

Supplementary Figure 1. Length distribution of transcripts assembled from RNA-Seq libraries of glyphosate-resistant and -sensitive biotypes of *Lolium multiflorum*.

Supplementary Figure 2. Sequence comparison to other plants (hit $\ge 1\%$) from the distribution of BLASTx hits (e-value < 1e–10) against the non-redundant protein database of the National Center for Biotechnology Information (NCBI).

Supplementary Figure 3. Top twelve Gene Ontology (GO) terms identified in the *Lolium multiflorum* transcriptome assembly summarized in three main categories: (A) biological process, (B) molecular function, and (C) cellular component.

(\ \								
(~)	Amino acid position	100	101	102	103	105	106	107
	EPSPS sequence	GCT	GGA	ACT	GCG	CGG	CCA	TTG
	Translation ORF/CDS	А	G	Т	А	R	Р	L
	Arabidopsis thaliana ¹	А	G	Т	А	R	Р	L
	Lolium multiflorum ²	А	G	Т	А	R	Р	L
	Zea mays ³	А	G	Т	А	R	Р	L
	L. multiflorum GS	А	G	Т	А	R	Р	L
	L. multiflorum GR	Α	G	Т	А	R	Р	L

Supplementary Figure 4. Partial sequence alignment of the EPSPS transcripts and amino acid sequence assembled of transcriptomes from glyphosate-resistant (GR) and -sensitive (GS) biotypes compared to ¹EPSPS sequence of the *Arabidopsis thaliana* (GenBank: CAA29828.1); ²EPSPS sequence of *Lolium multiflorum* (GenBank: DQ153168.2); ³EPSPS sequence of *Zea mays* (GenBank: AF349754) (A). The grey-colored boxed amino acids show no substitution at positions Threonine 102 and Proline 106. Transcriptome expression levels (transcript reads per million mapped reads - TPM) of the EPSPS in GR and GS biotypes in response to glyphosate treatment and differential expression ratio (Fold change) (**B**). Different letters indicate significant gene expression or ratio (fold-change) in response to glyphosate treatment in each biotype by the t-test while ns means non-significant at p≤0.05. GR: glyphosate treatment.

Supplementary Figure 5. Summary of top twelve gene ontology (GO) terms identified as up- (A, C, E, n=92) and down-regulated (B, D, F, n=54) genes (DEGs) in glyphosate-resistant (GR) biotype of *L. multiflorum* transcriptome in response to glyphosate treatment. Annotated sequences were classified into the biological process, molecular function, and cellular component.

	Uniment ID	Functional Approtation		Fold-Change ^{1,3}			Fold-Change ^{2,3}		
ContiaID			Dutation Localization	(qRT-PCR)			(RNA-Seq)		
Contig ID	Chipiot ID	Functional Annotation		GR	GS	Ratio	GR	GS	Ratio
						GR/GS			GR/GS
DN139722_c2_g6	A0A3B6R885	EPSPs	Chloroplast	21.9	47.8	0.46 ^{ns}	2.5	4.8	0.53 ^{ns}
DN124328_c1_g1	A0A0C5AYW1	Cinnamoyl-CoA reductase	Unknown	6.7	6.5	1.02 ^{ns}	30.2	23.8	1.3 ^{ns}
DN141928_c1_g1	R7W5T0	ABC transporter family member 2	Membrane	2.2	4.01	0.54ns	1.8	3.5	0.52 ^{ns}
DN135064_c0_g4	M8BDG0	Cytochrome P450 78A3	Unknown	0.12	0.03	4.0*	0.034	0.006	5.5*
DN106797_c0_g1	Q25C92	Glycine-rich RNA-binding protein	Unknown	0.19	0.14	1.4 ^{ns}	0.15	0.11	1.4 ^{ns}
DN101887_c3_g1	A0A1D5UUS0	Rubisco	Chloroplast	0.26	0.29	0.9 ^{ns}	0.09	0.10	0.91 ^{ns}
DN125475_c1_g1	M8A3A2	Glutathione S-transferase GSTU6	Unknown	50.3	54.2	0.9 ^{ns}	18.7	17.5	1.1 ^{ns}
DN134465_c0_g2	M8CQB9	Heat stress transcription factor	Nucleus	6.1	8.5	0.7 ^{ns}	2.1	4.2	0.5 ^{ns}
DN110372_c0_g1	A0A287F0A7	Auxin-responsive protein	Nucleus	0.47	0.22	2.1*	0.13	0.10	1.3 ^{ns}
DN124884_c0_g1	Q8L686	Adenosine diphosphate glucose	Unknown	0.17	0.04	4.2*	0.05	0.008	6.2*
DN140736_c3_g2	A0A1D8MIX5	ABC transporter family member 4	Membrane	42.7	6.5	6.6*	28	3.7	7.5*
DN116297_c0_g3	A0A287E7I0	Protein detoxification	Membrane	275.5	163.6	1.7*	78.9	82.1	1 ^{ns}
DN139321_c2_g2	A0A1E5UIT3	Histone-lysine N-methyltransferase	Unknown	141.5	122.6	1.1 ^{ns}	75.5	65.4	1.1 ^{ns}

Supplementary Table 1. The gene expression results of qRT-PCR (relative gene expression) and RNA-Seq (fold-change) in response to glyphosate treatment in glyphosate-resistant (GR) and -sensitive (GS) biotypes of *Lolium multiflorum* used to validate the transcriptome dataset.

¹ Relative expression compared to the average of two internal control genes – 18s and eEF1As. ² The transcriptional fold change of transcript per million (TPM). 3 Data for the GR and GS biotypes are expressed as the ratio from glyphosate treated to untreated individuals. * means significant and ns non-significant by F test (p ≤ 0.05). The genes were randomly selected from the gene list to provide a range of gene expression, except for EPSPs. Two biotypes originated from the same geographical region (São Valentin, RS, Brazil) were used, one GR and another GS.

Gene	Primer Sequences ¹	Reference		
18s	F- AACACTTCACCGGACCATTCA	Zhang and Hu (2007)		
100	R- CGTCCCTGCCCTTTGTACAC	2g und 110 (2007)		
GAPDH	F-AACTGTTCATGCCATCACTGCCAC	Wan et al. (2010)		
OAI DII	R-AGGACATACCAGTGAGCTTGCCAT	wan et al. (2010)		
TUAS	F- GGCTTGTGTCTCAGGTTATCTCATC	Clarks and Dahman (2005)		
TUAS	R- CATGGAGGATGGCTCGAAGG	Clarke and Ramman (2003)		
	F- CCGTTTTGTCGAGTTTGGT	$L_{22} = 1 (2010)$		
eerias	R-AGCAACTGTAACCGAACATAGC	Lee et al. (2010)		
¹ Forward (F) and Reverse (R) primers.				

Supplementary Table 2. Candidate reference genes for normalization of qRT-PCR in *Lolium multiflorum* glyphosate-resistant and -sensitive biotypes in response to glyphosate treatment.

Supplementary Table 3. The primers for 13 genes used for qRT-PCR analysis in *Lolium multiflorum* glyphosate-resistant and -sensitive biotypes in response to glyphosate treatment.

Gene Name	Sequence Primer				
	F- GCCGAGGAAACAATCAACAT				
EPSPS	R- GCAGGTTTCCGATTGAGAAG				
Cimeran and Co A noductors	F-GGTCGGCCAAGACATACG				
Cinnumoyi-CoA reductuse	R- GGGTACTCCGGGAAGAGC				
APC turner outon family monthan 2	F- GGGAAGCACAACACTGAAATC				
ABC transporter jumity member 2	R- CAGGTTGTCTTAGACGGTTGC				
Catto characa DAEO 78 A2	F- TGCATGAGTTCGAGTGGATG				
Cylochrome P450 78A5	R- CCAAAACGGGACACTACACA				
Chusing wich RNA hinding matrice	F- CGCTCTTCATCGACTCGGA				
Glycine-rich KNA-binding protein	R- GCAATGGCGGAAGAGTACC				
Dubiere	F- CGGTGGCAGGTAGGAAAGG				
Rubisco	R- CAGGGCCTCAAGTCCACC				
Clubathions & transformer CST116	F- GGAGGACTCACAAACAGGCT				
Glutathione S-transferase GS106	R- GGAGGAGACGATGTGAAGCT				
Hast stures to an initian Costan	F- GCTCAACGGGATCAGAGGT				
Heat stress transcription factor	R-GGCGATGAACATGTCCCATG				
Ain annun inn annut in	F- GCTCAACGGGATCAGAGGT				
Auxin-responsive protein	R-GGCGATGAACATGTCCCATG				
Adamasing distants alwass	F-GCCGTGGTAGTAGAAGTCCC				
Adenosine dipnosphate giucose	R- GCTAGCACACAGAGTAGC				
APC thomas out on family manufactor A	F- GCTTGTTCGGCGCTTGTC				
Abe transporter jumity member 4	R- CGGCTATCTTCACCTCTTGC				
Ductain deterification:	F- CGTTCTACTTGGCAGGCATC				
Protein uetoxification	R-GGCTACCACAAACTATGCCG				
History husing N mathed than former	F-GCCCAGGAATACTATGATGAGC				
піsione-iysine іх-тетнуitransferase	R- TGTTAAGACTGTGTTGCGCG				

SUPPLEMENARY SEQUENCES

ABC transporter A family member 7 - ABCA7 - TRINITY_DN140736_c3_g2; len=359 GCAAAAGAGCTGAAAGGAAGATATGGGGGGAACCTACGTGTTCACAATGACAACATCTTCGGAACATG AACAGGAGGTTGAACAGCTTGTTCGGCGCTTGTCGCCAAGTGCAAACAGGATATATCACATATCTGGA ACACAGAAATTTGAGCTACCAAAGCAAGAGGTGAAGATAGCCGACGTTTTCCATGAAGTTGAGCATG CAAAAAGCCGTTTTAGCATACACGCTTGGGGGCCTCGCTGACACCACCTTGGAGGATGTCTTCATCAAG GTTGCTAAGGGAGCACAAGCATTCAATGAAAACGTGTAACTAGTACTATCCGATTCGTAGGTGATTAT TCTTTTCCTTTGTGAAGAAAT

COBRA-like protein 7 – COBL7 – TRINITY_DN140896_c3_g3; len=218 CCGCAGGTGTAGTCCGGGGTTGAGGGAGGAGCCGCCGGCGATCTTGAAGTTGGCCGGCGGGAAGAGCT TGGTCCTGTTGGTGTCCGGCGGCATCTTGAAGACCTGGATTTGGAAGGCGGATTTGGACTGGGAGGGG TCCATGGACTTGGGCAGGATGGTGCCGTTGCGGCAGCAGTGGTTGATTCTCCCCATTTCGGTGTCGTTG TAGCGGGAGAGCGG

Gibberellin 20 oxidase 2 - GA20OX2 - TRINITY_DN112601_c0_g2; len=350

GGTTACTACGAGTCGGAGCACACCAAGAACGTCAGGGACTGGAAGGAGGTGTTCGACCTCGTCCCCC GCGAGCCTCCGCCGCCGCCGCCGTGTCCGACGGCGAACTCGTGTTCGAGAACAAGTGGCCCAGGA CCTGCCTGGATTCAGAGAGGCACTGGAGGAGTACGCGAAGGCGATGGAGGAGCTGGCCTTGAAGCTG ATGGAGCTGATCGCGCGCAGCCTGGGGCTGAGACCGGACCGGCTGAAGGGCTTCTTCAAGGACGACC AGACCACCTTCATACGGCTCAACCACTACCCGCCCTGCCCGAGCCCCGACCTCGCGCTCGGCGCCGCC CGCCACAAGGACGC

Glycosyltransferase UDP 79 UGT79 - TRINITY_DN125138_c7_g3; len=442

Glycosyltransferase - TRINITY_DN123097_c0_g1; len=623

GTTGGCTGGAACAAACCTACTGAAAATCGATTAACACCTTCGCTGCTCTCCAAACACTGACCAGCCTA CAGAATACACAGATCACTCAATTGGATACACCGACTGCAAGCATTGTGGAAGAAGAGAAGCCAACCTCAT ACGTCGAACTGAGTTGTTTTACTGATAGTAAGAACAATTGTCATCAGATGTAGACTTATTTTTATTTTGA GCGAACTCAGAATACATAGTACTGTATTATTGTAGTATGAAACACTGATCAGCGTAGAATATCGTCAC GACCTCGCCGCAAGATGCATATAGCAAACTTTGATCGATGTGAAGCTACAAGATGCCAACGCTATCTG CTAAAATTTCCTTATCTGGAGCTGGTGGCGTCATGGTGCTGAGGCTAAGCTCGTTGAGGAAGCCCACG AGCCGCTTGAACTCCTCCTTGGACGAGCCACCCTCGGCAATGTCCGGCCTCACCTCCAGCGCCAGCGC CTGAGCGGACCTCCTTATCTCCTCGGACTCCATGGCTTCCGTCACCATCCTTTCCACGACGGCCCTCTC GCACACGTCCTTCATGTCCAGCCCTGTCCTCCACACTTCGCCTATGAACCGGCTGTTGGTCTGCTGGTC GGCGAAGA

Subtilisin-chymotrypsin inhibitor - WSCI - TRINITY_DN111587_c0_g1; len=641

Sulfate transporter 1.2 - TRINITY_DN135754_c1_g1; len=848

Ubiquitin – TRINITY_DN120520_c4_g4; len=237

AAGAAATTAGACGCAGAAAATCAACCGCAGTTCATCAAGATGCAGATCTTCGCCAAGACGCCGACGG GGGAAACCATCACCCTCGAAGTCGTGGACAGTGACACCATCGCCAGCGTCAAGGCCAAGATCCAGGG CAAGGAAGGTATCTCGCCGGACCAGCAGCGCCTCATCTTCGCGGGGAAAGCCGCTGGAGGATGGCCGC ACCCTCGCCGACTACAACGTCCTCAAGCAGTCCACG

Uncharacterized protein - TRINITY_DN141149_c4_g5; len=217

TCGCCGGCGAGGTGGCCCGCTGCGACGTCCGTTTCCTGCCACACGCCGCCCGGAGGGCTGAACCCCGC GGCATATGTCATCGTCGCCACCAGCGTCGCCAGCAGCAGCAGGATGTACTTGCTCAGGTCCAGCATCAGCT CGTCGCTTTTGATCTCCTTCTGCACATCTGGGAGGGTACCTTCAGGTGGCGGCTGAGCGTCCAACGACG CGAGCTCGACGT

DAO domain-containing protein - TRINITY_DN134059_c0_g2; len=398

RNA polymerase sigma 10ator – TRINITY_DN137034_c0_g1; len=375

Senescence-associated protein - DIN1 - TRINITY_DN136212_c1_g1; len=239

Transcription factor - HBP-1b(c1) - TRINITY_DN134440_c0_g3; len=1145

ATTACCAACTTGTCCAATAATTGAAAATATGACATGATTCTGAATCAAACCTCTCATCAATACAACATT GTGAAGAATCTAGGGAGTAGGGAGCGCCTGATTTCCTATGGGGCTAATACAACACAGTACCTAATAA CAATATCCTATTTATGAACTTATTCAATTTATTCCCGTGGACGGGCATGCCAAAGGGAACTCAAAGCG CGTAGCCGGGAGAAGTAGTCACTTATTGCAAGCAGAGCTCGTGCAGATTGGCGAGTGGTTAATATGCG TTGCAGTTGCTGAAGGGTTTGCAGCCGCAGATTATCAGCCTGCCGTAGGAAGTCTTGAGTGTTCCAAG TTTTCCCATAGCCATTGCCATCTGTCCCATGTAGTTTGCAACATTGCCAGAAGATCCTGCAGGGCCCAG GGATCCAGATGCTAGGGTTTCTGCGAGCGACTGTTGTAGTGCCTCCATGCCTTGAGAAAGAGCATCTT CAGCTTGTTGAGAGGACTGTTGCAGGGTGCATACGCCTGTAAGCTGCTCCAGTAAGAGGGTTCTAGTT GACCTCCCAGTAACTTAAGGAGCTCAGATGATTGAAGCCACCTAACCACATGAAACACCTCTCGGCA GGGGTCTGCCACATTCCAGACAGCACATGGAAAACATCTGCTTTGGCTGCTACACCCTTGAGGCCGAG AAATTCATCATAGTGTGCCATGATGCTGTCAACAATACTCCGAAGATCGTCATCACCAGCATGTGCGT **Uncharacterized protein – TRAES_3BF019300240CFD** – TRINITY_DN124989_c0_g4; len=209 CTGGGCCTCCTCGACGCCGACGAGAGAGCCCCGACGACGGCGACCTCTTCTTCTCCCCTGCGCGGAACAA CCTTGAAGGCGCAGTGATGAAGGAAGAAGCGGCCGGCAAGAAAGCCGGAGGAGCTGAGGTGATGCC TTGGGGGATCGAGAAGTGGTGGCGGACGCACGTCACGGTGCCGGAGGTCCCCAAGTACGCGGAGAA GGCGCCTAA

Vacuolar protein sorting-associated - VPS60-1 - TRINITY_DN127114_c0_g3; len=590 AAGCACAAGCGCATGTACGAGGATCAGCGCAACATGCTCTACAACCAGACCTACAACCTCGACCAGG TCGGCTTCGCCGCCGACGGCCTCAAGGACGCCCAGCAGACTATGAATGCTATGAAGGCGGCAAACAA GGAGCTTAAGGGGATGATGAAAACCGTCAAGATCGAGGGATATCGATAATATGCAAGATGAAATGACG GATCTGATGGACGTGAGCAACGAAGTACAAGAATCTCTCGGTAGAAGCTACAACATCCCCGATGATG TTGATGAGGAAGAGCTAATGGGAGAGCTGGATGGTCTGGAAGCTGATATGGAAGTTTGAGTCTGCTGCA GTCCCGTCATATCTTCAGCCAGACGAGGAGGATGAGCTGATATTAACTTGCCCACTGCACCGACCTATCCTAC AGCAGTTCCAGTAAACAGGCACCAGGAGGATGAGCTAGGACTGCGAGCGGTACCTCGAGCATCACTC CGTAGTTAGAAGTATTTTGCGTGTGTTGTTCTTAGTGCTACCTTGTTGTTAAGGTGATGTTAAGAAGCCT TTGGTCTGTGCTTGAGCAATCCGTCCATGTA