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Abstract: Verticillium wilt, caused by Verticillium dahliae Kleb., leads to significant losses in cotton yield
and fiber quality worldwide. To investigate Verticillium wilt impact on photosynthesis rate, yield,
and fiber quality, six upland cotton genotypes, namely Verticillium susceptible (DP 1612 B2XF) and
partially resistant (FM 2484B2F) commercial cultivars and four breeding lines, were grown to maturity
under greenhouse conditions in soil either infested or not infested with V. dahliae microsclerotia.
Photosynthetic rate, lint, and seed yield were all higher (p < 0.05) for FM 2484B2F than DP 1612 B2XF
when infected with V. dahliae. When comparing healthy (H) to Verticillium wilt (VW) affected plants,
fiber properties were greatly impacted. Micronaire decreased from 5.0 (H) to 3.6 (VW) with DP 1612
B2XF and 4.4 (H) to 4.1 (VW) with FM 2484B2F. The maturity ratio decreased from 0.90 (H) to 0.83
(VW) for DP 1612 B2XF and was unchanged for FM 2484B2F (0.90). Fiber properties such as short
fiber content, nep count, fineness, and immature fiber content were also significantly affected under
Verticillium wilt pressure. With Verticillium wilt affected plants, lines 16-13-601V and 17-17-206V
performed similarly to FM 2484B2F for photosynthetic rate, yield, and all fiber properties measured.
When selecting for improved cultivars in the presence of Verticillium wilt, it is important to select for
relatively unchanged fiber properties under disease pressure in addition to reduced disease severity
and increased yield.

Keywords: disease resistance; Gossypium hirsutum; Verticillium dahliae

1. Introduction

Verticillium wilt in cotton is caused by Verticillium dahliae Kleb., a soil-borne fungus. This disease
causes substantial losses in cotton worldwide [1]. The fungus produces infectious hyphae that emerge
from microsclerotia (multicellular, long-lived structures in the soil) and colonize plant roots. The fungus
enters the root vascular tissue and then spreads upwards in the vascular system [2]. Symptoms of
Verticillium wilt include stunting, wilting, chlorosis, foliar desiccation, defoliation, and plant death.
The stress imposed by Verticillium wilt reduces the rate of photosynthesis [3–7]. Water stress is often
associated with wilt pathogens that colonize the xylem [2,7,8]. The authors of [9] reported that the
combined effect of chlorosis, water stress, and stomatal closure could accelerate the reduction in
photosynthesis rate of leaves that exhibited disease symptoms. Therefore, there is a substantial loss of
lint yield and fiber quality associated with Verticillium wilt of cotton [10,11], which may be caused by
the reduction in photosynthesis and increased resistance to hydraulic conductance in the xylem.

Management of Verticillium wilt in most crops is difficult. Soil fumigation has been practiced
effectively in some high-value crops like strawberries [12]. However, cotton has insufficient value for
soil fumigation to be cost-effective. Crop rotation has been unsuccessful for the control of Verticillium
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wilt [13,14], likely due to the long-lived nature of microsclerotia [15]. Although some biological
remedies, including the incorporation of broccoli into the soil [16], biological disinfestation using
organic matter [17], and an integrated management strategy for Verticillium wilt [18], are successful
at reducing Verticillium wilt, the effectiveness and economic feasibility of these techniques remain
ambiguous. The most economically feasible and environmentally friendly method of managing the
pathogen is the use of cotton cultivars with at least partial resistance to Verticillium wilt [19–22].

Verticillium wilt damages the quality of cotton fiber, including length, strength, and grade [23].
Yarn spun from wilted plants was inferior in appearance, and Verticillium wilt affected plants produced
more neps and resulted in greater manufacturing waste [23]. Verticillium wilt may reduce deposition
and reorganization of cellulose molecules in cotton fiber. This could impact fiber yield and fiber
properties, including micronaire, fiber maturity, short fiber content, and immature fiber content, as these
are all related to cellulose deposition and reorganization in cotton fiber development. The objective of
this project was to compare the rate of photosynthesis, yield, and fiber properties in the absence and
presence of Verticillium wilt on germplasm ranging from very susceptible to partially resistant.

2. Results

2.1. Disease Ratings

The first symptoms associated with Verticillium wilt appeared on average between 44 and 67 days
after planting (DAP) for the six genotypes (Table 1). The partially resistant commercial cultivar FM
2484B2F and breeding line 16-13-203V developed initial symptoms at 47 and 44 DAP, respectively,
and line 16-13-601V was the last to develop symptoms at 67 DAP. All other genotypes were intermediate
in symptom initiation. Disease severity was highest for the susceptible commercial cultivar DP 1612
B2XF (3.5) and 16-13-203V (3.7) (Table 1). All the other breeding lines and FM 2484B2F had less severe
disease symptoms (Table 1). Vascular (stem) discoloration at harvest was worse for DP 1612 B2XF (2.4)
than for 16-13-601V (1.0), 17-17-206V (1.4), 17-17-606V (1.5) and FM 2484B2F (1.0) (Table 1). Disease
severity and vascular stem discoloration suggested that FM 2484B2F, 16-13-601V, and 17-17-206V were
more resistant than DP 1612 B2XF and 16-13-203V. Earliness of symptom initiation was not predictive
of disease severity or stem discoloration.

Table 1. Least square means for initial Verticillium wilt development (WILTi), disease severity (DS),
vascular cross-section severity disease rate (VCDS), photosynthesis rate, lint yield per plant (Lint) and
seed yield per plant (Seed).

Genotype WILTi
b (DAP) DS c VCDS d Photosynthesis

(µmoL m−2 s−1) Lint (g) Seed (g)

16-13-203V 44 b a 3.7 a 2.2 ab 19.6 b 37 bc 53 bc
16-13-601V 67 a 2.0 b 1.0 c 22.0 a 42 ab 57 ab
17-17-206V 56 ab 2.6 b 1.4 c 22.2 a 45 a 62 a
17-17-606V 53 ab 2.0 b 1.5 bc 21.7 a 41 abc 54 bc

DP 1612 B2XF 55 ab 3.5 a 2.4 a 19.2 b 36 c 48 c
FM 2484B2F 47 b 2.3 b 1.0 c 21.8 a 45 a 60 ab

a Means followed by the same letter within a column are not significantly different at the p < 0.05 probability level. b WILTi
is the time of initial Verticillium wilt development, given as days after planting (DAP). c Disease severity is on a 0 to 5 scale,
where 0 = no disease and 5 = dead plant. d VCDS is on a 0 to 4 scale, where 0 = no vascular necrosis and 4 = 100% vascular
necrosis. Tukey’s HSD test was used to determine differences among genotypes for different traits at the p < 0.05 level
of significance.

2.2. Photosynthesis

Significant genotype × inoculum (with and without V. dahliae) and genotype × DAP interactions
were observed for photosynthesis and transpiration rates (Table 2), suggesting that some genotype(s)
performed well in the absence of disease, while the same genotype(s) performed poorly under
Verticillium wilt pressure. Conversely, genotype × DAP interactions for intercellular carbon dioxide
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concentration were not significant. Growth stages characterized by DAP showed significant differences
for all physiological parameters considered. Photosynthetic rate, intercellular carbon dioxide
concentration (Ci), and transpiration rate showed significant effects from the presence/absence of
V. dahliae.

Table 2. Analysis of variance for photosynthesis rate, intercellular carbon dioxide concentration (Ci),
and transpiration rate.

Source
Mean Squares

DF Photosynthesis Rate
(µmoL m−2 s−1)

Ci
(µmoL CO2 moL−1)

Transpiration Rate
(mmoL H2O m−2 s−1)

Inoculum b (+/−) 1 209.89 ***a 2.70 * 96.62 ***
Genotype 5 5.97 *** 2.80 2.61 **

Genotype × Inoculum 5 4.97 ** 3.76 3.39 **
DAP 13 52.12 ** 19.75 ** 242.46 **

Inoculum × DAP 13 8.51 ** 1.62 17.73 **
Genotype × DAP 65 0.98 1.88 ** 1.17

Inoculum × Genotype × DAP 65 0.91 1.10 1.01
Error 854 41 3548 7.5

* Significant difference at p < 0.05, ** significant difference at p < 0.01, *** significant difference at p < 0.001. The inoculum
was Verticillium dahliae microsclerotia mixed into the soil before planting (+) or absence of V. dahliae (−).

Although Verticillium wilt symptoms occurred before flowering, the expression of the disease was
greatest after flowering. In the first 50 DAP, no differences were observed in the photosynthesis rate
between plants with Verticillium wilt and healthy plants (Figure 1). However, a significant reduction
in the photosynthetic rate was observed from the early flowering stage (57 DAP) through boll set
(86 DAP). The range between 86 and 105 DAP overlapped with the peak boll-setting period and the first
25% of the boll-cracking stage. After 86 days, leaf chlorophyll began degrading, and the photosynthesis
rate of both healthy and diseased plants declined.
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Figure 1. Photosynthesis rate over time of healthy and Verticillium dahliae inoculated greenhouse-grown
upland cotton breeding lines (16-13-203V, 16-13-601V, 17-17-206V, and 17-17-606V) and cultivars
(DP 1612 B2XF and FM 2484B2F), Each line graph represents the average photosynthesis rate for
six genotypes, six replications, and three tests for healthy (blue) and V. dahliae treated (red) plants.
The standard error bars shown for each means.

In the absence of disease, all cotton genotypes had a similar rate of photosynthesis. However,
differences between genotypes were seen in the presence of disease (Table 2). The highest percent
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loss in photosynthesis rate occurred with DP 1612 B2XF and 16-13-203V (Figure 2). Lines 17-17-206V,
16-13-601V, and 17-17-606V had a rate of photosynthesis that were similar to FM 2484B2F. The loss in
photosynthesis rate mirrored the differences seen in damage severity ratings and vascular necrosis.
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Figure 2. Impact of Verticillium wilt on photosynthesis rate of greenhouse-grown upland cotton
breeding lines (16-13-203V, 16-13-601V, 17-17-206V, and 17-17-606V) and cultivars (DP 1612 B2XF and
FM 2484B2F). The graph illustrates the average photosynthesis rate for 12 repeated measurements, 6
replications, and 3 tests for healthy and V. dahliae treated plants. Standard error bars are shown for
each mean.

2.3. Yield and Fiber Quality

There was a drastic change in the lint and seed weights between healthy plants and plants with
Verticillium wilt (Figure 3). Lint weight decreased by 32% in diseased 16-13-203V plants and by 46% in
diseased DP 1612 B2XF plants compared to their healthy counterparts. Genotypes whose lint yield
was less adversely affected in diseased plants included 16-13-601V (15% reduction), 17-17-206V (22%
reduction), and FM 2484B2F (24% reduction). The effect of Verticillium wilt on seed production per
plant showed similar trends as those seen for lint yield (Figure 3). The lower percent lint and seed
yield loss for 16-13-601V and 17-17-206V suggest tolerance of these two genotypes to Verticillium wilt.

There was a genotype× inoculum interaction with micronaire measured by high volume instrument
(HVI) and length by number, short fiber content, fineness, immature fiber content, and maturity ratio
measured by the advanced fiber information system (AFIS). However, Verticillium wilt did not
affect genotype × inoculum interaction with HVI-measured fiber length, length uniformity, strength,
and elongation. All genotypes grown in the absence of disease produced fibers with a higher micronaire
(Table 3). Some genotypes (17-17-606V, 16-13-203V, 16-13-203V, and DP 1612 B2XF) with Verticillium
wilt produced fibers with relatively low micronaire. The partially resistant cultivar (FM 2484B2F)
and advanced breeding lines 17-17-206V and 16-13-601V produced similar micronaire values under
Verticillium wilt pressure. The trend in short fiber content followed micronaire. The highest fiber
breakage was recorded for DP 1612 B2XF and 16-13-203V breeding lines (Table 3). With diseased plants,
the average short fiber content was significantly lower for 16-13-601V, 17-17-606V, and 17-17-206V than
for DP 1612 B2XF. Interestingly, the lowest average short fiber content was recorded for DP 1612 B2XF in
the absence of Verticillium wilt, while the highest average short fiber content was recorded for the same
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cultivar in the presence of Verticillium wilt. All genotypes with Verticillium wilt produced significantly
higher nep count and short fiber content compared to their healthy counterparts. There was no
significant difference between genotypes for nep count in healthy plants. DP 1612 B2XF and 16-13-203V
produced relatively high percent immature fiber content, explained by higher nep count and short fiber
content (Table 3). FM 2484B2F with Verticillium wilt produced mature fibers and had low immature
and short fiber contents. Breeding lines 16-13-601V and 17-17-206V followed the trends of fiber quality
produced by FM 2484B2F (Table 3).
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Figure 3. Percent (%) seed and lint yield loss of greenhouse-grown upland cotton breeding lines
(16-13-203V, 16-13-601V, 17-17-206V, and 17-17-606V) and cultivars (DP 1612 B2XF and FM 2484B2F)
due to artificial inoculation with Verticillium dahliae. The graph illustrates the average yield loss under
Verticillium wilt pressure. Standard error bars are shown for each mean.

Table 3. Least square means for fiber properties of micronaire, neps, short fiber content by number
(SFC (n))), fine(mTex), immature fiber content (IFC), and maturity ratio (MR) with and without
Verticillium wilt.

No Verticillium Wilt

Genotypes Mic Neps SFC (n) Fine (mTex) IFC MR

16-13-203V 4.5 b a 117 a 19.1 a 167 c 6.2 b 0.92 a
16-13-601V 4.1 c 156 a 15.7 c 152 d 7.0 a 0.92 a
17-17-206V 4.6 b 118 a 19.3 a 174 ab 6.0 b 0.91 ab
17-17-606V 3.9 c 166 a 18.6 a 153 d 7.0 a 0.90 ab

DP 1612 B2XF 5.0 a 145 a 16.1 bc 178 a 5.9 b 0.90 bc
FM 2484B2F 4.4 b 136 a 17.7 ab 168 bc 5.9 b 0.90 bc

With Verticillium Wilt

16-13-203V 3.4 bc 331 ab 25.3 ab 146 bc 7.8 ab 0.85 bc
16-13-601V 3.9 ab 210 b 18.9 c 153 abc 7.3 abc 0.88 ab
17-17-206V 4.0 a 243 b 22.3 bc 164 a 6.9 bc 0.88 ab
17-17-606V 3.4 c 258 ab 23.1 bc 143 c 7.9 ab 0.85 bc

DP 1612 B2XF 3.6 bc 565 a 29.3 a 144 c 8.3 a 0.83 c
FM 2484B2F 4.1 a 191 b 20.4 bc 159 ab 6.5 c 0.90 a

a Means followed by the same letter within a column are not significantly different at the p < 0.05 probability level.
Tukey’s HSD test was used to determine differences among genotypes for different fiber quality traits at the p < 0.05
level of significance.
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For healthy plants, all genotypes produced the nearly perfect fiber length distribution that is
normally desired by the textile industry (Figure 4). In the healthy plants, genotypes produced a
minimum number of short fibers with well-defined long fiber peaks. In contrast, the frequency of
short fibers created in most cotton genotypes with Verticillium wilt was high, possibly due to low fiber
maturity. Fibers produced by DP 1612 B2XF and 16-13-203V were seriously damaged by Verticillium
wilt. These types of fibers have limited use in yarn processing, as the length distribution reveals
that such fibers are below spinnable quality. When healthy and diseased genotypes were compared,
16-13-601V produced a minimum number of short fibers and well-defined long fiber frequencies and
thus can be considered potentially spinnable in the current textile industry.Plants 2020, 9, x FOR PEER REVIEW 7 of 13 
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Figure 4. Fiber length distribution of greenhouse-grown upland cotton: healthy (top) and inoculated
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3. Discussion

Verticillium wilt restricts the movement of water and nutrients within the vascular system of
cotton and drastically limits crop productivity. We have observed that the photosynthesis rate of each
cotton genotype was reduced by Verticillium wilt, although the response mechanisms which affect
photosynthesis rate and other related physiological traits may depend on genotype. The disease was
less severe, including necrosis and presumably blockage of the xylem, depending on genotype. Cotton
genotypes show different responses to Verticillium wilt [9]. In this study, some genotypes showed high
susceptibility while other genotypes showed partial resistance when planted into V. dahliae infested
soil. Resistance mechanisms to V. dahliae may include cell wall modifications, extracellular enzymes,
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transcription factors, pattern recognition receptors, jasmonic acid, salicylic acid, or ethylene-related
signal transduction pathways [24].

The magnitude of damage caused by Verticillium wilt to cotton lint and seed yield depends on
the phenotypical stage of the plant when first foliar symptoms occur in the crop [25]. Our results did
not necessarily agree with this observation. FM 2484B2F had early symptom initiation of Verticillium
wilt but is one of the most resistant commercial cultivars to this disease [22]. However, 16-13-203V had
the earliest symptom initiation for Verticillium wilt but was as susceptible to this disease as DP 1612
B2XF. Minimal season-long disease severity combined with low yield loss in Verticillium wilt fields are
both important indicators for selecting Verticillium wilt resistant germplasm [22].

Verticillium wilt essentially causes premature senescence in plants, and this early termination of
productivity may reduce deposition and organization of cellulose molecules in cotton fiber. Cellulose
deposition and organization of the secondary cell wall is an important structural change that occurs
during cotton fiber development. The composition of mature cotton fiber is 88 to 97% cellulose [26].
Any external factors that affect the structural change of the cell wall could impact fiber properties
such as micronaire, fiber maturity, short fiber content, and other fiber-maturity-related properties.
It has been reported that Verticillium spp. induce cell-wall-degrading enzymes and phytotoxins [27].
When V. dahliae infects a cotton plant, carbohydrate-active (CAZymes) protein molecules that participate
in pectin and cellulose degradation pathways significantly activate the corresponding transcription
levels of several genes encoding plant cell wall degradation enzymes [28] that cause inferior fiber quality.

The initiation of secondary cell wall synthesis depends on genetic differences in cotton lines [26].
The impact of Verticillium wilt on the secondary cell wall development may have differed between
genotypes. Genotypes considered in this study showed variable fiber properties, particularly for
micronaire, maturity, fineness, immature fiber content, and short fiber content. In cotton fiber
development, the period between 16 to 21 days post-anthesis (DPA) marks a developmental change
from primary to secondary cell wall synthesis [29]. The highest rate of cellulose synthesis commenced
from 24 to 25 DPA after the cessation of the elongation phase [26,28]. It appears that severe disease
symptoms caused by Verticillium wilt during early cell wall synthesis drastically reduced maturity
and fineness of the fiber, which led to low micronaire of susceptible cotton lines. Micronaire is the
combination of fineness and maturity, directly proportional to the measure of airflow between cotton
fibers. More immature fibers may be created when Verticillium wilt is present.

Previous studies indicated that immature fibers break during processing [30–33]. In this study,
it appears that the effect of Verticillium wilt results in poor development of secondary cell walls,
rendering them weak and with a propensity to break during mechanical processing and create higher
short fiber content. In the presence of high immature fiber content, the entanglement of fibers is
expected. The results of this study show that upland cotton genotypes (DP 1612 B2XF and 16-13-203V)
produced a high percentage of immature fiber, leading to the entanglement of fibers. Conversely,
some germplasm with Verticillium wilt exhibited higher micronaire, lower short fiber content, low nep
count, low immature fiber content, and relatively more mature fibers. The high variabilities observed
between diseased and healthy upland cotton fiber quality suggests the possibility of a large gap to be
filled through improving cotton against Verticillium wilt.

When the complete fiber length distributions were compared among genotypes, the fiber breakage
of susceptible cotton lines was very high under disease stress compared to that of healthy plants.
This study demonstrated that the spinnability of the fiber into quality yarn was negatively impacted by
Verticillium wilt in susceptible cotton germplasm. However, more resistant germplasm like 16-13-601V
was able to maintain a consistent fiber length distribution with a minimum number of short fibers
and well-defined long fiber peaks, even with Verticillium wilt. When breeding for germplasm with
resistance to Verticillium wilt, it is important to include reduced disease severity, high yield, and good
fiber quality traits.
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4. Materials and Methods

4.1. Germplasm

The genotypes tested were four unreleased cotton (Gossypium hirsutum) breeding lines (16-13-203V,
16-13-601V, 17-17-206V, and 17-17-606V) developed at Texas A&M AgriLife Research in Lubbock, TX.
These breeding lines were evaluated in the field for Verticillium wilt resistance. The advanced breeding
lines Deltapine brand DP 1612 B2XF, PVP 201600049, (Verticillium wilt susceptible commercial cultivar)
and FiberMax brand FM 2484B2F, PVP 201200291, (Verticillium wilt partially resistant commercial
cultivar) were selected for the greenhouse experiment because they demonstrated partial resistance in
an open environment [22].

4.2. Fungal Preparation and Soil Inoculation

Microsclerotia of V. dahliae (defoliating type isolate) were produced on a minimal medium overlaid
with cellophane [34]. The microsclerotia were harvested from the cellophane six weeks after inoculation
and washed through a sieve with a 230-µm pore opening stacked over a sieve with a 37-µm pore
opening. The contents on the 37-µm sieve were mixed into dried and sieved soil and used as the “hot
mix”. The soil was sieved with a 0.635 cm mesh sieve. The soil used was an Acuff loamfine-loamy
mixed thermic Aridic Paleustolls (50% sand, 21% silt, 29% clay) with a pH of 7.8 and 0.5% organic
matter. Soil which had no V. dahliae microsclerotia before inoculation was air-dried, sieved, and mixed,
either with microsclerotia of V. dahliae or mixed with no microsclerotia, for 180 seconds in a twin-shell
blender (Model 1-CU-FT twin-shell blender with intensifier bar; Patterson-Kelley, East Stroudsburg,
PA). For calibration of the inoculum, 250 cm3 of the hot mix was mixed in a twin-shell blender with
20 L of soil, and then three subsamples (10 cm3 soil/subsample) were assayed by dilution plating on
Sorensen’s NP-10 media, with the pH adjusted to 5.5 [35]. The amount of “hot mix” in each experiment
was then adjusted to reach the desired density, and the final microsclerotia density added to pots in
each experiment was determined from the same dilution plating methodology as the calibration step.
The final density after mixing was 808 microsclerotia/g soil.

Each pot (39.6 cm tall, 30.0 cm diameter at top, 25.8 cm diameter at the bottom, 22.2 L volume)
held 19 L of soil. The mixed soil was placed in the center of the pot in a tube (8 cm diameter) (Figure 5).
Nonmixed soil with no natural infestation of V. dahliae was then filled around the tube. The tube was
then pulled out, leaving the mixed soil in the center of the container. The outer layer of soil was not
mixed to provide better soil structure for air and water movement. Four seeds were planted into the
center and thinned to one plant/pot after emergence. The seed was planted within a day of adding
the inoculated soil to pots. Pots were watered uniformly as needed until plants were established and
then watered at 2- to 3-day intervals after that time. Soil in the outer part of the pot (not mixed) had a
granular slow-release fertilizer (Osmocote Plus; The Scotts Company LLC, Marysville, OH) that was
mixed with the soil using a cement mixer with 88.7 g of fertilizer per pot before planting. Insect pests
were controlled using standard recommended insecticides as necessary. Cyclanilide (0.011 mL a.i./L) +

mepiquat chloride (0.045 mL a.i./L) (Stance; Bayer CropSciences, Research Triangle Park, NC, U.S.A)
was applied with a backpack sprayer to manage cotton vegetative growth.
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4.3. Experiment Layout

Each table in the greenhouse held one replication with one row of plants where the soil had no
V. dahliae and one row of plants where the soil was infested with V. dahliae microsclerotia. The six
genotypes were randomized down a row within inoculum levels (with or without V. dahliae). The side
of the table with or without V. dahliae was also randomized between replications. There were six
replications. The test was repeated three times. The tests were conducted from 30 May to 28 October
2018, 25 April to 2 November 2019, and 27 June to 11 December 2019.

4.4. Disease Ratings

Plants were evaluated for Verticillium wilt symptoms starting 30–40 DAP, which was when the
earliest symptoms developed on some plants. The day that first symptoms were seen on individual
plants was recorded. Plants were rated for foliar disease severity based on the 0–5 scale as described
by [36,37]. The 0–5 scale defines foliar symptoms as follows: 0 = 0%, no disease symptoms; 1 = 1–25%,
minimum chlorosis at lower leaves; 2 = 26–50%, plant with chlorosis on lower and middle leaves;
3 = 51–75%, plant shows well developed symptoms of chlorotic, necrotic, and twisted terminal leaflets
on one or more branches; 4 = >75%, more than three leaves show severe symptoms of chlorosis/necrosis;
5 = 100%, a complete plant death. At the end of each experiment, the stem was evaluated for
discoloration. The rating for vascular cross-section discoloration (0–4 scale) was assigned according
to [38] as follows: 0 = 0% discoloration or no disease symptoms; 1 = 25% of the cross-section shows
discoloration; 2 = 26–50% of the cross-section has turned brown; 3 = 51–75% of the cross-section has
turned brown; 4 = ≥76% of the cross-section has turned brown.

4.5. Physiological Measurements

Starting at 30 DAP, the rate of photosynthesis, stomatal conductance, intercellular carbon dioxide
(Ci), and transpiration rate were measured. All physiological traits were repeatedly measured using
the LI-6400 portable photosynthesis system (LI-6400XT; Li-Cor, Lincoln NE, USA) by choosing the
youngest fully expanded mainstem leaves of an individual plant treated with and without V. dahliae.
The light was provided by an integrated LED head (293 LED, LI-6400-02B). Within the cuvette, the air
temperature was 28 ◦C, the flow rate was 400 µmoL s−1, and CO2 was maintained at 400 µmoL moL−1.
The physiological trait measurements were collected at different growth stages of upland cotton
including pre-flowering, peak flowering, boll setting, and boll cracking.
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4.6. Yield and Fiber Quality

Bolls were hand-harvested at different positions and the seed cotton was ginned with a 10-saw
laboratory-scale gin with no lint cleaner. Bolls harvested from different positions in the plant were
used to calculate the seed cotton weight, seed weight, and lint production per plant. It should be
noted that plants affected by Verticillium wilt produced bolls only at first and/or second position.
For that reason, the fiber quality of bolls harvested from the first and second positions within the plant
was tested with the high volume instrument (HVI) and advanced fiber information system (AFIS) at
Texas Tech University, Fiber and Biopolymer Research Institute (FBRI), Lubbock, TX. For AFIS testing,
three replicated blended samples with 3000 fibers were analyzed per sample. For sample preparation,
a 0.50-g tuft of fibers was drawn into a 25-cm length sliver, and 9000 fibers were measured from each
sample. FBRI performed testing of the cotton sample under constant climate-controlled conditions.
The standard temperature for fiber property testing is 20 ± 2 ◦C at 65 ± 2% relative humidity. Before
testing, samples were arranged in single layers and allowed to equilibrate for 48 h under standard
atmospheric conditions. To minimize experimental error, the same technician ran all the samples
in each year. The cotton samples were tested on the HVI, with four micronaire and ten length and
strength measurements under standard laboratory conditions.

4.7. Statistical Analysis

Physiological traits such as photosynthesis rate, internal carbon concentration, and transpiration
rate were measured repeatedly (12 times) throughout the cotton growth stages. Data for physiological
traits were analyzed with SAS 9.4 (SAS Institute Inc) using the PROC MIXED (mixed model) procedure.
Genotype, treatment (inoculated vs. healthy), and DAP were considered as independent variables.
Plant_ID, which is a combination of replication, test, and treatment groups, was used as a random
variable accounting for the repeated measurements of the same plant at different time points. The PROC
MIXED procedure was also used to analyze disease severity ratings (DS). As the distribution of disease
severity during the early stages of plant growth was very low, the last two severity ratings (during
boll setting and harvesting period) were used for this data analysis. Genotype and growth stage
were considered as independent variables, while Plant_ID was considered as a random variable.
Shapiro–Wilk’s, Brown–Forsythe’s, and Levene’s tests were used for validating normality and
homoscedasticity of all measured variables. When the data met the criteria for normality and
homoscedasticity assumptions, data of all fiber quality traits, initial Verticillium wilt development
(WILTi), vascular cross-section severity disease rate (VCDS), the total number of bolls per plant, and boll
size were analyzed using general linear models (SAS PROC GLM). For non-normally distributed
data, log transformation was applied. Tukey’s HSD test was used to determine differences among
genotypes for different traits at the p = 0.05 level of significance. Mean comparison was performed
using Genomics 6 (JMP, 2013).
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