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Abstract: Exogenous RNA interference (exo-RNAi) is a powerful transgene-free tool in modern crop 

improvement and protection platforms. In exo-RNAi approaches, double-stranded RNAs (dsRNAs) 

or short-interfering RNAs (siRNAs) are externally applied in plants in order to selectively trigger 

degradation of target mRNAs. Yet, the applied dsRNAs may also trigger unintended epigenetic 

alterations and result in epigenetically modified plants, an issue that has not been sufficiently 

addressed and which merits more careful consideration. 
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Exo-RNAi and epigenetic modifications. 

RNAi in plants is triggered by double-stranded (dsRNA) molecules that are cleaved by dicer-

like endonucleases (DCLs) into 21–24-nt short interfering RNAs (siRNAs) [1]. More specifically, 

DCL4 generates 21-nt siRNAs which are loaded on argonaute 1 (AGO1) and slice complementary 

mRNAs in a process termed post-transcriptional gene silencing (PTGS) [2]. DCL2 produces 22-nt 

siRNAs which are loaded on AGO1 and either recruit RNA-directed RNA polymerase 6 (RDR6) on 

the complementary mRNA for the generation of secondary siRNAs [3] or repress mRNA’s translation 

[4]. Lastly, DCL3 processes the long dsRNA into 24-nt siRNAs that are loaded on AGO4 and are 

involved in RNA-directed DNA methylation (RdDM) of cognate DNA sequences [5]. 

DNA methylation is an important epigenetic modification and refers to the addition of a methyl 

group to the fifth carbon of the six-ring cytosine residue. DNA methylation was for long supposed to 

be induced by DNA:DNA interactions, until a breakthrough study in viroid-infected tobacco plants 

demonstrated that RNA:DNA interactions trigger DNA methylation, which was thus termed RNA-

directed DNA methylation (RdDM) [6]. Although the exact mechanistic details of how RdDM is 

induced are still elusive, the current model suggests that 24-nt siRNAs dictate which DNA region is 

to be methylated by hybridizing either with the DNA strand or with its  nascent transcript produced 

by RNA polymerase V (POLV) [7,8]. The interaction of 24-nt siRNA with the POLV transcript recruits, 

among other factors, the domains-rearranged methyltransferase 2 (DRM2) to de novo methylate the 

cytosines of the cognate DNA [9]. Although convenient, this model is not completely satisfactory. 

POLV seems to be recruited at already methylated DNA, thus cannot be involved in the very first 

step of RdDM on a completely unmethylated locus [10]. Moreover, whole-genome bisulfite 
sequencing revealed that RdDM is not eliminated in an Arabidopsis quadruple dcl1 dcl2 dcl3 dcl4 

mutant, suggesting that siRNAs (24-nt or of any other size class) are not indispensable for RdDM 

[11]. Indeed, DCL3 and AGO4 are not required for RdDM in inversely repeated loci that readily 

generate dsRNA [12,13]. It is thus more likely that the very first step of RdDM on a completely 

unmethylated locus is triggered not by siRNAs but by longer dsRNAs, seemingly with a minimal 
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size of 90 bp [14–16]. The long dsRNA may function as a ‘ruler’ defining the DNA region that will be 

methylated. Whether one or both RNA strands interacts with one or both DNA strands is open to 

speculation, but, interestingly enough, long non-coding RNAs (lncRNAs) form triple helices with 

DNA to regulate gene expression, at least in mammals [17]. According to our hypothesis, the 

RNA:DNA interaction recruits DRM2 to establish a first (perhaps incomplete) wave of de novo 

methylation in both DNA strands (Figure 1A). To this hemi-methylated DNA, POLIV and POLV are 

recruited. POLIV generates short transcripts (~40 nt) that are transcribed by RDR2 into ~40 -bp 

dsRNAs [18]. These short POL IV/RDR2 dsRNAs are processed by DCL3 into 24-nt siRNAs that are 

loaded on AGO4 and hybridize with POLV transcript, recruiting once more DRM2 to the hemi-

methylated locus to amplify the methylation marks [19,20] (Figure 1A). Apparently, additional 

dsRNAs occurring from other sources (e.g., RDR6 transcription of POLII transcripts) may also 
contribute to this self-reinforcing amplification step [21]. When the de novo and amplification step are 

finished, all cytosines of the target DNA will be methylated in both strands and in any sequence 
context: CG, CHG, CHH [22,23]. Importantly, the de novo and amplification steps require the 

continuous presence of the RNA trigger (dsRNA or siRNA). In the absence of RNA trigger, CG and 

CHG methylation can be mitotically and meiotically maintained by methyltransferase 1 (MET1) and 

chromomethylase 3 (CMT3), respectively [24,25]. However, CHH methylation cannot be maintained 

in the absence of a RNA trigger [26] (Figure 1A). 

Given the tremendous potential of RNAi to silence gene expression in almost all eukaryotes, 

plant biotechnologists have often resorted to RNAi tools to modify/improve crops and/or protect 

them against various pests and pathogens. Until recently, this was routinely achieved by transient or 

stable transformation of plants with transgenes designed to produce dsRNAs against the desired 

each time target [27–30]. However, the use of genetically modified (GM) crops has failed to gain 

public and political approval, hence their widespread commercialization has been rendered 

extremely problematic. Unsurprisingly, plant researchers have lately resorted to induction of RNAi 

by exogenous application of RNA molecules having the potential to trigger RNAi (exogenous RNAi, 

exo-RNAi), as an effective and transgene-free alternative to GM crops [31–35]. Indeed, 

dsRNAs/siRNAs were applied in plants by methods such as spraying, petiole uptake, trunk injection 

and root absorption in order to modify plant gene expression [36–39] and to confer resistance against 

viruses [40–44], fungi [45–49] and insects [50–54]. In the near future, one may envisage that exo-RNAi 

could potentially replace conventional herbicides, fungicides and insecticides, and a great amount of 

effort is invested in this direction by most major crop industries  [55]. Of course, minimization of 

dsRNA production costs and optimization of dsRNA stability and uptake by the target organism is 
a sine qua non for field scale applications. To this end, several agroindustrial companies (e.g. RNAgri, 

agroRNA, GreenLight Biosciences) offer large amounts of dsRNA for as low as one US dollar per 

gram dsRNA, while various carrier compounds (e.g. clay nanosheets, chitosan nanoparticles, 

liposomes) were developed that significantly improve dsRNA’s stability against the environmental 

nucleases and uptake from the target organism. Accordingly, an exo-RNAi commercial product 

(‘BioDirect’ from Monsanto/Bayer) designed for insect, weed and virus control is very close to reach 

the market [55]. 

Already from the early days of RNAi discovery in plants, it has been well established that PTGS 

is tightly connected to RdDM [56]. It has thus been surprising that, despite the huge progress and the 

rapidly accumulating reports on exo-RNAi applications, the question as to whether the applied 

dsRNA induces not only mRNA degradation, but also DNA methylation, has skipped the attention 
of the researchers, with a notable exception. When Dubrovina and co-workers applied in vitro 

transcribed GFP and NPTII dsRNA in transgenic Arabidopsis carrying a GFP/NPTII cassette, they 

observed seven days post application not only GFP and NPTII mRNA downregulation, but also DNA 

methylation of the corresponding coding regions [38]. Arguably, transgenes are more prone to 

transitivity, systemic silencing and RdDM than endogenes  are [57,58]. Nevertheless, native 

endogenes are certainly not immune to RdDM, since they can also be targeted for methylation, e.g.  

upon the presence of RNA viruses (exogenous RNAs themselves) that replicate through dsRNA 
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intermediates [59,60]. Hence, the data from Dubrovina and co-workers seem to reflect a more 

generalized mechanism and underpin that the issue of possible epigenetic changes in exo-RNAi 

applications merits more careful consideration, since the plants treated with exogenous RNA may 

still be GM-free, but epigenetically modified, nevertheless. 

Plant DCLs colocalize in the nucleus [61]. Yet, PTGS takes place in the cytoplasm [62]. Thus, 

during exo-RNAi, the applied dsRNA would need to first reach the nucleus and be processed by 

DCLs into siRNAs that would subsequently trigger PTGS in the cytoplasm. Of note, in exo-RNAi 

approaches that involve application of siRNAs (and not dsRNAs), transportation of siRNAs in the 

nucleus would not be required. Exogenous application of dsRNA in plants has been repeatedly 

reported to trigger PTGS of plant-encoded mRNAs [38,63–66]. This highlights that the exogenously 

applied dsRNA indeed manages to reach the nucleus, perhaps with the aid of dsRNA-binding 

proteins, where it is processed by DCLs into siRNAs. Importantly, while being in the nucleus, the 

exogenous dsRNA may also trigger RdDM of the cognate DNA sequences (Figure 1A). Thus, the 

researchers should take into consideration that when they apply dsRNA in plants to target a given 

mRNA for PTGS, they unintentionally also trigger RdDM of the corresponding coding region in CG, 

CHG and CHH context (Figure 1B). It is not clear how gene body CHG and CHH methylation affect 

transcription, but at least CG methylation does not seem to impede it [67,68]. Thus, in the dsRNA-

treated plants, the transcript from the methylated gene body will continue to be produced, but once 

it reaches the cytoplasm, it will be targeted by the occurring siRNAs for degradation and PTGS 

(Figure 1B). It should be noted here that plants gametes are formed from somatic cells. However, 

even if the somatic cells from which the gametes originated were dsRNA-treated, PTGS will not be 

maintained in the dsRNA-free progeny and neither will CHH methylation. Yet, CG and, to lesser 

extent, CHG methylation will be trans-generationally inherited [68] (Figure 1B). That being said, both 

dsRNA-treated plants and their dsRNA-free progeny will be epigenetically modified.  

Interestingly, while both intron-containing genes and intronless genes are in principle 

susceptible to coding region methylation, intronless genes are much more so, presumably because 

their transcripts are much more prone to RDR6 processing into secondary dsRNAs and siRNAs that 

amplify both PTGS and RdDM.  Indeed, both intron-containing and intronless genes may generate, 

besides the legitimate mRNAs, aberrant RNAs (abRNAs) as well, that is transcripts devoid of 5’ cap 

and/or 3’ polyadenylation tail. These potentially deleterious abRNAs need to be quickly eliminated 

by the plant cell. Thus, abRNAs from intron-containing genes are exonucleolytically degraded, due 

to their prior association with the spliceosome, whereas abRNAs from intronless genes are channeled 

to the RDR6/DCLs pathway for endonucleolytic degradation [57,58]. Of note, the transcription rate 

of each gene seems to be positively correlated with the likelihood for abRNA generation. Based on 

what was discussed above, when the exo-RNAi target is a moderately expressing intron-containing 

gene, then exogenous RNA application will result in local but most probably not in systemic 

silencing, while the risk of concomitant epigenetic modifications in the corresponding coding region 

will be low. In contrast, when the exo-RNAi target is a highly transcribed intronless gene, the chances 

to achieve both local and systemic silencing upon exogenous RNA application are high, as is also the 

risk of concomitant epigenetic modifications in the coding region. Conceivably, exceptions to this 

general rule of thumb are very likely to exist. 

While DNA methylation of coding regions does not seem to affect transcription, DNA 

methylation of promoter regions has a very different effect. Methylated cytosines in the promoters 

are recognized by methyl-binding proteins (MBDs) that recruit histone methyltransferases (SUVHs) 

and histone deacetylases (HDACs) [69–71]. Histone methylation and deacetylation increase histone 

positive charge and thus the negatively charged DNA wraps around them more tightly in the 

nucleosome. As an outcome, the occurring condensed chromatin blocks POLII access and results in 

transcriptional gene silencing (TGS) [72–75]. It has not been tested so far whether exogenous RNAs 

designed to target promoter sequences can efficiently lead to TGS which, in contrast to PTGS, could 

be trans-generationally maintained [76] (Figure 1B). This could indeed be a challenging task, since 

promoter RdDM does not always lead to chromatin modifications and TGS. More specifically, while 
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both transgenic and endogenous promoters are prone to RdDM, endogenous promoters are less 

prone to subsequent chromatin modifications and TGS for reasons that are not clear [77]. 

Interestingly, the few endogenous promoters that are prone to TGS derive from tissue-specifically 

expressed genes [28]. 

It needs to be noted here that the risk of epigenetic modifications upon exo-RNAi refers 

primarily to cases when the target is a plant gene. When the target is an RNA virus, then exo-RNAi 

will lead only to PTGS and not to RdDM, since there is no cognate DNA coding region in the virus 

(DNA viruses being an exception). Similarly, when the target is an insect or a fungal mRNA, then the 

exogenously applied dsRNA needs to function inside the insect and fungal cell, respectively, where 

RdDM has not been reported to occur. However, an exogenous dsRNA originally designed to 

function inside the insect or fungal cell, may also exhibit biologic activity in the plant cell, given the 

opportunity. Conceivably, an exogenous dsRNA applied against insect/fungal targets will most 

certainly not exhibit full sequence identity to a plant target, but it may exhibit partial sequence 

identity with a plant locus, nevertheless. Importantly, a sequence identity as small as 30 bp between 

a given dsRNA and the plant DNA is enough to trigger RdDM of the plant DNA [23] (Figure 1C). 

Not to mention that if this 30-bp sequence identity happens to cover a plant coding region, then the 

21-nt siRNAs that will be generated from the 30-bp dsRNA region will target the plant mRNA for 

degradation and PTGS. However, in that case, it is doubtful that the occurred cleaved transcripts will 

be processed by RDR6 into secondary dsRNAs and secondary siRNAs that will further amplify the 

silencing events in a ricochet-like manner [78]. Generation of secondary siRNAs and phased siRNAs 

(phasiRNAs) takes place only in few cases and only when the transcript is recognized by 21–22-nt 

miRNAs having an asymmetric bulge and/or by 22-nt siRNAs [3,79,80]. It was recently suggested 

that exogenously applied dsRNA are mainly processed to 21-nt siRNAs (and not to 22-nt siRNAs) 

and as such are unlikely to trigger transitivity [81]. Of note, exogenously applied 22-nt siRNAs, which 

are the most potent inducers of systemic silencing [37], will most certainly trigger transitive PTGS 

and transitive RdDM, especially highly transcribed intronless genes. 

Last, but not least, the mode of RNA application in plants greatly influences the onset of RNAi 

and the risk for epigenetic off-target effects. Thus, while high-pressure sprayed RNAs and/or low-

pressure sprayed formulated RNAs are efficiently delivered inside the plant cells, trunk injected and 

petiole absorbed RNAs are transported through the apoplast and the xylem and thus do not exhibit 

any biologic activity in the plant cell [36,37]. Whereas symplastic RNA delivery is desired when the 

RNAi target is a plant gene or a virus located in the plant cell, the apoplastic RNA delivery is best 

suited in circumstances when the RNAi target is an insect or a fungus, since the latter need to uptake 

intact dsRNA (unprocessed by plant DCLs) in order to process it themselves to siRNAs with optimal 

biochemical RNAi properties [31]. Nevertheless, it is highly advisable that all exo-RNAi approaches, 

even those where the target is non-plant, are carefully designed to select non-conserved regions as 

targets so as to avoid undesired epigenetic off-target effects. To this end, applying unique chemically 

synthesized siRNAs, rather than longer dsRNAs (which are processed by DCLs into a plethora of 

diverse siRNA population) may also reduce off-target effects. 

Overall, we strongly propose here that the occurrence of epigenetic changes in the genome upon 

exo-RNAi applications should be addressed and clarified in future studies. This will not only help to 

better interpret the obtained exo-RNAi data, but also to more comprehensively shape the regulatory 

framework of this exciting new technology. Although the European Food Safety Authority (EFSA) 

and other international risk assessment bodies and regulatory agencies have already addressed the 

issue of GM-based RNAi plants, there are still no clear guidelines for exo-RNAi applications [55,82].  
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Figure 1. Epigenetic modifications upon exogenous RNA interference (exo-RNAi) application. (A) 

The three steps of DNA methylation: de novo, amplification and maintenance. Exogenously applied 

double-stranded RNAs (dsRNAs) are mainly processed by dicer-like 4 (DCL4) into 21-nt short-

interfering RNAs (siRNAs) that have no direct role in RNA-directed DNA methylation (RdDM) in 

the nucleus, but they mediate post-transcriptional gene silencing (PTGS) in the cytoplasm. According 

to our hypothesis, the exogenous long dsRNA triggers the first incomplete wave of de novo 

methylation, while the 24-nt siRNAs,that are subsequently generated upon RNA polymerase IV 

(POLIV) transcription of the de novo methylated locus, are seemingly involved in the amplification of 

these methylation marks. Thus, both long dsRNAs and 24-nt siRNAs are able to recruit domains 

rearranged methyltransferase 2 (DRM2) to their target in a stepwise manner. In the absence of RdDM 

trigger molecules (dsRNA or siRNAs) CHH methylation is mitotically/meiotically lost, while CG and 

CHG methylation are maintained by methyltransferase 1 (MET1) and chromomethylase 3 (CMT3), 

respectively. (B) Exogenous application of dsRNA designed to target a coding region (left) will result 

not only to mRNA degradation aPTGS, but also to RdDM of the coding region. In the next generation, 

PTGS will be lost, but DNA methylation (CG and to lesser extent CHG) will be maintained. 

Exogenous application of dsRNA designed to target a promoter (right) will lead to promoter RdDM. 

Should additional chromatin modifications occur, TGS will also take place. In the next generation, 

CHH methylation will be lost, but CG/CHG methylation and TGS will be maintained. (C) A dsRNA 

may trigger RdDM not only to a DNA sequence which shares full sequence identity (locus 3, on-

target), but also to an unrelated DNA sequence exhibiting a minimum of 30-bp sequence identity with 

the dsRNA (locus 1, off-target). 
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