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Abstract: This study aimed to assess effect of nitrogen (N) form and phosphorus (P) level on the
growth and mineral composition of hybrid Napier grass. Experimental plants were grown with
different N forms (NO3

−, NH4NO3, and NH4
+; 500 µM) and P concentrations (100 and 500 µM) under

greenhouse conditions for 42 days. Growth rate, morphology, pigments, and mineral nutrients in the
plant tissue were analysed. At the low P concentration, the better growth was found in the plants
supplied with NH4

+ (relative growth rate (RGR) = 0.05 g·g−1
·d−1), but at the high P concentration,

the NH4
+-fed plants had 37% lower growth rates and shorter roots and stems. At the high P level,

the NH4NO3
−-fed plants had the highest RGR (0.04 g·g−1

·d−1). The mineral nutrient concentrations
in the plant tissues were only slightly affected by N form and P concentration, although the P
concentrations in the plant tissue of the NO3

−-fed plants supplied with the high P concentration was
26% higher compared to the low P concentration plants. The N concentrations in the plant tissues did
not vary between treatments. The results showed that the optimum N form for the plant growth
and biomass productivity of hybrid Napier grass depends on P level. Hybrid Napier grass may be
irrigated by treated wastewater containing high concentrations of N and P, but future studies are
needed to evaluate biomass production and composition when irrigating with real wastewater from
animal farms.

Keywords: ammonium; energy crop; nitrate; N–P interactions; Pennisetum

1. Introduction

The discharge of poorly treated wastewater from animal farms has increased with economic
growth, particularly in developing countries where wastewater management is poor [1]. Nutrients and
organic matter are common contaminants that get discharged into ground and water bodies, thus risking
aquatic ecosystems and human health. Nitrogen (N) and phosphorus (P) are generally found in high
concentrations in dairy and swine wastewater. Ammonium (NH4

+) is the major form of inorganic N
usually found at high concentrations in raw wastewater, but NH4 can easily transform into nitrate
(NO3

−) via nitrification processes [2]. Additionally, the concentration of P is usually high in wastewater
from animal farms. Anaerobic digestion and constructed wetlands (CWs) are conventional methods
to reduce the pollutants [3–6]. However, effluent from the anaerobic digestion still contains high
concentrations of N and P that can cause water eutrophication [7,8].

Plants 2020, 9, 1003; doi:10.3390/plants9081003 www.mdpi.com/journal/plants

http://www.mdpi.com/journal/plants
http://www.mdpi.com
https://orcid.org/0000-0003-2771-2983
http://dx.doi.org/10.3390/plants9081003
http://www.mdpi.com/journal/plants
https://www.mdpi.com/2223-7747/9/8/1003?type=check_update&version=2


Plants 2020, 9, 1003 2 of 13

At present, sustainable water use in agriculture has attracted great interest. The reuse of water and
nutrients from wastewater through the irrigation of crops by treated wastewater has been identified as
a way to mitigate water shortage and, at the same time, recover nutrients as fertilizers. Irrigation with
wastewater can improve soil properties, increase plant productivity, reduce the costs of commercial
fertilizers and water supplies, and minimize the discharge of nutrients to freshwater ecosystems [9–11].
Recycling N and P from wastewater has been applied to many grasses and crops. A study by
Leal et al. [12] found that secondary-treated wastewater provided extra elements including N, P, Ca,
Mg, and K that could increase the yield of sugar cane (Saccharum officinarum L.) compared with a
control. Likewise, using secondary-treated abattoir wastewater irrigated crops was found to significantly
increase the dry mass yield and nutrient contents of Pennisetum purpureum Schumach, Medicago sativa L.,
Sinapis alba L., and Helianthus annuus L., as well as to increase soil fertility, particularly with N and P [11].

Recently, bioenergy grasses such as switch grass, Miscanthus, and Napier grass have been used for
removing nutrients from wastewater [13–15]. In Thailand, a new hybrid Napier (Pennisetum purpureum
Schumach × Pennisetum americanum (L.) Leeke cv. Pakchong 1) developed by Dr. Krailas Kiyothong,
Department of Livestock Development, Ministry of Agriculture and Cooperative, Thailand, has been
introduced to the farmers as a fodder crop. Because of its fast growth, disease and drought tolerance,
easy propagation, and high yield production, this plant seems to be appropriate as an alternative raw
material for biofuel production [16]. Additionally, the Ministry of Energy, Thailand, has paid attention
to alternative biofuel sources to replace the use of fossil fuel in electricity generation, and plants
with high biomass yield have become targets [17]. As a result, farmers and relevant agencies have
encouraged the plantation of this grass. To obtain sufficient material for bioenergy production,
the application of fertilizers and water are crucial factors to allow for the high yield of biomass.
Recently, a study by Somjai and Suwan [18] found that hybrid Napier Pakchong 1 in an area receiving
sufficient water had a higher biomass yield than plants in a non-irrigated area. However, knowledge on
fertilizer application, as well as the most efficient way to supply water to the crop field was suggested
for further study.

As mentioned above, treated wastewater is a good source of N and P and can be used as an
alternative nutrient supply for crop growth on poor soil. However, when reusing wastewater for
irrigation, the form of N, as either NH4

+ or NO3
− or mixed NH4NO3, and the P concentration may

affect plant growth and nutrient acquisition. A previous study found that the hybrid Napier Pakchong
1 grew well when NH4

+ was provided as the major N source [19] and that the plant can tolerate NH4
+

in concentrations up to 5 mM [20]. However, the P concentration used in these studies was rather low
(100 µM) compared to the P concentrations in real wastewater. It is therefore not known if the high
P levels normally found in real wastewater affect the N acquisition of this species in response to the
various N forms interacting with P availability. It has been documented that interactions between N
and P availability can promote plant nutrition and increase primary productivity [21,22]. However,
plant responses to N and P might be different depending upon concentration levels. Additionally,
the differences could be caused by the differences in the uptake mechanism of the two N forms.
NO3

− uptake is an energetically costly mechanism. NO3
− is taken up into the root cytosol by

co-transportation with H+ via nitrate transporters (NRTs), while NH4
+ uptake is accompanied by

H+ extrusion from the root cells. Thus, NO3
− uptake induces an increase in pH in the rhizosphere,

whereas NH4
+ uptake induces a decrease in pH [23]. The changes in pH as a result of N uptake can

affect the mobilization of P in the soil and, hence, the P uptake in the plants. Difference ionic charges
of NH4

+ and NO3
− lead to different antagonist or protagonist relationships with P and other ions in

the rooting media [24]. It has also been suggested that N–P interactions depend on the supplied N
form [25]. To increase our knowledge on this topic, this study aimed to assess the interactive effects of
N form and P concentration on growth, morphology, pigments, and mineral composition in the plant
tissue of hybrid Napier Pakchong 1. The results from the study will be useful for the development of
wastewater management strategies to recycle water and nutrients for agricultural proposes.
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2. Results

2.1. Growth and Morphology

The growth of the hybrid Napier Pakchong 1 was affected by both the N form and P concentration
in the growth medium, and significant interactions between the two factors were observed (Table 1).
The effects of N form on growth depended on the P concentration in the growth medium, as the
lowest relative growth rate (RGR) was found in the plants grown with NH4

+ at a high P concentration,
whereas at the low P concentration, the plants grown with NH4

+ had the highest RGR (Figure 1).
The RGRs were not significantly different among NO3

−-fed plants and NH4NO3-fed plants at both
the low and high P concentrations. Similarly, the highest shoot elongation rate (SER) was found
in NH4

+-fed plants at low P concentrations, and the interaction between these two factors had a
significant effect on SERs (Figure 1).

Table 1. Results of two-way ANOVA (F-ratios) of growth, morphological characteristics, chlorophylls
and carotenoids concentrations in leaves of hybrid Napier grass (Pennisetum purpureum × Pennisetum
americanum) grown on different nitrogen (N) forms (NH4

+, NO3
−, or NH4NO3) and phosphorus (P)

concentrations (100 and 500 µM).

Main Effects Interaction

N Form P Concentration N Form × P Concentration

Relative growth rate (g·g−1
·d−1) 1.7 2.7 6.8 **

Shoot elongation rate (mm·d−1) 0.3 5.5 * 7.8 **
Root number 0.5 0.01 5.0 *
Root length (cm) 0.4 17.5 *** 4.0 *
Leaf number 3.6 * 0.1 0.4
Average leaf area (cm2) 4.6 * 0.7 2.91
Chlorophyll a (mg·g−1

·DW) 6.4 ** 19.4 *** 5.9 **
Chlorophyll b (mg·g−1

·DW) 6.2 ** 12.7 *** 13.8 ***
Total chlorophylls (mg·g−1

·DW) 7.3 ** 23.9 *** 9.1 **
Total carotenoids (mg·g−1

·DW) 6.1 ** 21.5 *** 6.9 **

* p < 0.05; ** p < 0.01; *** p < 0.001.
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(Pennisetum purpureum × P. americanum) (mean ± SD) grown on different N forms (NH4+, NO3−, and 
NH4NO3) and P concentrations (LP, low P concentration (100 µM P); HP, high P concentration (500 
µM P)). Different letters above columns indicate significant differences between treatments. 

In regard to the plant morphology, the N form and P concentration affected both roots and 
leaves. As indicated by the significant interactions in the ANOVA (Table 1), the effects of P 
concentration on the number of roots and root length depended on the N form, as the lowest root 
number and root length were found in the NH4+-fed, high P concentration plants, while the plants 
supplied with NO3− at the high P concentration had the highest root number (Figure 2a,b). The leaf 

Figure 1. Relative growth rate (RGR) (a) and shoot elongation rate (SER) (b) of hybrid Napier grass
(Pennisetum purpureum × P. americanum) (mean ± SD) grown on different N forms (NH4

+, NO3
−,

and NH4NO3) and P concentrations (LP, low P concentration (100 µM P); HP, high P concentration
(500 µM P)). Different letters above columns indicate significant differences between treatments.

In regard to the plant morphology, the N form and P concentration affected both roots and leaves.
As indicated by the significant interactions in the ANOVA (Table 1), the effects of P concentration on
the number of roots and root length depended on the N form, as the lowest root number and root
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length were found in the NH4
+-fed, high P concentration plants, while the plants supplied with NO3

−

at the high P concentration had the highest root number (Figure 2a,b). The leaf areas and number of
leaves were highest for the NH4NO3-fed plants and independent of the P level (Figure 2c,d).
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2.2. Chlorophylls and Carotenoids

The concentrations of chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids were affected by
N form and P concentration, and significant interaction between these factors were observed (Table 1).
In general, the low P concentration plants had higher contents of chlorophylls and carotenoids than
the high P concentration plants. The highest Chl a and Chl b were found in the NH4

+-fed, low P
concentration plants (Figure 3).

2.3. Mineral Element Concentrations in the Plant Tissue

N source and P concentration affected the mineral element composition in the plant tissue,
and significant interactions between N source and P concentration were observed—particularly in the
leaves (Table 2). The concentrations of Ca and Mg in the plant stems were significantly affected by the
N form, whereas the P concentration affected the levels of K, Mg, and P in the stems. The NO3

−-fed
plants had higher concentrations of Ca and Mg overall, regardless of P concentration. However,
K concentration was higher in the high P concentration plants than in the low P concentration
plants (Figure 4). In the plant leaves, the concentration of Ca was not affected by the N form and
P concentration, but the K concentration increased in NO3

− fed plants, particularly at the high P
supply. P concentration also increased in the plants supplied with the high P concentration (Figure 5).
In the roots, Ca was affected by the N form, but K and Mg were affected by the P concentration
(Table 2). The highest concentration of Ca was found in the NO3

—fed, high P concentration plants.
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The concentration of Mg was low in the plants supplied with the high P concentration, while the
concentration of K was low in the plants supplied with the low P concentration. Similar to the leaves,
P concentration tended to increase in the high P concentration treatments, particularly in NO3

−-fed
plants (Figure 6).
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Figure 3. Chlorophyll a, Chl a (a); chlorophyll b, Chl b (b); Chl a/Chl b ratio (c); and total carotenoids
(d) in leaves of hybrid Napier grass (Pennisetum purpureum × P. americanum) (mean ± SD) grown on
different N forms (NH4

+, NO3
−, and NH4NO3) and P concentrations (LP, low P concentration (100 µM

P); HP, high P concentration (500 µM P)). Different letters above columns indicate significant differences
between treatments.

Table 2. Results of two-way ANOVA (F-ratios) of nutrient minerals in the tissue of hybrid Napier grass
(Pennisetum purpureum × P. americanum) grown on different N forms (NH4

+, NO3
−, or NH4NO3) and P

concentrations (100 and 500 µM).

Main Effects Interaction

N Form P Concentration N Form × P Concentration

Stems
Ca (mg·g−1 DW) 4.6 * 1.1 0.8
K (mg·g−1 DW) 1.5 12.6 ** 2.1
Mg (mg·g−1 DW) 12.9 ** 11.0 ** 3.1
P (mg·g−1 DW) 0.1 16.0 *** 4.0 *
Total C (%) 2.3 3.0 0.4
Total N (%) 6.9 ** 5.1 * 1.6

Leaves
Ca (mg·g−1 DW) 2.1 3.8 2.4
K (mg·g−1 DW) 11.4 *** 1.8 5.9 **
Mg (mg g−1 DW) 4.3 * 2.4 6.5 **
P (mg·g−1 DW) 6.7 ** 50.5 *** 12.7 ***
Total C (%) 1.8 0.5 0.7
Total N (%) 1.3 1.0 1.1
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Table 2. Cont.

Main Effects Interaction

N Form P Concentration N Form × P Concentration

Roots
Ca (mg·g−1 DW) 13.8 *** 0.6 0.4
K (mg·g−1 DW) 0.4 4.9 * 1.1
Mg (mg·g−1 DW) 0.9 16.9 *** 0.6
P (mg·g−1 DW) 5.2 * 20.0 *** 3.9 *
Total C (%) 3.3 7.6 * 1.1
Total N (%) 1.7 0.4 3.6 *

* p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 5. Concentrations of Ca (a), K (b), Mg (c), P (d), total C (e), and total N (f) in leaves of
hybrid Napier grass (Pennisetum purpureum × P. americanum) (mean ± SD) grown on different N
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+, NO3
−, and NH4NO3) and P concentrations (LP, low P concentration (100 µM P); HP,

high P concentration (500 µM P)). Different letters above columns indicate significant differences
between treatments.
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Figure 6. Concentrations of Ca (a), K (b), Mg (c), P (d), total C (e), and total N (f) in roots of hybrid Napier
grass (Pennisetum purpureum × P. americanum) (mean ± SD) grown on different N forms (NH4

+, NO3
−,

and NH4NO3) and P concentrations (LP, low P concentration (100 µM P); HP, high P concentration
(500 µM P)). Different letters above columns indicate significant differences between treatments.

2.4. CN in the Plant Tissue

The total C content in the plant tissue was not affected by the N form and P concentration.
Generally, the total C in roots was higher than in leaves and stems (Figure 4e, Figure 5e, Figure 6e).
The total N in the stems was affected by the N form and P concentration (Table 2). The total N
slightly increased with the increasing P concentration, while there was no effect on the leaf total N.
In roots, the total N significantly decreased in the NH4

+-fed plants exposed to the high P concentration
(Figure 4f, Figure 5f, Figure 6f).

3. Discussion

N forms and P concentration affected the growth of the hybrid Napier Pakchong 1, and the plants
responded to the N form differently depending on P levels. At the low P concentration, the plants
grew best when grown on NH4

+, whereas at the high P concentration, the plants performed best
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with the NH4NO3 treatment. Previous studies have reported that NH4
+ is the preferred inorganic N

form for hybrid Napier Pakchong 1 [19]. However, the current study showed that the N preference
depended on the P availability. Other studies have reported interactions between N and P availability
on plant growth. Ulrich and Burton [26] found that NO3

−-N and P supply had a strong effect on the
growth of Phragmites australis (Cav.) Trin. ex Steud., Sparganium eurycarpum Engelm., Typha latifolia
L., and Typha angustifolia L., whereas no effect of K was found. The growth of all species fed with
high NO3

− levels were stimulated by increased P additions. Similarly, the growth of Canna indica
L. increased under the high N and P treatments (6.4 mM as NH4NO3 and 0.48 mM as KH2PO4),
and interactions between N and P availability were observed. However, the plants supplied with the
low N supply (0.36 mM as NH4NO3) had a low tissue N concentration as a reflection of the N limitation
when they were exposed to high P levels [27]. In this study, NH4

+ nutrition interacted with the P level,
and synergistic effects on plant growth and N use efficiency were observed. Providing NH4

+ to the
rooting medium has been reported to promote P uptake as a result of ammonium-induced acidification
in the rhizosphere [25,28–30]. However, N uptake can be stimulated at high P concentrations [31].
Likewise, the present study showed that NH4

+ uptake was improved at the high P concentration
(data not shown), resulting in an increasing root tissue N concentration. This result was in accordance
with the results presented by Romero et al. [32], who found that the NH4

+ uptake rate of P. australis
increased in the high P concentration (50 µM) treatment. The ability of P. australis to adjust the NH4

+

uptake kinetic in response to high NH4
+ and P supply helps the plant to increase its capacity to

exploit the excess nutrients and be able to compete with other wetland species. In contrast, in the
presence of NO3

−, it is likely that growth and P accumulation in the tissue positively correlates with
NO3

−-N when the P supply is high [26]. The hybrid Napier Pakchong 1 fed exclusively with NO3
−-N

had a slightly higher RGR at the high P concentration, while the RGR significantly increased in the
NH4NO3 treatment. Moreover, the P concentrations in the tissue, particularly in the roots and leaves,
tended to be high in the plants supplied with either NO3

− or NH4NO3 at the low P concentration,
but significantly higher root P concentrations were found in plants supplied with NO3

− at the high P
level. This might have been related to the fact that ATP is required for active NO3

− transport across
the plasma membrane into root cells. Reduced ATP levels have been reported to directly affect NO3

−

uptake [33,34], confirming the study of Rufty Jr. et al. [35], who found that NO3
− assimilation and

uptake were restricted under P deficiency conditions.
Root morphological adaptations depending on P availability have already been documented [28,36,37].

Root length and root surface area play important roles in excavation and P utilization. P deficiency
has been shown to result in increased root length and higher root density [36,38]. In contrast,
plants growing at high P concentrations experience a reduction in root length, which is assumed to
be a result of P toxicity [37,39]. In this study, the hybrid Napier Pakchong 1 had shorter roots when
the plants were grown at the high P concentration. Likewise, the average leaf area and pigment
concentrations (chlorophylls and carotenoids) significantly decreased in the plants supplied with the
high P concentration, and the strongest effects were found in the NH4

+-fed plants. Leaf chlorosis is a
recognized symptom of P toxicity. Many plants such as rice, soy bean, wheat, and Arabidopsis show
leaf chlorosis when grown under excessive P applications [40–42]. Moreover, a study on wild-type rice
species (Oryza sativa L. “Notohikari”) grown in a hydroponic solution with different P supplies showed
a decrease in chlorophylls after being exposed to high P concentration, and the Rubisco activation
in the high P-fed plants was also disturbed. As a consequence, the photosynthesis of the plants
was inhibited. Similar results found in the study of Shane et al. [43] showed that the photosynthetic
rates of Hakea prostrata R.Br. significantly decreased after growth at high P supply rates (150 and
300 µmol P d−1). In the present study, we found that the NH4

+-fed plants had reduced contents
of Chl a and Chl b (by 48% and 61%, respectively), whereas the leaf P concentrations significantly
increased by 45%. This suggested that leaf chlorosis was caused by oxidative stress and photosynthetic
disruption. Under a high P accumulation, the Rubisco activity was reduced and caused lower electron
sink capacities, thus leading to high electron accumulated in the photosynthetic electron transport



Plants 2020, 9, 1003 10 of 13

chain. Subsequently, the concentrations of reactive oxygen species (ROS) increased. As a result, it can
be said that high ROS accumulation triggers leaf chlorosis [42].

Recycling high nutrient-containing wastewater to crops is an attractive prospect for water
management, especially in arid agricultural areas. Due to the rapid growth rate of hybrid Napier grass,
its ability to utilize various N forms, and its high tissue protein content, the hybrid Napier Pakchong 1
has been recommended for wastewater treatments [19]. Results from this study revealed that high
P concentrations may negatively affect plant growth, root length, average leaf area, and chlorophyll
contents, particularly when plants are supplied with NH4

+. Mineral and nutrient contents in the plant
tissue were, however, only slightly influenced. A study by Ali et al. [31] found that P application
can enhance N uptake in maize (Zea may L.), but N uptake was limited at high P concentrations.
We also found that the high P supply caused a lowering of the root N concentrations, especially
in the NH4

+-fed plants. Moreover, Li et al. [44] revealed that P fertilization can affect the biomass
productivity and photosynthetic N use efficiency (PNUE) of two Larix species. Different responses
to the N and P of these plants resulted from the different physiological traits of the species and the
different amounts of nutrients in the soil. The present study found that N supply in the form of
NH4NO3 can alleviate the Napier grass from losing biomass, especially at a high P availability. Hence,
reusing a high P concentration wastewater to grow crops could be an additional option to prevent the
effect of excess ammonium.

4. Materials and Methods

4.1. Plant Preparation and Experimental Design

The hybrid Napier grass (Pennisetum purpureum Schumach × P. americanum (L.) Leeke cv.
Pakchong 1) used in the experiment was prepared from plant stocks obtained from the Faculty
of Fisheries Technology and Aquatic Resources, Maejo University, Thailand. Plant stocks with at least
two nodes were selected and placed in trays filled with tap water. After new shoots were produced
from the nodes, all plant stocks were supplied with a standard N and P free growth medium prepared
according to Smart and Barko [45]. The growth medium had the following composition (mM): K 0.16;
Ca 0.62; Mg 0.28; Na 0.69; SO4 0.84; Cl 1.25, B 0.23; Cu 0.02, Fe 0.28; Mn 0.11, Mo 0.006; and Zn 0.04.
The pH of the growth medium was adjusted to 6.5. All new plants were propagated under greenhouse
conditions at the Department of Biology, Faculty of Science, Chiang Mai University, Thailand.

Approximately 14 days after new shoot were produced, plants of uniform size were selected
and separated from the mother stems for use in the experiment. The experimental set-up was a
3 × 2 factorial design with three N forms (NO3

−, NH4NO3, and NH4
+) at equimolar concentrations

(500 µmol N L−1) and two levels of P (100 and 500 µM) prepared from KH2PO4, with 5 replications
for each treatment combination. Each experimental treatment combination was established in a
hydroponic culture in 40 L containers placed in a greenhouse with a light regime of approximately
12 h light/12 h dark. The temperatures were 30–37 ◦C day/24–28 ◦C night. The growth medium in
the containers was changed every three days and continuously aerated using air pumps to maintain
efficient mixing. At the beginning of the experiment, 10 plants similar to the experimental plants were
selected and weighed. The plants were dried in an oven at 55 ◦C to a constant weight, and the fresh
mass to dry mass ratio was calculated and used for growth calculation.

4.2. Plant Harvest and Chemical Analyses

All experimental plants were harvested after 42 days of treatment. Total shoot length, average leaf
area, number of leaves and roots, and root length were measured. Then, all plants were fragmented into
roots, stems, and leaves and freeze-dried. Plant growth was calculated as the RGR and SER. The RGR,
based on total plant dry mass, was calculated following the formula: RGR (g g−1 d−1) = (ln final dry mass
− ln initial dry mass)/days [46]. The shoot elongation rate (mm d−1) was calculated from the formula:
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SER = (final shoot length − initial shoot length)/days. The freeze-dried plant materials were used for plant
biochemical analysis.

Chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophylls (Chl a and b), and total carotenoids
in freeze-dried leaves (n = 5) were determined according to Lichtenthaler [47]. Approximately 8 mg
of ground leaves were extracted with 96% ethanol (8 mL). Then, the absorbance of the extracts was
measured using a spectrophotometric method at wavelengths of 470, 648.6, and 664.2 nm.

The concentrations of Ca, K, P, Mg, Mn, Fe, and Na in each plant part (n = 5) were analysed in
finely-ground dry plant samples (approximately 250 mg). The element concentrations were analysed
using inductively coupled plasma emission spectrometry (Optima 2000 DV, PerkinElmer Instruments
Inc., Shelton, CT, USA) after microwave digestion in HNO3 and H2O2. The total C and total N contents
in the plant tissue (n = 5) were determined from approximately 2 mg of dry plant samples with a CHN
analyser (Na2000, Carlo Erba, Italy).

4.3. Statistics

Statistical analysis was performed using Statgraphics Plus version 4.1 (Manugistics, Inc., Rockville,
MD, USA). The interactions between the N and P factors were analysed by a two-way ANOVA.
Assumptions of normality were tested by Levene’s test. Post hoc HSD tests at a 5% significance level
were applied to identify differences among treatments.

5. Conclusions

The results of the study showed that N form and P level interactively affect the growth, morphology,
and mineral concentrations in the tissue of the hybrid Napier Pakchong 1. The responses to N form
were found to depend on P level. At the low P concentration, the plants performed best when fed
with NH4

+, but at the high P concentration, the plants had a reduced RGR, root number, root length,
and chlorophylls and carotenoids contents when only fed with NH4. The irrigation of hybrid Napier
Pakchong 1 by treated wastewater may be an attractive technique to increase crop yield for fodder or
bioenergy. However, future studies are needed to evaluate biomass production and composition when
irrigating with real wastewater from animal farms.
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