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Abstract: Efficient nitrogen (N) nutrition has been reported to have the potential to alleviate the
drought stress damages by maintaining metabolic activities even at low tissue water potential.
The goal of our research was to find a correlation on the genotype level between the effect of different
amounts of nitrogen nutrition and water supply at different growth stages. A small-plot experiment
was established with three maize hybrids and three levels of nitrogen, and two different amounts of
water supply were applied during the vegetation period of 2018 and 2019. Chlorophyll fluorescence
parameters were detected, as well as potential and actual photochemical efficiency of PSII, at three
growth stages: eight-leaf stage, tasseling, silking. At physiological maturity, the yield of hybrids was
also measured. While only genotype differences were described among the investigated parameters
in the V8 stage, treatment effects were also realized based on the measured chlorophyll fluorescence
parameters during the tasseling and silking stages. Beyond the significant effect of irrigation, a similar
impact was declared in the case of 80 kg ha™! N treatment at the later growth stages. Pronounced
correlation was described between chlorophyll fluorescence parameters and yield mainly under
irrigated conditions. Our result suggested that lower N nutrition may be sufficient mainly under
irrigated conditions, and in vivo chlorophyll fluorescence parameters are appropriate for detecting
the effect of environmental factors in different growth stages.
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1. Introduction

Water is an essential element for living organisms. Water deficiency negatively affects plant
growth mainly through the nutrient availability in the soil. In recent years, the amount of annual
rainfall has varied considerably all over the world and in Hungary as well. Increasing temperature
trends affecting crop production throughout Europe furthermore increase the frequency of drought
crop years and negatively affect agriculture in Southern and Central Europe [1]. Generally, the
frequency of extreme rainfall and extreme drought is increasing. In the future, our country’s climate
will become drier, according to Mika’s predictions [2]; Zampieri [3] projects a 2 °C increase in the
global average temperature.

Nitrogen (N) is one of the most important nutrients in crop production, but the application of this
element often exceeds crop demands. N use efficiency of genotypes is different [4,5]. A decrease in N
use efficiency was observed at higher rates of N fertilizers [6]. One of the most significant effects of
irrigation can be observed during nutrient management. It has been found that under non-irrigated
conditions, a dose of 90 kg ha™! of N with the corresponding dose of phosphorus and potassium is
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optimal, whereas under irrigated conditions, a dose of 120 kg ha~! is considered appropriate [7]. Several
studies have proven the correlation among N supply and relative chlorophyll meter readings also
known as Soil Plant Analysis Development (SPAD) values [8-10]. Nagy [11] declared that fertilization
had a significant effect on the SPAD value under both irrigated and non-irrigated conditions, but the
value increased to a higher rate with irrigated conditions. The effect of irrigation was significant in all
cases compared to the non-irrigated areas. According to Kamara’s [12] results, drought tolerance of
maize genotypes can relate to tolerance towards N deficiency. These genotypes accumulate more N
and had more efficient N uptake.

Maize (Zea mays L.) belongs to the group of the most important crops in Hungary and worldwide.
In recent decades, the average yield of maize has increased [13]. Nevertheless, yield loss of maize
production from drought is expected as a result of rising temperatures and changes in rainfall
distribution [14], although the non-linear response of yield loss risk highlighted the increase in drought
severity [15]. Plant breeding programs and technological innovations, like tools of precision agriculture,
can reduce the effect of these problems, but we need to carefully consider the local environmental
conditions [16,17]. Irrigation is a relatively expensive option to reduce the negative effects of water
deficiency on plants, and if we integrate irrigation into the crop growing system, we need to modify
the agrotechnical elements (tillage system, nutrient supply, etc.).

Studying the phenomenon of chlorophyll fluorescence is a widespread method in plant stress
physiology research [18-20]. The effect of drought depends on its severity. Mild drought does not
affect the efficiency of photosystem two (PSII) but stomatal closure can decrease the CO, assimilation;
however, a higher level of drought negatively affects the adenosine triphosphate (ATP) metabolism [21].
Dias and Biirgemann [22] observed that chlorophyll fluorescence quenching, photosystem II quantum
yield, and electron transport rate were decreased due to drought. Based on Faraloni’s [23] results,
potential photochemical efficiency of PSII (Fv/Fm) is suitable for drought stress research. Some
results claimed that water supply does not have any effect on the potential photochemical efficiency
of photosystem II and apparent photosynthetic electron transport rate [24]. Li [25] also reported
severe drought caused a decrease in chlorophyll content, the optimal efficiency of PSII photochemistry
(Fv/Fm), and photochemical quenching in maize. Gholamin and Khayatnezhad claimed the amount of
minimal fluorescence (Fo) was increased, while the chlorophyll content and Fv/Fm ratio were reduced
for the effect of drought in maize [26]. Liu [27] reported the decrease of the Fv/Fm ratio for the effect
of drought stress but did not report an experienced difference between genotypes in the case of this
parameter. Our main goal was to prove the applicability of a chlorophyll fluorescence induction
method for drought stress research and yield estimation on a genotype level and different growth
stages. Furthermore, we tested the hypothesis that N fertilization is able to diminish water deficiency
in different maize genotypes with different phenology.

2. Results

2.1. Weather Conditions

During the experiment, the most important weather data were recorded at the meteorological
station near the experimental site. According to the results, in 2018, more precipitation fell than in 2019
during the examined period (Figure 1).
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Figure 1. Changes of monthly average temperature (°C) and monthly precipitation (mm) from January
1 to August 31 in 2018 and 2019.

Nevertheless, the weather conditions were favorable in 2019 for maize production. This can
be explained by the distribution of precipitation. In May, June, and July of 2018, 157.9 mm rain fell.
In contrast, during the same period in 2019, 205.4 mm was the amount of rainfall. The mentioned
period is critical from the viewpoint of maize production. To characterize the severity of drought the
Gaussen—Banouls xerothermal index was used (Table 1).

Table 1. Changes of Gaussen-Bagnouls xerothermal index from Jan 1 to Aug 31 in 2018 and 2019.

January  February = March April May June July August
2018 7.0 4433 11.2 1.1 15 14 1.0 2.0
2019 -54 14 0.7 1.3 2.9 0.7 24 0.3

Based on the index, only July can be classified as a drought month—when the value is lower than
1—in 2018. However, in 2019, March, June, and August were drought months from the ecological point
of view.

2.2. Eight-Leaf Stage (V8)

At the V8 phenological stage, a significant difference could only be detected in Fm values in 2018
(Table 2). At this time, significant differences were found between genotypes, but the fertilizer level had
no effect on any parameter. Armagnac (1.47 + 0.02) had a remarkably higher Fm value than Loupiac
(1.37 £ 0.03). In 2019, significant differences were found between genotypes but in more parameters
than in 2018. Armagnac has significantly higher Fo (0.27 + 0.003), Fm (1.35 + 0.02), and Fv (1.08 + 0.02)
values than Loupiac’s Fo (0.26 + 0.004), Fm (1.26 + 0.02), and Fv (1.00 + 0.02), and the Fm value was
significantly higher in Fornad (1.32 + 0.03) compared to Loupiac. A statistically justifiable difference
was not observed in any other parameter at the eight-leaf stage (Table 2).
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Table 2. Results of the three-way ANOVA performed on the Fo, Fm, Fv, Fv/Fm, Fv/Fo, and Fm/Fo
parameters measured at the V8 and R1 stages of maize in different crop years (2018, 2019); changes
are due to nitrogen supply (0, 80, 160 kg ha™'), irrigation (irrigated, non-irrigated), and genotype
(Armagnac, Fornad, Loupiac) * p < 0.05 (n = 4).

2018 2019
Fo Fm Fv Fv/Fm Fv/Fo Fm/Fo Yield Fo Fm Fv Fv/Fm Fv/Fo Fm/Fo Yield
V8 Genotype n.s. ns. * n.s. n.s. n.s. - * * n.s. * n.s. n.s. -
Nitrogen X .
ns. ns. ns. Ns. ns. ns. - ns. ns. ns. ns. ns. -
Genotype
Genotype ns. * % n.s. n.s. n.s. ns. ns. ns. ns. n.s. n.s. ns. n.s.
R1 .
Nitrogen X " " "
.o ns. ns. ns. ns. ns. ns. ns. ns. ns. n.s
Irrigation

2.3. Tasseling Stage (VT)

At the VT phenological stage, significant differences were observed in every examined parameter,
but the effect of the treatments and genotypes were also different in 2018 and 2019. In 2018, a difference
was observed between Armagnac (0.27 + 0.004) and Loupiac (0.26 + 0.003) in the parameter of minimal
fluorescence yield (Fo). In maximum fluorescence yield (Fm), a significant difference was noticed
between Armagnac (1.32 + 0.03) and Loupiac (1.23 + 0.03), as well as between Fornad (1.32 + 0.03)
and Loupiac. Furthermore, there is a statistically significant interaction between fertilizer, irrigation,
and genotype. By examining the variable fluorescence (Fv) parameter, similar results were found. A
significant difference was noticed between Armagnac (1.06 + 0.02) and Loupiac (1.06 + 0.03), as well as
between Fornad (0.98 + 0.03) and Loupiac. Furthermore, there is a statistically significant interaction
between fertilizer, irrigation, and genotype. Irrigation has a significant effect on actual photochemical
efficiency (yield). Under irrigated condition, the value of the parameter was 0.44 + 0.03, while the
mean of non-irrigated plots was 0.36 + 0.04. Remarkable differences were found in case of maximum
quantum yield of photosystem II (Fv/Fm) in 2018 (Figure 2).
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Figure 2. Changes of the maximum quantum yield of photosystem II (Fv/Fm); the effect of maize
hybrids (Armagnac, Loupiac, Fornad), different N supply (0 kg ha~1; 80 kg ha~1; 160 kg ha’l), and two
irrigation varieties (irrigated, non-irrigated) in a two year experiment (2018, 2019) at the tasseling (VT)
phenological stage n = 4, + s.e (differences between means of years (2018, 2019) were significant (p <
0.001): in 2019, significantly higher values were observed than in 2018).
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The 80 kg ha™! level of N has an effect on this parameter. The mentioned level of N was observed
as 0.85 + 0.004, and it was significantly higher than the value at 0 kg ha~! level (0.79 + 0.004). There is
no significant interaction between any factors. The observation was similar in the case of the Fv/Fo
ratio (Figure 3).
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Figure 3. Changes in the ratio between variable and minimal fluorescence (Fv/Fo), the effect of maize
hybrids (Armagnac, Loupiac, Fornad), different N supply (0 kg ha~!; 80 kg ha™!; 160 kg ha™!), and
two irrigation varieties (irrigated, non-irrigated) in a two year experiment (2018, 2019) at the tasseling
(VT) phenological stage 1 = 4, + s.e. (differences between means of years (2018, 2019) were significant
(p < 0.001): in 2019, significantly higher values were observed than in 2018).

A significantly higher Fv/Fo value was experienced in 80 kg ha™! (4.19 + 0.10) than 0 kg ha™!
(3.85 £ 0.10) in 2018. In the case of the Fm/Fo ratio, a similar trend was remarked (Figure 4). At the
level of 80 kg ha™! fertilizer (5.19 + 0.10), essentially higher values were noticed than at a level of 0 kg
ha™! (4.85 + 0.10) N. In 2019, in minimum fluorescence yield (Fo), a significant difference was noticed
between Armagnac (0.23 + 0.003) and Loupiac (0.25 + 0.004), as well as between Fornad (0.23 + 0.003)
and Loupiac. By examining the maximum fluorescence yield (Fm) values, similar results were found
between Armagnac (1.30 + 0.03) and Loupiac (1.35 + 0.03). In variable fluorescence (Fv), a significant
difference was noticed between Armagnac (1.07 + 0.02) and Loupiac (1.10 + 0.02). Additional irrigation
also had an effect on this parameter. In the irrigated plots (1.09 + 0.02) remarkably higher values were
noticed than in non-irrigated plots (1.04 + 0.02).

Remarkable differences were found in the case of maximum quantum yield of photosystem II
(Fv/Fm) in 2019 (Figure 2). Among 160 kg ha™! (0.82 + 0.002) and 0 kg ha~! (0.81 + 0.002) levels
of N, a significant difference was found in Fv/Fm values. Irrigation also had remarkable effect on
this parameter. The value was 0.82 + 0.001 in irrigated and 0.81 + 0.002 in non-irrigated plots. The
observation was similar in the case of the Fv/Fo ratio (Figure 3). A significantly higher Fv/Fo value
was experienced in 160 kg ha™! (4.43 + 0.09) than 0 kg ha™! (4.46 + 0.05) in 2019. In the case of the
Fm/Fo ratio, a similar trend was remarked (Figure 4). At the level of 160 kg ha~! fertilizer (5.61 + 0.06),
essentially higher values were noticed than at the level of 0 kg ha™! (5.46 + 0.05) N. A strongly significant
difference was found among irrigated and non-irrigated plots in both the Fv/Fo and the Fm/Fo ratio.
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Figure 4. Changes of the ratio between maximal and minimal fluorescence (Fm/Fo), the effect of maize
hybrids (Armagnac, Loupiac, Fornad), different N supply (0 kg ha~1; 80 kg ha~1; 160 kg ha’l), and
two irrigation varieties (irrigated, non-irrigated) in a two year experiment (2018, 2019) at the tasseling
(VT) phenological stage n = 4, + s.e. (differences between means of years (2018, 2019) were significant
(p £0.001): in 2019, significantly higher values were observed than in 2018).

2.4. Silking Stage (R1)
At the third measuring time, significant differences were evinced in just a few cases. In 2018, a

statistically proven difference was found in the case of Fm and Fv values (Table 3).

Table 3. Changes of the Fo, Fm, Fv, Fv/Fm, Fv/Fo, Fm/Fo, and yield parameters at different levels of N
(0, 80, 160 kg ha™1), genotypes (Armagnac, Fornad and Loupiac), and irrigation treatments (irrigated,
non-irrigated) in 2018 (n = 4 + s.e.).

Armagnac Fornad Loupiac
0Okghal 80kgha! 160 kgha! 0kgha? 80kgha! 160 kgha! 0kghal 80kgha! 160 kgha!

Fo 0.21 +0.02 0.21 +0.02 0.21 +0.01 0.19 +0.01 0.2 £0.01 0.21 £ 0.01 0.21 +0.01 0.22 +0.02 0.19 + 0.03
Fm 1.13£0.12 1.02 +£0.11 1.09 £0.13 0.86 + 0.13 1.03 +£0.14 1.08 £ 0.09 0.95+0.16 1.15£0.19 1.0+0.16

E Fv 091+0.1 0.81 +0.09 0.88 +0.12 0.67 +0.12 0.83 +£0.13 0.87 £ 0.09 0.74 +0.15 0.93 +0.18 0.81 +0.14
&%  Fv/Fm 0.81 +0.01 0.79 £ 0.01 0.81 +0.02 0.78 + 0.03 0.8 +0.01 0.81 +0.02 0.78 + 0.02 0.81 +0.02 0.81 +0.03
E Fv/Fo 428 +0.34 3.85+0.2 4.19+043 3.64 + 0.66 4.02+0.39 4.27 +0.63 3.55 +0.52 419 +0.59 4.23 +0.65
Fm/Fo 528 +0.34 4.85+0.2 519 +0.44 4.64 £ 0.66 5.02 +0.39 527 +0.63 4.55 + 0.52 5.19 +0.59 5.23 + 0.65

Yield 0.46 +0.11 0.46 +0.11 047 +0.1 042 +0.13 0.42 +0.09 0.44 +0.07 0.44 + 0.06 04+0.14 0.49 + 0.09

Fo 0.22 +0.01 0.21 +£0.02 0.21+0.01 0.22 +0.02 0.2+0.01 0.21 +0.01 0.21+0.03 0.2+0.01 0.21+£0.01

2 Fm 1.2+0.16 1.14 £ 0.09 1.08 £0.13 1.11+£0.12 1.04 +0.15 1.11 £0.07 1.08 £0.17 1.04 £0.01 1.04 £ 0.07
‘g} Fv 0.98 +0.16 0.93 +0.08 0.87 £0.13 0.89 +0.1 0.84 +0.15 0.9 + 0.06 0.86 + 0.15 0.84 + 0.07 0.84 + 0.01
B Fv/Fm 0.81 +0.03 0.82 +0.01 0.8 +0.02 0.8 +0.01 0.8 +0.03 0.81 +0.01 0.8 +0.02 0.81 +0.01 0.8 +0.02
‘g Fv/Fo 442 +0.7 45+0.28 4.12 +0.56 4.01+0.26 417 +0.73 424 +0.14 4.05 + 0.47 424+028 4.06 + 0.46
Z Fm/Fo 542 +0.71 55+0.28 512 +0.56 5.01+0.26 517 £0.73 524 +0.14 5.05+0.47 5.25+0.28 5.06 + 0.45

Yield 05+0.1 0.54 + 0.04 0.43 +0.12 0.38 + 0.09 0.39 + 0.09 0.39 £ 0.14 0.48 +0.11 0.47 +0.11 047 +0.11

Additional water supply affected these values (Table 2). Surprisingly, higher values were observed
in the non-irrigated plots than the treated ones. The difference of means was 0.064 in Fm and 0.059 in
Fv. In 2018, statistically certified interaction was observed among irrigation and the fertilizer level,
but just in the case of Fo. The effect of irrigation could be observed only in plots treated with 0 kg
ha~!. Furthermore, the effect of fertilizers could be observed only in non-irrigated plots. In 2019,
statistically significant interaction was found between fertilizer and irrigation in Fv/Fm, Fv/Fo, and
Fm/Fo parameters at the third measurement (Table 2). The effect of fertilizer could be observed within
non-irrigated plots. Without irrigation, the 80 kg ha™! level of N induced remarkably higher values
than the 0 kg ha! 160 kg ha~! level of N in the case of Fv/Fm, Fv/Fo, and Fm/Fo parameters (Table 4).
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In Fv/Fm, the difference between the 80 kg ha~! and the 160 kg ha™! N supply was 0.03 and 0.02
between the 0 kg ha™! and the 80 kg ha~! portion. In Fv/Fo, the difference between the 80 kg ha~! and
the 160 kg ha™! N supply was 0.62 and 0.51 between the 0 kg ha~! and the 80 kg ha~! portion.

Table 4. Changes of the Fo, Fm, Fv, Fv/Fm, Fv/Fo, Fm/Fo, and yield parameters at different levels of N
(0, 80, 160 kg ha™1), genotypes (Armagnac, Fornad, and Loupiac), and irrigation treatments (irrigated,
non-irrigated) in 2019 (n = 4 + s.e.).

Armagnac Fornad Loupiac
0kghal 80kgha! 160 kgha! 0kghal 80kghal 160 kgha! 0kghal 80kgha! 160 kgha!

Fo 0.24 +0.01 0.24 +0.02 0.23 +0.01 0.23 +0.02 0.24 +0.03 0.24 +0.03 0.25+0.01 0.24 +0.01 0.25 +0.02
Fm 1.22 +£0.08 126 £0.2 1.22 +£0.14 1.15 £ 0.06 1.29 +£0.18 1.23 +£0.07 1.26 £ 0.05 1.09 £0.11 1.33 £0.12

E Fv 0.98 + 0.09 1.02 £0.19 0.98 +0.14 0.91 + 0.05 1.05+0.16 0.99 + 0.06 1.01 £ 0.06 0.85+0.11 1.08 £0.11
gc Fv/Fm 0.81 +0.02 0.81 +0.03 0.81 +0.03 0.8 +0.02 0.81 +0.02 0.81 +0.02 0.8 £0.02 0.78 + 0.03 0.81 + 0.01
k= Fv/Fo 415+ 042 425+0.71 4.27 £ 0.66 4.02+0.35 441+053 424+ 046 3.91 +0.45 3.61 +0.53 438 £0.24
Fm/Fo 515+ 042 525+0.71 5.27 + 0.66 491+0.35 5.41+0.53 524 +0.46 5.02 +0.45 4.61 +0.53 539 +0.24

Yield 0.68 + 0.06 0.67 + 0.08 0.59 +0.17 0.63 + 0.08 0.69 + 0.09 0.64 +0.12 0.62 +0.16 0.46 +0.14 0.62 + 0.08

Fo 0.26 + 0.02 0.23 +0.01 0.25 +0.01 0.24 +0.01 0.25 + 0.02 0.23 +0.03 0.25+0.01 0.25 +0.02 0.24 +0.02

T Fm 1.25+0.24 1.26 £0.17 1.08 £ 0.19 1.19+£0.15 1.3+0.1 1.19£0.12 1.13 £0.15 1.31 £0.19 1.08 +£0.14
E"D Fv 1.0+0.22 1.03 £0.16 0.84 +0.19 0.95 +0.14 1.06 + 0.08 0.95 +0.09 0.88 +0.15 1.05+0.17 0.84 +0.12
g Fv/Fm 0.79 £ 0.03 0.82 + 0.02 0.77 + 0.05 0.8 £0.02 0.81 +0.01 0.8 £0.01 0.78 + 0.04 0.81 +0.01 0.78 + 0.02
g Fv/Fo 3.89+0.71 4.47 +0.58 3.44 + 0.86 4+054 431+0.26 4.07£0.11 3.55+0.7 417 +0.38 3.47 +0.31
Z, Fm/Fo 4.89+0.71 547 +0.59 444 +£0.86 5+0.53 5.31+0.26 5.07 £0.11 454+07 517 +0.38 446 £0.31

Yield 0.66 + 0.07 0.53 +0.14 0.62 + 0.09 0.49 +£0.33 0.55 = 0.27 0.34+0.39 0.56 +0.12 0.71+0.03 0.58 + 0.11

In Fm/Fo, the difference between the 80 kg ha™! and the 160 kg ha™! N supply was 0.62 and
0.51 between the 0 kg ha™! and the 80 kg ha™! portion. A statistically significant difference between
irrigated and non-irrigated values could be noticed only at the 160 kg ha~! level of N supply in the
Fv/Fm, Fv/Fo, and Fm/Fo (Table 4) parameters.

2.5. Physiological Maturity

Results of physiological maturity are presented in Table 5. In the case of ear weight, differences
were observed between applied N levels in 2018. At 80 kg ha™! (213.07 g + 5.74) and 160 kg ha™!
(206.92 g + 5.07) of N, significantly higher values were observed than at 0 kg ha™! (176.09 g + 9.17).

A difference was not evinced between higher levels of N. In 2019, at 80 kg ha~! (185.19 g + 6.46)
and 160 kg ha™! (204.57 g + 5.40) levels of N, significantly higher values were observed than at 0 kg
ha~! (159.82 g + 8.37). A difference was not evidenced at higher levels of N. Irrigation positively
affected this parameter in 2019. The difference of means of irrigated and non-irrigated plots was 16.35 g.
Kernel weight per ear was also affected by fertilizer level in 2018 and 2019. In 2018, remarkably higher
values were noticed at 160 (184.48 g + 4.57) and 80 kg ha™! (191.22 g + 5.13) than at 0 kg ha™! (156.46 g
+ 8.19). In 2019, a significantly higher kernel weight was observed at 80 kg ha! (165.21 g + 5.91) than
at 0 kg ha™! (141.52 g + 7.38); furthermore, 160 kg ha~! (182.78 g + 4.78) caused a powerful deviation
compared to the other levels of N. The average kernel weight per ear of irrigated plots (170.37 g + 5.58)
was remarkably higher than that of the non-irrigated plots (155.96 g + 5.60). The kernel/cob ratio was
not affected by irrigation in the examined years. In 2018, only 80 kg ha™" (8.90 + 0.24) had an effect on
the kernel/cob ratio, but in 2019, just a 160 kg ha~! (8.51 + 0.21) dose of N had an effect on the parameter.
Remarkable differences were observed between genotypes in 2018 and 2019 as well (Table 6). In the
first year of the experiment, the highest values were observed in the case of Fornad (9.67 + 0.18), which
was higher than Loupiac by 1.33 and higher than Armagnac by 2.11. In 2019, a statistically significant
difference was found between Fornad (8.88 + 0.24) and Armagnac (7.36 + 0.18) and, furthermore,
between Loupiac (8.53 + 0.16) and Armagnac. An interaction was not evinced between treatments.
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Table 5. Changes in weight of ear (g), kernel (g), and kernel/cob ratio at different levels of N (0, 80, 160 kg ha-1) in different crop years (2018, 2019), genotypes
(Armagnac, Fornad, and Loupiac), and irrigation treatments (irrigated, non-irrigated) (n = 4 + s.e.).

Armagnac Fornad Loupiac
0kgha1 80 kg ha1 160 kg ha~1 0kgha1 80 kg ha1 160 kg ha~1 0kgha1 80 kg ha1 160 kg ha—1
. Ear (g) 206.59 + 46.93 219.7 + 32.83 231.36 + 10.16 142.61 + 26.5 228.71 + 16.55 211.67 +28.08 178.05 + 59.74 214.63 + 21.62 216.95 +20.72
o = Kernel (g) 180.77 + 41.15 195.65 + 28.31 205.39 + 8.86 127.68 + 23.86 207.56 + 15.05 191.68 + 23.84 159.66 + 53.46 193.77 £ 19.91 191.02 + 25.63
% o Ker/cob ratio 7.01 £0.25 8.24 +0.81 7.92 +£0.25 8.63 £ 1.08 9.82 +0.27 9.73 +0.88 8.69 £0.73 9.4 +1.28 7.8 £2.28
50
é o Ear (g) 178.3 + 53.25 180.42 + 41.95 226.22 +19.41 163.33 + 38.1 173.17 £ 12.76 199.41 + 28.99 167.64 +43.57  208.58 + 14.87 22522 +10.28
S Kernel (g) 156.19 + 48.93 158.24 + 38.24 199.77 £ 16.57 143.57 + 34.26 156.01 £ 11.5 180.44 + 25.34 149.49 + 38.12 187.37 £ 12.87 202.31 +£8.27
o Ker/cob ratio 6.96 +1.11 7.07 £ 0.63 7.57 £0.33 7.33 £ 0.98 9.12 + 0.64 9.59 +0.53 8.31 £ 0.38 8.91 +0.86 8.92 +£0.93
o 0 Ear (g)t 182.87 + 56.35 201.86 + 30.42 213.61 + 32.62 185.86 + 30.18 192.02 + 15.69 173.58 + 13 160.54 + 40.72 221.52 +42.71 201.67 + 16.42
% § Kernel (g) 159.99 + 50.07 177.69 + 26.44 188.51 +27.92 168.88 + 28.38 174.33 + 14.19 157.63 + 11.09 141.81 + 38.81 198.31 + 37.87 17741 £17.13
%D Ker/cob ratio 6.97 +0.51 7.37 £0.19 7.58 £ 0.68 9.9 +£0.62 9.95+1.14 9.96 + 0.84 7.74 +1.86 8.6 £0.57 7.45 £ 1.58
5
& . Ear (g) 168.77 + 47.29 173.82 + 47.24 184.48 +18.73 137.36 + 44.47  202.26 + 32.35 198.29 +19.63 143.51 + 28.47 172.89 +23.44 187.1 +£28.43
2 b= Kernel (g) 148.33 + 39.95 153.8 +43.19 162.25 + 15.42 123.97 + 40.41 180.71 + 29.64 178.93 +£17.09 127.53 + 25.52 155.18 + 21.31 166.86 + 25.69
o Ker/cob ratio 7.62+1.76 7.61+0.77 7.34 +0.37 94 +1.62 847 +1.2 9.28 +0.48 797 £0.2 8.81 +0.94 8.27 £ 0.83
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Table 6. Changes of the correlation coefficients (r) between ear parameters of maize (ear weight, kernel
weight) and chlorophyll fluorescence parameters (Fv/Fm, Fv/Fo, Fm/Fo) at different levels of N (0, 80,
160 kg ha™!) in different crop years (2018, 2019), genotypes (Armagnac, Fornad and Loupiac), and
irrigation treatments (irrigated, non-irrigated). Significant differences in grey (p < 0.05) and dark grey

(p < 0.01).
0 kg ha1 80 kg ha1 160 kg ha~1
Fv/[Fm Fv/Fo Fm/Fo Fv/Fm Fv/Fo Fm/Fo Fv/Fm Fv/Fo Fm/Fo

o Imigated 095 =007 =097 085 085 085 049 08 048

Armagnac Non-irrigated  —090 —-090 —-090 —-0.63 —-0.65 -0.66 -054 —0.54 —0.54
opo  lmigated 066 069 070 037 039 040 09 095 095
. Non-irrigated  —0.60 —0.67 —0.67 048 052 053 028 024 024
) g Mmisated 090 088 088 -015 -015 -015 082 084 084
Y rormad Non-irrigated ~ 0.82 086 086 —002 -001 -001 -005 000 001
e Irigated 007 002 001 090 -091 -091 044 043 043
K 2019 Non-rrigated 082 081 081 034 034 033 065 063 062
g Mmisated =026 022 022 -100 -099 -099 093 095 094

Loupiac Non-irrigated 053 055 055 007 010 010 -063 -0.66 —0.66

o9 Mmigated 093 091 091 063 059 05 -059 -055 -055
Non-irrigated  -049 —049 -050 089 088 088 083 085 085
2o Dmiated =095 =097 =097 084 082 082 042 041 04l

Armagnac Non-irrigated  -0.89 —0.89 -0.89 -0.62 -0.65 -0.65 -059 —-0.60 —059
ojg  Imigated 067 070 071 035 038 038 097 097 09
= Non-irrigated ~ -0.66 —0.64 -064 050 054 055 028 024 023
4 Irrigated 091 089 089 -011 -011 -012 08 084  0.60
2 e 2018 Non-irrigated 082 085 085 010 012 012 001 005 006
2 oo Imigated 014 009 007 -0.87 -088 -088 043 043 042
g Non-irrigated ~ 0.86  0.85 084 079 042 041 063 061 060

s Imigated =023 —020 020 [EE00N 100 -100 098 097 039

Loupiac Non-irrigated 058 061 061 006 008 008 -058 -0.63 —-0.63

oo Mmigated 093 091 090 062 059 059 -066 -063 062

Non-irrigated -050 -0.50 -050 -0.05 0.89 0.89 0.83 0.84 0.85

Pearson’s correlation tests were performed between ear weight, kernel weight per ear, and the
Fv/Fm, Fv/Fo, and Fm/Fo parameters obtained from the VT period (Table 6). In 2018, a statistically
significant negative correlation was found between ear weight and Fv/Fo (r = —0.97) as well as Fm/Fo
(r = —0.97) at the 0 kg ha™! level of N in the case of irrigated plots of Armagnac. In case of ear weight,
further correlations were found in 2019 (Table 6). The mentioned parameter correlated well with Fv/Fm
(r = —0.96) and Fv/Fo (r = —0.95) at a 160 kg ha~! level of N in the case of irrigated plots of Armagnac
and also with 0 kg ha™! of N in the case of irrigated plots of Loupiac (r = 0.91). In the case of Armagnac,
the Fv/Fm (r = —0.95), Fv/Fo (r = —0.97), and Fm/Fo (r = —0.97) parameters correlated with kernel
weight at 0 kg ha™! of N with irrigation. Results were similar in 2019 but then at a 160 kg ha~! dose of
N. In 2018, another correlation was found among fluorescence parameters and kernel weight at 80 and
160 kg ha™! N levels in the Loupiac genotype (Table 6).

3. Discussion

The years of 2018 and 2019 were different from the viewpoint of maize production in Hungary.
The amount of precipitation was appropriate in both years, but the distribution was unfavorable in
2018. Based on our statistical analysis, we found a difference between 2018 and 2019, but we did
not find any interaction between the different vegetation periods and other factors, such as water, N
supply, and genotypes. Micskei [28] found that most of the agronomical treatments have no effect on
maize yield in drought years. In early phenological stages, the fertilizer levels did not influence any
parameters, but there were differences between genotypes. Based on the measured parameters, the
genotype is a main influence at this early growth stage. Less precipitation occurred in the April of
2019 than in 2018, and the average temperature was lower. These reasons explain why the measured



Plants 2020, 9, 676 10 of 13

parameters decreased more in 2019 than in 2018. Moussa and Abdel-Aziz [29] found differences in
drought tolerance between genotypes based on physiological parameters in an early phenophase.

At the VT phenophase, significantly higher values were found at an 80 kg ha™! level of N in
2018, and the effect of irrigation was also remarkable in the actual photochemical efficiency. In 2019,
the highest values were experienced at 160 kg N ha~!. The observations of Moser [30] were similar.
According to them, the highest grain yield was achieved at 80 kg ha™! of N under drought, whereas 160
kg N ha™! resulted in the highest yield under well-watered conditions. N and water supply both affect
the kernel number in maize [31]. Drought-tolerant genotypes are often tolerant to N deficiency [32].
Efeoglu [33] declared that the chlorophyll fluorescence induction method and the measured parameters
give reliable information about drought stress and the drought resistance of genotypes. The parameters
measured by us indicate significant differences between genotypes, irrigation, and fertilizer levels.
Significant interaction was found between irrigation and fertilizer level. Both kernel weight and ear
weight were affected by N level and irrigation. The results of Uhart and Andrade [34] as well as
of Reddy [35] were similar. The optimum N rate may be much lower than that used. Our results
suggested the 80 kg ha™! N dose could be optimal for maize, but it depends on environmental factors,
such as soil type and weather conditions.

4. Materials and Methods

4.1. Experimental Design

Small block field experiments were set up at the trial site (Latokép) of the University of Debrecen
(Hajdusag loess plateau, 47° 30" N, 21° 36" E, 121 m elevation) in 2018 and 2019. Three different maize
(Zea mays L) hybrids were sown: Armagnac, Fornad, Loupiac. Treatments at different (0, 80, and 160
kg ha™!) levels of N and two irrigations, irrigated (25 mm + 25 mm) and non-irrigated, were used. The
repetition number of small blocks was four.

4.2. Soil and Meteorological Conditions

The soil type of the experimental site is a lowland calcareous chernozem. The main parameters of
the soil were the same as described by Nagy [36]. The soil pH (H,O) was 6.58. The soluble element
content of the 0-0.3 depth layer of soil was the following: NO3 + NO, 8.04 mg kg™!; P,Os5 199 mg kg™
K,0 451 mg kg~!; Na 332 mg kg~!; Mg 176 mg kg~!; SO4% 6.04 mg kg; Cu 5.79 mg kg™!; Zn 7.9 mg
kg_1 ; and Mn 262 mg kg_l. The organic matter concentration was 3.54%, and the CaCO3 concentration
was 0.2%. The precipitation and temperature data were recorded from the meteorological station of the
trial field. To describe the severity, the Gaussen-Banouls xerothermal index was used [37]. It was given
as the ratio between monthly precipitation (mm) and the monthly average temperature multiplied by
two (°C). According to the creators of this equation, if the value of the Gaussen—-Banouls xerothermal
index is lower than 1, the mentioned month can be described as a drought month.

4.3. Methods of Measurements

The parameters of in vivo chlorophyll fluorescence were detected with a PAM 2100 (Walz,
Germany) modulated light fluorometer as described by Schreiber [38]. Samples were dark-adapted
for 20 min. After a dark adaptation, the initial fluorescence (Fy) was excited by a weak light
(0.1 umolm™2s71). The maximal fluorescence (Fy,) was induced by a white saturating flash (8000
umolm~2s~1) (fast phase of chlorophyll fluorescence). The parameters of the fast fluorescence induction
phase were investigated: F,: initial fluorescence, Fr: maximal fluorescence, F, = Fn—F,: variable
fluorescence, Fy/Fm: potential photochemical efficiency of PSII, Fy/F,: ratio of the variable and
initial fluorescence parameters, Fp,/F,: ratio of the maximal and initial fluorescence parameters. The
actual photochemical efficiency of PSII (AF/Fr,” = (Fm'—Ft)/Fm”) was measured in a light-acclimated
condition under natural light. In vivo chlorophyll fluorescence measurements were carried out in
three phenological phases (8 leaf (V8), tasseling (VT), silking (R1)) [39]. Measurements were made on
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the new fully developed leaves at the V8 stage and on the ear leaves at the VT and R1 stages. Total
ear weight and kernel weight of individual ears were also determined and expressed in grams (g) at
physiological maturity. The kernel/cob ratio was also calculated from the weight data. The weights
were reported after drying at 65 °C to constant weight.

4.4. Data Management and Statistical Analysis

We used a completely randomized design with three N treatments, two irrigations, and three
genotypes with four replications. For data management and statistical analysis, Microsoft Office Excel
2016 and SigmaPlot for Windows Version 12.0 were used. For the analysis, the methods of three
way-ANOVA and Pearson Correlation were used. For all pairwise multiple comparisons, Duncan’s
tests were used.

5. Conclusions

The optimal fertilizer dose depends on the water supply and temperature. Under dry conditions,
80 kg ha™! is optimal for maize, while in optimal weather conditions, 160 kg ha~! is optimal. Interaction
between irrigation x N x genotype was found only at the VT stage. The parameters were less influenced
by genotypes. The chlorophyll fluorescence induction method can provide reliable information during
drought stress research. Lower N nutrition may be sufficient mainly under irrigated conditions, and
in vivo chlorophyll fluorescence parameters are appropriate for detecting the effect of environmental
factors in different growth stages.

Kernel weight and ear weight were affected by N dose and irrigation, but the kernel/cob ratio
mostly depended on genotypes. According to the results of the correlation analysis, the chlorophyll
fluorescence parameters correlated with ear parameters in just a few cases. Although the chlorophyll
fluorescence parameters are widely applicable in stress research, the usability in yield estimation
is limited.
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