [7]. 

When crops are fully submerged, the gas exchange between plants and air significantly decreases. 

Gases, such as O2 (molecular oxygen), CO2 (carbon dioxide), and ethylene, spread very slowly in 

water, preventing effective exchange and causing hypoxia in the plant’s root, stem and leaves, which 

causes hypoxic stress [8]. Because the aerobic respiration of the rice plant is restricted under flooding 

stress, the plant performs anaerobic respiration and enters the fermentation route, which leads to the 

accumulation of toxic substances, such as ethanol and lactic acid, in the cells. The accumulation of 

ethanol damages the cell membrane and the membrane structure of the organelle. Lactic acid acidifies 

the cytoplasm, affects enzyme action in crucial metabolic pathways, and influences crop viability in 

a hypoxic environment [9]. 

Reactive oxygen species (ROS) also play a major role when the plants are under hypoxic stress. 

ROS are produced through induction and cause oxidative stress inside the plant cell [10,11]. Some 

ROS include the superoxide anion (O2−), H2O2, and the hydroxyl radical (OH). The presence of 

excessive free radicals damages the DNA or RNA in the cells or causes protein or lipid peroxidation. 

Under hypoxic stress, the content of H2O2 as well as the gene expressions of ascorbate peroxidase (APX) 

and superoxide dismutase (SOD) in grape sprouts increase significantly, which indicates that the 

activated oxygen group can participate in the regulation of antioxidant enzyme transcription [12]. 

Studies have indicated that the H2O2 in ROS can act as a signaling molecule to participate in the 

regulation of the reaction, growth, and development of plants under environmental stress [13]. 

Under flooding stress, FR13A lowland rice and deepwater rice exhibit two adaptation strategies. 

The quiescence strategy is one strategy. The accumulation of ethylene in the plant cells of FR13A 

lowland rice increases under flooding stress. The accumulation of ethylene induced the expression 

of the ethylene transcription factor submergence 1A (SUB1A) for downstream signal regulation. 

SUB1A influence gibberellin signal transduction and the metabolic pathway of carbohydrate are 

affected, which leads to a two-week stillness of FR13A lowland rice under flooding stress. The rice 

growth becomes normal again after the water levels recede [14]. The other strategy is the escape 

strategy. The accumulation of ethylene inside the plant cells of deepwater rice under flooding stress 

causes the ethylene transcription factors Snorkel1 (SK1) and Snorkel2 (SK2) to directly or indirectly 

regulate the synthetic pathway and signal transduction process of gibberellin. Thus, the above-

ground parts of rice are elongated and further protrude from the water to perform gas exchange [15]. 

Ethylene accumulation is also found within the plant of the rice varieties without SK1, SK2, and 

SUB1A under flooding stress. This accumulation regulates gibberellin signal transduction and the 

metabolic pathway of carbohydrate, such that the above-ground parts may protrude from the water 

to perform gas exchange. However, because most of its energy is consumed, the plant often cannot 

protrude from the water in time. Thus, it displays the physiognomic traits of withering, yellowing, 

and even death. These traits indicate the occurrence of low-oxygen-escape syndrome (LOES) [4]. 

Numerous studies have examined the physiological and molecular reaction mechanisms of 

flood-resistant rice with SUB1 locus in a fully submerged environment. However, the physiological 

and molecular performance of the commonly cultivated varieties of japonica rice under flooding stress 

has rarely been investigated. Therefore, five varieties of good-quality japonica rice that are cultivated 

in Taiwan were subjected to submergence experiments and plant survival rate tests. Moreover, their 

total chlorophyll contents and antioxidant enzyme activities were determined. The physiological and 

molecular reactions of the seedlings of the japonica rice varieties were investigated under 

submergence conditions. Thus, crucial information was obtained on the properties of the 

aforementioned rice varieties under flooding stress. 
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2. Results 

2.1. Plant Heights, Dry and Fresh Weights of the Five Varieties of Japonica Rice Under Diverse Submergence 

Periods 

Under flooding stress, varieties of rice that are not flood-resistant exhibit LOES. Their petioles, 

stems, and leaves elongate as the flooding treatment period increase [4]. Thus, five varieties of good-

quality japonica rice commonly grown in Taiwan were subjected to different tests to understand the 

physiological traits of japonica rice varieties under diverse flooding periods. The five varieties used 

in this study were Tainan 11 (TN11), Tainan 14 (TN14), Kaohsiung 139 (KH139), Taiken 9 (TK9), and 

Tainung 71 (TNG71). The 9-day-old seedlings were subjected to full-submergence treatments for 0, 

two, four, six, and eight days and compared with the control group without treatment. The changes 

in the heights of the plants as well as the dry and fresh weights of their above-ground parts were 

measured after the aforementioned periods. Following two-day submergence treatment, TNG71 

exhibited complete lodging and TN11, TN14, KH139, and TK9 exhibited half-lodging. On the eighth 

day of the submergence treatment, the five rice varieties exhibited the physiognomic traits of 

significant withering and yellowing, slender leaves, and lodging (Figure 1). The results indicated that 

the plant heights of the five varieties increased as the flooding treatment period increased (Figure 1b 

and c). The plant elongation rates of TN14, KH139, and TK9 increased significantly (by 82.09%, 

76.18%, and 109.51%, respectively) on the sixth day of the submergence treatment (Figure 1d). 

 

Figure 1. Characterization of the japonica rice varieties seedlings grown during submergence stress. 

(a) Photographs of nine-day-old rice seedlings after full-submergence treatment for 0, two, four, six, 

and eight days; (b) plant heights of the nine-day-old seedlings following normal growth for 0, two, 

four, six, and eight days; (c) plant heights of the nine-day-old seedlings subjected to full-submergence 

treatment for 0, two, four, six, and eight days; and, (d) elongation rates of the above-ground parts of 

the nine-day-old seedlings subjected to full-submergence treatment for two, four, six, and eight days. 

CK (control check) was the control group; SUB (submergence) was the full-submergence treatment 

group; and scale bar = 5 cm. Statistical Analysis System (SAS) 9.4 was used to conduct Duncan’s 

analysis. The different alphabets in (a) and (b) indicate the significant differencesin the number of 

treatment days and performance among the five rice varieties (p < 0.05). The different alphabets in (c) 
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indicate the significant difference between the performance of the rice varieties (p < 0.05). Each 

treatment involved at least 30 plants, and independent experiments were repeated more than three 

times. 

To explore the effects of submergence stress on the dry matter losses of the five japonica rice 

varieties, nine-day-old seedlings of TN11, TN14, KH139, TK9, and TNG71 were subjected to full-

submergence treatments for 0, two, four, six, and eight days. After the treatment, the fresh weight, 

dry weight, and ratio of dry weight to fresh weight of the above-ground part were determined for 

the plants of the five rice varieties (Table 1). The results indicated that the fresh weight of the above-

ground part of TN14 following two-day full-submergence treatment was 36% higher than that of the 

control group. This increase in the fresh weight was significantly higher than those of the other four 

varieties. No significant differences were observed in the fresh weights following four- and six-day 

full-submergence treatments. Following 8-day full-submergence treatment, the fresh weight of 

TNG71 increased by 57.5%, which was significantly higher than the fresh weight increased for the 

other four varieties (3.7%, 7.9%, 23.7%, and 12.8%) (Figure 2a). Following eight-day full-submergence 

treatment, the dry weight of KH139 was 22.6% lower than that of the control group. However, the 

dry weight of KH139 was higher than those of the other four varieties (65.6%, 48.7%, 41.4%, and 68.9% 

lower than that of the control group) (Figure 2b). Following eight-day full-submergence treatment, 

the dry mass change of TNG71 was 47% lower than that of the control group. The dry mass change 

of TNG71 was significantly lower than those of the other four varieties (whose decreases in 

percentage of dry mass change were 29.6%, 27.4%, 17.7%, and 21.1%) (Figure 2c). Thus, the dry matter 

loss of TNG71 following eight-day full-submergence treatment was higher than those of the other 

four varieties. 

Table 1 The fresh weight, dry weight and ratio of dry mass in five japonica varieties during submergence stress 

Treatment* 
 Days 

Variety** 

Fresh weight (mg plant-1) Dry weight (mg plant-1) Ratio of dry mass (%) 

0  2  4  6  8  0  2  4  6  8  0  2  4  6  8  

CK 

TN11 42.2± .1c*** 62.6 ± 1.3b 65.0 ± 2.0b 77.8 ± 0.2b 97.2 ± 0.5c 5.5 ± 0.2b 8.7 ± 0.2a 8.7 ± 0.4b 11.2 ± 0.2b 13.8 ± 0.2a 13.1 ± 0.1b 13.9 ± 0.1a 13.4 ± 0.2a 14.4 ± 0.3a 14.2 ± 0.1a 

TN14 41.4 ± 1.1c 58.5 ± 0.4c 63.0 ± 2.2b 73.0 ± 1.5c 82.8 ±2.4d 4.7 ± 0.2c 8.2 ± 0.3b 8.5 ± 0.5b 10.1 ± 0.5c 10.3 ± 0.6c 11.4 ± 0.4c 14.0 ± 0.5a 13.4 ± 0.4a 13.9 ± 0.5ab 12.4 ± 0.4c 

KH139 47.6 ± 0.7a 69.0 ± 1.2a 72.2 ± 1.9a 86.7 ± 1.9a 106.7 ± 2.1a 7.0 ± 0.3a 8.8 ± 0.2a 10.7 ± 0.7a 12.5 ± 0.3a 13.7 ± 0.3a 14.7 ± 0.4a 12.7 ± 0.1b 14.9 ± 0.8b 14.3 ± 0.6a 12.8 ± 0.5c 

TK9 42.4 ± 1.2b 58.0 ± 2.6c 65.4 ± 4.1b 83.5 ± 3.2a 101.5 ± 1.1b 5.6 ± 0.2b 7.8 ± 0.2bc 9.2 ± 0.2b 11.4 ± 0.4b 12.6 ± 0.2b 13.3 ± 0.5b 13.4 ± 0.2ab 14.0 ± 1.1ab 13.7 ± 0.9ab 12.4 ± 0.3c 

TNG71 44.8 ± 0.9c 67.2 ± 1.4a 72.7 ± 3.1a 86.4 ± 2.0a 103.4 ± 1.4b 5.3 ± 0.3b 7.5 ± 0.5c 8.9 ± 0.1b 11.4 ± 0.2b 14.0 ± 0.3a 11.9 ± 0.8c 11.2 ± 0.9c 12.2 ± 0.6c 13.2 ± 0.3b 13.5 ± 0.4b 

SUB 

TN11 42.9 ± 1.0b 64.0 ± 1.4b 82.4 ± 2.4b 104.7 ± 2.1b 100.3 ±1.1d 5.6 ± 0.3bc 7.5 ± 0.2b 9.7 ± 0.6a 10.2 ± 0.4ab 10.3 ± 0.4b 13.0 ± 0.3ab 11.7 ± 0.4a 11.7 ± 0.5a 9.8 ± 0.5a 10.3 ± 0.3ab 

TN14 38.4 ± 1.4c 63.4 ± 0.9b 72.1 ± 1.3c 93.9 ± 3.6c 79.8 ± 2.5e 5.2 ± 0.1c 6.5 ± 0.5c 7.3 ± 0.3b 8.4 ± 0.8c 8.7 ± 0.6c 13.4 ± 0.5ab 10.2 ± 0.8b 10.1 ± 0.5bc 9.0 ± 0.9a 10.9 ± 0.7a 

KH139 47.9 ± 1.0a 71.9 ± 1.2a 93.5 ± 3.0a 119.1 ± 1.9a 118.6 ± 1.4b 6.5 ± 0.4a 7.6 ± 0.5ab 9.1 ± 0.2a 10.6 ± 0.7a 11.2 ± 0.6a 13.5 ± 0.4a 10.5 ± 0.9b 9.8 ± 0.1c 8.9 ± 0.5a 9.4 ± 0.5b 

TK9 42.5 ± 1.4b 58.9 ± 1.8c 83.8 ± 3.6b 103.9 ± 3.9b 107.2 ± 5.7c 5.6 ± 0.2b 6.2 ± 0.3c 9.4 ± 0.5a 9.4 ± 0.4bc 10.2 ± 0.3b 13.3 ± 0.7ab 10.5 ± 0.3b 11.3 ± 0.3a 9.0 ± 0.6a 9.6 ± 0.8b 

TNG71 43.8 ± 2.1b 69.8 ± 1.2a 92.8 ± 0.7a 113.9 ± 3.2a 126.1 ± 3.2a 5.4 ± 0.2bc 8.2 ± 0.3a 9.8 ± 0.1a 10.1 ± 0.2ab 10.5 ± 0.2ab 12.4 ± 0.7b 11.8 ± 0.4a 10.5 ± 0.1b 8.9 ± 0.3a 8.3 ± 0.3c 

* CK (control check) was the control group; SUB (submergence) was the full-submergence treatment 

group. ** Variety: TN11; Tainan 11, TN14; Tainan 14, KH139; Kaohsiung 139, TK9; Taiken 9, TNG71; 

Tainung 71. *** Statistical Analysis System (SAS) 9.4 was used to conduct Duncan’s analysis. The 

different alphabets indicate the significant differences in the number of treatment days and 

performance among the five rice varieties (p<0.05). Each treatment involved at least 30 plants, and 

independent experiments were repeated least three times. 
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Figure 2. Comparison of fresh, dry weight, and ratio of dry weight to fresh weight in japonica rice 

varieties for different submergence periods. (a) The fresh weights, (b) dry weights and (c) ratio of dry 

weight to fresh weight of nine-day-old seedlings subjected to full-submergence treatment for two, 

four, six, and eight days compared with those of the control group. SAS 9.4 was used to conduct 

Duncan’s analysis. The different alphabets inidacte significant difference in the performance of 

different varieties for the same number of treatment days (p < 0.05). Each treatment involved at least 

30 plants, and independent experiments were repeated more than three times. 

2.2. Changes in the Chlorophyll Contents and Survival Rates in the Five Varieties of Japonica Rice Under 

Submergence Stress 

The chlorophyll a, chlorophyll b, and total chlorophyll contents of the above-ground parts of 

TN11, TN14, KH139, TK9, and TNG71 were measured following eight-day full-submergence 

treatment to explore the changes in the chlorophyll contents of the five japonica rice varieties under 

submergence stress. The experimental results indicated that the chlorophyll a, b, and total chlorophyll 

contents of the five rice varieties significantly decreased under flooding stress and increased 

following seven-day recovery after the flood. TK9 exhibited the highest rates of decline in the 

chlorophyll a, b, and total chlorophyll contents under submergence stress (78%, 76%, and 77%, 

respectively). TN14 exhibited the lowest rates of decline in the chlorophyll a, b, and total chlorophyll 

contents under flooding stress (70%, 68%, and 70%, respectively). KH139 exhibited the highest rates 

of increase in the chlorophyll a and total chlorophyll contents (126% and 121%, respectively) after 

recovery. TNG71 displayed the highest rate of increase in the chlorophyll b content (121%) after 

recovery. It is worth noting that TN14 also exhibited the lowest rates of increase in the chlorophyll a, 

b, and total chlorophyll contents (75%, 66%, and 73%, respectively) after recovery (Figure 3). 

 

Figure 3. The chlorophyll contents of five japonica rice varieties for different submergence periods. 

The measured chlorophyll a, chlorophyll b, and total chlorophyll contents of the above-ground parts 

of nine-day-old seedlings subjected to full-submergence treatment for 8 days followed by 7-day 

recovery. (a) Determination of the chlorophyll a content. (b) Determination of the chlorophyll b 

content. (c) Determination of the total chlorophyll content. CK (control check) was the control group, 

SUB (submergence) was the full-submergence treatment group, and REC (recovery) was the recovery 

group. SAS 9.4 was used to conduct Duncan’s analysis. The different alphabets indicatea significant 

difference in the performances of the various rice varieties for the same number of treatment days (p 

< 0.05). Independent experiments were repeated more than three times. 

Studies indicate that submergence-tolerant lowland rice varieties contain SUB1A-1 genes 

conferring flooding stress tolerance [5]. The plant survival rates of the rice varieties were examined 
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under flooding stress due to the absence of SUB1A genes in the five varieties of japonica rice 

considered in this study. The results indicated that the plant survival rates of TN11, TN14, KH139, 

TK9, and TNG71 following four-day full-submergence treatment were 94.3%, 87.6%, 98.1%, 81.9%, 

and 61.0%, respectively. The plant survival rates of the aforementioned varieties following full-

submergence treatment for eight-day were 12.4%, 66.7%, 91.4%, 64.8%, and 8.6%, respectively (Figure 

4a and b). The results indicate that the plant survival rates of the five varieties following a four-day 

flood were higher than 50%. Following an eight-day flood, KH139 had the highest plant survival rate, 

which remained at 90%. The plant survival rates of TN11 and TNG71 were less than 15%. 

 

Figure 4. Characterization and survival rates of the five japonica rice varieties after recovery following 

different submergence periods. (a) Photographs of 9-day-old seedlings subjected to full-submergence 

treatment for four and eight days followed by seven-day recovery (bar = 5cm); (b) Photographs of 

enlarged images of KH139 and TNG71 (bar = 1cm); and (c) survival rates of 9-day-old seedlings 

subjected to full-submergence treatment for four and eight days followed by seven-day recovery. SUB 

(submergence) was the full-submergence treatment group. SAS 9.4 was used to conduct Duncan’s 

analysis. The different alphabets indicate significant differences in the performance of the different 

rice varieties (p < 0.05). Each treatment involved at least 35 plants, and independent experiments were 

repeated more than three times. 

2.3. H2O2 Accumulation and Antioxidant Enzyme Activities of the Five Varieties of Japonica Rice Under 

Submergence Stress 

To understand the H2O2 accumulation in the five varieties under submergence stress, nine-day-

old seedlings of TN11, TN14, KH139, TK9, and TNG71 were subjected to eight-day full-submergence 

treatment, followed by 3, 3′-diaminobenzidine (DAB) staining on the second leaf of each plant. The 

experiment results indicated that in the control group, the second leaves of TN11, TN14, KH139, TK9, 

and TNG71 did not appear reddish brown. After full-submergence treatment, all of the second leaves 
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of the aforementioned five varieties appeared reddish brown. A large quantity of H2O2 accumulated 

in the leaf tips of TN11 and leaf margins of TN14. Such accumulation was also found in the leaf 

margins and bodies of TK9 and TNG71. The H2O2 accumulation of KH139 was significantly lower 

than that of the other four rice varieties (Figure 5a).

 

Figure 5. H2O2 accumulation and activities of antioxidative enzymes of the japonica rice varieties 

under submergence stress. (a) The upper panel of pictures showed the leaves before DAB staining. 

The down panel of pictures showed the DAB (3,3′-diaminobenzidine) staining of H2O2 in nine-day-

old seedlings subjected to eight-day full-submergence treatment (bar = 1 cm). (b) Determination of 

the antioxidant enzyme activities of 9-day-old seedlings subjected to eight-day submergence 

treatment. CK (control check) was the control group, SUB (submergence) was the full-submergence 

treatment group, SAS 9.4 was used to conduct Duncan’s analysis, The different alphabets indicate 

significant differencesin the performance of the five rice varieties (p < 0.05). Independent experiments 

were repeated more than three times. 

Analysis of the antioxidant enzyme activity revealed that the catalase (CAT) activities of the five 

rice varieties under full-submergence stress decreased to a greater extent than those of the control 

group, with the CAT activity of KH139 exhibiting the largest decrease. Analysis of the total 

peroxidase (POD) activity revealed that the POD activities of KH139 and TNG71 in the control group 

were significantly higher than those of TN11, TN14, and TK9. The POD activities of the five rice 

varieties under full-submergence stress exhibited a considerably larger increase than those of the 

control group (Figure 5b). 
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2.4. Anaerobic-Respiration-Related Gene Expressions in the Five Varieties of Japonica Rice Seedlings Under 

Submergence Stress 

Nine-day-old seedlings of TN11, TN14, KH139, TK9, and TNG71 were subjected to full-

submergence treatment for two days in order to examine the anaerobic-respiration-related gene 

expressions of the five varieties of japonica rice under submergence stress. The seedlings were then 

tested for the gene expressions of sucrose synthase 1 (SUS1) and alcohol dehydrogenase 1 (ADH1). 

The results indicated that, in the control group, the SUS1 expressions of TN14 and KH139 were higher 

than those of TN11, TK9, and TNG71. The SUS1 expression of KH139 that underwent submergence 

treatment increased to a considerably greater extent than those of the control group (Figure 6a). In 

the control group, the ADH1 expression of TN14 was higher than those of TN11, KH139, TK9, and 

TNG71. The ADH1 expressions of TN14 and KH139 that underwent submergence treatment 

decreased to a considerably greater extent than those of the control group (Figure 6b). The results 

indicated that the expressions of SUS1 and ADH1 were induced in the KH139 plant under 

submergence stress. 

 

Figure 6. Transcript levels of hypoxia-related genes for the japonica rice varieties seedlings under 

submergence stress. 9-day-old seedlings were subjected to full-submergence treatment for two days, 

and their above-ground parts were then subjected to qRT-PCR analysis. (a) Expressions of SUS1 of 

glycolysis-related genes and (b) ADH1 of alcoholic fermentation-related genes. CK (control check) 

was the control group, and SUB (submergence) was the full-submergence treatment group. SAS 9.4 

was used to conduct Duncan’s analysis. The different alphabets indicate significant differencesin the 

performance of the five rice varieties (p < 0.05). Independent experiments were repeated four times. 

3. Discussion 

Rice is the main food crop in Asia. Typhoons and sudden downpours are the major causes of 

agriculture-related disasters in Taiwan. The aforementioned natural disasters cause field flooding, 

severe harm to rice cultivation, and considerable losses in rice production. Under flooding stress, the 
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oxygen that is essential for crops cannot be effectively exchanged in water, which causes hypoxic 

stress. The ability of crops to perform photosynthesis is impeded in a hypoxic environment, which 

causes problems such as leaf yellowing, impeded root system growth, and decreased mitochondrion 

metabolism. The cultivation of direct-seeded rice has become common in Asia in recent years. When 

compared with transplanted cultivation, direct seeding can considerably reduce field water 

consumption and labor as well as increase productivity. Direct-seeded rice can be divided into dry-, 

wet-, and water-seeded rice [16]. Water-seeded rice has the best emergence effect among the 

aforementioned three rice types; however, the cultivation of water-seeded rice involves difficulties 

that are related to the emergence of its seedlings in flooded fields or the survival of its seedlings after 

emergence, especially when the seeds fall into deep soil layers. Thus, the rate of successful cultivation 

of direct-seeded rice can be increased by selecting seedlings of rice varieties with high flood tolerance 

[17]. 

Research on varieties of rice that are not flood-resistant indicates that flooding stress causes an 

increase in the ethylene concentration of the plant tissue due to hypoxia and it enhances the gene 

expression of SUB1C. Moreover, it induces GA downstream gene expression, which causes the 

elongation of the petioles, stems, and leaves of rice, as well as LOES [4]. Our experimental results 

indicated that the plant heights of TN11, TN14, KH139, TK9, and TNG71 increased with the 

submergence treatment period (Figure 1). The plant elongation rates of TN14, KH139, and TK9 

significantly increased on the sixth day of the flooding treatment (Figure 1). Thus, the above-ground 

parts of the five rice varieties were elongated under flooding stress, which indicated that the five rice 

varieties experienced LOES under submergence stress. Under flooding stress, chloroplasts can cause 

damage and reduce the photosynthesis efficiency in plants [18]. In addition, the accumulation of 

ethylene in rice varieties that are not flood-resistant causes the elongation of their above-ground 

parts, which results in the consumption of carbohydrate in the plant, photo damage to the plant, and 

degradation of the chlorophyll content in the leaves during flooding stress [19,20]. Stresses lead to 

the accumulation of excessive activated oxygen groups, such as H2O2 and O2−, in the leaves of plants, 

which causes issues, such as oxidative stress and lipid peroxidation in the plants [21,22]. Our results 

revealed that the chlorophyll a, chlorophyll b, and total chlorophyll contents of the five varieties of 

japonica rice decreased significantly following eight-day full-submergence treatment. However, the 

values of the aforementioned parameters increased significantly following seven-day recovery after 

the full-submergence treatment. The chlorophyll content of KH139 was significantly higher than 

those of the other four varieties (Figure 3), which indicated that the cells of KH139 were less harmed 

by flooding stress than those of the other four varieties were and that KH139 returned to normal 

growth faster than the other four varieties did. Moreover, the results of DAB staining indicated that 

a low amount of H2O2 accumulated in KH139 under submergence stress (Figure 5a). Biotic or abiotic 

stresses cause the accumulation of activated oxygen groups inside the plant cells. To preserve the 

oxidation equilibrium inside their cells, plants induce the antioxidant enzyme system to remove the 

activated oxygen groups for preventing these groups from damaging their cells and for enhancing 

their stress tolerance [23–25]. Analysis of the antioxidant enzyme activity revealed that the CAT 

activity of KH139 was significantly lower than those of the other four varieties, probably due to its 

low H2O2 accumulation under submergence stress. Under submergence stress, no significant 

difference was noted in the total POD activities of KH139 and the other four rice varieties (Figure 5b). 

The genes SUS1 and ADH1 were induced in the plants of KH139 under submergence stress, and 

KH139 had higher plant survival rates following eight-day submergence treatment (Figure 4 and 

Figure 6). These results indicated that the survival rate of KH139 might increase under flooding stress 

due to the enhancement of its hypoxia-related gene expression. 

The seedlings of the five varieties exhibited the physiognomic traits of withering, yellowing, 

slender leaves, and lodging under flooding stress. However, four days after the flooding treatment, 

the plant survival rates of the five rice varieties were higher than 50%. Excluding TNG71, the plant 

survival rates of the other four rice varieties were 80% or higher, which indicated that, although 

japonica rice varieties do not contain SUB1A, their plant survival rates remain high if the flooding 

period is short. Moreover, following eight-day submergence treatment, the plant survival rates of 
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three varieties, namely TN14, KH139, and TK9, were 60% or higher (Figure 4). Previous scholars have 

demonstrated that the SUB1A gene is a crucial response gene for rice plants to become flood-resistant 

through ethylene signaling. The Indica rice cultivars, such as FR13A, which contains SUB1A revealed 

extremely submergence tolerant; 100% of 10-day-old seedlings survived 7 days of complete 

submergence [26]. In addition to SUB1A, this study indicated that other crucial reaction mechanisms 

regulate plant flood tolerance in rice varieties that do not comprise this gene. 

4. Conclusions 

The changes in the plant heights of five japonica rice varieties after full-submergence treatment 

indicated that the chlorophyll content of the plants decreased significantly and the plants experienced 

LOES under flooding stress. However, the accumulation of H2O2 in the leaves of the five varieties 

and their peroxidase activities were different. Moreover, molecular-level analysis indicated that the 

expressions of SUS1 and ADH1, which were induced by hypoxia signaling, were different, which 

suggested that different varieties of japonica rice have different flood tolerances. In this study, we 

recommend KH139 as a good potential breeding material for flood tolerance when compared with 

the other four japonica varieties of rice seedlings. These results can provide crucial information for 

future research on japonica rice under flooding stress and on direct-seeded rice. 

5. Materials and Methods 

5.1. Plant Materials and Growth Conditions 

Five good-quality japonica rice varieties that are commonly planted in Taiwan, namely Tainan 

11 (TN11), Kaohsiung 139 (KH139), Taiken 9 (TK9), Tainung 71 (TNG71), and Tainan 14 (TN14) were 

selected for experiments. These rice plants were irrigated lowland rice. Their seeds were cleaned and 

disinfected with 3% sodium hypochlorite for 30 min, followed by cleaning with sterile deionized 

water three times for completely removing the sodium hypochlorite residue and introducing sterile 

deionized water. The seeds were then placed in a growth box at 28 °C with lighting cycles of 16 h of 

light and eight hours of darkness (the brightness was 36 μmol m−2s−1). The seeds that germinated after 

2-day wet cultivation were placed on iron grids in 500-mL beakers wrapped with aluminum foil and 

then cultivated with the Kimura B solution [27]. A total of 35 to 40 seedlings were cultivated in each 

beaker. The hydroponic growing medium was renewed every two days until the seedlings were nine 

days old. Subsequently, experiments and treatments were performed. Flooding treatment was 

conducted by placing nine-day-old seedlings in a water tank (40-cm long, 40-cm wide, and 60-cm 

high) with a water level of 55 cm (with this water level, plants do not protrude from the water 

following eight-day flooding treatment) for 0, two, four, six, and eight days. In the growth box, the 

temperature was 28 °C, the lighting alternated between 16 h of light and eight hours of darkness, and 

the brightness was 236 μmol m−2s−1. The physiognomic traits of the plants were investigated, and the 

plant materials were subjected to further analyses. 

5.2. Seedlings Plant High, Fresh Weight, Dry Weight Chlorophyll Content and Survival Rate Determination 

The nine-day-old seedlings were subjected to full-submergence treatments for 0, two, four, six, 

and eight days. The above-ground heights of their plants were measured after the aforementioned 

full-submergence treatment durations. For plant height measurement, the above-ground height of 

the plant was defined as the distance between the base of a straightened seedling and the tip of its 

longest leaf. In each independent experiment, the mean heights of at least 30 plants were measured. 

The experiments were repeated at least three times. The plant elongation rates were calculated using 

the technique of Zhu et al. [28]. The plant elongation rate denotes the difference in the length of the 

plant’s above-ground part before and after treatment. The equation for calculating the plant 

elongation rate is as follows (Equation (1)): 

Plant elongation rate (%) = [(PH2 – PH1)/PH1] × 100% (1) 

where PH1 and PH2 indicate the above-ground heights before and after treatment, respectively. 
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The dry weight was the measured weight of the above-ground part of each plant following full-

submergence treatment for 0, two, four, six, and eight days. Tissues (whose weight was equal to the 

fresh weight) were dried in an oven at 60 °C for two days. The weight of each plant, which 

represented the dry weight, was then measured. In each independent experiment, the mean dry 

weights of at least 30 plants were measured. The experiments were repeated more than three times. 

To measure the chlorophyll content, nine-day-old seedlings were subjected to full-submergence 

treatment for eight days and a recovery period of seven days. The above-ground parts (30 mg) of the 

rice seedlings were ground with liquid nitrogen. A total of 2 mL of sodium phosphate buffer (50 mM, 

pH 6.8) was added to the ground seedlings. A total of 960 μL of 99% ethanol was blended into 40 μL 

of the extract. The mixture was evenly blended in a 1.5-mLmicrocentrifuge tube (Eppendorf tube) 

and placed at 4 °C in darkness for 30 min, followed by 1000 g centrifugation at 4 °C for 15 min. The 

absorbance of the supernatant at OD.665 and 649 was determined with a spectrophotometer 

(Metertec SP8001). The blank was 99% ethanol. More than three independent trials were conducted. 

The equations for calculating the chlorophyll content are as follows (Equation (2–4)): 

Chlorophyll a = (13.7 × A665) − (5.76 × A649) [μgChL (40 μL)−1] (2) 

Chlorophyll b = (25.8 × A649) − (7.6 × A665) [μgChL (40 μL)−1] (3) 

Total chlorophyll = (6.1 × A665) + (20.04 × A649) [μgChL (40 μL)−1] (4) 

5.3. Histochemical Staining and Antioxidative Enzyme Activity Assay 

The accumulation of H2O2 in cells was visualized by 3, 3′-diaminobenzidine staining as 

previously described [29]. The experiments were repeated three times. Protein quantitation of the 

samples were performed after their extraction by using the Bradford protein assay in order to 

determine the antioxidant enzyme activity [30]. The above-ground parts of rice were ground into 

powder with liquid nitrogen and analyzed according to the method modify from Kar and Mishra to 

determine the CAT activity [31]. A total of 4 mL of 50 mM sodium phosphate buffer (pH 6.8) was 

added in the pre-chilled mortar for performing homogeneous grinding. The mixture was then 

subjected to centrifugation at 12,000 g and 4 °C for 20 min. The obtained supernatant was the enzyme 

extract. Protein quantitation was performed on the enzyme extract by using the Bradford assay. 

Enzyme extract with a volume corresponding to 1 mg of protein and 100 mM of sodium phosphate 

buffer (pH 7.0) (the total volume of the extract and buffer was 2.9 mL) were evenly blended with 100 

μL of 1 M H2O2. A spectrophotometer (Metertec SP8001) was used at a wavelength of 240 nm to 

continuously detect the change in absorbance during a five-minute period. The detection interval was 

10 s, and 99% ethanol was used as the blank. The unit of enzyme activity was μmol of H2O2 consumed 

per minute. The above-ground parts of rice were ground into powder with liquid nitrogen in a pre-

chilled mortar and analyzed according to the method of MacAdam et al. to determine the total POD 

activity [32]. Lin and Kao [33] proposed that water-soluble and ionic-bonded peroxidase can be 

extracted by adding potassium chloride (KCl) in buffer solution. They defined the sum of the 

aforementioned two peroxidase types as the total activity. In the experiment, 4 mL of 50 mM 

potassium phosphate buffer (pH5.8), which included 0.8 M KCl, was added in a pre-chilled mortar 

for obtaining homogeneous powder. The mixture was then subjected to centrifugation at 12,000 g 

and 4℃ for 20 min. The obtained supernatant was the enzyme extract. Protein quantitation was 

performed on the extract by using the Bradford assay. Enzyme extract with a volume corresponding 

to 1 mg of protein and 50 mM of potassium phosphate buffer (pH 5.8) were homogeneously blended 

with 1 mL of 21.6 mM guaiacol and 0.9 mL of 39 mM H2O2. A spectrophotometer (MetertecSP8001) 

was used at a wavelength of 470 nm to continuously detect the changes in the absorbance during a 

30-s period. The detection interval was 10 s and 99% ethanol was used as the blank. The unit of 

enzyme activity was μmol of tetra guaiacol produced per minute. 
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5.4. Quantitative RT-PCR Analyses 

The rice samples were placed in a mortar and ground into powder using liquid nitrogen. A total 

of 2 mL of TRIZOL reagent (Roche Applied Science, Penzberg, Upper Bavaria, Germany) was added 

to the mortar for extracting the total RNA. The total RNA extracted was then treated using TURBO 

DNase (Ambion, Austin, TX, USA). A Nano Drop Lite ultra-micro spectrophotometer (Thermo 

Scientific, Waltham, MA, USA) was used in order to measure the optical density of 2 μL of RNA and 

examine its concentration and quality. An MMLV First-Strand Synthesis Kit (Gene Direx, Grand 

Island, NY, USA) was used to synthesize the first strand of cDNA [reverse transcription (RT)]. qRT-

PCR was performed, as previously described [34] using a Bio-Rad CFX instrument (CFX Connect™, 

Bio-Rad, Hercules, CA, USA) with Power SYBR Green PCR Master Mix (Gene-Mark, Taipei, Taiwan), 

according to the manufacturer’s recommendations. The ubiquitin gene was used as an internal 

control for normalization. The relative expression levels were analyzed using Bio-Rad CFX Manager 

(version 3.1). The experiments were repeated three times independently with duplicate samples. 

Table 2 presents the primer sequences for qRT-PCR. 

Table 2. Primers used for quantitative RT-PCR experiments. 

Gene name Primer sequence 

OsUbiquitin—forward 

OsUbiquitin—reverse 

5’-aaccagctgaggcccaaga-3’ 

5’-acgattgatttaaccagtccatga-3’ 

OsSUS1—forward 

OsSUS1—reverse 

5’-catctcaggctgagactctga-3’ 

5’-caaattcaatcgaccttactt-3’ 

OsADH1—forward 

OsADH1—reverse 

5’-gcaaatttctggctttgtcaatcagta-3’ 

5’-cgccaaaagatcactgattcttaacaa-3’ 

5.5. Statistical Analysis 

In this experiment, Statistical Analysis System (SAS) software version 9.4 was used for statistical 

analysis. We used analysis of variance (ANOVA) for pre-comparison, and then used Duncan’s 

Multiple Range Test for multiple comparisons. The different alphabets indicate significant differences 

in the performance of the five rice varieties (p < 0.05). All of the tests were conducted in more than 

three independent tests. 
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